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Abstract—Ability to detect collisions is vital for future robots 

that interact with humans in complex visual environments. 

Lobula giant movement detectors (LGMD) and directional 

selective neurons (DSNs) are two types of identified neurons 

found in the visual pathways of insects such as locusts. Recent 

modelling studies showed that the LGMD or grouped DSNs could 

each be tuned for collision recognition. In both biological and 

artificial vision systems, however, which one should play the 

collision recognition role and the way the two types of specialized 

visual neurons could be functioning together are not clear. In this 

modeling study, we compared the competence of the LGMD and 

the DSNs, and also investigate the cooperation of the two neural 

vision systems for collision recognition via artificial evolution. We 

implemented three types of collision recognition neural 

subsystems – the LGMD, the DSNs and a hybrid system which 

combines the LGMD and the DSNs subsystems together, in each 

individual agent. A switch gene determines which of the three 

redundant neural subsystems plays the collision recognition role. 

We found that, in both robotics and driving environments, the 

LGMD was able to build up its ability for collision recognition 

quickly and robustly therefore reducing the chance of other types 

of neural networks to play the same role. The results suggest that 

the LGMD neural network could be the ideal model to be 

realized in hardware for collision recognition. 

 
Index Terms— redundant function, visual motion, collision 

recognition, locust, LGMD, directional selective neuron, 

competition 

 

I. INTRODUCTION 

n order for agents to initiate proper behaviours in dynamic 

environments, a practical vision system should be able to 

process images and extract useful cues in real-time. This 

ability is critical for both animals and autonomous robots, 

especially for future robots, which may play a role in our daily 

life. The basic skills, such as collision avoidance, are vital for 

their success in interacting with their human hosts. However, 

previous segmentation and registration based robotic vision 
techniques have not been able to reliably and cheaply 

recognise collision in real-time in dynamic environments 

(Indiveri and Douglas 2000, DeSouza 2002). Even with 
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several kinds of sensors, such as visual, ultrasound, infra-red, 

laser, and mini-radar, for object recognition (for example, 

Everett 1995, Adams 1998, Wichert 1999, and Manduchi et. al. 

2005), it is still very difficult for a robot to run autonomously 

without collision in complex dynamic environments without 

human intervention. In another application field, to reduce or 

alleviate the impact of road collisions and the number of 

casualties in driving scenarios, a reliable technique for visual 

based collision recognition is badly needed (Vahidi and 

Eskandarian 2003, Yue et. al. 2006a). 
On the other hand, nature has provided a rich source of 

inspiration for artificial visual systems. Many animals use 

their visual systems to successfully avoid collision in the real 

world. Insects in particular, with their rapid reactions to 

dynamic scenes use only a small amount of neural hardware 

and are very attractive as sources of inspiration (for example, 

Huber et. al. 1999, Harrison and Koch 2000, Iida 2003, Web 

and Reeve 2003, Franceschini 2004, reviewed by Rind 2005; 

Humbert 2006, Humbert et. al. 2006, McCarthy et. al. 2007, 

Lindemann et. al. 2008, Zufferey et. al. 2009). In insects’ 

visual pathways, identified specialized neurons have been 

known for several decades (for example, O’Shea et. al. 1974, 
Rind 1990a and 1990b). The properties revealed can be used 

to produce unique computing efficient models for visual 

sensors for collision recognition.  

Recently, specialized neurons found in animals have been 

used as the model in producing artificial vision systems for 

collision recognition. For example, an identified neuron in the 

locust, the lobula giant movement detector (LGMD) (O’Shea 

et.al. 1974, Schlotterer 1977, Rind & Simmons 1992 and 

1999) has been used as the basis for an artificial visual system 

for collision avoidance in robots (Rind and Bamwell 1996, 

Blanchard et. al. 2000, Rind 2002, Rind et.al. 2003, Santer et. 
al. 04, Yue and Rind 2005, 2009, 2012 and Yue et. al. 2006, 

2010) and more recently in cars (Stafford et al. 2007, Yue et. 

al. 2006) and embedded in hardware (Meng et. al. 2010).  

Several feature selective neurons may also be combined to 

provide a robust collision detecting visual system. Direction 

selective neurons (DSNs, hereafter) have been found in 

animals for decades, for example, in insects such as the locust 

(Rind 1990a, 1990b), beetle and fly (Hassenstein and 

Reichardt 1956, Borst and Haag 2002), also in vertebrates 

such as the rabbit (Barlow and Hill 1963, Barlow and Levick 

1965, Stasheff and Masland 2002) as reviewed by (Vaney and 

Taylor 2002) and the cat (for example, Priebe and Ferster 
2005, Livingstone 2005). Such DSNs could be used to signal 

looming (for example, Horridge 1992; Harrison, 2006). When 

organised in an asymmetrical layered network, these DSNs 

can produce a neural network specialized for collision 
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recognition (Yue and Rind 2007). By training and then testing 

in either a driving situation or in a robotic laboratory, the 

combined DSNs were shown to reliably detect collisions in 

dynamic scenes (Yue and Rind 2007, 2013). 

In animals, it is believed that many different specialized 

visual neurons act together to extract and fuse different visual 

cues from dynamics scenes. However, when the LGMD and 

DSNs co-exist in a natural or an artificial visual neural system, 

can they serve the collision recognition role together or does 
only one type of neuron contribute? This question needs to be 

addressed. An investigation into the robustness of the LGMD 

and the DSNs, comparing their competence for collision 

recognition can also provide useful information for the design 

of artificial vision systems for robots or cars. In insects, little 

is known as to how the LGMD and DSNs interact with each 

other. However, it is possible to investigate interactions by 

allowing currently available computation models of the 

LGMD and the DSNs (Rind and Bramwell 1996, Blanchard 

et. al. 2000, Rind et. al. 2004, Yue et. al. 2006, Yue and Rind 

2005, 2006a, 2006b, 2007, 2012, 2013), to either operate alone 
or in co-operation on the same platform or agent. An agent 

here refers to an entity or a complex neural system that 

consists of several different types of neural subsystems and is 

capable of responding to input visual images. The LGMD and 

DSNs can be such neural subsystems that form an agent. The 

agent is then exposed to a specific collision recognition task 

during a period of continuous development.  

