Study of the role of plant nuclear envelope and lamina-like components in nuclear and chromatin organisation using 3 D imaging

Axel Poulet

A thesis submitted in partial fulfilment of the requirements of Oxford Brookes University for the degree of Doctor of Philosophy

1 April 2016

ECOLE DOCTORALE SCIENCES DE LA VIE, SANTE, AGRONOMIE et ENVIRONNEMENT

Thèse présentée à l'Université Blaise Pascal pour l'obtention du grade de Docteur d'Université
(Spécialité : Bioinformatique)

Study of the role of plant nuclear envelope and lamina-like components in nuclear and chromatin organisation using 3D imaging

Présentée par Axel Poulet

Thèse dirigé par Pr Christophe Tatout et Pr David E. Evans

Soutenance prévue le 6 Juin 2016 devant le jury composé de :
Pr Paul Fransz, Université d'Amsterdam (Rapporteur)
Pr Chris Hawes, Université d'Oxford Brookes (Rapporteur)
Pr Philippe Andrey, INRA, Institut Jean-Pierre Bourgin, Versailles (Examinateur)
Pr Rémy Malgouyres: LIMOS Aubière (Examinateur)
Pr David Evans: co-superviseur, Université d'Oxford Brookes (co-directeur)
Pr Christophe Tatout: co-superviseur, GReD Aubière (co-directeur)
\& associès

Abstract

The linker of nucleoskeleton and cytoskeleton (LINC) complex is an evolutionarily well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data supports its function in nuclear morphology and meiosis, its implication for chromatin organisation has been less studied in plants. The fi aim of this work was to develop NucleusJ a simple and user-friendly ImageJ plugin dedicated to the characterisation of nuclear morphology and chromatin organisation in 3D. NucleusJ quantifies 15 parameters including shape and size of nuclei as well as intra-nuclear objects and their position within the nucleus. A step-by-step documentation is available for self-training, together with data sets of nuclei with diff t nuclear organisation. Several improvements are ongoing to release a new version of this plugin. In a second part of this work, 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the plant model Arabidopsis thaliana in which heterochromatin domains cluster in conspicuous chromatin regions called chromocentres. Chromocentres form a repressive chromatin environment contributing to the transcriptional silencing of repeated sequences a general mechanism needed for genome stability. Quantitative measurements of 3D position of chromocentres in the nucleus indicate that most chromocentres are situated in close proximity to the periphery of the nucleus but that this distance can be altered according to nuclear volume or in specific mutants affecting the LINC complex. Finally, the LINC complex is proposed to contribute at the proper chromatin organisation and positioning since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences. The last part of this work takes advantage of available genomic sequences and RNA-seq data to explore the evolution of NE proteins in plants and propose a minimal requirement to built the simplest functionalNE. Altogether, workachieved inthis thesis associategenetics, molecular biology, bioinformatics and imaging to better understand the contribution of the nuclear envelope in nuclear morphology and chromatin organisation and suggests the functional implication of the LINC complex in these processes.

Acknowledgement

I would like thank my supervisors, Professor David Evans and Professor Christophe Tatout, who gave me the opportunity to do my thesis in co-tutelle. I am very grateful to David for his patience and his kindness, his great help during my last year of my PhD , and his availability to discuss on this project. For me, it was very challenging to fi my PhD in Oxford without speaking very well English and fi to write my thesis in English. I found in the Plant Cell biology group a lot of people to help each time when I was lost with my English or in my project or both in same time. I would also like to thank Dr Verena Kriechbaumer, Dr Maike Kittelmann and Dr Joseph Mckenna for, their help, the scientific discussions and to help me to writemymanuscript.

Je tiens à remercier Christophe pour m'avoir proposé cette aventure de presque 4 ans qui a commencé par le stage en M2 sur quelque chose dont je n'avais jamais entendu parlé : l'imagerie. Je le remercie également pour la confiance qu’il a mis en moi, pour son aide et sa disponibilité. Je le remercie de m'avoir fait progressé scientifiquement, grâce aux nombreuses discussions durant ces 4 années.

I would also like to thank all the PhD student and post doc of the S208a office to follow me in my madness (Alex). I would specially thank Anish, Vidya, Alessandra, Frances, Vanessa, Jirka, Brittany, Rob, Scott and Aladin for their support, couple of pints, friday football, taste and test indian food, picture of cats, "I'am sorry, je suis bionformaticien" and again a lot of things... Now I change language and write in French.

Merci à Aline pour toutes les discussions scientifiques, toutes ses idées pertinentes et son aide.

Ce n'est pas merci, mais un grand ou énorme merci à Céline, pour à peu près tout. Merci de s'être impliquée, de m'avoir aidé à chaque étape de ce projet, qui sans son aide honnêtement se résumerait seulement à des développements bioinformatiques avec de pâles données biologiques. Merci pour les discussions que nous avons eu que ce soit scientifique ou pas.

Jetienségalementà àmercier les autres personnes quise sont impliquées surce projet. Philippe sans qui ce projet en imagerie ne serait pas vraiment ce qu'il est actuellement. Je le remercie pour sa patience et son calme afin de me transmettre
un peu de son savoir. Je le remercie également pour son accueil durant les semaines que j'ai passé à Versailles. Rémy qui m'a permis de progresser en mathématiques et en informatique durant les deux dernières années.

Merciàtouslespersonnes présentesou passées dansl'équipeetlelaboquim'ont supporté de près ou de loin.

Ensuite dans le désordre (je préfère), je tiens remercier Nicolas Kaspric, pour toutes les aprems glandechichaBBTthéBD, les repas à base de soupe au fromage ou de gras arrosés de bières et aussi pour tout ce qui ne s'écrit pas. Matthias et Mélanie (papa et maman thèse SECPA) pour toute l'aide qu'ils m'ont apportée n'importe quand, n'importe où et pour n'importe quoi. Et aussi pour toutes les pâtisseries payées pour des sous-entendus plus ou moins douteux. Pour tous les surnoms donnés et les bières bues, pour tous les repas faits ensemble etc... Merci à eux et aussi à Romain, Armand et Emi. Merci aussi à Lauriane pour toutes les discussions plus ou moins constructives et d'avoir fait la nounou du chat. Merci à tous les autres thèsards. Merci Tristan qui m’a montré que je n'étais pas seul. Et ensuite tout les potes du chorus et d'ailleurs (Polo, Max, Flo, Pif, Galette, Bruce, Seb, la beusse, Bud, DJ, Pierre et tous les autres (je n'ai plus de place)), qui ont toujours été présents et le seront encore.

Merci à toutes les personnes qui m’ont formé ou embauché ou aidé (François, Yannick, Maude, Sandrine, Gisèle ...).

Merci aussi à Fred, Fabien et tout le staff d'Esprit BD pour leur nourriture intellectuelle.

Merci à Django, Caouet, Decibel, Lisa et feu Fidji.

Et on termine par le plus important, merci aux personnes qui ont fait ce que jesuis, mafamille (femme, parents, frère, grand-parents, belles soeurs, Maël, beaufrère (pas tant que ça) et beaux-parents (je ne me permets pas de juger), cousins, cousines, oncles, tantes ...). Merci à mes parents de m'avoir montré que tout est possible et de m'avoir encouragé et permis de faire ce que je voulais , et aussi merci à mon frère pour tout et n'importe quoi.

Contents

1 Introduction 1
1.1 Overview of the nucleus 1
1.1.1 Nuclear envelope and nuclear function 1
1.1.2 The nucleus is a dynamic structure 2
1.2 Chromatin organisation 4
1.2.1 Historic classification: Euchromatin/Heterochromatin 4
1.2.2 Chromatin organisation in the interphase nucleus 5
1.3 Nuclear and chromatin organisation 10
1.3.1 Chromatin position and genome size in the nucleus 10
1.3.2 Modelling of nuclear and chromatin organisation 11
1.4 Nuclear envelope anchored proteins 16
1.4.1 Nuclear Pore Complex 16
1.4.2 Linker of nucleoskeleton and cytoskeleton complex 17
1.4.3 Lamins 22
1.5 Nuclear morphology 25
1.5.1 Nuclear shape 25
1.5.2 Nuclear size 27
1.6 Objectives 30
2 Quantitative analysis of nuclear parameters using 3D images 32
2.1 Imaging : state of the art 32
2.1.1 Sample preparation 32
2.1.2 3D Light microscopy technologies 33
2.1.3 Digital image 34
2.1.4 3D image processing and analysis 39
2.2 Aims 46
2.3 Material and methods 47
2.3.1 Plant material 47
2.3.2 Whole mount preparation 47
2.3 .3 3D image acquisition 47
2.3.4 Imaging process and analysis and statistical methods 48
2.4 Results and discussion 49
2.4.1 NucleusJ platform as a phenotyping tool for nuclear organisation 49
2.4.2 Improvement of the computing of the area 55
2.4.3 Improvments of 3 D nuclear segmentation 57
2.4.4 Comparative studies of 3D nuclei acquired with SIM and con-
focal microscope 64
2.5 Conclusion 69
3 Infl of nuclear morphology on chromocentre organisation in Arabidopsis thaliana 70
3.1 Introduction 70
3.2 Aim 73
3.3 Material and methods 74
3.3.1 Plant material 74
3.3.2 RNA extraction and RT-PCR 75
3.3.3 Fluorescent in situ hybridisation in 2D 75
3.3.4 Sample preparation, Hoechst staining and 3D-FISH 75
3.3.5 3D image acquisition 76
3.3.6 RNA-Seq analysis 76
3.3.7 Statistical methods 77
3.4 Results 78
3.4.1 Quantitative variations in nuclear organisation occur in wild- type cells 78
3.4.2 Chromocentres are positioned at the nuclear periphery 82
3.4.3 Analysis of nuclear morphology of mutants of the nuclear en- velope and chromatin organisation 84
3.4.4 Alterations of chromocentre compaction and alleviation of si- lencing in mutants 87
3.5 Conclusion 95
4 Exploring the proteins of the plant nuclear envelope 98
4.1 Introduction 98
4.2 Aim 102
4.3 Material and methods 103
4.3.1 Homologous LINC complex and lamin-like protein detection 103
4.3.2 Phylogenetic reconstruction 104
4.3.3 RNA sequencing data 104
4.3.4 RNA sequencing processing and analysis 105
4.4 Results and discussion 107
4.4.1 KASH protein homologues 107
4.4.2 Inner nuclear membrane proteins and lamin-like homologues detection 110
4.4.3 Phylogenetic analysis of the inner nuclear membrane proteins 113
4.4.4 Phylogenetic analysis of the outer nuclear membrane proteins 115
4.4.5 Phylogenetic analysis of the putative nuclear lamina proteins 118
4.5 Conclusion 123
5 Discussion and perspectives 125
5.1 NucleusJ a user friendly ImageJ plugin for 3D images of nucleus 126
5.1.1 NucleusJ validation 126
5.1.2 NucleusJ limitations 127
5.1.3 Future improvement of NucleusJ 128
5.2 Heterochromatin organisation and chromocentre positioning in wild- type plants 129
5.3 NE-anchored proteins disrupt nuclear morphology as well as chro- matin organisation 130
5.4 Chromatin and histone chaperone mutants disrupt chromatin organ- isation but not nuclear morphology 132
5.5 Future work 132
5.5.1 Chromatin organisation of the NE-anchored mutants 132
5.5.2 Chromatin organisation of the natural ecotype of Arabidopsis thaliana 133
5.5.3 Length and number of cells in cotyledon epidermis 133
5.5.4 Impact of stress conditions on the nuclear shape and chro- matin organisation 133
References 134
A Quantitative analysis of nuclear parameters using 3 D images 162
A. 1 NucleusJ: an ImageJ plugin for quantifying3D images of interphase nuclei. 162
A. 2 NucleusJ documentation 166
B Infl of nuclear morphology on chromocentre organisation in Arabidopsis thaliana 179
B. 1 Primers for genotyping and RT-qPCR 180
B. 2 Results of statistical test between mutant and wild type. 181
B. 3 Nuclear morphology of the chromatin mutants 184
B. 4 FISH-3D 185
B. 5 Quantitative RT-PCR analysis of the chromatin mutants 186
C Exploring of the proteins of the plant nuclear envelope 187
C. 1 KASH proteins detected with the Perl script 188
C.1.1 Results of fi ng KASH homologues 188
C.1.2 KASH proteins clustered using Perl script results 189
C. 2 Homologue protein results obtain with BLASTp 190
C.2.1 CRWN homologue results 190
C.2.2 NEAP homologue results 191
C.2.3 KAKU4 homologue results 191
C.2.4 SINE homologue results 192
C.2.5 WIP homologue results. 192
C.2.6 TIK homologues results 193
C.2.7 Cter SUN homologue results 193
C.2.8 MidSUN homologue results 194
C. 3 Tissue expression of the LINC complex protein homologues 195
C.3.1 Eudicot expression results 195
C.3.2 Monocot expression results 197
C.3.3 Basal angiosperm and moss expression results 198

List of Figures

1.1 Nucleus organisation at interphase. 2
1.2 Nucleus of mouse and Arabidopsis thaliana at interphase. 3
1.3 Chromatin organisation at interphase. 6
1.4 Rosette model and chromatin organisation in an Arabidopsis thaliana interphase nucleus. 8
1.5 Analysis of the radial position of the centromeres in 2D images. 12
1.6 Chromatin organisation modelling at the interphase. 13
1.7 Spatial point patterns within the nucleus and distance functions. 15
1.8 Protein components of the plant NE 25
2.1 Structured illumination microscopy technique. 34
2.2 Histogram of 8 bits image in grey levels. 36
2.3 Resolution and Airy disks defi 37
2.4 Shannon Nyquist theorem for the sampling signal. 39
2.5 Principles of deconvolution. 40
2.6 Comparison of deconvolution method between Iterative Deconvolve 3D and Huygens. 41
2.7 Mathematical morphology erosion and dilation 43
2.8 Limits of nuclear segmentation. 44
2.9 NucleusJ processing 49
2.10 Results of the Otsu and optimised Otsu method 50
2.11 NucleusJvalidation using plant cell nuclei. 54
2.12 Comparison of optimised Otsu method with the two estimations of the area. 58
2.13 Results of the three segmentations methods. 60
2.14 3D nuclear segmentation of a nucleus using three new segmentation methods. 64
2.15 3D morphological analysis of wild type nuclei from guard cells, pave- ment cells acquire by confocal and SIM microscopes. 65
2.16 Chromatin organisation analysis of wild type nucleifrom guard cells, pavement cells acquire by confocal and SIM microscopes. 66
2.17 Distance of chromocentres analysis of wild type nuclei from guard cells, pavement cells acquire by confocal and SIM microscopes 67
3.1 3D segmentation of nuclei and chromocentres using NucleusJ 79
3.2 Wild type nuclei from guard cells, pavement cells and root hair cells can be distinguished by NucleusJ phenotyping. 81
3.3 Chromocentres arelocated close to the nuclear periphery 83
3.4 RNA expression of candidate genes in epidermis, guard cells and roots. 853.5 Alteration of nuclear morphology in LINC complex mutants nucleifrom guard cells, pavement cells and root cells.86
3.6 Alteration of chromatin organisationin LINC complex mutant nuclei from guard cells, pavement cells and root cells. 88
3.7 Alteration of chromocentres distance on the chromatin and LINC complex mutant nuclei. 89
3.8 Alteration of chromatin organisation in heterochromatin mutant nu- clei from guard cells, pavement cells and root cells. 91
3.9 Alteration of heterochromatin condensation in whole cotyledon anal- ysed by 2D-FISH 92
3.10 Alteration of transcriptional repression of heterochromatic markers in mutant backgrounds. 94
4.1 Overview of plant phylogeny 100
4.2 Phylogenetic tree of Cter-SUN proteins. 114
4.3 Phylogenetic tree of Mid-SUN proteins. 115
4.4 Phylogenetic tree of WIP proteins. 116
4.5 Phylogenetic tree of SINE1, SINE2 proteins 118
4.6 Phylogenetic tree of KAKU4 proteins. 119
4.7 Phylogenetic tree of NEAP proteins. 120
4.8 Phylogenetic tree of CRWN proteins. 121
5.1 Image of Arabidopsisthaliana root with electron microscope SBFSEM 128
B. 1 Alteration of nuclear morphology in heterochromatin mutants nuclei from guard cells, pavement cells and root cells. 184
B. 2 Quantitative RT-PCR analysis of TSI expression in WT and chro- matin mutant 186
C. 1 KASH protein clustering 189
C. 2 Arabidopsis thaliana results 195
C. 3 Arabidopsis lyrata results 195
C. 4 Solanum lycopersicum results 196
C. 5 Glycine max results 196
C. 6 Orysa sativa results 197
C. 7 Zea mays results 197
C. 8 Amborella trichopoda results 198
C. 9 Physcomitrella patens results 198

List of Tables

2.1 Parameters computed by NucleusJ 53
2.2 Comparison of two methods of area computing using theoretical objects. 57
2.3 Mean morphologic parameters computed with the new algorithms and compared to the original Otsu segmentation procedure. 63
2.4 Numbers of nuclei acquire by SIM and confocal microscopes. 64
3.1 Mutants used in this study 74
3.2 Number of nuclei of all genetic backgrounds 80
4.1 Species for the phylogenetic analysis of the NE proteins 101
4.2 Reference genes. 104
4.3 SRA or fastq fi used for RNA sequencing analysis 105
4.4 Accession numbers of the SAND genes in all the species of interest. 106
4.5 KASH homologous proteins 109
4.6 Sequences selected for the phylogenetic and expression analysis. 112
B. 1 Primers for the RT-qPCR. 180
B. 2 Guard cell comparison between wild type and LINC complex mutants 181
B. 3 Pavement cell comparison between wild type and LINC complex mu- tants. 181
B. 4 Root hair cell comparison between wild type and LINC complex mu- tants. 182
B. 5 Guard cell comparison between wild type and chromatin mutants 182
B. 6 Pavement cell comparison between wild type and chromatin mutants. 183
B. 7 Root hair cell comparison between wild type and chromatin mutants. 183
B. 8 Sample of nuclei in GC and PC 185
B. 9 Proportion of condensed nuclei in GC and PC. 185
C. 1 KASH results from the Perl script 188
C. 2 CRWN results. 190
C. 3 NEAP results. 191
C. 4 KAKU4 results 191
C. 5 SINE results. 192
C. 6 WIP results 192
C. 7 NEAP results. 193
C. 8 Cter-SUN results 193
C. 9 Mid-SUN results. 194

List of Abbreviations

$\mu \mathrm{m}$ micrometers
nm nanometers
2D two Dimension
3D Three Dimensions
AtPSS1 Arabidopsis Pollen Semi-Sterility1
BAF Barrier-to-Autointegration Factor
BLASTp Basic Local Alignment Search Tool protein
bp base pairs
CC ChromoCentres
CCD Charge Coupled Device
CDK1 Cyclin-Dependant Kinase 1
CFP Cyan Fluorescent Protein
CRWN CRoWded Nuclei
CT Chromosome Territories
Cter-SUN C-terminal SUN
dag days after germination
DAPI 4', 6'-DiAmidino-2-PhenylIndole
DMSO DiMethyl SulfOxide
DNA DeoxyriboNucleic Acid
ER Endoplasmic Reticulum
FISH Fluorescence In Situ Hybridiation
FRAP Fluorescence Recovery After Photobleaching
ftp File Transfer Protocol
GC Guard Cells
GDP Guanosine DiPhosphate
GTP Guanosine TriPhosphate
HGPS Hutchinson-Gilford Progeria Syndrome
HP1 Heterochromatin Protein 1
IF Intermediate Filaments
IHI Interactive Heterochromatic Island
INM Inner Nuclear Membrane
KASH Klarsicht/Anc/Syne-1Homology
KEE KNOT Engaged Element
LAC Loop Arm and Chromocentre
LAD Lamin Associated Domains
LAP Lamina-associated polypeptides
LBR Lamin B Receptor
LCC Linear Chain and Chromocentre
LEM LAP1beta, Emerin, Man
LINC Linker of Nucleoskeleton and Cytoskeleton
LNA Locked Nucleic Acid
LRMP Lymphoid-Restricted Membrane Protein
Mb Mega base
Mlp1 Myosin-like protein 1
MM Mathematical Morphology
mRNA messenger RNA
MT MicroTubules
MTOC MicroTubule Organising Centres
N/C nuclear-to-cytoplasmic
NA Numerical Aperture

NE Nuclear Envelope
NEAP Nuclear envelope anchored protein
NEBD Nuclear Envelope Breaks Down
Nesprins NEspectrin repeat
NLS Nuclear Localisation Signals
NOR Nucleolar Organiser Regions
NPC Nuclear Matrix Constituent Proteins
NPC Nuclear Pore Complex
NUP NUcleoProteins
ONM Outer Nuclear Membrane
PBS Phosphate-Buffered Saline
PC Pavement Cells
PCA Principal component analysis
PMT PhotoMultiplier Tube
PNS PeriNuclear Space
PSF Point Spread Function
RanGAP GTP-binding protein Ran
RC Root Crown Cells
rDNA ribosomal DNA
rER rough Endoplasmic Reticulum
RHF Relative Heterochromatin Fraction
RNA RiboNucleic Acid
RNA-seq RNAsequencing
RPKM Reads Per base Kilo per Million mapped reads
rRNA ribosomal RiboNucleic Acid
RT-qPCR quantitative Reverse transcription polymerase chain reaction
RTN reticulon proteins
SEM Standard Error of a Mean

SIM Structured Illumination Microscopy
SINE SUN-Interacting Nuclear Envelope
SLP1 Sun-Like Protein 1
SUN SAD1/UNC84
SWI2/SNF2 SWItch/Sucrose Non-Fermentable
TAD Topologically Associating Domains
TIK TIR Toll-Interleukin-Resistance-KASH protein
TM Trans-Membrane
TSI Transcriptional Silent Information
UV UltraViolet
WGD Whole-Genome Duplication
WIPs WPP domain-interacting proteins
WIT WPP domain-Interacting Tail-anchored proteins
YFP Yellow Fluorescent Protein

Chapter 1

Introduction

1.1 Overview of the nucleus

Introducing the nucleus is not a simple task since it has multiple functions and properties. The nucleus is frequently the biggest organelle of the eukaryotic cell and its presence marks a major evolutionary transition between prokaryotes and eukaryotes. The nucleus is surrounded by the nuclear envelope (NE), consisting of two membranes and it contains most of the cellular genetic information organised in chromosomes (Figure 1.1).

1.1.1 Nuclear envelope and nuclear function

The fi key component of the nucleus and a major focus of this thesis is the NE (Figure 1.1). The NE is a physical barrier between the genetic material and the cytoplasm providing protection against external damage(UV, free radical, viruses). It is constituted of an outer nuclear membrane (ONM) and inner nuclear membrane (INM), forming a double lipid bilayer separated by the periplasm (Figure 1.1).

In plants, the ONM binds microtubules (MT) and can act as a nucleation centre for microtubules, which then organise at microtubule organising centres (MTOC). These MTOC form the basis of the mitotic spindle needed for chromosome segregation during cell division [Zhang and Dawe, 2011, Masoud et al., 2013]. The NE regulates communication between the nucleus and the rest of the cell, mostly through the Nuclear Pore Complex (NPC), which controls trafficking of molecules inside and outside the nucleus (Figure 1.1). The NE is connected with the cytoskeleton and the endoplasmic reticulum (ER), which is continuous with the ONM. In addition, the NE is connected to the cyto-and nucleoskeleton bythe Linker of Nucleoskeleton and Cytoskeleton (LINC) complex [Webster et al., 2009, Tapley and Starr, 2013].

Figure 1.1: Nucleus organisation at interphase. Main NE structures seen at interphase. NE is made of membranes (blue) including Outer Nuclear Membrane (ONM), Inner Nuclear Membrane (INM) separated by the PeriNuclear Space (PNS), interrupted by numerous nuclear pore complex (NPCs; orange) and is connected with the Endoplasmic Reticulum (ER). The Linker of Nucleoskeleton and Cytoskeleton (LINC; red) complex is made of KASH and SUN domain proteins anchored in the NE. In many species, NE, LINC complex, NPCs and lamina (in black) interact with chromatin (purple). Adapted from [Tatout et al., 2014].

In metazoans, the nucleoskeleton is composed of alamina made of intermediatefi aments at the nuclear periphery. These lamin fi ts interact with chromosomes and with the LINC complex (Figure 1.1).

1.1.2 The nucleus is a dynamic structure

The nucleus is not a static organelle but a dynamic structure [Jevtić et al., 2014]. During cell division, Nuclear Envelope Breaks Down (NEBD) occurs and the NE is then reassembled to surround the two daughter nuclei [Graumann and Evans, 2010, Jevtić et al., 2014]. The nucleus is also dynamic during chromosome condensation, segregation and cell division. The nucleus can be mobile in various cells and the migration occurs through the interactions of the nucleo- and cytoskeleton [Tamura and Hara-Nishimura, 2013]. Many examples of nuclear migration have been well documented: in the budding yeast, nucleus mobility is important as nuclei move into the bud neck during cell division so that each daughter cell can receive one nucleus [Pearson and Bloom, 2004, Xiang and Fischer, 2004]. In Drosophila, nuclei showbasal then apical movements which permit establishment of the characteristic
cell arrangement of the developing optic epithelium. In the large one-cell zygote of animals, the two pronuclei (male and female) move towards one another by the action of microtubules [Reinsch and Gonczy, 1998]. Nuclear migration is involved in cell division of the pseudostratifi neural epithelium. In these cells, the nucleus migrates from the apical surface to the basal surface and back to the apical surface for mitosis [Sauer, 1935, Baye and Link, 2008].