Evolutionary computation, especially genetic algorithms 

(Holland 1975, Goldenberg 1989, and a recent example 

Floreano et.al. 2004), has provided useful tools to investigate 

the competence and possible cooperation between similar 
visual neural subsystems in specific environments. In this 

paper, we used a genetic algorithm to investigate the 

competence and possible cooperation of the LGMD and the 

DSNs in specific environments. There were three different 

types of collision recognition agents, each with a different 

type of neural subsystem functioning for collision recognition, 

i.e., an LGMD agent using the LGMD neural subsystem, a 

DSNs agent using the DSNs neural subsystem and a hybrid 

agent with the Hybrid neural subsystem.  These LGMD, DSNs 

and Hybrid neural subsystems all exist in each agent’s visual 

system and evolve simultaneously in a robotic environment. 

Since all the three neural subsystems coexist in each 
agent’s visual system in an evolution process, co-evolution 

(for example, Potter & De Jong 2000) has been considered as 

an option. In biology, co-evolution is about the change of a 

biological object that is triggered by the change of a related 

object (Yip et al. 2008). Each party in a co-evolutionary 

relationship exerts selective pressures on the other, thereby 

affecting each others’ evolution (for example, 

http://en.wikipedia.org, 2013). In evolutionary computation, 

co-evolution can be competitive co-evolution (Holland 1990) 

or cooperative co-evolution (Potter & De Jong 2000). Both of 

them are aiming to produce better searching results.  In this 
study, our focus is on the competence of the LGMD, DSNs 

and their cooperative neural networks. As the LGMD and 

DSNs are both specialized for one visual task – collision 

recognition, competitive co-evolution seems to be the right 

choice; Hybrid neural subsystems need the cooperation of 

both LGMD and DSNs, cooperative co-evolution seems to be 

a good choice in this case. However, it would be a complex 

task to use the above co-evolution computation strategies, i.e. 

competitive and cooperative co-evolution, to investigate the 

competence of the three neural subsystems simultaneously in 

an evolution process. Fortunately, there is a simple way to 

accommodate and compare different types of subsystems in an 

evolution process – to set specific gene(s) to determine which 

candidate subsystem plays the role. We introduced a switch 

gene for accommodating these coexisting neural subsystems 
while providing opportunities for each subsystem to compete 

for the collision recognition role during an evolution.  

Within the whole visual neural system of an agent, the 

switch gene determines which neural subsystem plays the 

collision recognition role. During an evolution, each type of 

agent is evaluated according to their performances on collision 

recognition tasks. The most important indicators of success are 

the number of each type of agent in the whole population and 

their performance over successive generations. Over 

successive generations agents that perform well have more 

chances to affect the newly produced switch genes. This 
means that the competence of that type of agent can be 

reflected in the increasing number of its kin agents (with 

similar switch genes) in the whole population. 

Via these evolutionary computations, we want to know 

which type of agent is able to adapt to the environment 

quickly and robustly, that is to say, which one is more likely to 

develop the collision recognition ability and prevent others 

from doing the same task. Secondly, we want to know if there 

is a need for cooperation between the LGMD and the DSNs 

for a collision recognition task; this may be the case if the 

hybrid agent can easily dominate the whole population. We 
hope the experiments will provide useful conclusions or 

suggestions for designing artificial vision systems for mobile 

robots and cars.  

II. METHODS AND FORMULATIONS 

In this section, the visual neural subsystems, including the 

LGMD, DSNs, and especially their adaptable parts, are 

illustrated. The switch gene, parameters of the visual neural 

subsystems, evolving environment and experiments set-up are 
also described in this section. 

A. LGMD Neural Subsystem 

The LGMD (Figure 1 (a)) used in this study is based on the 

previous model described in (Rind and Bramwell 1996, 

Blanchard and Rind 2000, Rind et. al. 2004, Yue and Rind 

2005) with minor changes.  
The LGMD model is composed of four groups of cells - 

photoreceptor P, excitatory E, inhibitory I and summing S, and 

two single cells - feed-forward inhibition (FFI) and LGMD.  

 
1)  P layer  

The first layer of the neural network are the photoreceptor 

P cells which are arranged in matrix form; the luminance Lf of 

each pixel in the input image at frame f is captured by each 

photoreceptor cell, the change of luminance Pf between frames 

of the image sequence is then calculated and forms the output 

of this layer. The output of a cell in this layer is defined by 
equation: 



Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

> Yue & Rind    Competing for Collision Recognition        2013 IEEE Transactions on Autonomous Mental Developments < 3 

),()),(),((),( 1 yxPpyxLyxLyxP
ifi

i

fff −− ∑+−=       (1) 

where Pf(x,y) is the change of luminance corresponds pixel 

(x,y) at frame f, x and y are the pixel coordinates, Lf and Lf-1 are 

the luminance, subscript f denotes the current frame and f-1 

denotes the previous frame, the persistence coefficient pi is 

defined by pi = (1+e
µi)-1  and  µ ∈ (-∞, +∞).  

 

 

     
(a)                                              (b) 

 

 
(c) 

Figure 1. The schematic illustration of the LGMD (a), the DSNs (b) and the 

hybrid neural subsystems (c). Note that the LGMD has symmetrical lateral 

inhibition but the direction selective neuron, L for example, has leftward 

lateral inhibition. In the neural vision system, the P, E and I layers are shared 

by the LGMD and the DSNs. The scales of the P, E, I and S layer are the 

same- 100 pixels by 80 pixels arranged in a matrix. The hybrid neural 

subsystem combines together the excitation of the LGMD, the excitation and 

the intermediate output of the DSNs. The outputs of the hybrid neural system 

are also spikes. 

 

 

2) I E layer  

The output of the P cells forms the inputs to two separate 

cell types in the next layer. One type is called the excitatory 

cells, through which excitation is passed directly to the 

retinotopical counterpart of the cell in the third layer, the S 

layer. The second cell types are lateral inhibition cells, which 

pass inhibition, after 1 image frame delay, to their 

retinotopical counterpart’s neighbouring cells in the S layer. 

The strength of inhibition spread to a cell in this layer is given 

by: 
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where If(x,y) is the inhibition in pixel (x,y) at current frame f; 
wI(i, j) are the local inhibition weights; n defines the size of 

the inhibited area. 

 

3) S layer  

The excitatory flow from the E cells and inhibition from 

the I cells is summed by the S cells using the following 

equation: 
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where WI is the global inhibition weight. Excitations that 

exceed a threshold value are able to reach the summation cell 

LGMD: 
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where Tr is the threshold. 

 
4) LGMD cell  

The membrane potential of the LGMD cell Uf, is the 

summation of all the excitations in S cells as described by the 

following equation, 
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The membrane potential Uf is then transformed to a spiking 

output using a sigmoid transformation, 
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where ncell is the total number of the cells in S layer. Since 
equation (5) is a sum of absolute value and Uf is greater than 

or equal to zero, the sigmoid membrane potential uf varies 

from 0.5 to 1. The collision alarm is decided by the spiking of 

cell LGMD. If the membrane potential uf exceeds the 

threshold Ts, a spike is produced. A certain number of 

successive spikes, which is denoted by SLGMD, will trigger the 

collision alarm in the LGMD cell. However, spikes may be 

suppressed by the FFI cell when whole field movement occurs 

(Santer et.  al. 2004). 

 

5) FFI cell  

In the absence of feed forward inhibition (FFI), the LGMD 
network may produce spikes and a false collision signal when 

challenged by a sudden change of visual scene, for example 

during a rapid turn. The feed forward inhibition cell works to 

cope with such whole field movement when a large number of 

P cells are activated (Rind and Bramwell 1996, Santer et. al. 

2004). The FFI at a given frame is taken from the summed 

output of the photoreceptor cells with one frame delay, 
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Once Ff exceeds its threshold TFFI, spikes in the LGMD are 
inhibited immediately.  

The early visual processing layers such as P, I and E are 

treated as developed layers and the adaptable variable between 

I to S layer is the inhibition weight WI. The FFI threshold TFFI 

and the LGMD cell’s threshold Ts are also adaptable during 

evolution. Other parameters are all treated as developed (and 

are given in later sections) and fixed without change during 

the evolution.  

B. The DSNs Neural Subsystem 

The DSNs (Figure 1 (b)) fuse the visual motion cues 

extracted by the several direction selective neurons. These 

neurons share the same photoreceptor P cells with the LGMD 

network; and have their own excitatory E cells and inhibitory I 

cells which are similar to those in the LGMD network; they 

have several groups of summing cells- SL, SR, SU and SD 

cells etc., direction selective cells – L, R, U and D etc., several 

intermediate cells, and a spiking cell sx (Yue and Rind 2007). 
We will take the left inhibitory summing cells SL and left 

inhibitory cell L as examples to illustrate the neural system. 

 

1) SL layer  

The inhibition from an I cell is passed on to its retinotopic 

counterpart’s neighbouring cells in the next layer. The 

inhibition is passed, with one image frame delay, 

asymmetrically from between one to eight cells away. The 

summed strength of inhibition to a cell in this layer is 
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where I
L

f(x,y) is the summed inhibition to the SL cell and 

w
L

I(i,j) are the local inhibition weights. In the above equation, 

inhibition can spread in four directions: up down, left and 
right, though in an asymmetrical way. The spread to the left is 

stronger than that to the right since mI is greater than nI. At 

this stage we found that it was not necessary to use all three 

inhibition directions because the outputs of several direction 

selective neurons are combined at the next level to extract and 

then fuse the visual motion cues. To save computing time, we 

set nI  to 0 (and mI   to 8), so that inhibition has a maximum 

spread of 8 pixels to the left resulting in directional selectivity 

with a single nonpreferred direction (leftward in this instance) 

(Yue and Rind 2006b). With a strong inhibition from the right 

side, the excitation caused by left translating movements will 

be reduced or even cancelled (Yue and Rind 2006b). 
Therefore, the summing cell L keeps silent with objects 

moving to the left but is excited by motion in the other three 

directions (R, U, and D). 

The excitatory flow gathered in an SL cell will be 
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where WI
Lis the global inhibition weight.  

 

2) L cell  

The excitations in the SL cells are summed by the left 

inhibitory cell L. However, to reach the summation cell, 

excitations should be able to exceed the threshold TrL. 
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The membrane potential of the left inhibitory cell L is, 
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The membrane potential of the L cell is then transformed 

using a sigmoid function, 
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where ncellL is the total number of the cells in SL layer. Since 

U
L

f is not less than zero according to equation (11), the 

membrane potential uL
f varies sigmoidally from 0.5 to 1.  

The membrane potential uR
f for right inhibitory cell R, uU

f 

for up inhibitory cell U and uD
f for down inhibitory cell D can 

be obtained in a similar way. The outputs of the network L, R, 

U and D etc. are then combined to extract collision cues. 

 

3) DSNs  

In the previous research the direction selective neurons 

have been successfully organized for collision recognition 

(Yue and Rind 2007). In this paper, a layered network (Figure 
1b) is used to fuse the several neurons for collision recognition 

and the efficiency of this structure has been demonstrated in 

recent study (Yue and Rind 2009, 2013). For a fusion network 

with n layers, each layer has mi intermediate cells, the inputs 

to the network are the excitation in the direction selective 

neurons, i.e.,   
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where sL
f, s

R
f, s

U
f and sD

f are the excitation in the L R U and D 

neurons, and {F}
1
f  is the input array to the FNs. The output of 

the ith layer can be formulated in matrix form as: 
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where {F}
i
f and {F}

i-1
f is the excitation array in i

th and i-1
th 

layer respectively, [W]
i
f is the weight matrix.  

A spiking cell sx sums its adjacent layer’s excitation. If 

the excitation κf in the spiking cell sx exceeds the threshold 

Tsp, a spike is produced as the output. If several successive 

spikes S
DSNs are produced, a collision is recognised by the 

neural system DSNs.  

In the DSNs, the direction selective neurons are 

considered as developed parts and will be fixed without 

change during evolution processes. These direction selective 

neurons are at a similar level to the LGMD. The adaptable 
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variables of the DSNs are the connection weights and 

threshold of the next level of their organization where the 

outputs of the directionally selective neurons are combined 

(see Figure 1(b)). 

 

 

  

(a). DSNs agent             (b). Hybrid agent 

 

(c). LGMD agent 

Figure 2. The schematic illustration of the three collision recognition agents. 

Three neural subsystems- the LGMD, the DSNs and the Hybrid are co-exist in 

the same entity- an agent or a bigger neural system. The switch gene controls 

the information flow from the three neural subsystems to the decision making 

level. Only one neural subsystem’s decision can feed to the final decision 

making and the whole neural system is named after that type of agent. Once 

the connection from a certain neural subsystem to the decision making has 

been made, other neural subsystems were blocked from sending output to the 

decision making. The double arrow between the DSNs and the Hybrid 

represents two levels of excitation flow from the DSNs to the Hybrid. 