In plants, nuclear movement is essential for plant fertility, specifically during pollen tube growth [Zhou and Meier, 2014]. The two sperm nuclei are transported by the growth of the pollen tube for fertilisation to take place. Furthermore, nuclear positioning is a biological process involved in development (e.g. in cell cycle progression and cellgrowth) [Ketelaar et al., 2002]. In response to several stressfactors, nuclei are relocated and this process is followed by changes in gene expression [Iwabuchi and Takagi, 2008, Nagai, 1993].

Finally, morphology of the nucleus, such as its size and shape, seems to play a functional role in cell diff tiation and development as well as in disease resistance [Starr, 2009, Webster et al., 2009]. Variation of nuclear size and shape may affect gene expression, possibly by altering the position of a locus relative to the nuclear envelope. The size and shape of nuclei as well as possible effects on chromatin structure are addressed as part of the work described in this thesis.

Figure 1.2: Nucleus of mouse and Arabidopsis thaliana at interphase. The nuclei are stained with $4^{\prime}, 6^{\prime}$-diamidino-2-phenylindole (DAPI). The high intensity regions are heterochromatin, the condensed state of chromatin. These regions are named chromocentres. The less intense regions are the euchromatin. Adapted from [Probst et al., 2009, Benoit et al., 2013].

1.2 Chromatin organisation

In eukaryotes, DNA is not naked but organised into chromatin. DNA winds around an octamer of histone proteins to form the nucleosome, the basic subunit of chromatin. Organisation in chromatin allows DNA to be compacted so that it can be contained in the nucleus of a cell, and plays an important role in the transcriptional regulation of the genome. Chromatin carries "epigenetic marks" defi as modifi that induce heritable changes in gene expression independent of the genetic code itself. The information encoded by each or the combination of these diff t epigenetic marks can affect gene expression, and modifi ions of these marks can impact genome expression [Turner, 2000]. Combinations of specific marks called permissive marks are found at transcriptionally active or competent loci, while specific combinations of repressive marks are found at transcriptionally repressed euchromatin or constitutive heterochromatin respectively [Roudier et al., 2009, Sequeira-Mendes and Gutierrez, 2015]

1.2.1 Historic classification: Euchromatin/Heterochromatin

The chromatin studies by E. Heitz more than 80 years ago allowed the fi distinction of euchromatin and heterochromatin on the basis of cytological observations [Heitz, 1928]. The nucleus can be easily stained with 4, 6-diamidino-2-phenylindole (DAPI), a DNA intercalating agent capable of fl under UV light tovisualise the organisation of chromatin within the nucleus. Such a method used on interphase nuclei of mouse or Arabidopsis thaliana (A. thaliana) reveals diff nt regions of distinct fl intensity (Figure 1.2). The regions of high intensity correspond to compact chromatin, called heterochromatin. The more diff intensity regions correspond to relaxed chromatin, called euchromatin [Probst et al., 2009, Benoit et al., 2013, Vanrobays et al., 2013]. Euchromatin and heterochromatin are not distributed randomly along the chromosomes.

In A. thaliana, euchromatin is localised on the chromosome arms while heterochromatin is concentrated in several genomic regions [Simon et al., 2015]. Heterochromatin constitutes centromeric regions made of repeated elements such as the satellite 180 bp sequences and the repeated sequence elements called 106B while pericentromeric regions are mainly constituted of transposable elements and, on some chromosomes, of tandem repeats of 5 S ribosomal RNA genes (rRNA). Heterochromatin is also found on chromosome arms between two euchromatic regions (heterochromaticknobs), at the Nucleolar Organiser Regions (NORs), consisting of tandem repeats of 45SrRNAgenes [Franszet al., 2000].

Molecular characterisation of these two chromatin states defi euchromatin as rich in genes and associated with permissive histones marks for transcription. On the contrary, the heterochromatin is highly condensed, rich in DNA methylated at cytosines, enriched in repressive histone marks and has low transcriptional activity.

Heterochromatin, which constitutes about 10% of the A. thaliana genome (ie: 15 Mb), plays key structural roles in centromere function, regulation of 5 S and 45 S rDNA expression and the transcriptional repression of repeated sequences such as transposable elements. Different studies in yeast, plants, Drosophila and mammals have brought insight into the molecular mechanisms involved in heterochromatin formation and maintenance [Saksouk et al., 2015]. One additional hypothesis proposed bynuclear architecture studies is that the positioning of chromatin in relation to the periphery of the nucleus is an important parameter in heterochromatin formation [Towbin et al., 2013].

In summary, the defi of the two principal chromatin states can be based on cytological and molecular criteria as well as the transcription level of the sequences that compose it. The implication of the plant nuclear periphery in heterochromatin organisation is one of the central questions addressed in this thesis.

1.2.2 Chromatin organisation in the interphase nucleus

Different compaction levels of DNA into chromatin have been described. At the level of the basic subunit of chromatin, the nucleosomes, around one hundred and forty seven base pairs (bp) of the DNA double helix (with an estimated diameter of 2 nm) wrap around a histone octamer to form the nucleosome. Thehistone octamer comprises two molecules of each histone H2A, H2B, H3 and H4 [Luger et al., 1997]. All histones, except histone H 4 , exist in several forms (histone variants) encoded by diff t genes.

The arrays of nucleosomes form a pearl necklace like structure with a 10 nm diameter. These nucleosome arrays can wrap to form a fi of higher organisation of 30 nm in diameter (Figure 1.3). The formation of the fi needs other proteins including the linker H1 histone. This 30 nm fi has only been observed in specific cell types or after nuclear swelling and disruption, or in isolated nuclei. However the 30 nm fi is not always associated with transcriptional repression and its existence in vivo is still under debate [Even-Faitelson et al., 2015]. Recent data also suggest that condensed heterochromatin structures are facilitated by the presence of specific histone variants such as H2A.W, which promotes fi to fi contacts between 10 nm fi ers [Yelagandula et al., 2014]

Figure 1.3: Chromatin organisation at interphase. Organisation of the DNA between the nucleosomal (nucleofilament) and the nuclear scale (chromosome territories). Beyond the transcriptionally active (A) or inactive (B) chromosomal compartments, Topologically Associating Domains (TADs) and chromatin loops are two essential determinants of eukaryotic genome organisation (Source: [Ea et al., 2015], Creative Commons Attribution License).

Using a chromatin conformation capture (3C) technique which detects interaction between chromatin regions, Dixon et al. (2012) have identified a specific chromatin organisation in animals named Topologically Associated Domains (TADs, Figure 1.3). These domains are chromosomal regions which interact within the domain, but the interaction can occur between adjacent and other more distal TADs although less frequently [Dixon et al., 2012, Nora et al., 2012]. Chromatin, by its conformation and organisation permits interaction between diff t chromosomal regions which form the TADs [Dekker et al., 2013] (Figure 1.3). This chromosome organisation is conserved in yeast as well as in animal. In A. thaliana, chromatin is organised through contacts with pericentromeric regions [Fransz and de Jong, 2002], and no obvious TADs structures could be identified [Feng et al., 2014, Grob et al., 2014, Mizuguchi et al., 2014]. The chromosomes are localised to subnuclear domains called chromosome territories initially shown in animal cells by Carl Rabl (Figure 1.3) [Rabl, 1885].

Chromatin fi may undergo a higher level of compaction in fi of 300 nm , which form chromatinloops attached to the nuclear matrix (three dimensional
fi tous protein network which provides a structural framework for organising chromatin). These loops could also participate in defi higher order chromatin domains. A fi condensation can form a 700 nm fi found only in metaphase chromosomes. This is the highest level of compaction known to date [Fussner et al., 2011, Bian and Belmont, 2012].

Chromosome organisation in the interphase nucleus

Chromosome structure is not randomly organised in the nucleus. It is organised by several parameters dependent on the species studied, the stage of the cell cycle, the type of cell, ploidy level, chromosome size, distribution of heterochromatin on the chromosome, cell size, size and position of nucleolus or gene activity [Fransz and de Jong, 2011].

In all organisms 45S rDNA genes are organised in tandem repeats NORs. In A. thaliana, these 45 S rDNA genes are clustered into thousands of copies in two NOR lociof about 3.5to 4.0 Mb [Layat et al., 2012] localised in a sub-telomeric position on the short arms of chromosomes 2 and 4 . Not all 45SrDNA genes of the NOR loci are transcriptionally active and according to their activity, the NOR region is organised in two parts. On the one hand, it forms a highly condensed heterochromatic region without transcriptional activity and forms chromocentres. On the other hand, it is organised into chromatin loops that are actively transcribed within the nucleolus [Franszand deJong, 2002]. Thenucleolusis astructurethat can represent upto 30\% of the nuclear volume and is easily viewable by negative staining with DAPI. Apart from NOR loci, heterochromatin also includes centromeres and peri-centromeric regions (on either side of the centromere) also organised in chromocentres [Fransz and de Jong, 2002].

Franszand De Jong (2002) propose that euchromaticloops of around 0.2-2 Mb gene rich regions emanate from chromocentres (Figure 1.4). This model is known as the rosette model [Fransz and de Jong, 2002]. One possible mechanism for loop assembly relies on peri-centromeric heterochromatin rich in transposable elements that recruit homologous sequences scattered on chromosome arms. In a diploid somatic cell of A. thaliana at the interphase, six to ten chromocentres can be identifi [Fransz and de Jong, 2002, Fang, 2005, Berr and Schubert, 2007].

Given the organisation of the A. thaliana genome into fi e chromosomes and the presence of two NORs, this suggests that some heterochromatin domains from the same or diff t chromosomes reunite into a single chromocentre. Those chromocentres that contain NOR regions also contain centromeric sequences, indicating

chromocentre $\begin{aligned} & \text { IHI/KEE } \\ & \text { telomere }\end{aligned}$
Figure 1.4: Rosette model and chromatin organisation in an Arabidopsis thaliana interphase nucleus. Model of the organisation of a chromosome in nuclear space overlaid on a DAPI stained image of an A. thaliana leaf nucleus. Centromeric and pericentromeric regions of the five A. thaliana chromosomes are tightly packed into chromocentre (red/orange). Chromocentres structure the chromosome in nuclear space by anchoring proximal euchromatic loops, while distal chromosomal regions tend to cluster with telomeres (blue) next to the nucleolus (no). Interactive heterochromatic island (IHI)/KNOT engaged element (KEE) regions, identified in Hi-C maps, form additional intra- and inter-chromosomal contacts (green). Enlargement at the top right shows the nuclear envelope coated internally by a lamina-like structure, which includes the CRoWned Nuclei proteins (CRWN) (see Section 1.4.3). Chromocentres tend to localise at the nuclear periphery, but the physical link between nuclear envelope components or the nuclear lamina-like components remains to be identified (Source: [Simon et al., 2015], Creative Commons Attribution License).
that in interphase, NORs and centromeres co-localise with or are physically close to the chromosomes 2 and 4 [Franszand deJong, 2002].

Finally, part of the condensed chromatin carries repressive epigenetic marks (DNA methylation, $\mathrm{H}_{3} \mathrm{~K} 9$ type histone methylation) whereas euchromatin loops are rich in acetylated histones and poor in methylated cytosines. This last point illustrates the two states of chromatin, the condensed heterochromatin grouped in chromocentres and more released euchromatin, which forms loops that emanate from the chromocentres. The clustering of heterochromatin in chromocentres could have an important functional role, as the rosette model shows that chromocentres could organise the rest of the chromosome.

The rosette model revealed by cytological analyses, has been refined by a new sequencing method of chromosome conformation capture applied genome-wide (Hi-C). This method permits the visualisation and quantification of the physical interaction between all regions of the genome [Feng et al., 2014, Grob et al., 2014, Liu and Weigel, 2015]. The principal interactions detected by this method are among pericentromeric regions. These regions interact within or between chromosomes and the centromere-proximal half of the euchromatic chromosomal regions [Feng et al., 2014]. The distal halves of the chromosomes however, interact with each other, to form a pattern potentially driven by telomere interactions [Feng et al., 2014]. Furthermore, the high-resolution studies also revealed that euchromatic loops also contain repeatitive sequences called interactive heterochromatic islands (IHIs) [Feng et al., 2014] or knot-engaged elements (KEEs) [Grob et al., 2014], which group together in heterochromatic islands through intra- and inter-chromosomal interactions [Grob et al., 2014] (Figure 1.4).

Chromosome territories

A territorial organisation of the chromosome in interphase was fi suggested for animal cell nuclei by Carl Rabl during the 19th century (Figure 1.3). In animals, a radial distribution of chromosome territories has been observed, which depends on gene density. The more a chromosomal region is rich in genes, the more it will be internally localised, away from the nuclear periphery. Reciprocally gene poor regions tend to localised closer to the periphery. Such a radial pattern was confirmed in several animal species (e.g. human and yeast) [Cremer et al., 2001, Habermann et al., 2001, Bolzer et al., 2005]. The position of chromosome territories is determined by the specific relationships between diff t chromosomal regions (Figure 1.3). Theglobal gene organisation (called synteny) studies between human and pri-
mates [Tanabe et al., 2002], and human and mouse [Mahyet al., 2002] indicate that the chromosome territories positions in the nucleus are conserved during evolution. In A. thaliana, chromosometerritories were also described [Pecinka et al., 2004] but to date plant chromosome territories are poorly described apart from this early pioneer work.

1.3 Nuclear and chromatin organisation

In the small genome of A. thaliana, which has chromosome arms of around 10 Mb , expression levels do not correlate well with gene positioning within the nucleus [Rosin et al., 2008]. However, it has been shown that genes are not randomly organised on chromosomes [Rosa et al., 2013]. In the nucleus, elements (transcriptional enhancers, genes, promoters), which are physicallyseparated on the linear chromosome, canbe brought close together bythe 3D conformations of the chromatin to form chromatin loops. Chromatin loops were discovered fi in maize with pigmentation gene b1 using the 3 C method and have also been shown in A. thaliana for several genes involvedinfl wering and hormonesignalling [Louwers et al., 2009, Ariel et al., 2014]. The nuclear organisation of chromatin can be analysed by conformation capture techniques and by cytology or mathematical modelling. All these methods permit a better understanding of the spatial organisation of chromatin in the nucleus.

1.3.1 Chromatin position and genome size in the nucleus

The organisation of chromatin in nuclei diff depending on the size of the genome. According to literature, three types of genomes are suggested [van Driel and Fransz, 2004]. Small genomes, which have a size of less than 500 Mb , such as A. thaliana and Drosophila, medium-sized genomes, between 500 and 3000 Mb (mouse, human, tomato, maize and sorghum) and large genomes largerthan 3000 Mb as for example wheat or barley.

In a small genome as the one of A. thaliana, the fraction rich in transposable elements and poor in genes represents 10% of the genome and is localised mainly in the centromeric, telomeric and pericentromeric regions. In sorghum and mouse, heterochromatic regions are present at the centromeric and pericentromeric level but also scattered along chromosomes. As in A. thaliana, heterochromatic regions for these two organisms are visible in DAPI staining and form chromocentres, but there are more chromocentres and the contrast between condensed and decondensed regions is less marked [Cheng et al., 2001, She et al., 2007].

In humans and mice, the gene poor regions and repressed genes are associated with the nuclear periphery and co-localise with heterochromatin [van Driel and Fransz, 2004, Geyer et al., 2011]. Finally, for large genomes, such as wheat or barley, regions rich in repeated elements and gene clusters are present all along the chromosome. These two species show the organisation called "Rabl" [Jasencakova et al., 2001, Santos and Shaw, 2004, She et al., 2007], the chromosome arms are aligned and centromeres and telomeres are at the nuclear periphery but at opposite poles. However, in the small genomes of Saccharomyces cerevisiae or in some rice tissues, chromosomes also adopt this configuration [Santos and Shaw, 2004, Sáez-Vásquez and Gadal, 2010]. Therefore chromosome size cannot explain why an organism or cell type adopts this type of conformation.

In summary, in small and medium genomes, centromeric heterochromatin is focused mostly in a pericentromeric position. In larger genomes, where repeated items appear to have "colonised" the entire chromosome, it is more diffi to clearly defi eu-and heterochromatic regions.

1.3.2 Modelling of nuclear and chromatin organisation

Tostudythe position of the heterochromatinin A. thaliana, Fang and Spector (2005) combined two histone proteins fused to fl t proteins in the same transgenic line (HTR12-YFP and H2B-CFP). HTR12 is a specific centromeric histone while H2B is found at all regions thus marking centromeres and chromatin [Fang, 2005]. The nuclei of these plants were observed by confocal microscopy and an analysis of the radial position of centromeres was perfomed (Figure 1.5). The radial position was determined by the position of the centromere depending on the distance to the nuclear envelope. In their study, the initial 3D information was lost as the radial position was determined in 2D. This analysis in living cellshas shown that centromeres of diff t cells types with diploid nuclei are close to the nuclear periphery or near to the nucleolus in all tissues that have been observed [Fang, 2005].

Other studies have attempted to model the distribution of chromocentres in A. thalianatodetermine ifthe distribution is random or otherwise constrained byother factors such as the number of chromocentres, interaction or repulsion between chromocentres, the presence of chromatin loops, or the presence of the nucleolus which co-localises with NOR regions. Thus, two fundamental questions were addressed [de Nooijer et al., 2009, Andrey et al., 2010]: how are the chromocentres organised in the nucleus and what are the mechanisms responsible for this organisation?

Figure 1.5: Analysis of the radial position of the centromeres in 2D images. The centromeres were labeled by HTR12-Venus (green), and the nucleus was labeled by HTB1-CFP (magenta). The nucleus is acquired in 3D and projected in 2D before the radial position analysis. The radial distance of the centromere of interest to the nuclear periphery (x) is divided by the nuclear radius (r). Centromere position can be mapped to three concentric zones of equal surface (I, II, and III) right scheme. The analysis shows a preferential distribution of the centromere in zone I, the most peripheral. Scale bar $1 \mu \mathrm{~m}$.(Source: [Fang, 2005], MBoC licence).

In 2009, De Nooijer et al. (2009) determined diff tmechanistic models of chromocentre distribution in A. thaliana, based on data acquired by confocal microscopy on nuclei of leaf cells [de Nooijer et al., 2009]. The three models generated predict a peripheral location of chromocentres. But two of these models (LCC: Linear Chain and Chromocentre and LAC: Loop Arm and Chromocentre) also predict a very high association between chromocentres which group them in four clusters. This is not in agreement with the biological observations of six to ten well-individualised chromocentres.

Instead, the Rosette model, based on the model defi by Fransz et al. (2002), seems to simulate a more realistic distribution of chromocentres. To improve their modelling, the nucleolus, which forms a large volume that had been excluded, was integrated into the model (the volume of the nucleolus is estimated at 30% of the nuclear volume). The nucleolus is positioned in the periphery for the LCC model, but still positioned centrally in the pattern of rosettes.

With the introduction of NOR regions of chromosomes 2 and 4, the LAC model involves no significant alteration in the positioning of the other chromocentres. The rosette model remains the most robust and offers a peripheral distribution of chromocentres through nonspecific interactions. Only chromocentres for chromosomes 2 and 4 are close to the nucleolus, hence, presenting a central position in the nucleus. These models have only been compared to a few biological datasets for validation [de Nooijer et al., 2009]. Furthermore, chromocentre modelling as a sphere could promote their peripheral location and would lead to a bias.

Figure 1.6: Chromatin organisation modelling at the interphase. A): Each chromosome is modelled by a monomer of 65 kb of DNA (red ball) and linkers (yellow line). The LCC model (Linear Chain and Chromocentre) includes the chromocentre represented by a blue sphere. The LAC model (Loop Arm and Chromocentre) is based on the LCC model but loops are added on the chromosome arms. The Rosette model based on the model of Fransz et al. (2002), shows the chromosome arms organised in loops around the chromocentre. B): Simulation results for the 3 chromatin models from left to right: a whole nucleus with each chromosome with different colour (chromocentres are represented by a sphere with the same colour as its chromosome); one chromosome; and a set of spheres with different colours representing the chromocentre (10 spheres) and the nucleolus (brown sphere). The results obtained with the LCC an LAC models show a clustering of the chromocentres. The rosette model shows a chromocentre dispersion (Source: [deNooijer etal., 2009]).

Andrey et al. (2010) have recently proposed an approach based on statistical models useful for nuclear architecture [Andrey et al., 2010]. This work is based on the study of spatial distribution of chromocentres using spatial functions termed F and G (Figure 1.7) and using DAPI-stained nuclei. The distributions obtained for each nucleus were compared to a random distribution model and a statistical test at the population scale of nuclei was performed. These approaches show that the distribution of heterochromatin domains would not be random and would tend to form regular distribution patterns with respect to the complete random pattern. It is therefore possible that repulsion mechanisms between chromocentre can generate this distribution. This method makes it possible to observe the distribution of the chromocentre taking into account the possible interactions between them.

Note, however, that analyses are based on images of isolated nuclei; that is to say in a context where the cell is not constrained by other cells of the tissue to which it belongs. It will be interesting to achieve the same approach in living cells or fi tissue.

In summary, our knowledge on nuclear organisation of chromocentre structures in A. thaliana nuclei is still limited and is based on four founding papers defi the organisation of chromatin according to the rosette model [Fransz and de Jong, 2002]; radial positioning of chromocentre in 2D nuclei [Fang, 2005] and random distribution of the chromocentre to the nuclear periphery [de Nooijer et al., 2009] or a repulsion between chromocentre could explain their distinct distribution relative to each other [Andrey et al., 2010].

Figure 1.7: Spatial point patterns within the nucleus and distance functions. Centromere/chromocentre positions are represented as dots within nuclear contours. (A) Various types of spatial distribution. Positions can be uniformly and independently distributed (completely random pattern), or exhibit mutual attraction (aggregated pattern) or mutual repulsion (regular pattern). (B) The G-function is the cumulative distribution function of the distance between each centromere/chromocentre and its nearest neighbour (orange lines). This distance tends to be small for aggregated patterns and large for regular patterns. (C) The F-function is the cumulative distribution function of the distance between typical nuclear positions (blue crosses) and their nearest centromere/chromocentre (orange lines). This distance tends to be large for aggregated patterns and small for regular patterns (Source: [Andrey et al., 2010], Creative Commons Attribution License).

1.4 Nuclear envelope anchored proteins

As briefl mentioned above, NPC and NE-anchored proteins are major components of the NE and extensive description of these key components will help to better understand their roles in chromatin organisation and expression.

1.4.1 Nuclear Pore Complex

The NPC is a large protein complex composed of at least 35-40 proteins termed nucleoproteins (NUPs). This complex makes a channel, in the NE of around 90-120 nm in diameter in all organism. The NPC is conserved in all eukaryotes and allows nucleo-cytoplasmic transport and exchange (molecule, protein, mRNA...) between the nucleus and cytoplasm [DeGrasse et al., 2009]. NUPs are formed of several sub-complexes, with overlapping as well as specific cellular roles [Alber et al., 2007]. Although NUP complex proteins are conserved, their sequences vary between species [Bapteste et al., 2005, Tamura et al., 2010]. Furthermore, these proteins are essential for growth, and despite their sequence variations, their function seems to be well conserved. The major function of the NPC is the directional transport of molecules in and out of the nucleus.

In plants, active transport through the NPC applies for proteins larger than 40 kDa while below this threshold proteins diff freely. The NPC transport function involves a small GTP-binding protein Ran (RanGAP) [Görlich and Kutay, 1999]. RanGAP interacts directly with a protein of the NPC, Nup358, and is localised to the outer basket of the nuclear pore in animal cells. The RanGAP protein is conserved in plants for which nuclear localisation is permitted by an N -terminal WPP domain [Rose and Meier, 2001]. The NPC is also involved in other processes including chromatin interaction, gene regulation, and nuclear morphology (see Part 1.5).

It has been shown by chromatin immunoprecipitation that there are direct or indirect interactions between nucleoporins and genomic sequences. In yeast, the NPC can be associated with promoters, or specific NUPs (Nup157) can interact with double-stranded DNA [Luthra et al., 2007, Seo et al., 2013]. The mammalian Nup93 protein interacts preferentially with heterochromatin marks such as a trimethyl group on the lysine 9 on the histone 3 (H3K9me3), but also H3K27me3 and H3K79me3 [Brown et al., 2008]. In a similar manner, in yeast, Nup170 interacts with centromeric and subtelomeric regions (which constitute heterochromatin regions) [Van de Vosse et al., 2013]. In addition, it has also been shown that NUP
proteins can be transcriptional activators. For example, the human Nup98 protein interacts with proteins via its histone acetylase domain (histone acetylation in general being associated with transcriptional activity), and in yeast, the nuclear basket protein Mlp1 (myosin-like protein 1) interacts indirectly with various promoters [Kasper et al., 1999, Luthra et al., 2007].

Loss of Nup136, a plant specific nucleoporin, causes changes in nuclear morphology, pollen development and fl wering time. Nuclei of the nup136 mutant present a more circular shape in comparison to wild type while overexpression of the same protein causes shape changes where the nuclei becomes more elongated than wild type nuclei [Tamura et al., 2010, Tamura and Hara-Nishimura, 2011].

1.4.2 Linker of nucleoskeleton and cytoskeleton complex

The LINC complex is a conserved complex of the NE among eukaryotes and is composed of two protein families: the SAD1/UNC84 (SUN) domain proteins of the INM and the Klarsicht/Anc/Syne-1 homology (KASH) domain proteins of the ONM [Crisp et al., 2006]. SUN and KASH proteins connect to each other through interactions of the SUN and KASH domains located at the C-terminus of the respective proteins. In animals, SUN-domain proteins also interact directly with proteins of the nucleoskeleton and with chromatin, whereas KASH-domain proteins interact with cytoskeletal proteins [Crisp et al., 2006]. These complexes are involved in various cellular and nuclear processes such as nuclear shape and migration, chromatin organisation and chromosome segregation [Starr, 2009, Tatout et al., 2014].

Over the years, many components of the plant nuclear envelope have been discovered. It is now assumed that plants have their own LINC complex consisting of SUN [Graumann et al., 2010, Graumann et al., 2014] and KASH proteins including WIPs (WPP domain-interacting proteins) and SINE (SUN-interacting nuclear envelope) proteins [Zhou et al., 2012, Graumann et al., 2014, Zhou et al., 2015a].

SUN domain proteins

In eukaryotes, two sub families of SUN domain proteins are known so far, the Cterminal SUN domain (Cter-SUN) proteins and the mid-SUNs proteins that can be distinguished by the position of the SUN domain within the protein. These two subfamilies diverged early during evolution before the emergence of the plant and animal kingdoms and are nowforming two distinctmonophyleticgroups. Mostspecies have Cter-SUN and mid-SUN proteins, suggesting that both groups have been conserved through evolution [Field et al., 2012, Graumann et al., 2014]. Crystal structure of
the human SUN2 organised in homotrimers and the KASH protein Nesprin2 have been obtained [Sosa et al., 2012]. Their study showed that SUN domain proteins form homotrimers within the INM and interact with three KASH domain proteins with which they form the LINC complex.

In mammals, Cter-SUN proteins are involved in a large range of cellular processes such as chromosome organisation, decondensation of mitotic chromosomes, nuclear pore distribution, telomere maintenance and regulation of cellular death [Tzur et al., 2006, Chi et al., 2007, Fridkin et al., 2009]. Cter-SUN proteins can immobilise proteins of the nuclear membrane such as the Lamin B receptor, by interaction with chromatin and nuclear lamins [Ellenberg et al., 1997]. In mouse, a knock out of the SUN1 gene disrupts the production of piRNAs and causes a misregulation of several genes involved in meiosis [Chi et al., 2009]. Furthermore disturbance of the SUN1 gene in the murine model leads to several defects in chromosome organisation such as telomere-NE association during meiosis, pairing, synapsis and recombination. Interaction with telomeres is also well documented in yeast where the sole Cter-SUN protein called Mps3 interacts with telomeres and plays a role in nuclear organisation [Bupp et al., 2007]. Interestingly, Mps3 directly binds to the histone variant H2A.Z and this interaction is needed to localise Mps3 in the INM suggesting a new chaperone function for H2A.Z [Gardner et al., 2011]. These phenotypes are similar to maize and A. thaliana sun mutants that display defects in synapsis suggesting a redundance of the Cter-SUN activity [Bass et al., 2003, Ding et al., 2007, Varas et al., 2015].

In A. thaliana, the two Cter-SUN proteins (AtSUN1 and AtSUN2) localise to the NE, form homomers and heteromers and interact with the ONM KASH-domain proteins[Graumann et al., 2010, Graumann and Evans, 2010, Oda and Fukuda, 2011]. In Zea mays, two Cter-SUN proteins ZmSUN 1 and ZmSUN 2 have been identified and as in A. thaliana localise to the NE [Murphy et al., 2010]. In the mitotic prophase, AtSUN1 and AtSUN2 accumulate at the nuclear envelope; after NEBD, they associate with the mitotic ER membranes and rapidly aggregate around chromatin during the post-mitotic NE reassembly, suggesting a role of NEanchored proteins in chromatin organisation during mitosis [Graumann and Evans, 2011]. Furthermore, Varas et al. (2015) showed a delayed meiotic progression and incomplete synapsis in the double mutant atsun1 atsun2 leading to reduced plant fertility suggesting a connection between SUN domain protein and chromatin during meiosis. These defects are only found in the atsun1 atsun2 double mutant and are
not detectable from in the single mutants [Varas et al., 2015].

The Cter-SUN proteins also regulate migration and shaping of the nucleus. In Caenorhabditis elegans, the SUN-domain protein UNC-84 is involved in nuclear migration regulation during embryo development [Malone et al., 1999]. In human cells, expression of SUN1 without the Cter-SUN domain changes nuclear morphology. This suggests the importance of this domain in the establishment of the LINC complex by interaction with the KASH protein complex that maintains nuclear morphology [Haque et al., 2010]. In A. thaliana, Cter-SUN mutants also impact nuclear morphology. Their nuclei are more circular than wild type nuclei (see Section 1.5, [Graumann et al., 2010, Graumann and Evans, 2010, Oda and Fukuda, 2011]).

Several studies on mid-SUN proteins in mouse, yeast and fungi showed that these proteins are localised to the ER [Sohaskey et al., 2010, Friederichs et al., 2012, Vasnier et al., 2014]. In mouse, the mid-SUN protein named Osteopotentia is a membrane protein of the rough ER (rER). This protein is involved in the production of type I collagen, rER expansion, and terminal osteoblast diff rentiation [Sohaskey et al., 2010]. Analysis of the Saccharomyces cerevisiae mid-SUN protein SLP1 (Sun-Like Protein 1) revealed its interaction with the Cter-SUN protein Mps3 for its transport to NE [Friederichs et al., 2012], suggesting that this mid-SUN protein functions as a Cter-SUN chaperone as H2A.W. SLP1 was also identified in Sordaria and is involved in localisation of the ER and NE during the sexual cycle [Vasnier etal., 2014].

The mid-SUN proteins in plants were fi described in maize by Murphy and Bass [Murphy et al., 2010], who detected three mid-SUN proteins. In A. thaliana, three mid-Sun proteins have also been identified (AtSUN3, AtSUN4 and AtSUN5) [Graumann et al., 2014]. AtSUN3 and AtSUN4 are expressed in most tissues at low to medium levels, where they localise to the ER and NE. AtSUN5 is expressed predominantly in pollen, anthers and the endosperm. The mobility of the mid-SUN proteins was studied by microscopy with the Fluorescence Recovery After Photobleaching (FRAP) technique [Graumann et al., 2007]. AtSUN3 and AtSUN4 do not have the same mobility characteristics. AtSUN4 is more mobile in the ER than in the NE whereas AtSUN3 is less mobile than AtSUN4 generally. AtSUN4 therefore could be a protein chaperone that carries proteins between ER and the nucleus. The triplemid-SUN mutant is lethal suggesting that mid-SUN proteins are necessary for plant survival [Graumann et al., 2014]. Like the Cter-SUN proteins, the mid-SUN
proteins interact with the KASH-domain proteins, such as AtWIP1 and AtTIK which will be detailed below, and are components of the A. thaliana LINC complex [Graumann et al., 2014]. AtSUN3 and AtSUN4 both interact with AtSUN1 and AtSUN2, in a yeast-two-hybrid system while AtSUN5 does not. AtSUN3 also interacts with AtSUN4. AtSUN5 interacts with itself and with AtSUN3. For AtSUN1 and AtSUN2 it has been demonstrated in yeast and in planta that the coiled-coil domain of AtSUN1 and AtSUN2 are necessary for this interaction. In summary, the mid-SUNs can organise into homo or hetero-polymers as can the Cter-SUN proteins, localised in the ER and NE and all the SUN proteins play a role in LINC complex structure [Graumann et al., 2014].

KASH domain protein

KASH domain proteins are ONM-specific and highly conserved in vertebrates and yeast. The characteristic KASH domain that defi the family interacts with the SUN domain, an interaction essential for the ONM localisation of KASH domain proteins. In mammals, six KASH-domain proteins have been identified [Rothballer and Kutay, 2013, Sosa et al., 2013]. Four of these KASH proteins are called NE spectrin repeat (Nesprins). The spectrin repeat is a 3D conformation involved in the structure of the cytoskeleton. The other two are KASH5, which interacts with SUN1ingerminal line cells, and thelymphoid-restrictedmembrane protein(LRMP) [Lindeman and Pelegri, 2012]. These KASH proteins in vertebrate cells can impact the architecture of the cell and the nucleus [Chambliss et al., 2013].

Zhou et al. (2012) identified a previously described protein family, WIPs as the fi KASH domain proteins in plants (Figure 1.8). WIPs can bridge the ONM and the INM by interacting with the SUN domain proteins through a C-terminal VVPT motif. WIPs also interact with WITs (WPP domain-interacting tail-anchored proteins) [Zhao et al., 2008]. Mutants for WIPs or WITs impact nuclear morphology in root hair cells as do the Cter-SUN mutants [Zhou et al., 2012, Tamura and HaraNishimura, 2013, Zhou and Meier, 2014]. Together, these data showed the fi functional plant SUN-KASH complex at the nuclear envelope. More recently in A. thaliana, the importance of AtWIPs and AtWITs for migration of the pollen vegetative nucleus and successful pollen tube elongation during fertilisation has been shown [Zhou and Meier, 2014]. Furthermore, AtWIP and AtWIT proteins target plant specific Ran GTPase activating protein (RanGAP) to the plant NE, as this protein has an N-terminal WPP domain in the plant [Rose and Meier, 2001, Jeong et al., 2005]. The RanGAP aids Ran in hydrolysis of GTP to GDP, driving biological
processes in mitotic spindle assembly, including nuclear transport and post-mitotic nuclear envelope reassembly.

Another KASH domain protein AtTIK (TIR Toll-Interleukin-Resistance-KASH protein) has been identified by yeast two-hybrid using Cter-SUN as bait [Graumann et al., 2014]. AtTIK contains a putative TIR domain [Mitcham et al., 1996] and a C-terminal PPS amino acid motif characteristic of a KASH domain. The Attik mutant displays alteration of nuclear morphology reminiscent of phenotypes observed in other KASH mutants, as well as shorter roots [Graumann et al., 2014].

Use of the DORY computer program [Zhou and Meier, 2014] has allowed the detection of additional putative KASH domain proteins in genome databases. This in silico analysis detected fi e putative plant KASH domain proteins named SUNInteracting Nuclear Envelope1-5 (SINE1-5) [Zhou and Meier, 2014]. SINE1 and SINE2 are conserved across allland plantswhileSINE3 homologues are onlypresent in eudicots. The SINE4 and SINE5 families are more restricted to a few closely related species, suggesting rather specifi functions [Zhou and Meier, 2014]. Zhou et al. (2014) localised the SINE proteins at the NE and showed interaction with the Cter-SUN. The meaning of this interaction is discussed in Section 1.4.2.

SUN-KASH interaction

SUN-KASH interactions allow a link between cyto- and nucleoskeleton (Figure 1.8). This LINC complex involved in nuclear movement and chromosometethering at the NE is found from yeastto human [Crisp et al., 2006]. In Caenorhabditis elegans, the LINC complex is involved in nuclear anchorage via the interaction between the SUN protein UNC-84 and the KASH protein UNC-83. UNC-83 protein recruits kinesin-1 protein (a microtubule-associated force-producing protein) and permits the transfer offorces forthemigration of nuclei[Horvitz and Sulston, 1980, Sulston and Horvitz, 1981, Maloneetal., 1999]. Thesameprocess hasbeen reported in mouse andhuman and a defective LINC complex causes several developmental defects [Rothballer and Kutay, 2013].

In A. thaliana, the LINC complex is involved in establishing the elongated shape of nuclei in trichomes, root cells and leaf epidermal cells [Oda and Fukuda, 2011, Zhou et al., 2012]. In root hairs of A. thaliana, nuclei have been observed to be more spherical for atwip1 atwip2 atwip3 (KASH), atsun1 atsun2 (Cter-SUN), kaku1 (AtMyosin XI-i mutants) and atwit1-1 atwit2-1 [Oda and Fukuda, 2011, Zhou
et al., 2012, Tamura et al., 2013]. Tamura et al. (2013) hypothesised that the two AtWIT proteins recruit KAKU1 to the NE and together transfer motive forces from myosin to the nuclear envelope generating nuclei with elongated shape. AtMyosin XI-i KAKU1 is also needed for nuclear movement in A. thaliana [Tamura et al., 2013]. This movement is bidirectional in mature A. thaliana root hair cells. It is slowed down in atwit1-1 atwit2-1 and kaku1 mutants [Tamura et al., 2013]. Finally, mutants of the LINC complex components, WITs and KAKU1 display similar nuclear shape alterations in agreement with the protein interaction described for them [Goto et al., 2014]. These proteins may be part of a complex involved in the establishment of nuclear shape but are also needed for nuclear migration [Zhou et al., 2015a].

The LINC complex also plays a role in meiotic crossovers in A. thaliana. The double mutant atsun1 atsun2 (Cter-SUNs) causes defects in the distribution of crossover sites if absent [Duroc et al., 2014, Varas et al., 2015]. Another protein, AtPSS1 (Arabidopsis Pollen Semi-Sterility1), also named AtKin-1, encodes a kinesin1-like protein and its mutant has the same defect [Duroc et al., 2014, Wang et al., 2014]. AtPSS1 interacts with AtWIP1 and AtWIP2. Therefore SUN, WIP and AtPSS1 were proposed to mediate chromosome synapsis during meiotic prophase I [Duroc et al., 2014].

1.4.3 Lamins

Lamins are conserved in protozoa and metazoa in which they constitute a meshwork layer underneath the nuclear periphery that can be observed by electron microscopy [Burke and Stewart, 2013]. The lamins are classified in two groups, type-A and type-B. In vertebrates, there are two major isoforms of type-A lamins, lamins A and C ; the two protein isoforms resulting from alternative splicing of transcripts made from the same gene (LMNA) [Lin and Worman, 1993]. Expression of these two isoforms of type-A lamins is regulated during development, whereas B-types lamins are expressed during development in all cells [Benavente et al., 1985, Schatten et al., 1985, Lehner et al., 1987]. In the early mouse embryo, lamins A and C are not vital and for example, cells of the hematopoietic lineage express only Btype lamins [Guilly et al., 1990, Röber et al., 1990]. Lamins have a central alpha helical coiled-coil rod domain between non-helical head and tail domains typical of Intermediate Filaments (IF) structure [Dechat et al., 2010]. Two conserved cyclindependant kinase 1 (CDK1) domains fl the rod domain, which is responsible for dimerisation and higher order assembly of lamins permitting interaction between
lamins monomers [Dechat et al., 2010].
The lamin proteins form polymers giving rise to fi ts of about 10 nm in diameter named the nuclear lamina, which is the major component of the nucleoskeleton [Simon and Wilson, 2011]. The nuclear lamina is directly connected with the NE and the NPC [Goldberg et al., 2008a, Goldberg et al., 2008b, Gerace and Huber, 2012]. In metazoans, this complex is made of several layers of lamin polymers, which form fi ts and interact with INM lamin-binding proteins such as the Lamin B receptor (LBR) or with proteins associated with chromatin such as the Barrier-to-Autointegration Factor (BAF) or Heterochromatin Protein 1 (HP1) anchoring the chromatin to the lamina [Ho and Lammerding, 2012, Simon and Wilson, 2013]. HP1 and BAF proteins interact with histones, and participate in gene regulation and chromatin organisation [Margalit et al., 2007].

The nuclear lamina has key functions in nuclear morphology. The lamina meshwork possesses compressibility and elastic properties and plays a role as a molecular shock absorber with biophysical characteristic of a solid-elastic shell, which permits a dynamic change of nuclear morphology[Dahl et al., 2004, Dahl et al., 2005]. Studies conducted in human cells have shown the importance of lamins A and C for the rigidity and shape of the nucleus [Lammerding et al., 2006, Ferrera et al., 2014]. Indeed, in lamin A mutant cells, nuclei are less rigid. Mutation of lamin B1 seems to have only little effect and does not cause a general defect in nuclear organisation [Lammerding et al., 2006], although Ferrera et al. (2014) showed that overexpression of lamin B increases the rigidity of the nucleus and changes the biophysical properties of nuclear lamina. The authors hypothesise that this overexpression changes the organisation of nuclear proteins and impacts protein and chromatin position. The two groups of lamins are required for nuclear movement and migration via the LINC complex [Folker et al., 2011, Bone et al., 2014]. Finally, because of all these central functions in nuclear organisation and because mutations in lamins and their associated proteins are involved in developmental and progeria (ageing related diseases in human), called nuclear envelopathies and laminopathies, the nuclear lamina has been well studied in metazoans.

Aside from the mammalian systems, filamentous structures reminiscent of the metazoan lamina have been observed in the plant species Nicotiana tabacum and AIlium cepa by electron microscopy [Minguez and Espina, 1993, Fiserova et al., 2009]. Direct lamin homologues are not found in plants and unicellular organisms [Cohen et al., 2001, Fiserova et al., 2009]. Main candidates involved in the formation of
these structures are Nuclear Matrix Constituent Proteins (NMCPs), which are specific to the plant kingdom [Ciska and Moreno Diaz de la Espina, 2013]. NMPCs are subdivided into two groups, NMCP type1 and 2 and a total of 71 NMCP genes have been recorded in fl wering plants. In A. thaliana, four NMCP homologues called CRoWded Nuclei (CRWN) have been identified [Dittmer et al., 2007]. The NPMC proteins contain four domains, two coiled-coil domains fl ked by a short head and a long tail domain [Ciska and Moreno Diaz de la Espina, 2014]. The rod domain includes highly conserved regions at both ends involved in head to tail association of lamin dimers.

The four CRWN proteins do not possess the same spatial distribution in the nucleoplasm and display distinct patterns of expression [Dittmer et al., 2007, Sakamoto and Takagi, 2013]. Single, double and triple mutants are viable but show alterations in chromatin organisation and reduced nuclear size. In contrast, the quadruple mutant crwn1 crwn2 crwn3 crwn4 is lethal indicating that CRWN proteins are key components of the nucleus [Dittmer et al., 2007, Sakamoto and Takagi, 2013]. It has emerged that CRWN1 and CRWN4 are located at the nuclear periphery while CRWN2 and CRWN3 are more nucleoplasmic. During NEBD and from prometaphaseto anaphase, CRWN1 is always associated with chromatin whileCRWN2, CRWN3 and CRWN4 are localised in the nucleus only at telophase [Sakamoto and Takagi, 2013]. The co-localisation of CRWN proteins with chromatin, their enrichment at the NE, and their similarities with lamins (coiled coil and rod domains), suggest their involvement in chromatin organisation and segregation and that they are functional homologues of lamins in A. thaliana (Figure 1.8). The function of CRWNs has been investigated by several groups and the current picture proposes that CRWN4 may play an important role in the maintenance of chromocentre intergrity and organisation during interphase, wherease CRWN1 would be more involved in nuclear morphology regulation [Grob et al., 2014, Wang et al., 2014].

Recently, KAKU4 has been proposed as a new putative lamin binding protein in plants [Goto et al., 2014] (Figure 1.8). KAKU4 alsolocalises to the nuclear periphery and interacts with CRWN1 and 4. As with most mutants of the NE and nuclear periphery, the kaku4-2 mutant displays altered nuclear shape and size. This kaku4-2 mutant is not lethal, which suggests that plants might have acquired non-essential components of the lamina-like structure.

Figure 1.8: Protein components of the plant NE. The SUN and KASH (WIP, SINE, and TIK) proteins that form the LINC complex appear functionally in plant and animals (see Section 1.4). WIPs interact with WITs and are associated with actin by their interaction with myosin XIi. SINEs interact directly with actin and TIK interacts only with SUN proteins. As in mammals putative nuclear lamina was detected (KAKU4 and CRWN), but no interaction between these proteins and chromatin was found. (CC: chromocentre, no: nucleolus).

1.5 Nuclear morphology

1.5.1 Nuclear shape

The NE is an elastic structure and can expand or retract upon physical constraints within the nucleus or outside of it [Dahl et al., 2004]. Natural variations in nuclear shape are involved in diff t cell fates. As an example, nuclear morphology is frequently modifi in human cancer cells. The exact consequences of these nuclear shape alterations are not well understood but are suggested to change chromatin organisation and gene expression [Chow et al., 2012, Jevtić and Levy, 2014]. In breast cancer or in invasive ductal carcinoma the cancer cells feature enlarged nuclei. Other cancer cells possess atypical nuclear invaginations. Finally cancer cells have generally misshapen nuclei [Dey, 2010, True and Jordan, 2008]. Variations in cell size and morphology is also observed in plants. In A. thaliana, variations in nuclear morphology have been observed in various tissues such as epidermis, trichomes, root hairs[Traasetal.,1998, Qianetal., 2009] orduringseedformation[vanZantenetal.,

2011] and cotyledon development [Bourbousse et al., 2015]. Two main hypotheses have been proposed to explain how the nuclear shape is regulated and how this impacts nuclear function. First, nuclear reshaping may modify the nuclear rigidity needed for nuclear movement. Second, nuclear reshaping may induce chromatin reorganisation, which inturn modifi geneexpression [Webster et al., 2009].

Cytoskeleton components

Actin, myosin and microtubules actively participate in the regulation of nuclear shape [Gerlitz and Bustin, 2011]. In humans, actomyosin and actin fi ts mediate changes of nuclear shape respectively in neural cells and chondrocytes [Guilak, 1995, Martini and Valdeolmillos, 2010]. Another well-known example comes from Drosophila, in which nuclei elongate during cellularisation in the course of embryogenesis. The elongation process is dependent on microtubules and INM proteins such as the Kuk/Char protein [Brandt et al., 2006, Pilot et al., 2006]. This protein possesses three domains: a coiled-coil domain, a nuclear localisation signal (NLS) and a CaaX motif. This motif facilitates the localisation of proteins in the NE. The Kuk/Char protein is known to play a role in the regulation of positioning and morphology nuclei in Drosophila blastoderm cells [Brandt et al., 2006, Pilot et al., 2006]. The microtubules produce forces transmitted through the LINC complex, which in turn alter nuclear shape. In A. thaliana, Kaku1 interacts with WIT which interacts with the KASH counterpart of the Plant LINC complex, thus connecting microtubules and the LINC complex (Figure 1.8). Mutations in KAKU1 encoding MYOSIN-XI-i impact nuclear shape in root hair cells [Tamura et al., 2013].

Lamins

Lamins (see Section 1.4.3) are major actors for nuclear shape maintenance. For example the neutrophils, which can migrate to reach infected tissues, display multilobed nuclei connected by a thin layer of chromatin fi ts. This process of migration is affected in a Lamin B Receptor (LBR) mutant, which is associated with the Pelger-Huet anomaly (defect of terminal neutrophil diff tiation) and leadstothesimultaneousloss of themulti-lobed phenotypeand of nuclearmigration [Hoff et al., 2007]. Lamin mutants such as those identified in the premature aging Hutchinson-Gilford progeria syndrome (HGPS) display ghost-like instead of spherical nuclei [Shumaker et al., 2006].

In A. thaliana, crwn(lamin-like protein) and kaku4 (lamin-binding protein) mutants exhibit altered nuclear shape [Dittmer et al., 2007, Sakamoto and Takagi,

2013, Goto et al., 2014] and in the case of kaku4-2 mutant, nuclear mobility is affected[Goto et al., 2014].

NE-anchored proteins

Examples of NE proteins, which alter nuclear shape include the LBR, members of the LEM (LAP1beta, Emerin, Man) domain family, and SUN and KASH domain proteins. LBR is required for the diff tiation of granulocytes to obtain the fi nuclearshape(lobulatedorring-shaped). Adefect in LBRimpactsthe NE morphology and chromatin organisation of granulocytes. Their nuclei, which are normally are lobulated, ovoid and the heterochromatin classically located at the nuclear periphery is redistributed to the nuclear centre [Lammerding et al., 2006, Hoffmann et al., 2007, Olins et al., 2008]. Lem2 is a conserved transmembrane protein, which interacts with Lamins. A lem2 human mutant cell line has altered nuclear shape, with nuclei having a large invagination and lobulation [Ulbert et al., 2006]. To date LBR and LEM were not identified in plants.

In mice and human Nesprin (a KASH domain protein) has been shown to function in the shape regulation of the nucleus [Lu et al., 2012, Lüke et al., 2008]. Absence of the giant Nesprin in mouse results in a severe defect in nuclear shape, while expression of Nesprin2 without the N -terminal actin-binding domain restores a normal nuclear shape phenotype [Lu et al., 2012, Lüke et al., 2008]. Finally, the shape of the nucleus is not only dependent of cytoskeleton interactions but also of the other component of the LINC complex, the SUN domain proteins. In the HGPS syndrome, caused by a mutation of the lamin A, nuclei show several shape defects [Sullivan et al., 1999, Shumaker et al., 2006]. Mutation of SUN1 in HGPS cells restores nuclear morphology and chromatin organisation [Chen et al., 2012]. In plants SUN and KASH domains proteins which are components of the LINC complex display defectsin nuclear shape [Zhou et al., 2012, Graumann et al., 2014].

1.5.2 Nuclear size

Theory of nuclear-to-cytoplasmic ratio

Within a given species, nuclear size can display a great range of variability. In the 19th century, Conklin (1912) showed a correlation between nuclear and cellular sizes and defi the nuclear-to-cytoplasmic (N/C) ratio [Conklin, 1912]. This ratio remains constant with nuclear volume being $\approx 7 \%$ of the cell volume. This ratio is conserved even withthevariation of cellularsizeoccurring inyeastcell cyclemutants
[Jorgensen et al., 2007, Neumann and Nurse, 2007]. The regulation of nuclear size appears to be essential as a variation of the N/C ratio was found in cancer cells but relationships and mechanisms between cell volume and nuclear volume remain unclear [Zink et al., 2004, Chow et al., 2012].