 

C. The Hybrid Neural Subsystem 

The hybrid neural subsystem is represented by a neural 

network which combines the outputs of the LGMD and the 

DSN neural subsystems and outputs its own spikes. As 

illustrated in Figure 1 (c), the output of the LGMD and the 

final and intermediate outputs from the DSNs are fused in the 

cooperative neural network. Detail of the Hybrid neural 

subsystem is similar to the LGMD and DSNs’ and is not 

illustrated again.  

The adaptable part is the cooperative neural network in 
which the weights and threshold are adjustable. Note that the 

hybrid system not only depends on the weights and threshold 

of the cooperative neural network but also the input from the 

DSNs and the LGMD which are also flexible during 

evolutionary processes. 

 

D. The Switch Gene 

As described in the above, among the three collision 

recognition neural subsystems, the LGMD is at the lowest 
level in terms of complexity with fewest adaptable variables; 

the DSNs is at an intermediate level and the Hybrid system 

represents the highest level with the greatest number of 

adaptable variables. Since the three neural subsystems coexist 

within a whole neural system and evolve in the same 

environment for the same visual task, a switch gene is 

introduced to determine which neural subsystem plays the 

collision recognition role within the neural vision system as a 

whole. As schematically illustrated in Figure 2, the agent takes 

its name from the neural subsystem that is connected to 

decision making. 
During the evolutionary development period of the whole 

neural system, the switch gene adapts within a range of values 

from 0.5 to 3.5. As shown in Figure 2, if the switch gene is 

located within the range 0.5 to 1.5, the LGMD neural 

subsystem plays the collision recognition role; the outputs of 

the DSNs and the Hybrid are blocked and become redundant; 

the whole neural system is termed an LGMD agent. If the 

switch gene is located within the range from 1.5 to 2.5, the 

Hybrid plays the role, the LGMD and DSNs are the 

functioning part of the hybrid system but are blocked from 

making any direct connection to the decision making and the 

whole neural system is termed a Hybrid agent. Otherwise, the 
DSNs plays the role, the LGMD and the Hybrid are blocked 

and become redundant, and the whole system is termed a DSN 

agent. The range of switch genes’ value can be any other real 

numbers rather than 0.5 to 3.5 as long as equal (or 

randomized) opportunity is provided for each type of agent. 

 

E. Parameter Setting 

Parameters of the LGMD are set before the experiments. 

The range of adaptable variables is mainly decided based on 

empirical experience to balance computing, searching costs 

and opportunities. 

The input video images are 100 (in horizontal) by 80 (in 

vertical) pixels; images are grey scale ranging from 0 to 255 

(parameter without unit, similar parameters hereafter will not 

be restated). Therefore there are 8,000 cells in P layer and the 

same number of cells in I, E and S layers respectively. The 

lateral inhibition spread to its neighbours 1 layer away and 
with one frame delay. The local inhibition weights are set as: 

25% for the four nearest neighbours and 12.5% for the four 

diagonal neighbours. Other parameters are listed in Table 1. 

These parameters are set based on the early experiments and 

are not adaptable in the following evolution experiments 

unless stated. 

The inhibition weight WI is adaptable within (0.5~2.0); the 

FFI threshold TFFI  adapt within the range from 0.5 to 1.0 and 

the LGMD cell’s threshold Ts are also adaptable within the 

range 0.0 to 30.0 during the evolution. 

The selectiveness of DSNs is supposed to be a developed 
character of the DSNs in this study and is not be alterable 

during the evolution. Parameters of the DSNs are given in 

Table 2 based on our experimental study. The local inhibition 

weight wI(i) is set to be as strong as 5.5 to ensure inhibitory 

effect and directional selectivity. The four direction selective 
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neurons used in this paper are: left inhibited DSN L, right 

inhibited DSN R, upward inhibited DSN U, downward 

inhibited DSN D. 

There are four intermediate cells in the DSNs. In this case, 

there are a total of 21 weights and thresholds that are 

adaptable in the evolution process. The connection weights are 

allowed to adapt between (-1.0~1.0). The threshold of the 

spiking cell is allowed to adapt within (0.0~10.0).  

There are six input cells connected to the spiking cell of 
the Hybrid, the six connection weights are all adaptable, 

within (-1.5~1.5) and the spiking cell threshold is within 

(0.0~4.0).  

 

F. Setting up Evolution Experiments 

Evolutionary computation has been very successful in 

different applications –  computer vision is one of the areas 

that evolution processes have been used to tackle problems in 

a variety of different levels (for example, Floreano et. al. 

2004, Lange and Riedmiller 2005, Yue and Rind 2007). 

For this study, similar specialized neural subsystems 

coexist in a vision system; they need to compete with each 

other for the specific roles – collision recognition, or 

cooperate to achieve a better performance. All these 

competition and cooperation happens simultaneously in one 

evolution process. As stated above, the co-evolution 

computation strategies are not adopted directly. In co-
evolution computation (e.g. Holland, 1990, Floreano et. al. 

2004), relative fitness is often used for judging one agent 

against another but in different groups. However, in this study, 

not only the number of agents in a whole population is an 

important indicator, but also the absolute fitness value which 

represents the overall performance of different agents in the 

specific environment is extremely important as well. The 

solution for our case is to introduce the switch gene which 

determines one of the three subsystems to play for visual 

collision recognition for the whole entity. In this case, a 

normal genetic algorithm (Chipperfield and Fleming 1995) 
with slight modification becomes the best procedure once the 

switch gene is incorporated.  

 

1) Algorithm setting  

A population of agents (60 hereafter, unless restated 

differently) in each generation are processed via a genetic 

algorithm (Goldenburg 1989, Chipperfield and Fleming 1995, 

Yue et. al. 2006). The first generation is produced randomly. 

To form a new generation, the worst performing agents (20% 

of the whole population in a generation) are replaced. New 

agents (20% of a whole population) are produced by the best 

performing parents in the previous generation through 
crossover. Single-point crossover routine is used to perform 

crossover with probability set to 0.75 (Chipperfield & Fleming 

1995). Mutation is made to the chromosomes (binary coded) 

of these newly produced agents with a mutation rate 0.1.  