Theory of the karyoplasmic ratio

Nuclear size does not only correlate with cell size but also with the volume of cytoplasm, thus defi the karyoplasmic ratio [Cavalier-Smith, 2005, Gregory, 2005]. Cavalier-Smith (2005) proposed a theory to explain this relationship between nuclear size and DNA content. He suggested that natural selection results in the optimum karioplasmic ratio [Cavalier-Smith, 2005]. This theory includes that nuclear size depends on DNA content and that DNA content or chromatin condensation affect nuclear size.

Functions of NPC and endoplasmic reticulum membranes in nuclear size

The theory of Cavalier-Smith is controversial, and other authors propose a third theoryproposing that theNPCand/or ER membraneavailability determinenuclear size [Webster et al., 2009]. This theory states that DNA content would not be the most important parameter for nuclear size regulation [Webster et al., 2009, Edens et al., 2013]. It is best illustrated by the fact that nuclear size changes when it is implanted into a new cellular environment and this does not involve any change in DNA content[Harris, 1967]. Evidence for the involvement of theERcomes from the reticulon proteins (RTN), a family of proteins specific to the ER involved shaping and maintaining of the tubular ER [Voeltz et al., 2006]. In Xenopus, over-expression of RTN induces growth of the nucleus whereas a lack of these proteins accelerates nuclear re-assembly [Kiseleva et al., 2007, Anderson and Hetzer, 2008]. This shows that the availability of the sheet ER membranes can be limiting for nuclear growth.

A function of NPC in regulating nuclear size was suggested by the observation that when NPC function is blocked, the volume of the nucleus increases [Jorgensen et al., 2007, Neumann and Nurse, 2007]. In A. thaliana the nup136 mutant has a decreased nuclear size while NUP136 over-expression induces nuclear elongation that can be linked to increased nuclear volume [Tamura et al., 2010, Tamura and HaraNishimura, 2011]. Thus the amount of Nup136 protein in the NE affects nuclear morphology suggesting the involvement of this protein in the maintenance of nuclear structure [Tamura et al., 2010, Tamura and Hara-Nishimura, 2011]. Alternatively, changes in nuclear morphology may be due to alteration in the nucleocytoplasmic transport of molecules by the nuclear pore (nuclear component and/or mRNA), as
the nup136 mutant shows abnormal mRNA export [Tamura et al., 2010, Tamura and Hara-Nishimura, 2011].

Other proteins of the NE and the nuclear periphery are involved in nuclear size

The LINC complex, which permits physical interactions between the inside and the outside of the nucleus, can also regulate nuclear size thanks to these interactions [Shumaker et al., 2005, Lu et al., 2012]. In A. thaliana, mutation in the KASH domain protein AtTIK decreases nuclear size whereas the murine knockout of the KASH protein nesprin-2 increases the nuclear size [Lu et al., 2012, Graumann et al., 2014]. Mis-regulation of lamin production (by under- or over-expression) through lamina-associated polypeptides (LAPs) has been shown to cause a disruption of nucleus size regulation [Gant et al., 1999, Prüfert et al., 2004, Levy and Heald, 2010]. In A. thaliana mutations of lamin-like proteins (CRWN) decrease nuclear size [Dittmer et al., 2007].

In summary, nuclear size and shape have important implications for cellular functions and their alterations characterised by an altered karyoplasmic ratio is associated with alteration of basic functions of the cell [Zink et al., 2004, Slater et al., 2005]. For instance, these two parameters have also been associated with the variations in transcription levels, maintenance of the nucleolus and DNA polymerase activity[Hancock, 2004, Sasaki et al., 2006, Miyoshi and Sugimoto, 2008]. Nuclear size and shape are suggested to be important parameters correlated with optimal nuclear activity. Methods to quantify nuclear shape and size in plant cells has been a major part of the work undertaken in this thesis.

1.6 Objectives

This research focusses on the role of the LINC complex in nuclear morphology and chromatin organisation in A. thaliana. The LINC complex is a well conserved evolutionary protein bridge connecting the nuclear and cytoplasmic compartments across the NE. While its alteration affects nuclear morphology in most species, its implication for chromatin organisation has been less studied in plants. Genes involved in chromatin organisation and maintenance (histone chaperone, chromatin remodeller) are also included in this analysis, to study the impact of chromatin disorganisation on the nuclear morphology. To achieve this aim 3D imaging methods have been developed to investigate nuclear morphology and chromatin organisation of the plant model species A. thaliana in which chromosomes are organised in rosette-like structures leading to the formation of conspicuous chromatin domains called chromocentres.

Firstly, a semi-automatic informatic programme termed NucleusJ was developed [Poulet et al., 2015]. NucleusJ allows the analysis of a large data set from 3D images gained from light microscopy. Several improvements have then been added to the original version of NucleusJ. Informatic and mathematic developments were undertaken in collaboration with Professor Philippe Andrey (Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech) and with Professor Rémy Malgouyres (LIMOS UMR 6158 CNRS, Clermont-Ferrand). This tool was developed as a phenotyping tool to analyse nuclear morphology and heterochromatin organisation. Nucleus J was also used to investigate the position of chromocentres in the 3D nucleus.

Using NucleusJ, 3D images of nuclei from root and cotyledon of wild type, mutants in the LINCcomplex and mutants in chromatin organisation were analysed. To determine the impact of the alteration of nuclear morphology on transcription, RTqPCR wasperformedin collaboration with Doctor Céline Duc(GReD)toanalyse the transcriptional reactivation of heterochomatic targets. Chromocentre decompaction was evaluated using Fluorescence In Situ Hybridiation (FISH) 2D (undertaken by Doctor Matthias Benoit) and by FISH 3D (undertaken by Doctor Sophie Desset and Professor Christophe Tatout, GReD).

Finally this work explore the evolution of the LINC complex in green plants, using RNA sequencing (RNA-seq) expression data and phylogenetic analyses. The LINC complex has been well studied in A. thaliana; but in many cases, there is evidence of gene duplication and complexity in this species leading to redundancy
and diffi in functional assays. The phylogenetic and RNA-seq analysis of the LINC complex provides a better understanding of potential redundancy and specialised function of the LINC complex members and lamina-like proteins. This analysis was applied to make predictions about the composition of the simplest functional LINC complex in green plants.

Chapter 2

Quantitative analysis of nuclear parameters using 3D images

2.1 Imaging : state of the art

2.1.1 Sample preparation

As introduced in Chapter 1, organisation and positioning of chromatin domains within the nuclear space, such as chromocentres may be one of the important mechanisms needed for transcriptional regulation of the eukaryotic genome [Fransz and deJong, 2002, Bickmore and van Steensel, 2013]. Tocomprehend nuclear structure and function, imaging tools are needed to quantify nuclear morphology, positioning and organisation of chromatin domains in three dimensions. To achieve this goal two strategies can be developed: fi tissue or living cells. These two approaches have advantages and disadvantages. Live cell imaging allows visualisation of chromatin organisation aswell as nuclear morphologybyusingfl tfusion proteins. However overexpression of a fusion protein may leads to its mislocalisation, competition with the endogeneous protein, induce steric hindrance or may affect structures of interest. Depending on the time needed to perform image acquisition photobleaching may also occur. As an alternative, fi tissue can be used and the structures of interest detected by fl t in situ hybridisation (FISH). In the FISH technique the nucleus is stained by an intercalating agent (DAPI or Hoechst) which binds DNA. FISH uses cryogenically or chemically fi tissue and these steps can also affect nuclear shape and chromatin organisation [Ronneberger et al., 2008, Tirichine et al., 2009]. The FISH method has advantages when studying multiple mutants, because it avoids the time needed to establish a transgenic line expressing the fusion protein. Furthermore, fi methods that immobilise
the nucleus are useful as it avoids movments during image acquisition. The FISH technique can be used on fi isolated nuclei [Tirichine et al., 2009] or whole mount preparations [Bauwens et al., 1994]. Artefacts may occur in isolated nuclei since the cellular environment strongly infl nuclear morphology and chromatin organisation [Versaevel et al., 2012] and is absent in this type of preparation. Whole-mount preparation would then be the preferred method of investigation in this work.

2.1.2 3D Light microscopytechnologies

The majority of 3D microscopy technologies are based on optical sample sectioning, which results in a stack of images which are then used to produce 3D representations of the object of interest. For this study, confocal microscopy and Structured Illumination Microscopy (SIM) were used to acquire 3D images of nuclei.

Fluorescent 3D microscopy techniques are frequently based on photon emission after excitation by a fl which is specifically located in the sample. The photon is captured by a detector, which permits the detection of the fl tly tagged object of interest. The aim is to capture only the photons emitted in a specific focal plane. The focal plane in confocal microscopy is obtained by a pinhole aperture that is situated in a conjugate plane (confocal) with a scanning point on the sample. A second pinhole is positioned in front of the detector (a photomultiplier tube (PMT)). Then fl emitted by the sample, which is excited by a scanning laser, is focused as a confocal point at the detector pinhole aperture [Pawley, 2006].

The technique of SIM is used in wide-field microscopes. To obtain images of the focal plane, fi raw images are acquired with an optical grid in diff t positions and with diff t angles relative to the axis of the microscope (Figure 2.1). These images are then combined in real-time to form an optical section at the focal plane (Figure 2.1) [Lukosz and Marchand, 1963, Neil et al., 1997].

In the both cases, the sectioning of the sample is achieved by vertical movement of the sample which permits changes in the focal plane. For the purpose of this study, the image data obtained, with the two methods (confocal and SIM), is similar. The nucleus is stained and the rest of the cell remains black and defi as background. The limit of detection and of analysis of the data sets obtained with the two types of microscopeare therefore the verysimilar.

Figure 2.1: Structured illumination microscopy technique. The optical grid is located between the laser light and the sample, which involved a stripe-shaped sinusoidal interference pattern. The Charge Coupled Device (CCD) camera detects the light intensity emitted, and an algorithm reconstructs a 3D image from a series of 15 raw images per slice (adapted from [Schermelleh et al., 2010]).

2.1.3 Digital image

Animage represents a spatial distribution of visual information, which is a 2D digital signal in computer science. An image can be interpreted as a 2D matrix of values which represents the light or the color intensity. This representation defi the image as a set of pixels (contraction of picture elements) in 2D or voxels (contraction of volumetric pixel) in 3D.

What is a digital image?

In general, the image initially obtained by microscopy is continuous and must be digitised as discrete data before further analysis [Wu et al., 2008]. The detector system (e.g. CCD camera or PMT) detects the continuous distribution of the light intensity on a 2D surface. The optical information is sampled to create the digital image. The loss of information in this sampling process and the resultinglimitations will be considered in this chapter.

The digitisation is therefore dependent on the detector system. A CCD camera is used on the SIM microscope. This type of camera, due to the small square area
of the sensor surface detects the quantity of photons emitted by the sample and converts it into a voltage proportional to the fi number of electrons absorbed by the square during exposure. This small square area on the CCD defi a pixel size in association with the magnifi [Janesick, 2001, Pawley, 2006, Wright et al., 2015].

The confocal microscope used in this study uses a PMT as detector. The photocathode of the PMT produces a single photoelectron, resulting from the striking of small parts of photons (emitted by the sample). The PMT then amplifies the photoelectron by charge multiplication [Pawley, 2006]. The continuous output signal of the PMT is digitised under the control of a pixel clock. This clock divides the time taken to scan one line into the appropriate number of intervals, so that each time interval represents a pixel of the total image.

In summary, to obtain the digital image, a continuous optical image is sampled, to produce an array of pixels of integer values which represent the light intensity at each coordinate by a non-negative integer. Finally the sampling of the continuous signal can affect the resolution because poor sampling has a direct impact on the ability to detect two closely positioned objects as being distinct. Resolution is an important parameter to develop tools for the 3D characterisation of nuclei since objects like chromocentres can be located close to each other.

The different types of digital image

Three diff t types of image exist; black and white, monochrome or in color. The black and white image is simplest, as there are only two possibilities of value: o for black and 1 for white, this type of image are named binary images. The most commonly used format is the 8 bit monochrome image (grey level image), which displays $\mathbf{2}^{8}=256$ possibilities of pixel values between o (black) and 255 (white). Monochrome images can also be encoded in 16 bits ($2^{16}=65536$ possibilities), or 32 bits ($2^{32}=4294967296$ possibilities), these two formats however significantly increase the weight of the image, and the time for processing. It is easy to obtain a black and white image from a monochrome grey scale, by fi a threshold value S, which allows the detection of object of interest:

$$
\begin{equation*}
\text { If }(I(x, y)>=S) I B(x, y)=1 \text { Else } I B(x, y)=0 \tag{2.1}
\end{equation*}
$$

With $I B$ the binary version of the raw grey level image I.
Thedistribution ofthevalues ofoneimageisrepresentedbythehistogramofthisim-
age (Figure 2.2). The image histogram is the representation of the discrete function $v(C)$ which at each colour C of the image associates the number $v(C)$ of pixel (population) having the same color (Figure 2.2). Histogram computation is frequently used between image acquisition and image processing, with several pre-processing, segmentation or statistical methods needed.

Operations on the histogram allow improvement of the image. The equalisation of the histogram homogenises the repartition of the grey values to obtain a better distribution of the pixel for each class of the histogram. The dynamic of the histogram value can be expanded to allow a better pixels repartition on the grey value scale. This operation improves the contrast of the image.

Figure 2.2: Histogram of 8 bits image in grey levels. A histogram represents the grey intensity level on the abscissa from black (left) to white (right). A 256 grey level image will be represented by a histogram with 256 values in the abscissa and in the ordinate the number of pixels for the image for each grey level.

How is image resolution defined?

Resolution is defi as the shortest distance between two points that can still be distinguished on a specimen. The Rayleigh criterion is defias the minimum distance separating two adjacent Airy disks (Figure 2.3). These Airy disks are produced by an optical system with circular apertures which are limited by the diff This diff pattern results from the passage of light through a small circular aperture, and this pattern is surrounded by concentric circular rings. The point sources of light emitted by a specimen is represented by Airy diff patterns at the microscope intermediate image plane(Figure 2.3) [Airy, 1835].

Finally the image of the sample is constituted by a set of closely spaced point light sources that form Airy patterns. The resolution is then defi by the spatial

Figure 2.3: Resolution and Airy disks definition. a) The Airy disks are produced by an optical system with circular apertures which are limited by the diffraction. This diffraction pattern results of the passage from light through a small circular aperture, and this pattern is surrounded by concentric circular rings. Airy disks define the optical system resolution and is dependant on the wave length used, the numerical aperture (NA), and the focal distance. b) Two objects are well resolved, if their Airy disks are sufficiently far apart and if they respect the Rayleigh criterion. This criterion that two closely spaced Airy disks are distinct if they are farther apart than the distance at which the principal maximum of one Airy disk coincides with the first minimum of the second Airy disk. If the diffraction pattern of these two objects are totally overlapping, the two objects are not distinguishable (A). The Rayleigh criterion limit is just respected in (B) whereas in C there are two elements resolvable.
sampling which corresponds to the frequency of sampling of the continuous signal, and this frequency is equal to the pixel/voxel length [Wu et al., 2008]. The quality and fi analysis of the image is therefore dependent on the sampling of the continuous signal. To defi the resolution of the image the fi step is to defi the maximal theoretical resolution and this resolution is dependent on the characteristics of the microscope [Abbe, 1873, Pawley, 2006, Wu et al., 2008]. These characteristics are described by the point spread function (PSF). On "perfect" optical systems, the PSF is not a point but is represented by the Airy Disk (Figure 2.3a). Finally, the lateral and axial resolution are defi by two formulae.

The lateral resolution (x and y axes) is deduced from the Abbe diffraction limit [Abbe, 1873] and is defi in the image plane as the distance between the central maximum and the fi minimum in the Airy disk:

$$
\begin{equation*}
r_{x y}=\frac{0.6 \lambda}{N A} \tag{2.2}
\end{equation*}
$$

Where NA is the objective numerical aperture and λ is the emitted light wavelength. The lateral resolution of the confocal microscope is improved by 30% compared to that in the widefield microscope because the PSF is improved by this percentage [Pawley, 2006]. This increases the maximal theoretical resolution by:

$$
\begin{equation*}
r_{x y}=\frac{0.4 \lambda}{N A} \tag{2.3}
\end{equation*}
$$

The axial resolution in confocal microscopy is proportional to the refractive index of the specimen medium (n) and the wave length (λ) and is inversely proportional to the square of the NA (Formula 1.3) [Pawley, 2006].

$$
\begin{equation*}
r_{z}=\frac{1.4 \lambda n}{N A^{2}} \tag{2.4}
\end{equation*}
$$

As seen above, the resolution is equivalent to the frequency of sampling of the continuous signal detected by the microscope to obtain the digital image. The Nyquist-Shannon sampling theorem establishes that when sampling a signal (e.g., converting from an analog signal to digital), the sampling frequency must be greater than twice the band width of the input signal in order to be able to reconstruct the original perfectly from the sampled version [Nyquist, 1928, Shannon, 1949]. The implication of this theorem states that the sampling interval has to be less than half of the smallest object to be resolved (Figure 2.4). So, if there are less than two pixels by resolution element (resel), it is not possible to describe the signal reliably. From three pixels per resel, the signal can describe the specimen with the greatest resolution possible (Figure 2.4). This criterion permits the defi of the voxel calibrationto obtaintheoptimal resolution. Inthe Handbookofbiological confocal microscopy, the factor advised is 2.3 pixel per resel. The factor applied to defi the fi calibration of the voxel in the formulae 1.2 and 1.3 is then divided by 2.3 [Pawley, 2006].

1pixel/resel

2 pixels/resel

3 pixels/resel

Figure 2.4: Shannon Nyquist theorem for the sampling signal. Below two pixels by resolution element (resel), the signal cannot be described reliably. Above three pixels by resels, the sample is described with higher resolution and better reliability.

2.1.4 3D image processing and analysis

Image processing is an important step in imaging when the problem is the quantification or detection of an object in the image. This step enhances the quality of the image and permits the extraction of information from the image. Three diff t approaches exist to process the 3 D image. The fi is to process a 2 D image for each slice of the stack of the 3 D volume, the second is to use 3 D processing on the 3 D volume and the third is to project the 3 D volume onto a 2D image and use 2D processing (with the loss of information content). In this PhD project, algorithms have been developed for 3D analysis. Using diff t methods, it is possible to restore an image, detect an object, decrease the blur of the image, or improve image contrast. But the image information content cannot be increased.

Image restoration

Image restoration methods are used to correct the alterations generated by the acquisition system. The 3D image is the result of the convolution operation apply to the specimen through the acquisition system. Each point of the specimen is represented on the image by ablurred point with a value proportional to the intensity of that point the in specimen. The PSF which characterised the acquisition systems, models the blur of each specimen point to obtain the final image (Figure 2.5). With the deconvolution algorithm, it is theoretically possible to do the reverse: with the help of the PSF, to attempt to obtain an image closest to the initial specimen.

Figure 2.5: Principles of deconvolution.

Deconvolution algorithms can decrease or remove the noise and the blur of an image. To achieve this aim, the algorithm removes out-of-focus blur from the specimen plane located above and below the plane of focus. In deconvolution methods, there are two types of algorithms, deblurring and image restoration. In deblurring methods, the PSF is not needed. The restoration algorithm works on each voxel in a 3D image: these types of algorithms need to use the PSF of the image. Restoration algorithms can take as input the PSF (e.g. : Wiener deconvolution, Tikhonov-Miller regularisation, Maximum-Likelihood Restoration), or the algorithm can estimate the PSF from a 3D image (blind deconvolution) [Wu et al., 2008].

Deconvolution methods as Iterative 3D Deconvole are available freely as plugins for ImageJ [Schneider et al., 2012], a free imaging platform. However a suitable deconvolution algorithm is the commercial software known as Huygens Software Suite commercialised by SVI (https://svi.nl/HuygensSuite). When these two softwares were tested, the boundaries were clearer after deconvolution in comparison to the rawimage. The result show the value of using a deconvolution method before the detection of the object for noisy images. However, only the Huygens software allowthe detection of the chromocentres, and an enhancement of the chromocentres constrast in the nucleus (Figure 2.6).

Figure 2.6: Comparison of deconvolution method between Iterative Deconvolve 3D and Huygens. The three images (A, B and C) correspond to the same slice of the same nucleus. The graphs on the right hand side display the intensity voxel value (grey value) on the yellow line on the image. Three chromocentres are on the yellow line. The nuclear boundaries (in pink) and the chromocentres (in blue) help to position the object limits. A) Raw image of the nucleus. The graphic is very irregular and the maximal value is lower than 150 . The nucleus is blurry and weakly contrasted. The pink zone to position the nuclear boundary is very large. Five chromocentres can be detected (blue area) while only three are on the yellow line. B) Deconvolved image obtained with Iterative Deconvolve 3D. The deconvolved image is smoother than the raw image, the maximal intensity value is increased to 400 . The detection of the nucleus seems more simple than in the raw image but the image is not sufficiently contrasted to obtain optimal chromocentre detection. C) Deconvolved image obtained with Huygens. The nuclear boundary is similar to the result of Iterative Deconvolve 3D but the chromocentres (in blue) are well defined. Huygens increases the contrast inside the nucleus allowing the detection of the three chromocentres.

Image filtering

Studies requiring analyses using signal intensity need to reduce noise due to the acquisition system as far as possible. As mentioned above, it is possible to use the deconvolution algorithm for this purpose. Another solution is to process the image with a fi One of the aims of fi methods isto"clean"the signal, eliminating as much noise as possible while preserving the information available in the image. The fi computes a new value for each voxel as a function of the neighbourhood value of the same voxel in the input image. Filters may be linear or nonlinear. This classification depends on whether the voxel value between input and output image
are linear or not; for example the median fi is a nonlinear fi which replaces the initial voxel value by the median of the voxel values in a specified neighborhood [Wu et al., 2008]. This fi reduces noise without damaging the edges in the image. As an example the low-pass fi is a linear fi , which keeps low value voxels and attenuates high value voxels. This fi r therefore smooths the image [Wu et al., 2008].

Morphological operators

Mathematical morphology (MM) is a set of methods created to process binary images or grey level images through fi , segmentation, and pattern recognition [Serra, 1983, Serra and Soille, 1994]. One part of part of MM is to compare the image against a structuring element with a known geometrical shape (cube, triangle) to highlight some image characteristics. This part of MM is based on set theory [Serra, 1983, Serra and Soille, 1994]. It uses a structuring element with known geometry and size. Binary images are composed of several regions with value 1 (set of connected pixels/voxels) which defi objects of interest, and the regions with value o corresponding to the image background. The structuring element is moved so that its centre x passes through all pixel/voxel of the binary image. For each x position, the method queries the union ${ }^{1}$ or intersection ${ }^{2}$ between the object and the structuring element. The combination of pixels/voxels which give a positive response permit the creation of the processed image.

The MM possesses basic operators named erosion and dilation [Serra, 1983, Serra and Soille, 1994]. Erosion erodes the boundaries of the object of interest (Figure 2.7). This operator removes objects smaller than the structuring element, so other objects will erode based on the size of the structuring element. Objects which are connected will be separated, and the hole in the object will increase in size.

Dilation is the inverse operator of erosion (Figure 2.7). The entire object will increase in sizeequivalent to the structuring element, therefore the hole in theobject can be fi, and objects which are separated by a distance smaller or equal to the structuring element will be fused.

It is possible to combine these two operators, to obtain opening or closing. Opening (erosion+dilation) permits the removal of all the parts of objects which cannot contain the structuring element. Closing (dilation+erosion) permits fi all spaces which are smaller than the structuring element.

[^0]

Figure 2.7: Mathematical morphology erosion and dilation. A) Structuring element $3^{*} 3$ used for this MM process. B) Initial binary image. C) Results of erosion with the structuring element on the initial image. Pixels which do not intersect the structuring element and the initial shape are set to zero, whereas the others stay at one. D) Results of dilation with structuring element on the initial image. Pixels which are contained in the union with the structuring element are set to one.

Object detection in 3D image

The most diffi step in image analysis and therefore a key step in the study of nucleus size and shape from images collected from microscopy is to delimit the nucleus from the background, a process called segmentation. There is no universal segmentation technique that will work for all images, and therefore no segmentation technique is perfect.

Several segmentationmethods havebeen developed to achievethisgoal. Threshold methods applied in the original method developed by Otsu [Otsu, 1979] yield a binary image thanks to the distribution of pixels in two categories (o for the background and 1 for the object) according to their range of grey scale values. The diffi y is to defi the best threshold value to apply and Otsu proposed to select a threshold which minimises the intraclass variance of pixels from the background and the object [Otsu, 1979].

Analternativeto the thresholdmethodistodefi pixels delimiting the border of
the object. The so-called boundary-based segmentation applies fi (e.g. gradient based fi to the image. Pixels are then classified as edge or non-edge depending on the fi output and pixels, which are not separated by an edge, are allocated to the same category [Castleman, 1996]. Many broadly used region-based segmentation algorithms in the field rely on the watershed concept which operates iteratively by grouping together pixels which are neighbours and have similar values, eventually distinguishing groups of pixels with distinct values [Gonzalez and Woods, 1992].

(a) Artifactual hole created by a nucleolus (no) close to the boundary (white arrow).

(b) Artifactual stripes due to non-homogeneous staining (white arrow).

Figure 2.8: Limits of nuclear segmentation. Raw (left) and segmented (right) images of a 3D nucleus examplified some of the difficulties encountered during the segmentation processing with the original Otsu method.

Generally, the drawback of all these methods intrinsically based on grey scale values, is that there are some structures such as the nucleolus inside the nucleus, for which the grey scale value is closer to the background than to other parts of the nucleus (Figure 2.8). Attempts have been made to use active contour approaches, which can involve regularisation as well as data attachment terms. However, active contours are diffi to initialise and the balance between the data attachment term and regularisation is diffi to tune, especially to design robust acquisition modality independent segmentation algorithms.

Three dimensional image analysis

Three dimensional image analysis includes several operations and transformations to extract the object of interest from the image and achieve quantitative measures. Image analysis can permit the characterisation of object morphology or structure by the measurement of several parameters such as volume, area and intensity, but also permits discrimination between objects by comparison of the computed parameters. According to the analysis required, the objects of interest can be analysed as greylevel objects or as binary objects or both. Finally it is possible to compute geometric measures, or parameters based on the intensity of the object.

Tools in image processing and analysis

Several softwares exist for 3D processing and analysis of images. Proprietary software (AMIRA, IMARIS and Metamorph), requirefi investment; open source programs such as ImageJ are also available. ImageJ is a Java image processing platform, developed for scientific images of several dimensions. ImageJ is collaborative and highly extensible to perform diff t tasks [Schneider et al., 2012]. It is possible for the user to develop a plugin or macros for a new task or a new algorithm and to release it to the ImageJ community for its open source improvement [Schneider etal.,2012].

2.2 Aims

The 3D nucleus is a good model for the development of methods such as the spatial analysis of 3D images. It is a structure often described as a sphere and alteration of its size and shape have been shown in specific tissues (placental trophobast in human, root hair cells in plants), affected by ploidy levels (guard cells and pavement cells in plant epidermis) and to be linked to human diseases [Bickmore and van Steensel, 2013] or increased sensitivity to DNA damage [Makova and Hardison, 2015]. SIM 3D microscopy technology has been chosen for the acquisition of the image and the creation of the dataset to permit the development and improvement of 3 D tools for nuclear morphology and chromatin organisation analysis. The work described in this section aims to show the development and the validation with biological data of an ImageJ plugin named NucleusJ [Poulet et al., 2015]. NucleusJ has been developed for 3 D light microscopy and improvements have been realised for a better detection of the nucleus and a better precision of the computing parameters.

2.3 Material and methods

2.3.1 Plantmaterial

All mutants and wild type A. thaliana plants are from the Columbia-o ecotype. TDNA accession numbers were as follows crwn1-1 (SALK-023383), crwn2-1 (SALK041774). T-DNA insertions were obtained from Eric Richards (Cornell University, USA). Seed batches from all genotypes used in this study were propagated together in the greenhouse under long day conditions. Phenotypic evaluations were performed on A. thaliana seedlings grown from sterilised seeds sown on germination medium containing $0.8 \% \mathrm{w} / \mathrm{v}$ agar, $1 \% \mathrm{w} / \mathrm{v}$ sucrose and Murashige \& Skoog salts (M0255; Duchefa Biochemie, Netherlands). After 2 days of stratification at $4^{\circ} \mathrm{C}$ in the dark, seedlings were grown under 16 h light / 8 h dark cycles at $23^{\circ} \mathrm{C}$, cotyledons were harvested 14 days after germination (dag).

2.3.2 Whole mount preparation

To collect 3D images from cells in their original tissue environment, the method of Bauwens et al., 1994 was adapted to obtain whole mount preparations of 14 dag cotyledons and crown roots. Plant tissues were collected and fi using 1\% formaldehyde, 10\% DMSO in PBS 1X, EGTA 6.7 mM pH 7.5 , subjected to vacuum for 5 min and incubated for 25 min at room temperature. Tissues were then washed 3 times with methanol and several ethanol washes were performed to obtain transparent tissue preparation. Tissue can then either be used for 3 D analysis or for 3D-FISH. For standard 3D analysis, tissues were stained overnight at $4^{\circ} \mathrm{C}$ in a solution of Hoechst at $0.1 \mathrm{mg} / \mathrm{ml}$ in PBS. Samples were then washed 3 times with PBS 1 X , excess water removed with paper tissue and placed on a slide in PBS/glycerol (20:80) solution and covered with a cover slip for microscopic observations.

2.3.3 3D image acquisition

3D image acquisition with SIM microscope

Three dimensional light microscopy was performed on fi whole mount cotyledons and roots. Images were acquired with a structured illumination microscope (Leica MAAF) using a X63 oil objective with the voxel calibration equal at $\mathrm{xy}=0.103 \mu \mathrm{~m}$ and $\mathrm{z}=0.2 \mu \mathrm{~m}$. These parameters of the calibration are used by the microscope software according to the sampling theory of Shannon and Nyquist [Nyquist, 1928, Shannon, 1949].

3D image acquisition with confocal microscope

Three dimensional light microscopy was performed on fi whole mount cotyledons and roots. Images were acquired with Zeiss LSM 510 META confocal microscope using a X63 oil objective with the voxel calibration equal at $\mathrm{xy}=0.075 \mu \mathrm{~m}$ and z $=0.29 \mu \mathrm{~m}$. These parameters of the calibration were chosen to follow the sampling theory of Shannon and Nyquist [Nyquist, 1928, Shannon, 1949].

2.3.4 Imaging process and analysis and statistical methods

Imaging processing, analysis and process

The processing and analysis of the images of nuclei were performed with the NucleusJ plugin [Poulet et al., 2015] using the ImageJ platform. Several steps are required before using this plugin. NucleusJ can only analyse images containing a single nucleus in the raw image. SIM and confocal contain several nuclei per image, and each nucleus has to be cropped using ImageJ or other softwares to obtain a single nucleus per 3D rawimage.

Statistical methods

Statistical analyses were performed using R [R Core Team, 2013]. Principal component analysis (PCA) was carried out with the FactoMineR package, an extension of R [Husson et al., 2009]. R scripts were developed to undertake automatically undertake statistical tests (Student's T test and correlation), Principal component analysis (PCA), and boxplots on the data obtained after 3D image analysis.

2.4 Results and discussion

2.4.1 NucleusJ platform as a phenotyping tool for nuclear organisation

NucleusJ is a simple and user-friendly ImageJ plugin dedicated to the characterisation of nuclear morphology and chromatin organisation in 3D [Poulet et al., 2015]. Starting from image stacks, the nuclear boundary is delimited by a modifi Otsu segmentation method [Otsu, 1979] developed based on the defi of a threshold which was during the work undertaken in this thesis (Figure 2.9). Chromocentres are segmented by partitioning the nucleus using a 3D watershed algorithm [Gonzalez and Woods, 1992] and by manual thresholding a contrast measure over the resulting regions. As output, Nucleus J quantifies parameters including shape and size of nuclei as well as intra-nuclear objects such as chromocentres and their position in thenucleus (Figure 2.9).

Figure 2.9: NucleusJ processing. NucleusJ combines four steps. (1) Nucleus segmentation produces segmented images automatically. (2) Domains of variable intensities are defined by a 3 D watershed and (3) finally chromocentres are delimited by applying a manual threshold to the contrasted image.

NucleusJ nuclear segmentation process

To detect the nucleus in the raw image, the Otsu method was associated with a parameter of the nuclear morphology called sphericity (see formula 2.5, [Andrey et al., 2010]). This optimisation of the Otsu method permitted determination of the best threshold value of a 3 D image stack.

During this process, the sphericity was computed for each given threshold value and the highest value retained to select the best threshold. Finally, mathematical
morphology operators were applied to the image. The aim of these operators was to fi invaginations and holes in the detected shape.

```
Algorithm 1: Optimised Otsu method for 3D segmentation algorithm.
    Data: 3D rawImage
    Result: 3D binaryImage
    Threshold value initialisation: \(\mathrm{t} \leftarrow\) OtsuMethod(rawImage);
    Research interval I \(\leftarrow\) ] t-stdv(rawImage)*2; t+stdv(rawImage)*2] (With stdv, the
    standard deviation of the voxels value);
    for each value of I[i] do
        binaryImage \(\leftarrow\) binarisation(rawImage, \(I[i]\) );
        sphericity \(\leftarrow\) computeSphericity(binaryImage);
        if sphericity > sphericityMax then
            bestThreshold \(\leftarrow \mathrm{I}[\mathrm{i}]\);
            sphericityMax \(\leftarrow\) sphericity;
            bestBinaryImage \(\leftarrow\) binaryImage;
    morphologicalCorrection(bestBinaryImage);
```

Indeed the optimised Otsu method improves the detection of the boundary (Figure 2.10), in most cases includes the nucleolus as part of the nucleus and removes several artifactual indentations or voxels not connected to the boundary. This leads to a more regular and uniform shape of the boundary.

Figure 2.10: Results of the Otsu and optimised Otsu method. Nucleus stain with Hoechst. Selected z slices of a raw image of nucleus, the blue edge is the result of the segmentation of the Otsu method and the optimised method is shown in red.

The following step after nuclear segmentation is the detection of chromocentres to analyse the position of these structures in the boundaries of the nucleus.

Chromocentre segmentation process

In A. thaliana, when the chromatin is stained with DAPI or Hoechst, chromocentres can easily be detected as regions of high intensity. Therefore, the fi aim is to
detect the region with highest intensity. This work starting from an already available algorithm developed in Pr Philippe Andrey's lab [Andrey et al., 2010], but this this procedure had not been adapted and developed as an ImageJ plugin. The 3D image of the nucleus is used by the watershed transformations (https://github. com/ijpb/MorphoLibJ) and each region was assigned mean intensity value of the voxel regions. The computation of the contrast between neighbouring region is strengthened by the volume of the neighbouring regions which decrease the impact of small region with low or high mean intensity. Image contrast was manually segmented to obtain the fi image of the chromocentre (Figure 2.9).

Choice of parameters to describe nuclear morphology and chromatin organisation

The aim of this study is to characterise the 3D of nuclear morphology and chromatin organisation in A. thaliana. Chromatin organisation is studied using chromocentre size and distribution. After detection of the nucleus and chromocentres, it is then necessary to choose appropriate parameters to characterise these objects (Table 2.1).

It ispossibletodefi individual characteristics for the diff t3Dobjects based on morphological parameters. The estimation of volume (Volume $=$, Voxel \in Object) and area $(\text { Area }=)^{\prime}$, boudaries voxels facets \in Object $)$ are often computed and represent the size of the object of interest. With these two parameters, it is possible to obtain a value for sphericity (formula 2.5) [Andrey et al., 2010]. Sphericity is a shape feature used to reflect the complexity of the object boundary. Sphericity take into account the regularity of the surface of the volume as well as its "roundness". An object with sphericity close to 1 has a shape similar to a sphere.

$$
\begin{equation*}
\text { Sphericity }=36 \pi \frac{\text { V olume }^{2}}{\text { Area }^{3}} \tag{2.5}
\end{equation*}
$$

Other shape parameters can be defined, including fl
and elongation. An ellipsoid is defi by three distinct principal axis lengths x, y and z which are the major, intermediate and minor principal axes, respectively ($x>y>z$). These parameters on any 3D object are defi by analogy with physics, using the theory of moments of inertia. Inertia moments measure howthe object mass is distributed in space as a function at the rotation axis. The elongation and the fl is defi by the following formulae:

$$
\begin{align*}
& \text { Elongation }=\frac{x}{y}=\frac{\text { major axis }}{\text { intermediate axis }} \tag{2.6}\\
& \text { Flatness }=\frac{y}{z}=\frac{\text { intermediate axis }}{\text { minor axis }} \tag{2.7}
\end{align*}
$$

The morphology of the nucleus in this study will be characterised by fi e parameters (volume, area, sphericity, fl and elongation) whereas for chromocentre morphology, which are much more smaller only the volume was relevant (Table 2.1). In addition, the distance of the chromocentre to the limit of DNA staining that was assumed to be representative to NE periphery is determined. Here it should be noticed that the limit of the DNA staining by the intercalating agent (DAPI or Hoechst) may not reflect exactly the NE boundary. However in this fi attempt to defi a spatial position of the chromocentre in the nucleus, this strategy was the easiest to be applied. This distance can be computed as a distance of the barycentre of the chromocentre to the NE or between the NE periphery and the closest point of the chromocentre periphery (Table 2.1). The measure of this distance is based on computing a distance map of the nucleus. The aim is to compute the distance between each voxel and the image background. A computation of the distance map by the Euclidean distance transformation [Saito and Toriwaki, 1994] is realised with the ImageJ plugin developed by Bob Dougherty (http://www.optinav.com/download/LocalThickness_.jar). This Euclidean distance can be computed only on images with isotropic voxels (i.e. cubic voxels). The voxels obtained from SIM and confocal images are anisotropic (i.e.. rectangularvoxels), and a step of resampling is necessaryto obtain images with isotropic voxels. This resampling is simply performed using an algorithm available in Imagej [Schneider et al., 2012].

Chromatin organisation within the nucleus was studied by the number of chromocentre, the mean or total volume of chromocentre, and the mean distance of the chromocentre (closest point, and barycentre) to the NE. This organisation was studied also by a parameter called the Relative Heterochromatin Volume ($\mathrm{RHV}=$ $\frac{\text { total volume of chromocentres }}{\text { nuclear volume }}$), which is the ratio of the volume of the chromocentre by the total nuclear volume. The same compute is did on function the intensity, and named Relative Heterochromatin Intensity ($\mathrm{RHI}=\frac{\text { total inetnsity of chromocentres }}{\text { nuclear intensity }}$).

Table 2.1: Parameters computed by NucleusJ. Parameters are grouped according to three categories: nuclear size, shape and heterochromatin organisation. * : Aspect ratio and circularity are 2D parameters widely used in 2D image analysis.

Biological validation of NucleusJ plugin

NucleusJ was validated using an A. thaliana mutant line lacking CRWN1 and CRWN2 proteins, which are putative components of the plant nucleoskeleton [Dittmer et al., 2007, Wang et al., 2013]. Analysis of a set of 220 nuclei from wild type Col-o and crwn1 crwn2 mutant plants revealed nuclei of reduced volume and increased sphericity containing fewer chromocentres of increased size in the mutant compared to Col-o, in perfect agreement with previous report [Dittmer et al., 2007, Wang et al.,2013].

Conclusion of NucleusJ platform development

Computational image analysis provides precise, objective and reproducible quantitative data from images. The NucleusJ plugin developed as part of this study generates, within a few steps, 3D quantitative measurements from single images or large data sets, without requiring expertise in image analysis. The method developed for 3D segmentation (Algorithm 1) was included into NucleusJ during its development. Quantitative parameters defi were also included in this integrated tool to characterise nuclear morphology. Hence, this approach can be used by biologists, without requiring further knowledge than the use of ImageJ. 3D Nuclear segmentation of nuclei is a task that can be addressed in many species and nuclear domains visible with DNA dyes, such as chromocentres, are not specific to plants, but can also be identified other species such as mice. NucleusJ will therefore be useful for a large community of users interested in quantifying size, shape, and positioning of nuclei, nuclear objects or chromatin domains. The work was made available on the ImageJ and Fiji (an image processing package) web sites with documentation for the user (http://imagejdocu.tudor.lu/doku.php?id=plugin: stacks:nuclear_analysis_plugin:start, see Appendix A.2) and an article was published to advertise about this new ImageJ plugin (see Appendix A.1) [Poulet et al., 2015].

2.4.2 Improvement of the computing of the area

The fi NucleusJ version was finalised in 2013 and was used to analyse various mutant backgrounds affecting the nuclear envelope or chromatin organisation (Chapter 3). In the mean time, several improvements of NucleusJ have been implemented to correct known bias of the preliminary version. Efforts were focused to improve the defi of the 3D nuclear segmentation which impacts directly the sphericity. Indeed in the preliminary version sphericity was at best up to 0.29 while a perfect sphere as a sphericity of 1 . These development were developed in collaboration with Pr Rémy Malgouyres (LIMOS, Clermont-Ferrand).

Method development

The fi st estimation developed of the area used previously was based on the total boundary surface of the voxels, and this method is used in the NucleusJ plugin [Poulet et al., 2015]. Here, the sphericity calculation has been improved and now takes into account the contribution of each surfel ${ }^{3}$ area. The fi step of the area

[^1]calculation is to determine the image gradient $v f_{x, y, z}$ of the rawimage f, which we estimate using fi diff in the anisotropic image.

 with $\| v f| |$ norm of f [Fourey and Malgouyres, 2009, Gonzalez et al., 2013, Esbelin and Malgouyres, 2014]. The algorithm then browses each boundary voxel on the segmented image. For each boundary voxel, the contribution of each of the surfel to the fi area is computed. The factor as is the unity of the surfel, which allows management of the problem of anisotropy. The resulting area is $d(A S)$, the area of boundary voxels.

```
Algorithm 2: Area computing algorithm
    Data: 3D rawImage, 3D binaryImage
    Result: area
    UnitairyVectorTable \(\leftarrow\) computeUnitaryVector(gradient(rawImage));
    for each voxel boundary v in binarylmage do
        for each voxel neighbor \(v_{n}\) do
            if \(v\) value \(!=\frac{V_{n} \text { value then }}{N v+N v}\)
                \(d(A S)=\left|\frac{N v+N v_{n}}{2} \cdot \overrightarrow{v_{n}}\right| * a s ;\)
            area \(\leftarrow)\), \(d(A S)\);
```


Results of estimation on different shapes

Here, the calculation procedure of the area is improved (Algorithm 2) and its effectiveness is tested on spheres and ellipsoids of various volumes and shapes in order to evaluate the deviation observed from theoretical values (Table 2.2). The area is strongly overestimated in the original method (ratio between observed and theoretical value $=1.55$) while estimation is more accurate with the new method (ratio = 1.08). In both cases, variations in shape (ellipsoid or sphere) do not strongly impact the deviation from the theoretical values. Thus, the surface is computed more accurately and the binary images are more relevant to investigate irregularities at the object boundaries. This improvement is an important step to better defi shape
parameters.
Table 2.2: Comparison of two methods of area computing using theoretical objects. Ellipsoid of various x, y and z axes in brackets and spheres of various radius (r) were analysed by the original method developed in [Poulet et al., 2015] (old method) and the new method. Surface is computed with each method and the ratios between the observed and theoretical values were calculated. Average values of the ratios are given at the bottom of the table.

Objects	Theoretical values Aera	Old method Area		New method Area	
		Obs	Ratio	Obs	Ratio
Ellipsoid (10,20,30)	4897	7274	1.49	5209	1.06
Ellipsoid (15,5,10)	1224	1902	1.55	1376	1.12
Ellipsoid (15,10,12)	1900	3028	1.59	2079	1.09
Ellipsoid (20,35,10)	5624	9984	1.78	7054	1.25
Ellipsoid (25,60,50)	25229	36872	1.46	26102	1.03
Ellipsoid (40,20,50)	16716	24514	1.47	17328	1.04
Ellipsoid (60,40,25)	21295	31468	1.48	22343	1.05
Sphere : $\mathbf{r}=5$	314	540	1.72	364	1.16
Sphere : $\mathbf{r}=10$	1257	2010	1.60	1363	1.08
Sphere : $\mathbf{r}=20$	5027	7782	1.55	5273	1.05
Sphere : $\mathbf{r}=30$	11310	17298	1.53	11720	1.04
Sphere : $\mathbf{r}=40$	20106	30606	1.52	20723	1.03
Sphere : $\mathbf{r}=50$	31416	47730	1.52	32273	1.03
Sphere : $\mathbf{r}=60$	45239	68562	1.52	46343	1.02
AVERAGE VALUE			1.55		1.08

Conclusion of the improvement of the computing of the area

This new "optimised Ostu method" for the estimation of the area permits to obtain an accurate value of the real area of the object of interest, and with this method, the area is more relevant. This improvement involved an estimation of a more realistic sphericity as a value of sphericity of 1.0 is now obtained for a perfect sphere (the old value being 0.29).

2.4.3 Improvments of 3D nuclear segmentation

Limitation of the new optimised Ostsu method

As the new optimised Otsu method is used by the two other methods described hereafter, fi it is important to illustrate the improvement it provides in respect to the original Otsu method used by NucleusJ.

There are few diff in the results of nuclear segmentation between the two methods (Figure 2.12). Here the improvement of the segmentation in comparison to the Otsu method are the same that aas those already presented in Section 2.4.1 (Figure 2.13).

Figure 2.12: Comparison of optimised Otsu method with the two estimations of the area. Nucleus stain with Hoechst. Selected z slices of a raw image of nucleus are displayed, the red edge is the result of the segmentation with the old estimation of the area, the green is the results with the new estimation and the yellow when the two segmentations are overlapping.

While sphericity is improved (see Table 2.2), the major limit of the "new optimised Otsu method" is observed for non-uniform staining as described in Figure 2.13a. In this case, the method cannot efficiently remove indentations, because heterogeneity in voxel intensity avoid their classification as boundary voxels. Furthermore, if the nucleolus is closer to the boundary, it can still be considered as belonging to the background. These limitations highlight the need of further improvements of the 3 D segmentation method of the nucleus.

Improvment of 3 D segmentation using a mathematical morphology method

In order to improve the 3D segmentation step, we have developed a novel method based on the defi tion of deep kernel to best fi the binary image. Binary nuclei may contain concave parts, holes, cavities or irregular boundaries generated though thethresholding step, in particular dueto the presenceofthe nucleolus (Figure 2.8). Removing these artefacts is a critical step for high-quality segmentation.

To achieve this goal, mathematical morphology treatment was applied, the basic principle of which is based on concave parts fi to complete the object as fully as possible by moving a sphere of given radius within a delimited space. First the 3D segmented image obtains with optimised Otsu method should be made of isotropic voxels, and if it is not the case, the image has fi to be transformed to obtain cubic voxels with the algorithm available in ImageJ. An euclidean distance map is built to compute and storethe distancebetween each voxel ofthe3D segmentedimage which belongs to the object and the background [Saito and Toriwaki, 1994, Hildebrand and Rüegsegger, 1997]. The maximum distance is used to define an initial distance threshold called s (where $s=$ MaxDistance) which is subsequently used to defi a
sphere of radius s.
The initial threshold S was defi as $S={ }^{r} . \overline{2}$ The distance thresholding is performed on the distance map image and a deep kernel is defi by all the voxel with value $>=S$. For each sphere of radius S, centred on the deep kernel voxels, each voxel which belongs to the sphere in the initial segmented image will take a value of 1. This step is then repeated but using $S-1$ until S takes a higher value than the x calibration. Finally in order to remove the potential artefacts generated through the method the image is inverted to apply the same procedure to the image background but only with greatest threshold distance S.

```
Algorithm 3: Algorithm for 3D segmentation based on mathematical mor-
phology method
    Data: I: inputImage (binary)
    Result: 3D correctedBinaryImage
    initRadius \(\leftarrow S\);
    while \(S>=1\) do
        map \(\leftarrow\) distanceMap(I);
        \(I \leftarrow\) threshold(map,S);
        \(I \leftarrow \Delta_{S}(I)\);
        \(S \leftarrow S-1 ;\)
```

In this algorithm distanceMap(I) is the distance map for the Euclidean distance for the binary image I. Then, threshold(map,S) is the binary image obtained by applying the threshold value S on the gray level image map. $\Delta_{S}(I)$ is the morphological dilation with an Euclidean sphere with radius S as structuring element.

Limitations of the mathematical morphology method results

The mathematical morphology method based on the defi of a deep kernel improves further the outcome observed with the optimised Otsu method and permits fi of the majority of the observed indentations (Figure 2.13c). The algorithm performs an efficient segmentation and considers the nucleolus as part of the nucleus (Figure 2.13a and Figure 2.13a sections 7 and 10). However the algorithm still keeps some irregularities and as a major drawback overestimates the nuclear volume and the sphericity (Table 2.3). These overestimations are due to the method, which adds background voxels in the fi nucleus because these voxels belong the sphere used for the segmentation (Table 2.3). The overestimation of the volume without increase of the area results in sphericity value higher than 1 for several nuclei. This result shows the bias introduced by this method. As the mathematical morphology method enlarged the nuclear boundaries another strategy has been investigated to
improve the 3D nuclear segmentation.

Figure 2.13: Results of the three segmentations methods. Selected z slices of a raw image of nucleus. Sections 13 and 31 of sub figure b) show respectively the nucleolus and voxels outside the boundary which are captured during the segmentation process (white arrow). Sections 31 of sub figure c) highlights in the overestimation of the nuclear volume observed with the mathematical morphology method, d) results of the 3D gift wrapping algorithm.

Improvment of 3D segmentation using a 3D gift wrapping algorithm

An alternative to the mathematical morphology method initiated within the object is to better defi the edge of the object, and delete shape irregularities generated by the initial step of segmentation. To achieve this goal the 3D gift wrapping method was used to defi the limits of the object. Actually this new approach is neither a convex hull, nor an approximation of a convex hull, nor a simplified convex hull, but a new notion, which can be named 3D gift wrapping of a set of voxels. The idea is that, due to a priori knowledge from biology, and due to the goal of this study which is to improve the geometric accuracy of the segmented nucleus, the nucleus cannot be considered as convex object. The shape is essentially non convex, but the aim is
to remove some artefactual concavities, while preserving the natural ones, using a relevant distance threshold in the 3D gift wrapping algorithm.

For the sake of simplicity, this method was designed in 2D and then implemented slice by slice up to the fi 3 D volume. Hence, depending on the axis used to decompose the volume into slices, three different volumes can be obtained. Then the union of the three volumes was built.