In an evolution process, different types of agents evolve in 

the same environment simultaneously and are therefore 

affected by the presentation of the rivals. Different groups of 

agents are evaluated according to their absolute fitness value 

which was assigned under the same rule. Therefore, the worst 

performing type of agents may be driven to extinction by the 

best performing agents. Because of the random factor in 

producing new agents, mutation may bring the extinct agent 

back again in subsequent generations.  

 

 

 
 

Figure 3. Samples from video sequences making up the robotic laboratory 

environments in which the three types of agents were evolving. The number 

under each image is the number of its corresponding video sequence. The 

arrows in the images are added for schematically indicating the visual motion 

direction. The black ball is 95mm in diameter. In video sequences 1 and 2, the 

ball was moving across the field of view from left to right at an  intermediate 

speed, taking 19 and 20 frames respectively; in video sequences 3 and 4, the 

robot was turning anticlockwise at about 50°/s while moving forwards, at 

3.2cm/s; in video sequences 5 and 6, the robot was turning clockwise at about 

50°/s while moving forwards, at 3.2cm/s; in video sequences 7, the ball was 

bouncing to the right; in video sequence 8 and 9, the ball was bouncing up and 

down; in video sequences 10, the ball was bouncing to left; in video sequences 

11,  the ball was approaching the robot at 0.4~0.5m/s from right side; in video 

sequence 12 and 13, the ball was approaching the robot at 0.4~0.5m/s from 

the central area; in video sequence 14, the ball was approaching the robot at 

0.4~0.5m/s from the left side. There were 60 frames in each video sequence. 

The collision sequences were numbers 11~14. The robot’s field of view was 

60° (Yue and Rind 2007).  

 

 

 

2) Fitness  

Each agent’s behaviour is evaluated based on its weighted 

success rate (Yue and Rind 2007), i.e., fitness value. In each 

generation, an agent that responds to all visual events 

correctly, i.e. recognise imminent collisions and make no 

mistakes on translating scenes or other challenges, scores a 

fitness value (success rate) of 100%; an agent that fails in all 

events scores a fitness value 0%; an agent that fails in a non-

colliding challenge scores a lowered fitness value (reduced 
success rate); an agent that fails in a colliding event get a 

sharp reduction in success rate since a collision event is much 

more important in scoring than a non-collision one – for 

example, failure in a collision sequence may be equal to four 

times the failure in a non-collision event. However, an agent 

scores 50% in fitness value if it only fails in all collision 

events or only fails in all no-collision events.  
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(a) round 1 

 

 
(b) round 2 

 

 
(c) round 3  

 

Figure 4. (Continued) 

 
(d) round 4 

 

Figure 4. The results with three groups of collision recognition agents 

evolving during the four rounds of evolution. The number of best agents 

means the number of agents with success rate equal or greater than 90%. 

 

 

The fitness of an agent may be formulated as the 
following, 
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where Fk is the fitness value of the kth agent in the population, 

f
 i

event is the score for the in ith events in the total Nv events, Mnb 

is the highest possible scores, and f
 i

event depends on 

performance: failure or success,  
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where Kcol is the score for failure in a collision event, Knon is 

the score for failure in a non-collision event. For a collision 

event, failure means no collision signal is sent out by the agent 

3~30 frames before real collision. Kcol is several times bigger 

than Knon to assure that an agent only fails in all collision 

events and an agent only fails in all non-collision events will 

have the same fitness value: 50%. In an evolutionary process, 

Nv = 14 (including 4 collision events), Kcol is 2.5, Knon is 1 and 
Mnb is 20. 

 

3) Evolving environments  

To cultivate well performing agents, the evolving 

environment should include as many visual events as possible. 

However, a huge video database may result in unacceptable 

computing time. Balance can be achieved by carefully 

selecting visual events to form the evolving environment. As 

illustrated in Figure 3, a group of video sequences, which were 

recorded in a robotic laboratory with a Khepera II mobile 
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robot1, are selected to form the environment for the agents to 

evolve in. Each sequence represents one event that can cause 

strong excitation in the photoreceptor layer. These sequences 

include a robot interacting with a black ball and turning 

around. Since these video sequences were recorded directly 

from a mobile robot, many visual perturbation challenges such 

as bumping and shaking were presented. These video images 

were all taken at about 25 frames per second. 
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Figure 5. The results of three rounds of special evolution in which only one 

specific type of agent is allowed to be  involved in collision recognition in 

each evolution. 

 

III. RESULTS AND DISCUSSIONS 

Four rounds of evolution have been conducted with three 

types of neural subsystems co-existing and evolving 

simultaneously with the same parameter and environment 

setting. Following this, another three rounds of special 

evolution, in which only one type of neural subsystem is 

allowed to play the recognition role in each evolution, have 

then been conducted in the same environment. Each evolution 

ran for about 16 hours on a Dell laptop computer (P4 CPU 

                                                        
1
 http://www.k-team.com 

2.8GHz). Results are shown in Figure 4 to Figure 9 

respectively.  
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(a) round 1 
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(b) round 2 
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(c) round 3 
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(d) round 4 

 

Figure 6. The switch gene value in each generation in the four rounds of 

evolution. Note that in each generation there were 60 different agents each 

with its own switch gene value; some of the gene value were very close and 

may overlap in the plot. The LGMD played the collision recognition role if 

the switch gene value fell within the range (0.5~1.5), Hybrid played the role if 

it was within (1.5~2.5) or DSNs played the role if it was within (2.5~3.5).   
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Figure 7. The distribution of the three gene values of the LGMD neural 

subsystem in the 1
st
, 50

th
 and 100

th
 generations. Data are from the first round 

of evolution.  

 

 

As shown in Figure 4, there are about the same number of 

the three types of agents in the first generation in the four 

rounds of evolution. However, the LGMD agents have quickly 

established themselves with increasing number of kin agents 

(‘kin agents’ here means agents that are using the same neural 

subsystem for collision recognition) and dominated the whole 
population after about 10 (Figure 4 a b c) to 40 (Figure 4 d) 

generations. Though the Hybrid agent also showed very strong 

ability in the early generations of the 3rd and 4th rounds of 

evolution and in a specific isolated evolution process in which 

only the Hybrid agents were involved in collision recognition 

in the evolution (Figure 5 b). The LGMD agent performed 

well in a specific isolated evolution with high averaged fitness 

and best fitness value (Figure 5 a). The above results showed 

that the LGMD has the ability to detect collisions robustly and 

leaves no opportunity for others to do the same work in this 

environment.  

The values of switch gene versus generation number in 

the four rounds of evolution have also been plotted in Figure 

6. It is found that the distribution of the switch genes tended to 

lock to the LGMD neural subsystem in 10 to 20 generations. 

However, the initial distribution in the first generation was 

uniformly distributed. The distribution trend over generations 

illustrated the number of different agents and reflected the 

competence of certain types of agents.  
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Figure 8. The distribution of the 18
th
 gene in the DSN neural subsystem and 

the 3
rd

 gene in the Hybrid neural subsystem in the 1
st
, 50

th
 and 100

th
 

generations. Data are from the 1
st
 round of evolution. The two genes were 

randomly selected. 

 

The gene value converged very quickly as shown in 

Figure 7. The majority of the gene values lay within a narrow 

area (Figure 7, 50th and 100th generation) which meant that the 

LGMD genes were converged and remained stable over 

several generations. The number of its kin agents also 
demonstrated the robustness of the LGMD in recognizing 

collisions, since a slight change in the gene value had not 

caused significant behavioural difference (Figure 7 and 

Appendix). In contrast, the gene of DSNs and the Hybrid 

neural subsystem showed little convergence over the 

generations, for example, the 18th gene of DSNs and the 3rd 

gene of Hybrid neural subsystem in Figure 8.  

The LGMD agent was also tested using similar visual 

clips and results are shown in Figure 9. The LGMD agent was 

picked up from the 100th generation’s 48 best LGMD agents. 

The chromosome of the 13 of those 48 agents was transformed 
from binary to decimal value and is shown in the Appendix. 

The chromosome of the agent used in the test was in the first 

column. Note that only the 22nd-24th gene belongs to the 

LGMD neural system and the others are either the redundant 

DSNs or Hybrid gene or switch gene. The test showed the 
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LGMD agent was able to recognise collision in similar 

scenarios (Figure 9, a, b) and did not respond to non-collision 

scenes (Figure 9, c, d, and e). As shown in Figure 9, the 

optimal combination of the LGMD cell and the FFI cell 

resulted in the observed good performance. The selectivity for 

looming objects over translating objects was largely based on 

this optimal combination. 

The LGMD agent was also challenged with two 

unfamiliar scenes. One scene was captured when the robot 
moved towards clustered blocks without collision (Figure 9, 

f). The agent responded to it correctly – no repeated spikes 

were sent out. The other scene was captured when a ball 

approached the robot on a collision course in the first stage 

and missed the robot at the final stage (Figure 9, h). It was no 

surprise that the LGMD agent detected a collision at round 

frame no.40, because the LGMD agent tended to detect 

collision quite early (e.g., Figure 9, a and b) during the 

approach stage (Figure 9, h).  

 

 
 

     
30                     40                   45                  50                   55 

 

0 10 20 30 40 50 60

0.6

0.8

1

frames

e
x
c
it
a

ti
o

n
 le

v
e

l 
o

f 
L

G
M

D

one of the best LGMD agents from the 1st round evolution

0 10 20 30 40 50 60
0

10

20

30

frames

e
x
c
ita

ti
o

n
 l
e

v
e

l 
o

f 
ff
i

 
(a). processing an approaching ball on a direct collision course 
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(b). processing another ball approaching on a direct collision course 

 

Figure 9. (Continued) 

 

     
27                 30                  33                     36                    39 

 

0 10 20 30 40 50 60

0.6

0.8

1

frames

e
x
c
ita

tio
n
 le

v
e
l 
o
f 
L

G
M

D one of the best LGMD agents from the 1st round evolution

0 10 20 30 40 50 60
0

5

10

15

frames

e
x
c
it
a
tio

n
 le

v
e
l o

f 
ff
i

 
 

(c). processing a moving ball translating at the same range from the camera 
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(d). processing a bouncing ball 
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(e). processing a nearby translating ball 

 

 

Figure 9. (Continued) 
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(f). processing turning scenes 
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(g). processing forward motion in a clustered environment 
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(h). processing a near miss scene 

Figure 9. One of the best agents (LGMD agent, from the 1
st
 round of 

evolution) processing different test scenes. The adaptable value of this agent is 

detailed in Appendix C in the first column. Frame numbers are shown under 

each image frame. The dashed horizontal lines are the thresholds for LGMD 

(blue) and FFI (red). Excitation levels are indicated in solid lines with LGMD 

in blue and FFI in red. Spikes are represented by asterisks. For the 

approaching cases, the last image shown is the one taken when the ball 

touched the robot. 

 

Since the LGMD, the DSNs and the Hybrid neural 
subsystem extracted and fused visual cues at different levels – 

LGMD at lower level, DSNs at intermediate level and Hybrid 

at higher level, and their flexibilities were also different due to 

their physical structure, it had been hard to predict which one 

would win the competition. Through the above evolutionary 

experiments, it became clear – if the DSNs co-existed with the 

LGMD, they may not have had the chance to develop 

themselves for collision recognition in the specific 

environments; the cooperation of the DSNs and the LGMD for 

collision recognition would also be difficult to develop in this 

case. However, the DSNs and the Hybrid agents could reach 
high success rate evolving alone (Figure 5) which meant that 

if the LGMD’s output was blocked, the chances for the DSNs 

alone and the cooperative Hybrid neural subsystem to play the 

collision recognition role would be high. The results may also 

suggest that the DSNs may have to be involved in other visual 

tasks instead of collision recognition, if they were to co-exist 

with the LGMD. In the future, more visual tasks may be 

introduced into the evolution to investigate the possible 

function diversity and coordination of these neural vision 

subsystems.  
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Figure 10. (Continued) 
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Round 4 

 

(b) 

 

Figure 10. (a). Sample images from video footages representing a driving 

environment in which the agents evolved. The number under each image is 

the video sequence number. Video sequence 1 was a car collision scene while 

driving at high speed, video sequence 2 was a car collision scene while 

driving at low speed, video sequence 3 was a leftward translating van while 

the camera was stationary, video sequence 4 was of a left running pedestrian 

while driving at very low speed, video sequence 5wais a left walking 

pedestrian while driving at very low speed, video sequence 6 was a turning car 

while driving at low speed, video sequence 7wais a fast translating car while 

waiting at a roundabout, video sequence 8 was a car cutting in while driving at 

normal speed on a motorway, video sequence 9 was the scene with road 

symbols- arrow while driving at high speed, video sequence 10 was road 

symbols- arrows and zebra lines while driving at high speed. (b).Results of the 

four rounds of evolution. Left column shows the number of agents over 

generations and right column shows the fitness over generations. 