In each slice, in order to tune the 3D gift wrapping algorithm, and to best fi the shape artifacts, a parameter of maximal threshold distance $t d$ was applied between two vertices which will defi the fi boundary. This distance is determined experimentally and this parameter can, with generally good results whatever the size of the nucleus, be adaptively set to the following value:

$$
\begin{equation*}
t d=\frac{\int^{\frac{3 V}{} \frac{3 \text { olume }}{4 I I}}}{2} \tag{2.8}
\end{equation*}
$$

The method of threshold distance efficiently removes shape artifacts, although keeping real indentations occurring at the nuclear surface. The developed algorithm takes into account only one slice at once, in other words uses 2D objects. First of all, if several objects are detected on a given slice, the fi problem is to label the connected components and then to use the 3D gift wrapping algorithm for each label. During the distance thresholding, the aim is to minimise the outer-pointing normal to obtain the next vertex.

```
Algorithm 4: Three dimension gift wrapping algorithm
    Data: list of the boundary vowel
    Result: list of the vowel vertices
    \(v_{n} \leftarrow\) vowel with \(v_{n} y\) maximal;
    while anglesSum \(<=2 * \Pi\) do
        whether \(v_{n}\left(v_{n} x, v_{n} y\right)\) the current point;
        if is the first lap then
            \(\overrightarrow{V_{\text {test }}}(10,0)\);
        else
            \(\overrightarrow{V_{\text {test }}}\left(v_{n} x-v_{n-1} x, v_{n} y-v_{n-1} y\right) ;\)
        for eachvoxel boundary \(v_{b}\) do
            \(V\) ( \(v x-v_{b} x, v_{b} y-v y\) );
            if distance nt \(\stackrel{b}{n}\left(v_{n}, v_{b}\right)<\stackrel{b}{=}\) td then
                \(\longrightarrow\)
            \(\alpha \leftarrow\) angle [o, \(2^{*} \Pi[\) between \(\xrightarrow[V_{\text {test }}]{ }\) and \(\bar{V}=\overrightarrow{=}\); ;
            outerPointingNormal \(\leftarrow \alpha+\Pi / 2\) if outerPointingNormal \(>=\Pi\) ) then
                        outerPointingNormal \(\leftarrow\) outerPointingNormal \(-2 * \Pi\);
            if outerPointingNormal < = Min outerPointingNormal then
                        if outer ointing Normal < Min outerPointingNormal then
                        angleMin \(\leftarrow \alpha\);
                        voxelMin \(\leftarrow v_{b}\);
                        else if outer ointingNormal \(<=\) Min \(_{\text {outer ointingNormal }} \& \&\)
                distance \(\left(v_{b}, v_{n}\right)\) is max then
                    angleMin \(\leftarrow \alpha\);
                voxelMin \(\leftarrow v_{b}\);
            verticesList \(\mathrm{n}+1 \leftarrow\) voxelMin;
            anglesSum \(\leftarrow\) anglesSum + angleMin;
            \(v_{n} \leftarrow\) voxelmin;
```

The initialisation of the ii vowel $\left(v_{n}\right)$ for the fie lap is defi by the lowest vowel in the image plane. Then for each vowel boundary of the same plane, the distance between the voxel boundary $\left(v_{b}\right)$ and v_{n} was computed.
$\bar{V}^{-} \rightarrow$ is defi \quad by $\left(v_{b} x-v_{n} x, v_{b} y-v_{n} y\right)$.
If the distance is lower than ${ }^{n}$ td, the angle is computed between $\xrightarrow[V_{\text {test }}]{ }$ and $\vec{V}_{\text {current }}$ (Algorithm 4). The α angle is computed using $\sin \alpha=\frac{\text { vector product }}{\text { norm product }}$ and $\cos \alpha=$ $\frac{\text { scalar product }}{\text { norm product }}$. The arccos function is used to determine a angle taking into account the $\operatorname{sign} \sin \alpha$. Then when the minimum angle is found, the current v_{b} becomes v_{n} and a new lap starts. When the sum of the angle equals $2 * \Pi$, the turn around of the shape is si and all the vertices are defi for the 2D plane.

3D gift wrapping method results

Finally, the 3D gift wrapping method, although more complex to set up, remains the most accurate (Figure 2.13). It nicely removes the artifactual indentations, considers the nucleolus as part of the nucleus and does not overestimate the nuclear volume. This geometric post-process preserves the significant angular features while removing noise, which is rather diffi to achieve with the active contours approach, in which regularisation terms will smooth out angular features, or by morphological operations. Morphological parameters such as sphericity, elongation or fl then be computed with great confidence from this last method (Table 2.3).

Table 2.3: Mean morphologic parameters computed with the new algorithms and compared to the original Otsu segmentation procedure. Here nuclei of guard cells (GC), pavement cells ($P C$), and root hair cells ($R H C$) were used which display distinct shape and size. The numbers in the Method column are o: Otsu method, 1: optimised Otsu method, 2: mathematical morphology method and 3:3D gift wrapping method.

Nuclear Type	Method	Volume	Area	Sphericity
	0	17.21	38.63	0.59
GC	1	21.65	43.77	0.64
	2	23.16	39.06	1
	3	20.67	40.49	0.74
	0	117.50	180.74	0.27
PC	1	155.65	205.32	0.32
	2	184.17	162.72	0.88
	3	182.44	175.83	0.69
	0	96.30	173.04	0.23
RHC	1	130.42	196.60	0.27
	2	152.58	186.83	0.57
	3	140.44	183.08	0.44

Conclusion of comparative studies of 3D nuclear segmentation

In this section, new 3D nuclear segmentation procedure s have been developed and fi the 3D gift wrapping method gave the best result very close to our expectation. This is a very important progress for nuclear segmentation as it improves the precision of the nuclear volume, remove artefactual indentations and nicely includes the nucleolus within the nucleus. Furthermore improving the boundary of the nucleus also benefi to the measurements of intranuclear objects as their positions are computed in respect to the boundaries of the nucleus. A comparison of all methods is provided on Figure 2.14 which is accessible on line at https://www.gred-clermont.fr/media/uploads/poulet-tatout.avi.

Figure 2.14: 3D nuclear segmentation of a nucleus using three new segmentation methods. Selected z slices (numbers at the bottom) of a raw image of nucleus (top) have been selected for a raw image and for the three new methods indicated on the left.

2.4.4 Comparative studies of 3D nuclei acquired with SIM and confocal microscope

It is important to compare the parameters obtained using NucleusJ for 3D images obtained with the SIM and confocal microscopes to determine the reproducibility of data obtained using the two techniques and avoid dependency on one imaging system. Fixation and staining of A. thaliana cotyledons was carried out using both microscope systems, replicated fi e times for SIM and once for confocal. Nuclei of two cells type were acquired, guard cells (GC) and pavement cells (PC), to test diff t types of nucleus (Table 2.4). GCs have round nuclei while PC nuclei are more elongated. Furthermore the DNA content is not the same between this two cells type GC stay diploid whereas PCs are diploid or polyploid [Melaragno et al., 1993].

Table 2.4: Samples of nuclei acquire by SIM and confocal microscopes.

	GC	PC	Total
Confocal	94	74	168
SIM rep1	94	91	185
SIM rep2	154	126	280
SIM rep3	120	139	259
SIM rep4	202	114	316
SIM rep5	127	120	247

Comparison of nuclear morphology parameters

In the GC samples the data within each experiment are homogeneous. Variability is low between SIM datasets, and between SIM and confocal experiments. The shape parameters (sphericity, elongation and fl also show homogeneity between experiments and very similar results were obtained for nuclear morphology between SIM and confocal data for diploid nuclei. The PC nuclei show more variability between experiments, but that is consistent with the fact that PC nuclei can be diploid or polyploid [Melaragno et al., 1993], but globally the observed variations are of similar range between SIM repetitions and between SIM and confocal.

Figure 2.15: 3D morphological analysis of wild type nuclei from guard cells, pavement cells acquire by confocal and SIM microscopes. Boxplots of nuclear morphology parameters generated by NucleusJ in two types of nuclei (GC in gray, PC in red) for 6 experiments of Col-o. Sample of nuclei is available in the Table 2.4.

Comparison of the chromatin organisation parameter

As was the case for morphological parameters, in GCs the number of chromocentres detected by Nucleus J was around fi e for all the experiments. The other parameter are also homogeneous for the GCs. As with morphological parameters, the PCs have more intra-group variability than the GCs, except for the RHV which is always very low.

Figure 2.16: Chromatin organisation analysis of wild type nuclei from guard cells, pavement cells acquire by confocal and SIM microscopes. Boxplots of chromatin organisation parameters generated by NucleusJ in two types of nuclei (GC in gray, PC in red) for 6 experiments of Col-o. Sample of nuclei is available in the Table 2.4.

Distance between chromocentres and nuclear periphery

The two distances computed between chromocentres and the nuclear periphery for the SIM data show less homogeneity than the other parameters analysed. But the majority of these data were overlapping with the same properties where GCs have
a shorter distance than PC. The comparison between SIM and confocal data for the distance of chromocentres from the NE were totally diff t, and a shorter distance was found for all the nuclei acquired by confocal in comparison to the SIM. The diff nces found are equivalent to the diff of the voxel resolution between both microscopes. The SIM images have voxel resolution equal to 0.103 * $0.103 * 0.2 \mu \mathrm{~m}$ whereas the confocal voxel resolution is $0.075 * 0.075 * 0.28 \mu \mathrm{~m}$. The better resolution of the confocal microscope gave better precision in computing of the distance parameters.

Figure 2.17: Distance of chromocentres analysis of wild type nuclei from guard cells, pavement cells acquire by confocal and SIM microscopes. Boxplots of the chromocentre distance generated by NucleusJ in two types of nuclei (GC in gray, PC in red) for 6 experiments of Col-o. Sample of nuclei is available in the Table 2.4.

Conclusion

The results show similar results between 6 independent experiments and between two diff t microscopes on two types of cells. These results show the repeatability
of this experiment, and the power of this method, which can be carried out on diff t types of light microscopy while generating similar results for the same genetic background.

2.5 Conclusion

The development of Nucleus J allows the generation, within a few steps, of 3 D quantitative parameters from single images or large data sets, without requiring expertise in image analysis. This plugin will be useful for a large community of users interested in quantifying size and shape of nuclei, nuclear objects or chromatin domains as well as positioning of the latter in nuclear space.

To improve the nuclear detection three diff t algorithms were developed. The fi method is initialised by an Otsu threshold, but computes a new threshold, which is not related to the Otsu threshold, but is based on maximisation of sphericity and is already used in NucleusJ.Throughthis, estimation of sphericity wasimproved and nowbased on area estimation based on discrete geometry. The second is an iterated process of morphological openings and closings. The third method is a meaningful generalisation of a convex hull called 3D gift wrapping.

This is an improvement of 3 D segmentation procedures because measurements of intranuclear objects in respect to the boundaries of the nucleus benefit from a better segmentation. The 3D gift wrapping method seems the most reliable procedure to perform the 3 D segmentation of the nucleus (Figure 2.14). Note that some a priori knowledge from biology was required to tune the parameters. This method clearly shows the interest in combining colour and geometric information to improve segmentation, and also shows some advantages with respect to active contours, where regularisation terms, which are also diffi to tune, tend to smooth out angular features.

Finally, comparison of six experiments created using confocal and SIM microscopy shows a similarity in the results obtained with NucleusJ. But in these experiments there is variability between computed parameters which can be due to thegrowing conditions astheSIM experimentswere carriedout in Clermont Ferrand and the confocal experiments in Oxford Brookes University, though using the same seed lots and set growing conditions. The comparison show a good reproducibility of the experiments between the two labs and two diff t microscopes.

Chapter 3

Infl of nuclear morphology on chromocentre organisation in
 Arabidopsis thaliana

3.1 Introduction

In A. thaliana, natural variations in nuclear shape and size are observed in various tissues such as epidermis, trichomes, root hairs [Traas et al., 1998, Qian et al., 2009] or during seed formation [van Zanten et al., 2011] and also in mutants altering the nuclear envelope [Dittmer et al., 2007, Tamura and Hara-Nishimura, 2011, Janski et al., 2012, Zhou et al., 2012, Goto et al., 2014].

Over the years, many components of the plant nuclear envelope have been discovered. It is now assumed that plants have their own LINC complex consisting of SUN (SAD1-UNC-84 HOMOLOGY) [Graumann et al., 2010, Graumann, 2014] and KASH (Klarsicht/Anc-1/Syne homology) proteins including WIP (WPP domain-interacting proteins) and SINE (SUN-interacting nuclear envelope)[Zhou et al., 2012, Graumann, 2014, Zhou et al., 2014]. The WIP proteins interact with the WITs(WPP domain-Interacting Tail-anchored proteins) and connect the LINC conplex to the cytoskeleton [Zhao et al., 2008] (see Section 1.4). Furthermore, possible candidatesfornuclearlamina proteins havebeenidentified and areknown as CRWN [Dittmer et al., 2007, Wang et al., 2013] and KAKU4 [Goto et al., 2014]. Strikingly, 2D nuclear morphology analysis of sun, wip, kaku and crwn mutants display nuclear shape and/or nuclear size modifi suggesting that mechanical constraints such as those applied by the cytoskeleton at the NE may be released in mutant backgrounds [Dittmer et al., 2007, Graumann et al., 2010, Graumann, 2014, Goto et al., 2014]. Finally, the SUN-WIP-WIT-myosin XI-i complex and CRWN1 were pro-
posed to independently determine an elongated shape of the nucleus, highlighting the function of cytoskeleton and nucleoskeleton in nuclear morphology [Zhou et al., 2015b]. If nuclear morphology impacts chromatin organisation, it is also possible that chromatin organisation affects nuclear morphology.

Chromatin in eukaryotes is a complex structure in which DNA associates with histone proteins and a variety of other histone-associated proteins (see Chapter 1 Section 1.2). Modifi such as DNA or histone methylations taking place on chromatin named epigenetic modifications are associated with euchromatin and heterochromatin formation or maintenance [Li et al., 2007]. In A. thaliana, chromocentres are constituted by pericentromeric repeats, transposons and ribosomal DNA genes (see Chapter 1 Section 1.2) [Maluszynska and Heslop-Harrison, 1991]. Chromocentres are enriched in epigenetic marks such as DNA methylation at CG, CHG and CHH (H represents A , T or C) sites, as well as histone modifi (dimethylation at histone H3 Lys9 (H3K9me2) and monomethylation at histone H3 Lys27 (H3K27me1)) [Cao andJacobsen, 2002,Tariqetal.,2003, Probstetal.,2003,Zhang et al., 2007, Cokus et al., 2008].

Heterochromatin maintenance is performed by proteins such as chromatin remodeling factors like the ATXR proteins (Arabidopsis Trithorax-Related Protein) or DDM1 (Decrease in DNA Methylation1) or by the incorporation of histone variants. Indeed, some histone variants are specific for some epigenetic marks. For example, only the canonical histone $\mathrm{H}_{3.1}$ can be modifi by the A. thaliana proteins ATXR5 and ATXR6 which are H3K27 monomethyltransferases involved in the chromatin condensation and gene silencing. The atxr5 atxr6 double mutants show reduced $\mathrm{H}_{3} \mathrm{~K} 27 \mathrm{me1}$ at chromocentres and a partial heterochromatin decondensation [Jacob et al., 2009]. DDM1 is an ATP-dependent SWI2/SNF2 (SWItch/Sucrose Non-Fermentable) chromatin remodeling factor necessary for normal patterns of DNA methylation in the A. thaliana genome [Hirochika et al., 2000]. Loss of DDM1 function impacts chromatin organisation and triggers DNA decondensation at the heterochromatic regions [Hirochika et al., 2000, Soppe et al., 2002, Fransz et al., 2003, Probst et al., 2003].

The histone H_{3} possesses several variantswhich are enriched in different parts of the genome. For example, H3.1, H3.3, CENH3 are respectively enriched in chromocentres, 3 ' end of active genes, and centromeres [Otero et al., 2014]. The deposition by specific histone chaperones of these variants allow the maintenance or the formation of heterochromatin. Several histone H3 chaperones have been described in various organisms. For examples, ASF1 and ATRX have been described as H3 chap-
erone in A. thaliana [Otero et al., 2014]. Mutation of these chaperones impacts the incorporation of histone H3 (Doctor Céline Duc personal communication and [Otero et al., 2014]). However, no studies have been performed so far to analyse the effect of chaperone loss on heterochromatin organisation in 3D imaging and on the volume and positioning of chromocentres.

3.2 Aim

The aim of the analysis undertaken wasto investigate the potential impact of nuclear reshaping on chromatin organisation and vice versa. Using NucleusJ, a quantitative analysis of 3 D images of nuclei of mutants of the NE envelope and chromatin were carried out to investigate the potential link between NE and chromatin organisation on the plant. Whole mount preparations in three contrasted cell types (guard cells (GC), pavement cells (PC) and root hair cells (RC)) known to display distinct nuclear organisation in A. thaliana were analysed for all mutants. To determine the impact of the alteration of nuclear morphology on silencing, maintenance of heterochromatin, qRTPCR was performed (undertaken by Dr Celine Duc) to analyse the reactivation of these targets. The decompaction of heterochromatic sequences was then studied using 2D FISH (undertaken by Dr Matthias Benoit) and 3D FISH (undertaken by Dr Sophie Desset and Prof. Christophe Tatout) with 180 bp probes.

3.3 Material and methods

3.3.1 Plantmaterial

All mutants and wild type A. thaliana plants were from the Columbia-o ecotype. TDNAinsertionswereobtained fromTheEuropeanArabidopsisStockCentre(NASC, http://arabidopsis.info/). T-DNA accession numbers and genes used in this study are described in Table 3.1. Seed batches from all genotypes used in this study were propagated together in the green house under long day conditions. Phenotypic evaluations were performed on A. thaliana seedlings grown from sterilized seeds sown on germination medium containing $0.8 \% \mathrm{w} / \mathrm{v}$ agar, $1 \% \mathrm{w} / \mathrm{v}$ sucrose and Murashige \& Skoog salts (M0255; Duchefa Biochemie, Netherlands). After 2 days of stratification at $4^{\circ} \mathrm{C}$ in the dark, seedlings were grown under 16 h light $/ 8 \mathrm{~h}$ dark cycles at $23^{\circ} \mathrm{C}$, cotyledons were harvested 14 days after germination. For each biological replicate, a typical experimental plan always included Col-o as a control along with one or several mutants. For each genotype, 3 cotyledons are used to confirm genotype, 8-10 for 3Dimage analysis, 4-6 for 3D in situ hybridisation and 30 for RT-qPCR analysis.

Table 3.1: Mutants used in this study. Mutant descriptions can be found in Zhou and Meier 2014 for wifi, Dittmer et al. for crwn1 crwn2, Goto et al. 2014 for kaku4-2, Jordan et al. 2007 for ddm1-10 and Jacobs et al. 2009 for atxr5 atxr6. sun1 sun4 sun5 has been evaluated for the first time in this study.

Mutant names	Alleles T-DNA	Gene Name	Acc Number	Family	Mutant class
wifi	wit1-1GABI-Kat 470E06WIT1At wit2-1SALK_CS39986WIT2At1 wip1-1SAIL_390_A08WIP1At4 wip2-1SALK_052226WIP2At5g wip3-1GABI-Kat 459H07WIP3A	Fg 11390 g 68910 26455 F 6210 t 3 g 13360		KASH interacting KASH	Nuclear periphery
$\begin{gathered} \text { sun1 sun4 } \\ \text { sun5 } \end{gathered}$	$\begin{aligned} & \text { sun1-1SAIL_84_G10SUN1At5g } \\ & \text { sun4-1SALK_022028SUN4At1 } \\ & \text { sun5-1SALK_126070CSUN5At } \end{aligned}$	04990 71360 $7 g 23950$		SUN	
crwn1 crwn2	crwn1-1SALK_023383CRWN1A crwn2-1SALK_090952CRWN2A			Lamin-like	
kaku4	kaku4.2 SALK_076754	KAKU4	AT4G31430		
ddm1 atxr5 atxr6	ddm1-10 SALK_000590 atxr5-1SALK_130607CATXR5A atxr6-1SAIL_240_H01ATXR6At	$\begin{array}{r} \text { DDM1 } \\ \mathrm{t} 5 \mathrm{~g} 09790 \\ 5 \mathrm{~g} 24340 \\ \hline \end{array}$	At5g66750	Heterochromatin	Chromatin
asf1a asf1b atrx	$\begin{aligned} & \text { asf1a-1GABI_200G05ASF1AAt } \\ & \text { asf1b-1SALK_105822ASF1BAt } \\ & \text { atrx-1SALK_025687 } \\ & \text { atrx-2SAIL_861_B04 } \end{aligned}$	1 g66740 gg38110 ATRX	At1g08600		Histone Chaperone

3.3.2 RNA extraction and RT-PCR

Total RNAs were extracted from 30 cotyledons using Tri-Reagent (Euromedex), further treated with RQ1 DNase I (Promega) and purifi using phenol-chloroform extraction. Reverse transcription was primed either with oligo(dT) 15 or with random hexamers using M-MLV reverse transcriptase (Promega). The resulting cDNAs were used further in quantitative PCR with the LightCycler ${ }^{\circledR} 480$ SYBR Green I Master kit on the Roche LightCycler ${ }^{\text {® }}$ 480. Transcript levels for the target of interest were normalised to AtSAND [Czechowski et al., 2005] using the comparative threshold cycle method.

3.3.3 Fluorescent in situ hybridisation in 2D

Cotyledons were fi in ethanol-acetic acid ($3: 1 \mathrm{v} / \mathrm{v}$) and Fluorescence in situ hybridization (FISH), was performed essentially as described [Probst et al., 2003, Bowler et al., 2004]. Biotin labelled probes complementary to the 180 bp repeats region were generated by PCR from the pSK18obp plasmid [Douet et al., 2008]. The Biotin labelled probe was detected with Texas Red-conjugated Avidin ($5 \mu \mathrm{~g} / \mathrm{mL}$, Vector Laboratories) followed by abiotinylated goat anti-Avidin antibody ($5 \mu \mathrm{~g} / \mathrm{mL}$, Vector Laboratories) followed by Texas Red-conjugated Avidin. Slides were analysed with a Zeiss Axio Imager Z. 1 microscope equipped with a Zeiss AxioCamMRm camera system and images processed with ImageJ and Adobe Photoshop. More than 200 nuclei were scored per condition using a doubleblind experimental setup. Only nuclei in which all 180 bp are clustered in chromocentres are scored as clustered. Differences were compared using a frequencies test (Rfunction: prop.test).

3.3.4 Sample preparation, Hoechst staining and 3D-FISH

3D images were collected from cells in their original tissue environment using a method described by Bauwens et al. (1994) to obtain whole mount preparations of 14 day cotyledons and crown roots. Briefly, plant tissues were collected and fi using 1\% formaldehyde, 10\% DMSO in PBS 1X, EGTA 6.7 mM pH7.5 under vacuum for 5 min and incubated for 25 min at room temperature. Tissues were then washed 3 times with methanol and several ethanol washes to obtain transparent tissue preparations. Whole mount preparations were then used either for a simple Hoechst-staining procedure or for 3D-Fluorescent In Situ Hybridation (3D-FISH) after progressive rehydratation with PBS-Tween 0.1%.

For Hoechst-staining, tissues were stained overnight at $4^{\circ} \mathrm{C}$ in a solution of Hoechst 33258 (SIGMA) at $25 \mu \mathrm{~g} / \mathrm{ml}$ in PBS. Samples were then washed three
times with PBS 1X, excess water removed with paper tissue and placed on a slide in PBS/glycerol (20:80) solution and covered with a cover slip for microscopic observations.

For 3D-FISH hydrated tissues were washed twice in 2xSSC then incubated for 30 min in 2xSSC: HB 50 ($1: 1$) (50% formamide, 2 xSSC , 50 mM sodium phosphate pH 7) and fi lly 30 min in HB5o. Tissues were directly immersed in HB5O containing $1 \mu \mathrm{M}$ fi of centromeric Locked Nucleic Acid (LNA) probe (Exiqon 180 pb centromeric repeats sequence is TEX615: GTATGATTGAGTATAAGAACTTAAACC) and incubated 2 hrs at $37^{\circ} \mathrm{C}$, boiled 5 min and then rapidly cooled on ice, tissues were hybridized overnight at $37^{\circ} \mathrm{C}$. Then were rinsed twice for 30 min at $42^{\circ} \mathrm{C}$ in SF50 (50% formamide, 2 xSSC) and incubated overnight with $0.25 \mu \mathrm{~g} / \mathrm{ml}$ Hoechst 33258 in PBS at $4^{\circ} \mathrm{C}$. Samples are rinsed twice in 2 xSSC and 2 twice in PBS and mounted in PBS:glycerol (20:80) as described above. 3D FISH experiments were performed as previously [Bauwens et al., 1994] when standard probes were used (i.e. not LNA probe). Labelling was performed by nick translation (Roche) using the 45S rDNA probe from Triticum aestivum [Gerlach and Bedbrook, 1979] using Cy3dUTP (GE healthcare) and the 180 pb probe from A. thaliana [Martinez-Zapater et al., 1986] using Cy5-dUTP.

3.3.5 3D image acquisition

Microscopic observations were performed by structured illumination microscopy to produce confocal-like images using an Optigrid module (Leica-microsystems MAAF DM 16000B). All images were acquired using a X63 oil objective at optimal resolution; lateral and axial resolution were respectively $\mathrm{xy}=0.103$ and $\mathrm{z}=0.2 \mu \mathrm{~m}$. The ImageJ plugin, NucleusJ, was used to characterise nuclear morphology and chromatin organisation [Poulet et al., 2015]. Description of the quantitative parameters generated by Nucleus J can be found in supplemental materials of Poulet et al. (2015) and in the Section 2.4.1.