 

 

 

For visual neural systems, the evolving environment was 

also critically important in forming and determining a 
structure for certain tasks. Often, the best agent in one specific 

environment may not be the best in another unfamiliar 

environment. Interestingly, quite similar results were obtained 

when we put the competition and coordination game into 

another dynamic environment involving driving scenarios as 

briefly shown in Figure 10. The LGMD agents also dominated 

most of the population after several generations in our driving 

scenario experiments, however, we noted that the best scored 

agent was not always a LGMD one, the DSNs and the Hybrid 

scored very high fitness value in 3 out of 4 rounds of 

evolution, which was consistent with previous studies, in 

which only one type of DSN was allowed to evolve in a 

specific environment (Yue and Rind 2006b, 2007). It was also 

harder for the LGMD to gain domination in the whole 

population (Figure 10, b, 4th round).  
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(b). round 2 

Figure 11. The results of three groups of collision recognition agents evolving 

(in the robotic lab, Figure 3) during the two rounds of evolution in which 18 

dummy variables were assigned to LGMD agents in addition to its original 3 

variables. The LGMD and DSNs agents were with the same number of 

variables in the evolution. The number of best agents means the number of 

agents with success rate equal or greater than 90%. 

 

 

The LGMD agents may benefit from its relatively stable 

structure with a smaller searching space, although the switch 

gene has structurally provided each type of agent with equal 

opportunity. Further experiments have been carried out, by 
assigning 18 dummy variables to the LGMD agents in 

addition to its three variables. These dummy variables 

involved in some simple addition and deduction operation but 
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exerted no final contribution to the LGMD outputs. Two 

rounds of evolution were conducted and the results (Figure 11) 

showed no significant difference compared to that from the 

previous experiments. Additional experiments with introduced 

significantly enlarged random factor (higher mutation rate, in 

this case) have also been carried out three times, in order to 

see if this can provide a better chance for the DSNs or Hybrid 

agents. The three rounds of evolution results are shown in 

Figure 12. More random changes in the gene has not lowered 
the LGMD agent’s competence, though the success rate of the 

LGMD agents has understandably dropped down with a 

higher mutation rate (Figure 12 (c), right column).  

 
TABLE I 

THE PARAMETERS OF THE LGMD 

name value name value 

pi 0 TFFI adaptable 

µ 0 Ts adaptable 

WI adaptable n 1 
Tr 12 wI 0.125~0.25 

ncell 8,000 l 100 

k 80 SLGMD 5 
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(c). round 3 

Figure 12. The results of three groups of collision recognition agents evolving 

(in the robotic lab, Figure 3) during the 3 rounds of evolution in which 

mutation rates were set to (a) 0.4, (b) 0.6 and (c) 0.8 respectively to introduce 

more random factor in the evolution. 

TABLE II 

THE PARAMETERS OF THE DSNS 

 

 

 

 

 

 

IV. FURTHER DISCUSSIONS 

 

The domination of the LGMD agent may be explained by 

the robust computational structure of the LGMD neural 

system for collision recognition. An LGMD subsystem is 

stable as it ‘sums’ the excitations resulting from expanding 

edges (e.g., Rind and Simmons 1992, Rind and Bramwell 

1996, Rind and Simmons, 1999) regardless of the direction of 
their movement. The excitation level of the LGMD system in 

response to similar visual stimuli, for example Figure 13, (a) ~ 

(d), will be the same as these expanding edges are summed 

without directional bias. However, these similar visual stimuli 

(Figure 13, (a) ~ (d)), will elicit quite different outputs from 

the directional sensitive neurons of the DSNs – making the 

learning process much more difficult for their postsynaptic 

network. For the same reason, it will not be any easier for the 

hybrid neural subsystem to adapt to these challenges quickly. 

 

 

 
(a)                      (b)                        (c)                     (d) 

 

Figure 13. Examples of similar looming (collision) visual stimuli each has 

edges moving to three different directions as indicated with arrows. All the 

four looming objects will elicit similar level of LGMD excitation but will 

trigger different outputs from the four directional sensitive neurons. For 

example, (b) will only trigger responses from L, R and U but D directional 

neuron – the DSNs collision recognition system has to learn to cope with each 

of these looming objects differently. 

 

 

The computational structure of each collision recognition 

subsystem determines the learning efficiency. A robust agent, 

such as a well performing LGMD agent in the above 

experiments, produced offspring that also performed well 

though these offspring’s gene was slightly altered due to both 

crossover and mutation. It is obvious that, in the competitive 

developmental process described above, the DSNs and even 

more complex cooperative hybrid agents had difficulties in 

generating offspring that performed well. The robustness of 
the LGMD suggested that it could be a good model for 

designing artificial vision systems for collision recognition 

and avoidance for mobile robots, vehicles, airplanes and other 

high speed mobile machines.  

On the other hand, the experiments demonstrated the way 

three different types of functioning neural subsystems co-exist 

and work in one entity via a switch gene.  The full potential of 

DSNs and the hybrid subsystems has been confirmed and 

name value name value 

WL
I 1.5 wL

I 5.5 

ncellL 8,000 TrL 12 

k 80 SDSNs   5 

l 100     
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demonstrated in separate experiments (Figure 5). In product 

design and system engineering, redundancy is often specially 

introduced for enhancing reliability. Redundant structures in 

an artificial vision system may be necessary to gain further 

robustness and reliability. In future research, it is important to 

investigate how the collision recognition functionality could 

be re-organized from the redundant structures if malfunction 

occurs in the dominant subsystem.  

The results of this study are useful for both the design of 
artificial vision systems and in understanding bio-vision 

systems but the limitation of this study is also obvious. The 

video database used in this study only represented a limited 

number of collision patterns; however, colliding objects and 

patterns in an environment can be very diverse. Although 

previous studies showed that these motion-sensitive neural 

vision systems could cope with a wide range of colliding 

objects even when trained in a simple environment with 

simple objects (Yue and Rind 2007), it may be interesting to 

investigate if the cooperation is necessary when these agents 

are challenged with very complex and diverse scenes with 
colliding objects. It is also worth investigating how these 

neural systems may evolve for multiple visual tasks in the 

future.  