3.3.6 RNA-Seq analysis

Already published RNA-seq datasets from wild type Col-o ecotype were used in order to determine the expression of candidate genes investigated in this study. The Illumina RNA-seq data are available at the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession number SRR1463334, SRR1463335, SRR826283 for guard cells from 10 dag cotyledons, SRR1463325, SRR1463326 for epidermis from 10 dag cotyledons and SRR1042766,

SRR1042767, SRR656215 for roots from 7 day-old seedlings. Reads from RNA-Seq libraries were mapped onto the candidate gene sequences allowing no mismatches using TOPHAT v 2.0.14 [Kim et al., 2013] using standard settings and maximum of multihits set at 1, minimum intron length set at 15 bp , and maximum-intron length set as 6000 bp . Reads were summed for each gene using HTseq-count with the overlap resolution mode set as intersection-non empty and with no strand-specific protocol [Anders et al., 2015].

A Perl script was developed to parse the HTseq output fi e and recover only the results of the genes of interest. The script computed the Reads Per base Kilo per Million mapped reads (RPKM) on the non-overlapping gene region. The RPKM formula normalises the reads per gene in each dataset and relative to the length of the gene to allow comparison of gene coverage values.

$$
\begin{equation*}
R P K M=\frac{10^{9} * \text { Read number }}{\text { Gene Length } * \text { TotalReads }} \tag{3.1}
\end{equation*}
$$

Transcription levels were normalized to AtSAND as for RT-qPCR and expressed in Fragmentsper Kilobase of ExonModel (FPKM) per million mapped reads. SAND was chosen due to its gene expression stability across diff t tissues at diff t developmental stages [Czechowski et al., 2005].

3.3.7 Statistical methods

Statistical analyses were performed using R [R Core Team, 2013]. Principal component analysis (PCA) was carried out with the FactoMineR package, an extension of R software [Husson et al., 2009]. R scripts were developed to undertake statistical tests automatically (Student's T test and correlation) as well as PCA, and boxplots of the data were drawn from analysis of 3D images. A Student's T test was used to compare means for quantitative PCR. A proportion test was used to compare the proportion of nuclei with condensed chromocentre.

3.4 Results

3.4.1 Quantitative variations in nuclear organisation occur in wild-type cells.

In A. thaliana, hypocotyls and trichomes [Traas et al., 1998], root hairs [SugimotoShirasu etal., 2005], epidermis [Guimil and Dunand, 2007] and pollen tubes [Zhou et al., 2014] may be used to illustrate variations in cell and nuclear morphogenesis. To assess nuclear size, shape and chromocentre organisation, a simple DNA staining procedure was applied on whole mount tissue using Hoechst intercalating agent. Three diff t cell types displaying distinct nuclear features were characterised (Figure 3.1A). On the one hand, epidermal cells from cotyledons are made of two main cell types: guard cells (GC), which are bean shaped cells with round nuclei, and pavement cells, which are lobed and display elongated nuclei. Pavement cells (PC) have undergone one or several rounds of endoreplication, i.e. DNA replication without cell division. As a consequence, while GC have mostly 2 C content, the DNA content varies between 2 C and 16C in PC and their cell size expands roughly in proportion to the amount of DNA [Melaragno et al., 1993]. Nuclei from root hair epidermis (RC) were investigated from the easily accessible crown roots which display elongated nuclei [Ketelaaret al.,2002].

Nuclear shape, in these diff t cell types in WT Columbia (Col-o) plants was fi quantified using NucleusJ, which permits segmentation of the nucleus as well as the chromocentres (Figure 3.1B). Upon 3D segmentation, large datasets can be investigated through 3D quantitative parameters relative to nuclear morphology and heterochromatin organisation. In order to confirm that segmented objects within the nucleus are indeed chromocentres, Hoechst DNA-staining and 3D-Fluorecence in situ Hybridisation (3D-FISH) was done simultaneously on whole mount tissue. 18obp satellite repeats and 45 S rDNA repeats, which are the main repetitive sequences enriched in chromosome regions forming chromocentres, were used as probes. Most of the intranuclear objects segmented using NucleusJ overlap with 180bp and 45S signals indicating that they are true chromocentres (Figure 3.1C).

The use of a large dataset of 1,500 nuclei obtained from fi ebiological repetitions (Table 3.2) allowed the characterisation of nuclear morphology and heterochromatin organisation in the three cells types. The quantitative parameters produced by Nu cleusJ explain up to 60% of the phenotypic variation across the two main axes of a Principal Component Analysis (PCA) analysis (Figure 3.2a, 3.2b) clearly divid-

Figure 3.1: 3D segmentation of nuclei and chromocentres using NucleusJ. A) Raw images of representative nuclei from GC, PC and RC stained with Hoechst DNA intercalatingagent. Chromocentres corresponds to bright nuclear foci. B) 3D segmentation of nucleus (blue) and chromocentres (pink) are achieved by an ImageJ plugin called NucleusJ which keeps 3D information along the segmentation processes and generates quantitative parameters relative to the nuclear morphology and chromatin organisation. C) Image of the same nucleus stained with Hoechst, the segmented nucleus (blue) and the segmented chromocentres (pink) through NucleusJ and hybridised with centromeric 18obp satellite repeats (green) and 45 SrDNA (red) from 3DFISH. An overlay of the four channels is also given (merge) indicating that most dense nuclear foci recorded by NucleusJ co-localise with chromocentres. Scale bar $=2 \mu \mathrm{~m}$.
ing the nuclei belonging to the three diff t cell types in three diff t clouds. Pavement cells display the greatest variability, root hair nuclei an intermediate variability whereas guard cell nuclei areeasily grouped together in PCA analysis(Figure 3.2 a). GCs exhibit nuclei of small volume ($21.8 \pm 0.4 \mu \mathrm{~m}^{3}$) with elevated sphericity, but reduced elongation (Figure 3.2c) suggesting that small nuclei tend to be rounder and to show a smoother nuclear shape. On the contrary, in PC and RC, nuclear volumes arelarger (respectively 115.2 ± 3.4 and $123.3 \pm 3.9 \mu \mathrm{~m}^{3}$) and nuclei are more elongated suggesting that increased nuclear size is associated with nuclear

Table 3.2: Number of nuclei of all genetic background.

Genetic background	GC	PC	RC
Col-0_rep1	94	91	26
Col-0_rep2	154	126	59
Col-0_rep3 Wild type	120	139	44
Col-0_rep4	202	114	59
Col-0_rep5	127	120	25
asf1a	119	124	20
asf1b	114	140	35
asf1a asf1b Chromatin	162	173	47
atrx-1	96	130	26
atrx-2 mutant	103	138	49
atxr5 atxr6	107	132	38
ddm1-10	108	127	48
crwn1 crwn2	82	119	39
kaku4-2 Nuclear	109	123	34
sun1 sun4 sun5 periphery	112	124	27
wip1 wip2 wip3 mutant	100	130	45
wit1 wit2 mutant	114	128	53
wifi	190	174	57
TOTAL MOYENNE	2213	2352	731
	123	131	41

shape alterations in these two cell types. The PCA analysis revealed that elongation and sphericity display a strong negative correlation ($r^{2}=0.75, p<0.0001$) and are among the best parameters to discriminate the three nuclear types (Figure 3.2b and 3.2d). To the contrary, fl another morphological parameter computed by NucleusJ, only poorly discriminates the three populations of nuclei. Whole mount tissue preparations associated with Hoechst staining also gave the opportunity to better describe chromocentre organisation. GC contain fewer chromocentres than larger nuclei such as PC and RC. RHV, determined as volumes of chromocentres relative to the volume of the nucleus, was higher due to smaller nuclear volume, despite the fact that chromocentre number was lower in these cells (Figure 3.2c). The RHV decreases in larger nuclei, which have undergone endoreplication. Finally, a strong positive correlation was observed between the number of chromocentres and the total amount of heterochromatin ($r^{2}=0.63, p<0.0001$) indicating that either parameter can be used to discriminate the three cell types.

Takentogether, NucleusJ phenotyping easily distinguishes the three contrasted nuclear types chosen in this study. Variability among the three nuclear types is best explained by two nuclear shape parameters namely elongation and sphericity and the number of chromocentres.

Figure 3.2: Wild type nuclei from guard cells, pavement cells and root hair cells can be distinguished by NucleusJ phenotyping. PCA of a) individual nuclei from guard cells (GC, $\mathrm{n}=799$, black), pavement cells (PC, $\mathrm{n}=614$, green) and root hair cells (RC, $\mathrm{n}=230$, red) and b) quantitative parameters generated by Nucleus J are depicted in two main axis. Nuclear volume (Vnuc), total volume of all chromocentres (VCcTotal), number of chromocentres (NbCC). Statistical differences performed with Student's T test are indicated above box-plots. c) Selected NucleusJ parameters highlight the phenotypic variations among the three types of nuclei. d) Scatter plot matrix and absolute correlation between pairs of variables. The two major correlations are between elongation and sphericity $\left(r^{2}=0.75\right)$ and NbCC and VCcTotal $\left(r^{2}=0.63\right)$ are highlighted in color. ($*: p \leq 0.01,{ }^{* *}: p \leq 0.001,{ }^{* * *}: p \leq 0.0001$).

3.4.2 Chromocentres are positioned at the nuclear periphery

Radial position, a widely used 2D parameter to characterise object position, was used to describe chromocentre position in living cells of various A. thaliana tissues expressing HTR12 and H2B fused to fl scent proteins. These experiments highlighted the peripheral position of chromocentres next to the nuclear periphery and the nucleolus [Fang, 2005]. Furthermore, modelling also predicted that chromocentres would tend to be located at the nuclear periphery [de Nooijer et al., 2009] (see Chapter 1 Section 1.2).

Here, Hoechst-stained nuclei allow quantification of the position of each chromocentre of a given nucleus to the limit of the DNA staining and computation of two distinct distances (see Chapter 2 Section 2.4.1). The fi was the distance between the two closest voxels from the chromocentre and the limit of the DNA staining in GC, PC and RC, which are respectively of $0.20 \pm 0.06,0.30 \pm 0.11$ and $0.27 \pm 0.09 \mu \mathrm{~m}$ (Figure 3.3A, 3.3B). Secondly, the distance from the centre of each chromocentre (barycentre) was computed, which are respectively of 0.54 ± 0.09, $0.72 \pm 0.16,0.68 \pm 0.11 \mu \mathrm{~m}$ (Figure $3.3 \mathrm{~A}, 3.3 \mathrm{C}$). These data suggest that chromocentres are not at the most external position of the segmented nuclei. In other words they are not completely bound to the nuclear envelope but instead there may be a space in between. Surprisingly, almost all of the chromocentres are close to the periphery including those usually linked to the nucleolus, which are easy to identify thanks to their larger size suggesting that the nucleolus may also be close to the nuclear periphery in interphase nuclei. These data also suggest that chromocentres are at a greater distance from the nuclear periphery in the larger nuclei of PC and RC (Figure 3.3B). Finally, the two distance parameters describing the position of chromocentres are strongly correlated ($r^{2}=0.85, p<0.0001$).

Taken together, the results show that chromocentres are localised at a small distance from the nuclear periphery.

Figure 3.3: Chromocentres are located close to the nuclear periphery. A) Selected NucleusJ parameters describing the phenotypic variations relative to chromocentre organisation among the three types of nuclei. Statistical differences performed with Student's T test are indicated above box-plots. B) Graphical representation of chromocentres distribution of the distance between the two closest voxels from the chromocentres and the limit of the DNA staining among the three cell types. GC: guard cells (black), PC: pavement cells (green), RC: root hair cells (red) or \mathbf{C}) the distance from the centre of each chromocentre to the limit of the DNA staining among the three cell types. GC: guard cells (black), PC: pavement cells (green), RC: root hair cells (red). $\left(*: p \leq 0.01, * *: p \leq 0.001,{ }^{* * *}: p \leq 0.0001\right.$ and $n s:$ not significant).

3.4.3 Analysis of nuclear morphology of mutants of the nuclear envelope and chromatin organisation

The fact that chromocentres are situated close to the NE, suggests that alterations of components of the LINC and lamina complexes might perturb position, compaction or even formation of chromocentres. Previous studies highlighted that chromatin organisation is diff tin distinct genetic backgrounds [Tessadori et al., 2009], environmental changes such as light [Tessadori et al., 2007b], cellular context [Tessadori et al., 2007a] or growth medium conditions[Vaillant et al., 2008]. Forthese reasons, experimental procedures were standardised to reduce phenotypic variability within and across repetitions of a given genotype and our mutant datasets normalised against mutant plants grown in the same conditions within the same experiment (see Section 3.3).

In all, a set of thirteen mutants all in Col-o genetic background disrupting the expression of seventeen genes were studied (Table 3.1). Mutants altering components of the LINC complex chosen were wifi, wip1 wip2 wip3, wit1 wit2, sun1 sun4 sun5, crwn1 crwn2 and kaku4-2 such as KASH domain proteins [Zhou et al., 2014], SUN domain proteins[Graumann, 2014] and putative components of the plant lamina [Dittmer et al., 2007, Goto et al., 2014]. Mutants for chromatin remodelling factors such as DDM1 and histone methyltransferases such as ATXR5 and ATXR6 were chosen as they show defi t heterochromatin organisation [Probst et al., 2003, Jacob et al., 2009] as well as two histone chaperones ASF1 and ATRX. The quintuple wifi and triple sun1 sun4 sun5 mutants as well as chromatin mutants were evaluated for the fi time in this study.

It was important to fi analyse whether the genes altered in the mutants (Table 3.1) are expressed in the GC, PC and RC and whether they are diff tially expressed. For that purpose, a survey of available RNA-Seq data was performed and 8 Col-o datasets were selected. Tissues include whole seedling roots, whole cotyledon epidermis and guard cells gained from FACS-sorted protoplasts. As GC and epidermis were investigated, pavement cell expression can be deduced from comparison of these two datasets. All genes are expressed in GC, PC and RC although at diff t expression levels (Figure 3.4). Data do not show strong bias between cell types except for SUN4, CRWN1, and ASF1A which are strongly expressed respectively in PC and GC (Figure 3.4). As expected from previous work [Baubec et al., 2014], DDM1 and ATXR5 and ATXR6 are weakly expressed in these early stage tissues.

Figure 3.4: RNA expression of candidate genes in epidermis, guard cells and roots. RNA-seq datasets from wild type Col-o ecotype from guard cells (GC) at 10 day-old cotyledons (SRR1463334, SRR1463335, SRR826283), epidermis at 10 day-old cotyledon (SRR1463325, SRR1463326) and roots at 7 day-old cotyledons (SRR1463334, SRR1463335, SRR826283) were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcript levels expressed in RPKM \pm SEM (standard error of a mean). At2g28390 (AtSAND) gene was used as a reference and set at 1 RPKM.

Alterations of nuclear shape parameters in LINC complex and lamina mutants

The mutants defi t in nuclear periphery components (wifi, wit1 wit2, wip1 wip2 wip3,sun1 sun4 sun5, kaku4-2, crwn1 crwn2) display similar profi especially in RC , the strongest effects being observed for the putative nuclear lamina mutants, crwn1 crwn2 and kaku4-2 (Figure 3.5 and see Appendix B.2). The six mutants show reduced nuclear size, increased sphericity and decreased elongation compared to Col-o (see Appendix B.2). It is however the fi time that these mutants have been analysed in a single experiment which allows a quantitative comparison of the mutant effects. These data are in good agreement with previous work performed in 2D image analysis for wip1 wip2 wip3 [Zhou et al., 2012], wit1 wit2 [Tamura et al., 2013], sun1 sun2 [Oda and Fukuda, 2011], kaku4-2 [Goto et al., 2014] and crwn1 crwn2 [Wang et al., 2013].

Figure 3.5: Alteration of nuclear morphology in LINC complex mutant nuclei from guard cells, pavement cells and root cells. Boxplots of nuclear morphology parameters generated by NucleusJ highlighting the phenotypic variations in three types of nuclei (GC in gray, PC in green and RC in red) for seven mutant backgrounds are shown. Samples and Statistical analysis are available respectively in Table 3.2 and Appendix B.2. All parameters recorded for mutant backgrounds were standardised using Col-o (WT) set as 1 (red line).

Alterations of nuclear shape parameters in histone chaperones and chromatin mutants

All the chromatin mutants display the same profi with a high variability of nuclear shape parameters especially for elongation in RC but these variations were not significantly diff t from the Col-o (see Appendix B. 3 and B.2). The exact significance of this higher phenotypic variation remains speculative but as it is mainly observed in PCs and RCs it can be hypothesised that it reflects an altered distribution of ploidy levels.

3.4.4 Alterations of chromocentre compaction and alleviation of silencing in mutants

Analysis of chromatin organisation by the NucleusJ parameters

Differences in heterochromatic parameters were less pronounced between Col-o and mutants (Figure 3.6 and 3.7b and see Appendix B.2) except for the crwn1 crwn2 double mutant, which displays a significant reduction in the number of chromocentres ($p<0.0001$, Figure 3.6) as previously described [Dittmer et al., 2007, Wang et al., 2013]. In the crwn1 crwn2 mutant there is also an increase of the mean volume of each chromocentre and of the RHV on all cell types ($p<0.0001$, and see Appendix B.2). The significant increase of the RHV is also observed for kaku4-2 in GC and PC ($p<0.001$, Figure 3.6 and see Appendix B.2). The mutant wip1 wip2 wip3 and sun1 sun4 sun5 in the GC show a decrease of the mean volume of chromocentre and of the total volume of chromocentre ($p<0.001$, Figure 3.6 and see Appendix B.2), furthermore in the same cell type, wifi presents a decrease of total volume of chromocentre and wit1 wit2 a decrease of the mean size of the chromocentre ($p<0.001$, Figure 3.6 and see Appendix B.2). The impacts of the wip1 wip2 wip3 mutation were also found in the PC ($p<0.001$, Figure 3.6 and see Appendix B.2).

The distance between the border of chromocentres and the nuclear periphery is increased in sun1 sun4 sun5 and wip1 wip2 wip3 with a statistically significant difference in in GC and PC ($p<0.0001$) (Figure 3.7b and see Appendix B.2). Despite the strong effect observed in nuclear morphology for the LINC complex and laminmutant (Figure 3.5), 3D image analysis allows the detection of heterochromatin disorders on the total volume of chromocentre and the mean size of chromocentre (Figure 3.7b and see Appendix B.2). The RHV was affected in the lamin-like mutant, this shows a global disorder of the nucleus on these proteins. The distance of the chromocentre to the NE was affected by sun1 sun4 sun5 and wip1 wip2 wip3 mutants.

Figure 3.6: Alteration of chromatin organisation in LINC complex mutant nucleifrom guard cells, pavement cells and root cells. Boxplots of chromatin organisation parameters generated by NucleusJ highlighting the phenotypic variations in three types of nuclei (GC in gray, PC in green and RC in red) of six mutants. Samples and statistical analysis are available respectively in Table 3.2 and Appendix B.2. All parameters recorded for mutant backgrounds were standardised using Col-o (WT) set as 1 (red line).

Fold change
Distance to the border $(\mu \mathrm{m})$

Fold change Distance to the border $(\mu \mathrm{m})$

Fold change Distance
to the barycentre($\mu \mathrm{m}$)

Fold change Distance to the barycentre $(\mu \mathrm{m})$

Chromatin mutants display globally the same phenotypes with a decrease in the RHV, the meansize ofthe chromocentre and ofthetotal volume of the chromocentre, thehistone chaperone mutants also showan increase of the number of chromocentre in the GC. The ddm1-10 mutant does not show diff from the Col-o (Figure 3.8). The atxr5 atxr6 mutant shows a strong phenotype in the PC with an increase of the RHV, of the number of chromocentre and in total volume on chromocentre, but the size of chromocentre decrease (Figure 3.8). The chromatin mutants increase the distance between the border of the chromocentre to the NE in the GC and PC. For the RC, few differences were observed (Figure 3.7a).

Figure 3.8: Alteration of chromatin organisation in heterochromatin mutant nuclei from guard cells, pavement cells and root cells. Boxplots of chromatin organisation parameters generated by NucleusJ highlighting the phenotypic variations in three types of nuclei (GC in gray, PC in green and RC in red) of seven mutants. Samples and statistical analysis are available respectively in Table 3.2 and Appendix B.2. All parameters recorded for mutant backgrounds were standardised using Col-o (WT) set as 1 (red line).

Analysis of chromocentre compaction and its impact on alleviation of silencing

Chromocentre decompaction has previously been observed by 2D FISH in diff ent mutants including ddm1-10 and atrx5 atrx6 [Soppe et al., 2002, Probst et al.,

2003, Jacob et al., 2009]. The 2D FISH experiments used whole cotyledon spreads with the 18obp probe, with small and large nuclei removed from the analysis to keep only nuclei with intermediary size. Then nuclei were divided two classes, condensed or decondensed. For this 2D analysis mutants of the LINC complex (wip1 wip2 wip3), of lamin-like protein (crwn1 crwn2) and of chromatin organisation were included (all the mutants of interest), and a decompaction of the chromocentres was detected in ddm1-10 and atrx5 atrx6 as previously described [Probst et al., 2003, Jacob et al., 2009]. The lamin-like mutant crwn1 crwn2 showed less effect on chromocentre decompaction in comparisonto Col-o (Figure 3.9), but the nuclear morphology and the parameters of chromatin detected by NucleusJ were totally changed. The chaperone histone asf1 a asf1b and atrx-1 also contained more nuclei with chromocentres decompacted in comparison to Col-o (Figure 3.9). Interestingly, the volume of the chromocentres for these mutants decreased at the epidermis, with a parallel decrease in RHV. However, the decompaction of the chromocentre did not have the same effect on the silencing of TS1, for which a significant reactivation is found for ddm1-10, atrx5 atrx6 and asf1a asf1b ($p<0.05$) and not for atrx-1 (Appendix B.5).

Figure 3.9: Alteration of heterochromatin condensation in whole cotyledons analysed by 2D-FISH. A) Representative nuclei collected from 2D-FISH experiments on nuclei counterstained with DAPI (grey) of spread whole cotyledon using a fluorescent probe against 180 bp repeats (red) and 45s rDNA (green). B) Quantification of condensed and decondensed 180bphybridisation signals recorded by 2D-FISH obtained from 2 independent experiments. Average \pm SEM. Number of nuclei ranging from $\mathrm{n}=180$ to 220 . (${ }^{*}$: $\mathrm{p} \leq 0.0001$ and ns: not significant).

To test more specifically the decompaction on the cotyledon epidermis, 3D-FISH was applied to whole mount tissues in order to specifically investigate cotyledon epidermis. Thus GC and PC chromatin decompaction were examined using a short LNA-DNA (Locked Nucleic Acid) oligonucleotide probe generated to specifically recognise the 18obp centromeric repeats (Figure 3.10A). Each 3D nucleus was classed into the condensed type (Figure 3.10, top) or the decondensed type (Figure 3.10, bottom). Firstly,forCol-o cotyledonnucleiatthis developmental stage, a significant fraction from the epidermis were of the decondensed type ($65 \pm 4 \%$, Figure $3.10 B$), with an equal distribution between GC and PC, except for kaku4-2 (Appendix Table B.9). The number of decondensed nuclei significantly increases in the cotyledon epidermis of ddm1-10 mutant ($p<0.05$), and a not significant increase was observed in the atxr5 atxr6 mutant. Interestingly also a significant decompaction was recorded in wifi, sun1 sun4 sun5 mutants ($p<0.05$), while crwn1 crwn2 double mutants have thereverseeffectand showahigher compaction ofthe18obprepeats(Figure3.10B).

As chromatin decompaction can be associated with release in transcriptional gene silencing (TGS) at centromeric and pericentromeric repeats [Probst et al., 2003, Jacob et al., 2009, Yelagandula et al., 2014], TGS release was investigated in the diff t mutants. Using RT-qPCR, transcript levels of the 180 opb centromeric repeats [Nagaki et al., 2003], 106B [Thompson et al., 1996] and Transcriptional Silent Information (TSI) [Steimer et al., 2000] pericentromeric repeats were quantified (Figure $3.10 \mathrm{C} \& \mathrm{D}$). TGS as expected is alleviated in ddm1-10 and atxr5 atxr6 with the signifi t effect observed for TSI ($p<0.05$, Figure 3.10D). Interestingly, in accordance with the increased number of nuclei with decondensed heterochromatin type, derepression was also observed for TSI, 106B and 18obp repeats in wifi, sun1 sun4 sun5 and kaku4-2 but not in crwn1 crwn2 mutants (Figure 3.10C).

Takentogether, the functional analysis of the evolutionary conserved LINC complex strengthens its implication in nuclear morphology but also revealed its contribution in chromocentre positioning, heterochromatin compaction and maintenance of TGS. Whether heterochromatin alteration is a consequence of nuclear morphology alteration or intrinsic function of the LINC complex remains speculative.