The LGMD in locusts and direction selective neurons in 

many animal species including locusts are still under 

investigation (Gabbiani et. al. 2004, 2006, Santer et. al. 2004, 

2006 & 2008, Yue and Rind 2012). The interaction of these 

direction selective neurons to guide behaviour in animals is 

also a subject of speculation (e.g. Farrow et. al 2006). Our 

study above shows that an evolution method may provide 

chances to explore possible competition and coordination 
mechanisms between these neurons for specific visual tasks. 

We hope that by using modelling and evolutionary 

computation methods, together with the increasing 

information revealed by scientific investigations in insects’ 

visual pathways and the continuous investigation on 

developmental brain science (e.g. Jasso et. al. 2012, Weng and 

Luciw 2012), efficient and robust active vision systems could 

be created for future autonomous robots to interact with 

dynamic environments effectively. 

V. CONCLUSION 

In the above sections, we have investigated the competence 

and cooperation between the LGMD and the DSNs for the 

visual collision recognition role via evolution processes. 

Represented by three different types of agents, i.e., the LGMD 

agent, the DSNs agent and the cooperative Hybrid agent, the 

neural subsystems evolved in the environments 

simultaneously. The experiments showed that, the LGMD has 

the ability to establish its role for collision recognition very 

quickly and therefore reduce the other neural systems chance 

of developing the same skill.  
The LGMD is very robust in detecting collisions therefore 

it is an ideal model for designing artificial vision systems for 

the collision recognition task. Although the cooperation of the 

LGMD and the DSNs can be very successful, there has been 

little chance for the neural system to develop coordination 

aimed solely at collision recognition – the LGMD would have 

already gained a dominate role in this case. The DSNs may 

have to develop themselves for other visual tasks to maintain 

existence.  

This study gave us a chance to look at the developmental 

process of several specific neural subsystems fighting for their 

places via evolution. The above results provide useful 

information for the design of novel artificial vision systems for 

collision recognition which can be used in robots, cars, and 

many other application areas. With similar methods, the 

coordination between these visual neural systems for multiple 
visual tasks could be investigated in the future. 

APPENDIX 

The binary to decimal transformed chromosome of the first 8 

of the 48 best agents (which are all LGMD agents) in the 100th 

generation from the 1st round of evolution: 
 
   -0.9961   -0.9804   -0.3627   -0.8534    0.4545   -0.8847   -0.3705   -0.9804 

   -0.1476    0.2317    0.6031    0.6070    0.4115    0.5718    0.5718    0.6070 

    0.5406   -0.5738    0.0401    0.3998    0.2473    0.5914    0.5914    0.5484 

   -0.2747    0.9863    0.3138    0.8221    0.3353    0.6012    0.7263    0.7986 

    0.3275    0.0225    0.1632   -0.0596    0.5034    0.3705    0.3705    0.4370 

   -0.3666    0.6970   -0.2121   -0.5484   -0.6579    0.6989   -0.3021    0.8221 

    0.4370    0.1554    0.2239   -0.3529    0.0381    0.4370    0.2962    -0.9765 

   -0.4370   -0.3431   -0.1320   -0.6305   -0.8201   -0.4370   -0.1828   -0.2727 

    0.4976    0.6227   -0.8495    0.0186   -0.1163    0.4976    0.4976     0.8573 

   -0.0108   -0.1261   -0.3627   -0.1339   -0.5191    0.3001    0.3627   -0.9922 

    0.8983   -0.8260    0.9296   -0.3275   -0.5953   -0.2923   -0.2923   -0.3646 

    0.0635   -0.4370   -0.7517    0.6188    0.6090    0.1906    0.1906     0.5288 

   -0.8358    0.8768    0.6540   -0.0968   -0.5093   -0.7732   -0.7810   -0.5034 

    0.8475    0.5347    0.3060   -0.3529   -0.1965    0.7889    0.6794    -0.1691 

   -0.2219   -0.8710   -0.1515   -0.3412    0.1769   -0.5973   -0.5973   -0.1554 

    0.1105   -0.5288    0.4682    0.0283   -0.3372    0.7224    0.9726    -0.4565 

   -0.0890   -0.3177   -0.2317    0.6305    0.1535   -0.3333   -0.3294    0.4037 

    0.3939    0.5308    0.8827    0.3587   -0.4272   -0.1887   -0.7224   -0.4858 

   -0.4467    0.0909   -0.8553    0.0029   -0.9316   -0.6637   -0.6637   -0.8104 

    0.6598   -0.3724   -0.4721   -0.0870   -0.2630    0.8788    0.3783   -0.0635 

    6.6960    6.8524    5.5914    7.3216    4.0371    1.8475    1.8084    8.4164 

    0.8871    0.5044    0.9296    0.9179    0.8915    0.6070    0.6100    0.9384 

    0.6295    0.6691    0.6608    0.6608    0.6691    0.6696    0.6696    0.6681 

    4.1183    4.0332    3.8915    3.9482    4.0049    4.0049    4.0049    4.1183 

    0.8211    0.6022    0.5748    0.4555    0.7273    0.8915    0.8915    0.9658 

    0.5415    0.7722    0.8436    0.4819    0.7801    0.1642    0.0420    0.8104 

    0.5738    0.7644    0.5435    0.2962    0.7625    0.3734    0.3734    0.7918 

    0.2581    0.7224    0.9932    0.4301    0.9169    0.4653    0.4653    0.4301 

    0.1173    0.2356    0.7370    0.0899    0.2356    0.2463    0.1212    0.1574 

    0.0499    0.1877    0.2532    0.3812    0.1896    0.2199    0.2199    0.4409 

    1.2864    1.1222    0.0547    1.6266    1.0596    1.9120    1.9120    0.0469 

    1.0806    1.1510    1.0748    0.9868    1.1510    1.0249    0.6466    1.1217 

 

Note: the 1~21 rows are the gene values for DSNs neural 

subsystem; the 22~24 rows (highlighted) are for LGMD 

neural subsystem; the 25~31 rows are for Hybrid neural 

subsystem and the last row (highlighted) are the switch genes. 

In the above cases, only the rows for LGMD neural subsystem 
were useful for collision detection the others were redundant 

because the switch gene was located within the range 

(0.5~1.5). 
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