Figure 3.10: Alteration of transcriptional repression of heterochromatic markers in mutant backgrounds. A) Representative nuclei shown as maximal z projection collected from 3D-FISH experiments on nuclei counterstained with Hoechst (blue) of cotyledon epidermis using a fluorescent probe against 180 bp satellite repeats (red). B) Quantification of condensed and decondensed 180 bp hybridisation signals recorded by 3 D-FISH obtained from 4 independent cotyledons. Average \pm SEM. Number of nuclei ranging from $n=60$ to 100 are available in Appendix Table B.8. C \& D) Transcription level of TSI, 106 B and 180 bp scored by RT-qPCR. Histograms show means of transcript level \pm SEM obtained for two independent PCR amplifications of three biological replicates. The y axis shows the fold change relative to WT (WT set to 1) after normalisation to expression of At2g28390 (AtSAND)). (*: p ≤ 0.05).

3.5 Conclusion

Here 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the model plant A. thaliana in chromatin organisation (ddm1-10, atxr5 atxr6, asf1a asf1b, asf1a, asf1b, atrx-1 and atrx-2) or NE mutants (wifi, wit1 wit2, wifi, wip1 wip2 wip3, kaku4-2 and crwn1 crwn2). These NE genes have been shown to be involved in the regulation of nuclear shape and size (see Section 1.5) [Dittmer et al., 2007, Tamura and Hara-Nishimura, 2011, Janski et al., 2012, Zhou et al., 2012, Goto et al., 2014]. 3D imaging analysis of these mutants makes it possible to test whether disturbing the organisation of the NE can disturb chromatin organisation. Furthermore the inclusion of chromatin mutants which change chromatin organisation permits testing of the reverse- whether chromatin organisation affects organisation of the nuclear envelope [Hirochika et al., 2000, Fransz et al., 2003, Probst et al., 2003, Jacob et al., 2009]. The experiment was conducted in three cell types from the cotyledon and root hair epidermis (see Section3.3). A survey of diff t RNA-seq data shows that all the genes analysed are expressed in the tissues of interest (Figure 3.4).

In A. thaliana the nucleus was not a homogenous structure and nuclear morphological variation was observed in diff t tissues [Traas et al., 1998, Qian et al., 2009, van Zanten et al., 2011]. In order to establish a baseline of this variability, 3D Col-o nuclei were analysed with NucleusJ. The analysis by PCA of the nuclear parameters obtained, allows the clustering of GC, PC and RC nuclei, the most important parameters for this clustering are the sphericity, elongation and nuclear volume for the morphological parameters (Figure 3.2). Chromatin parameters are also important for this clustering as are the number of the chromocentres and their distance to the NE, and the RHV (Figure 3.2). Finally GC, PC and RC can be detected as a function of their shape and quantity of heterochromatin (Figure 3.2). The analysis of the distribution of the radial distance of the chromocentre to nuclear periphery, suggests a preferential positioning close to the nuclear periphery and by deduction also suggests the nucleolus is close to the nuclear periphery in interphase nuclei. The distance of the chromocentre to the NE periphery was greater in the larger nuclei of PC and RC in comparison to the GC (Figure 3.3). Finally the chromocentres are not organised randomly in the nucleus, and are positioned at a small distance from the nuclear periphery.

The analysis of the morphological impact of the mutants of the NE and putative lamina showsimilar patterns of morphological disruption for all the cell types. The
nucleus of these mutants are smaller and more spherical than the Col-o nucleus. These characteristics are found to be stronger in putative nuclear lamina mutants (crwn1 crwn2 and kaku4-2). The chromatin organisation parameters of these mutants are more impacted in GC in comparison the two other cell types. It may be that the polyploidisation of the nucleus tends to decrease the impact of mutations on the chromatin parameters computed. No specific impact of the LINC complex or lamin-like mutants was detected on these parameters. However, the crwn1 crwn2 mutant was the only one where an effect was observed for all the cell types studied, with a global disruption of chromatin organisation (chromocentre volume mean or total, position, and RHV). The analysis of the same mutants with FISH 2D or 3D and RT-qPCR shows a strong similarity between mutants of the LINC complex, with an increase of chromocentre decompactions linked with the reactivation of silenced transposable elements (Figure 3.9, 3.10). For putative nuclear lamina functional homologues, the two show the inverse defect with an increase of condensed chromocentre correlated with a decrease of the expression of the transposable element in crwn1 crwn2, and the inverse for kaku4-2 with an decreased of the condensed chromocentre correlated with an increase of expression of silenced targets. The morphological changes in the NE and for the lamin-like mutants may have been due to a loss of specifi protein interactions and physical constraint between nucleoand cytoskeleton and that can lead to chromatin disorganisation. Alternatively, chromatin organisation involves adaptation of nuclear morphology.

In contrast with the NE/nuclear lamina-like mutants, only few changes were detected for chromatin and histone chaperone mutants on nuclear morphology parameters (see Appendix Figure B. 3 and B.2). Histone chaperone shows a global change in chromatin organisation with a decrease in the RHV, the mean size of the chromocentre and of the total volume of the chromocentre and increase of the number of chromocentres (Figure 3.8 and see Appendix B.2). atrx-1 and atrx-2 are two alleles of the same genes, and globally show the same pattern of the parameters, but for atrx-2 diff are less pronounced, this is consistent with the fact that this allele of $A T R X$ is leaky and atrx-1 is a complete knock-out. This result shows the capacity of Nucleus J to phenotype two diff t alleles of the same gene. The condensation of the chromocentres of the histone chaperone mutants show decrease in the number of the nuclei condensed for asf1ab and atrx-1, but correlate only for asf1ab at a change in the expression level of TSI.

Chromatin mutants ddm1-10 and atxr5 atxr6 mutants have diff t effects on chromatin parameters, the fi does not diff from Col-o (Figure 3.8 and see Appendix B.2), and the second mutant possesses a strong phenotype in GC and PC
with an increase of the RHV, of the number of chromocentre and in total volume of chromocentre, but the size of individual chromocentre decreases (Figure 3.8 and see Appendix B.2). However, both show an increase of nuclei which possess decondensed chromocentres, and a reactivation of the TSI transposable element.

Chapter 4

Exploring the proteins of the plant nuclear envelope

4.1 Introduction

Following the fi description of classical SUN-domain proteins in plants, groups associated with the International Plant Nucleus Consortium (http://bms.brookes. ac.uk/ipnc) and others have made significant progress in describing novel plant nuclear envelope proteins [Parry, 2015, Tamura et al., 2015, Zhou et al., 2015a]. In A. thaliana, these include novel Cter-SUN [Graumann et al., 2010, Graumann and Evans, 2010, Oda and Fukuda, 2011] and mid-SUN domain proteins [Graumann et al., 2014], according to the position of the mid-SUN domain; KASH domain proteins (WIPs, SINEs and TIK) [Zhou et al., 2012, Zhou and Meier, 2014, Graumann et al., 2014] and plant proteins proposed to form the nuclear lamina (CRWNs, KAKU4 and NEAPs) [Dittmer et al., 2007, Wang et al., 2013, Goto et al., 2014, Pawar, 2015]. All these proteins constitute or interact with the LINC complex and have been described in A. thaliana. Sequence data now available for many other species permit comparison of components of the LINC complex between species such as rice, maize, with the well characterised components of the A. thaliana NE. While several functional analyses have already been performed in A. thaliana it remains challenging because of gene redundancy due to gene or whole-genome duplication (WGD) creating several paralogues [Gaut and Ross-Ibarra, 2008]. Three mechanisms explain the increased size and the complexity of plant genome: wholegenome duplication, tandem duplication and transposable elements [Gaut and Ross-Ibarra, 2008]. Hence it is necessary to explore the pattern of paralogues within the gene families in order to better understand their interactions.

Onewaytoexploregeneredundancyistoretracethehistoryofgenomedynamics starting fromthemostancestral species. One ofthecandidatespeciestoachievethis aim is Amborella trichopoda (A. trichopoda), a dioecious New Caledonian shrub, as its genome has been recently sequenced [Project et al., 2013]. A. trichopoda shows very limited evidence of transposable element activity, has not undergone a recent whole genome duplication and is therefore, in evolutionary terms, suggested to be the most primitive basal angiosperm described [Project et al., 2013]. Analysing genes encoding nuclear envelope proteins in A. trichopoda and in other species (Table4.1) provides opportunities to explore protein interaction networks function as well as to speculate on origins. Including A. trichopoda, the moss Physcomitrella patens, the lycophytes Selaginella moellendorffii and single cell algae with eudicots and monocots in the phylogenetic analysis allows assessment of nuclear envelope organisation in less complex genomes of photosynthetic organisms. This study will help to address questions about the minimal/initial functional LINC complex and the lamin-like proteins, and retrace their evolutionary history to more complex species.

Whole-genome duplication has long been recognised as an important evolutionary force in animals, plants and fungi. Following WGD, gene loss can occur restoring the diploid state for each duplicated locus. Previous analyses of plant genomes have shown that all seed plants share an ancient WGD called zeta (Figure 4.1) [Jiao et al., 2011]. A second WGD called epsilon has been detected shortly before the diversifi of all living angiosperms. These two WGDs seem to play a crucial role in the origin and rapid diversification of the angiosperms [Jiao et al., 2011]. Finally, a gamma WGD occurred after the eudicot/monocot diversification (Figure4.1), followed by several partial or completeduplication events during evolution asindicated on Figure 4.1. Species included in this study of the plant nuclear envelope proteins have been chosen to relate to the evolutionary history of plants, and to include the known WGD (Table 4.1).

Figure 4.1: Overview of plant phylogeny. Representatives with sequenced genomes are shown for most lineages (scientific names in parentheses); basal angiosperms and non-flowering plant lineages are indicated by their larger group names. Hypothesised polyploidy events in land plant evolution are overlaid on the phylogeny with symbols. The red star indicates the common ancestor of angiosperms and the evolutionary timing of the epsilon WGD [Jiao et al., 2011]. The evolutionary timing of zeta [Jiao et al., 2011] and gamma [Jaillon et al., 2007, Jiao et al., 2012, Ming et al., 2013] polyploidy events are shown with empty and purple stars, respectively. Additional polyploidy events are indicated with ellipses. Symbols for events supported by genome-scale gene organisation analyses are filled, whereas those supported only with frequency distributions of paralogous gene pairs or phylogenomic analyses are empty. (Source: [Project et al., 2013])

Species	Abbreviation	Group	Phylogeny	RNAseq	Genome	Reference
Arabidopsis thaliana	At	eudicots	yes	yes	150Mb	[Initiative, 2000].
Arabidopsis lyrata	Aly	eudicots	yes	yes	206.7 Mb	[Hu et al., 2011].
Brassica rapa	Bra	eudicots	yes	no	283.8Mb	[rapa Genome Sequencing Project Consortium, 2011].
Prunus persica	Ppe	eudicots	yes	no	224.6Mb	[The International Peach Genome Initiative et al., 2013].
Glycine max	Gma	eudicots	yes	yes	950Mb	[Schmutz et al., 2010].
Carica papaya	Cpa	eudicots	yes	no	372 Mb	[Ming et al., 2008].
Theobroma сасао	Tca	eudicots	yes	no	326.9 Mb	[Argout et al., 2011].
Nelumbo nucifera	Nnu	eudicots	yes	no	804 Mb	[Ming et al., 2013].
Vitis vinifera	Vvi	eudicots	yes	yes	487Mb	[Jaillon et al., 2007].
Populus trichocarpa	Ptr	eudicots	yes	no	485 Mb	[Tuskanetal., 2006].
Solanum lycopersicum	Sly	eudicots	yes	yes	900 Mb	[Consortium, 2012].
Zea mays	Zma	monocots	yes	yes	2.3 Gb	[Schnable et al., 2009].
Oryza sativa	Osa	monocots	yes	yes	372Mb	[International Rice Genome Sequencing Project, 2005].
Musa acuminata	Mac	monocots	yes	no	472 Mb	[Droc et al., 2013]
Amborella trichopoda	Atr	basal angiosperm	yes	yes	706Mb	[Project et al., 2013].
Picea abies	Pab	gymnosper	yes	no	19.6 Gb	[Nystedt et al., 2013].
Physcomitrella patens	Ppa	moss	yes	yes	473Mb	[Rensing et al., 2008].
Selaginella moellendorffii	Smo	lycophytes	yes	yes	212.5 Mb	[Banks et al., 2011].
Chlamydomonas reinhardtii	Cre	single cell green alga	yes	no	473Mb	[Merchantetal., 2007].
Ostreococcus lucimarinus	Olu	single cell green alga	yes	no	13.2 Mb	[Palenik et al., 2007].

4.2 Aim

The aim of this work was to use genomic and available RNA-seq data to explore the evolution of the NE proteins in uni and multicellular plants and to provide evidence for the composition of the simplest functional NE. Expression of LINC components and the lamins-like genes was explored using RNA-seq data to demonstrate gene activity and when possible tissue specific expression. Finally, this study is a prerequisite for mutant analyses and other functional studies by identifying potential redundancy and specialised functions.

4.3 Material and methods

4.3.1 Homologous LINC complex and lamin-like protein detection

KASH protein homologue detection

KASH domain protein homologues have previously been identified using the program Dory [Zhou and Meier, 2014]. This program is a java tool, which detects the KASH domain. Here a new Perl script based on the same strategy as Dory has been developed but applied to proteomic data. The program tests the presence of the trans-membrane (TM) domain and four specific amino acids at the C-terminal which are characteristic for KASH proteins. The position of the TM domain is variable and the script searches this TM domain up to 40 amino acids away from the KASH-specific C-terminal motif detected in A. thaliana (VIPT or VVPT or AVPT or PLPT or TVPT or LVPT or PPPS) [Graumann et al., 2014, Zhou et al., 2015a]. The identification of the TM domain is based on a matrix of the Kyte-Doolittle, a hydrophobicity scale which gives a score for each amino acid [Kyte and Doolittle, 1982]. Only proteins which possess a TM domain and the four KASH specific amino acids in the C-terminus of the protein were selected.

Detection of the LINC complex and lamin-like protein homologues

The Basic Local Alignment Search Tool protein (BLASTp) was used with default parameters. The best hits for the BLASTp results were retained and used for the following phylogenetic analysis [Altschul et al., 1990]. The proteome of each species was used as reference for the BLASTp (Table 4.1), and the protein sequences of the LINC complex as well as the putative lamina of A. thaliana as queries (Table 4.2).

Table 4.2: Referencegenes.

Name	Description	Localisation	IdGene	Reference
AtSINE1	KASH	ONM	AT1G54385	[Zhou et al., 2015a]
AtSINE2	KASH	ONM	AT3Go3970	[Zhou et al., 2015a]
AtSINE3	KASH	ONM	AT3Go6600	[Zhou et al., 2015a]
AtSINE4	KASH	ONM	AT4G24950	[Zhou et al., 2015a]
AtTIK	KASH	ONM	AT5G44920	[Graumann et al., 2014]
AtWIP1	KASH	ONM	AT4G26455	[Zhou et al., 2012]
AtWIP2	KASH	ONM	AT5G56210	[Zhou et al., 2012]
AtWIP3	KASH	ONM	AT3G13360	[Zhou et al., 2012]
AtCRWN1	Lamin-like	nucleoplasm-NE	AT1G67230	[Dittmer et al., 2007]
AtCRWN2	Lamin-like	nucleoplasm-NE	AT1G13220	[Dittmer et al., 2007]
AtCRWN3	Lamin-like	nucleoplasm-NE	AT1G68790	[Dittmer et al., 2007]
AtCRWN4	Lamin-like	nucleoplasm-NE	AT5G65770	[Dittmer etal., 2007]
AtKAKU4	Lamin-like	nucleoplasm-NE	AT4G31430	[Pawar, 2015]
AtNEAP1	Lamin-like	nucleoplasm-NE	AT3Go5830	[Pawar, 2015]
AtNEAP2	Lamin-like	nucleoplasm-NE	AT5G26770	[Pawar, 2015]
AtNEAP3	Lamin-like	nucleoplasm-NE	AT1G09470	[Pawar, 2015]
AtNEAP4	Lamin-like	nucleoplasm-NE	AT1Go9483	[Pawar, 2015]
AtSUN1	Cter-SUN	INM	AT5Go4990	[Graumannet al., 2010]
AtSUN2	Cter-SUN	INM	AT3G10730	[Graumannet al., 2010]
AtSUN3	Mid-SUN	INM	AT1G22882	[Graumann et al., 2014]
AtSUN4	Mid-SUN	INM	AT1G71360	[Graumann et al., 2014]
AtSUN5	Mid-SUN	INM	AT4G23950	[Graumann et al., 2014]

4.3.2 Phylogenetic reconstruction

Selected sequences were fi aligned with MUSCLE a multiple sequence alignment tool [Edgar, 2004], using default parameters. Then the alignment was refined using Gblocks [Talavera and Castresana, 2007]. FastTree was then applied with default parameters, for the construction of the phylogenetic tree [Price et al., 2010]. FastTree infers approximately-maximum-likelihood phylogenetic trees from alignments. Finally, phylogenetic trees were drawn using the Interactive Tree Of Life ITOL [Letunic and Bork, 2011].

4.3.3 RNA sequencing data

Data used for the RNA-seq analysis were obtained from the NCBI (sitehttp: //www.ncbi.nlm.nih.gov/geo/browse/) or from the Amborella Genome Database, respectively (sitehttp:http://amborella.huck.psu.edu/). Five diff t tissues (leaves, roots, fl wers, bud fl wers, and seeds/siliques) as well as total seedling were chosen for the analysis of the expression patterns of the genes of interest (Table 4.3). The expression was analysed for ten species (Table 4.1).

Table 4.3: SRA or fastq files used for RNA sequencing analysis. All files named SRRxxxxx were downloaded from sitehttp://www. ncbi.nIm. nih. gov/geo/browse/ and the data for A. trichopoda are available at sitehttp:http://amborella. huck. psu. edu/.

	Seedling	Leaf	Root	Flower	Florwer bud	Seed/Sillique
Arabidopsis thaliana	SRR346552 SRR346553	SRR1159821 SRR1159827 SRR1159831 SRR1159837 SRR1030234 SRR1030235 SRR656216	SRR656215	SRR656217	SRR314815 SRR800753 SRR800754	SRR656218
Arabidopsis lyrata	na	SRR2033954 SRR2033955 SRR2039795 SRR2039796	na	na	SRR800644 SRR800645	na
Solanum lycopersicum	SRR786602 SRR786603 SRR786605 SRR786607	$\begin{aligned} & \text { SRR404309 } \\ & \text { SRR404310 } \end{aligned}$	$\begin{aligned} & \text { SRR404311 } \\ & \text { SRR404312 } \end{aligned}$	$\begin{aligned} & \text { SRR404313 } \\ & \text { SRR404314 } \end{aligned}$	SRR404315 SRR404316	na
Vitis vinifera	na	SRR2845695	na	na	na	na
Zea mays	SRR1198847	SRR029177 SRR029178 SRR029179 SRR029180 SRR029181 SRR029182 SRR029183 SRR029184 SRR1124756 SRR2080978	SRR640264	SRR1017566 SRR1017567 SRR1017568	na	na
Orysa sativa	SRR358791 SRR358792 SRR358793 SRR358794	SRR1213692 SRR1213693 SRR1761530	SRR1213694 SRR1213695	SRR1213691	SRR1213690	SRR1213697
Amborella trichopoda	AmborellaWPN-1_s_7_1 AmborellaWPN-1_s_7_2 AmborellaWPN-2_s_8_1 AmborellaWPN-2_s_8_2	na	na	2006-2975_flower_R1 2006-2975_flower_R2 2008-1967_flower_R1 2008-1967_flower_R2 2008-1968_flower_R1 2008-1968_flower_R2	2006-2975_bud_R1 2006-2975_bud_R2 2008-1967_bud_R1 2008-1967_bud_R2 2008-1968_bud_R1 2008-1968_bud_R2	na
Physcomitrella patens	SRR060806	na	SRR072918	na	na	na
Selaginella moellendorffii	na	SRR042532	na	na	na	na

4.3.4 RNA sequencing processing and analysis

The data was downloaded using the File Transfer Protocol (ftp) from the NCBI database as .sra fi Then fastq dump tool was used to decompress the fi and obtained the fastq fi Reads of the fastq fi were trimmed for quality using fastq quality trimmer with a minimal quality score for the sequence of 20 . Trimmed reads were then mapped to the genome of interest and its annotation fi (.gff3) using the same programs and parameters explain in the Chapter 3 Section 3.3.6.

Foreach species, SAND genewasused as referencegeneandtheexpressionvalue of the gene of interest was normalised by the expression value of the SAND gene of
all species (Table 4.4).
Table 4.4: Accession numbers of the SAND genes in all the species of interest.

Geneid	Species
AT2G28390	Arabidopsis thaliana
481666.v1	Arabidopsis lyrata
Solyco3g115810.2	Solanumlycopersicum
Glyma.12G172200	Glycine max
GSVIVTo1025191001	Vitis vinifera
LOC Os01g74460	Oryza sativa
GRMZM2G179732.v6a	Zeamays
evm_27.TU.AmTr v1.0 scaffoldo0145.30	Amborella trichopoda
Phpat.o10Go53700.v3.0	Physcomitrella patens
438801.v1	Selaginella moellendorffii

4.4 Results and discussion

4.4.1 KASH protein homologues

For the detection of the KASH domain protein homologues, two strategies were used. The fi was a BLASTp analysis based on the A. thaliana KASH proteins (Table 4.2). This analysis permitted a fi detection of KASH protein homologues in all the organisms studied, except for the unicellular algae where no KASH protein was detected (see Appendix Tables C.6, C. 5 and C.7). As previously described (Chapter 1 Section 1.4), the KASH domain proteins have been divided into the following groups; SINEs, WIPs and TIKs.

Using this method, 32 SINE homologues were found (see Appendix Table C.5), whereas WIP (see Appendix Table C.6) and TIK proteins (see Appendix Table C.7) were much less common and were found mainly in eudicots. An exception is Brassicaceae, where several WIPs (3 in A. lyrata, 4 in Brassica rapa) and TIKs (2 in A. lyrata and 1 in Brassica rapa) were identified, these two types of protein are detected in Glycine max (2 WIP, 1 TIK), Prunus persica (1 TIK), Carica papaya (1 WIP), Musa acuminata (1 WIP), A. trichopoda (1 TIK) and the gymnosperm Picea abies (1 TIK) (Table 4.5). The SINE proteins are well conserved across monocots and eudicots, while WIPs and SINEs were not detected in Zea mays and Oryza sativa, although one WIP was detected in the monocot Musa acuminata.

KASH proteins are known to be diverse in sequence and structure [Zhou and Meier, 2014] but possess a conserved C-terminal region with a TM domain and a conserved motif of four amino acids at the extreme C -terminus which interacts with the SUN domain (Chapter 1 Section 1.4). As an alternative to detect KASH proteins, a script was developed to detect proteins with the TM domain and C-terminal motif modelled using the motif detected in A. thaliana (see Section 4.3.1). The aim of this script was to increase the number of homologues of KASH proteins detected by BLASTp. This script analysed the C-terminal region of each protein present in the proteomic data. The script was tested fi on the A. thaliana proteome in which it detected all the KASH proteins described so far. This script was then used on all the proteomes of interest, and the proteins identified were aligned to generate a phylogenetic tree which allows the clustering of similar proteins. The script detected several proteins already identified using BLASTp, validating this approach.

Six KASH protein clusters were revealed (Appendix Figure C.1). One cluster
includes WIP proteins detected in the monocotyledons and the basal angiosperms (Table 4.5), as well as seven new putative WIP proteins to those detected previously by BLASTp. For SINE proteins, three clusters were detected, one for each cluster (SINE1/2, SINE3 and SINE4) which added respectively two, six and twelve SINE proteins to those already identified by BLASTp. The high number of proteins in the SINE3 and SINE4 cluster found only by the script and not by BLASTp was due to weak conservation of these proteins. One much smaller cluster includes TIK but few proteins belong to it and only four proteins were added to the TIK putative homologues already detected. The last cluster detected, which has a low sequence similarity, could not be attached to specific KASH domain proteins already known in A. thaliana, was not used in the following analysis.

To confi that the TM domain and C-terminal motif are present in the proteins identified a protein alignment was carried out. This analysis eliminated all the additional homologues detected for TIK; these having either the TIR domain or the C-terminal TM domain and motif but not both. The data suggests that the TIK protein described by Graumann et al. (2014) as encoded by the A. thaliana genome is not present, or diffi to detect in other genomes. Hence, this protein maybe unique to A. thaliana

The three WIP proteins in A. thaliana showed a similar a cytoplasmic domain at the N-terminus, with AtWIP1 and AtWIP2 featuring three coiled coil domains but AtWIP3 featuring only one. The C-terminal region is well conserved and the coiled coil domains aligned correctly, with all proteins detected as homologues having a C-terminal TM domain and KASH motif, except AlyWIP1, which lacks homology at the C-terminal region but is well conserved at the N-terminus.

The SINE gene family comprises four genes in A. thaliana. The alignment of these four proteins shows similarity between AtSINE1 and AtSINE2 and between AtSINE3 and AtSINE4. AtSINE1 and AtSINE2 are characterised by the presence of an Armadillo repeat domain near the N-terminus. AtSINE3 and AtSINE4 do not possess such a domain but feature a cytoplasmic domain and a typical KASH TM domain and the amino acid motif at the C-terminus [Zhou et al., 2015a]. The new Perl script identified only two sequences in the SINE1/SINE2 group not detected by the BLASTp analysis. The SINE3/SINE4 cluster contains 17 proteins, which possess the typical C-terminus of the KASH proteins. However this group is heterogeneous due to the absence of well conserved domains in the N -terminal region and

Table 4.5: KASH homologous proteins. The number of homologues of KASH proteins detected by each method is presented for each species, along with the number detected by both methods and by the combination of both methods. The "Putative homologues detected" column is the number of putative KASH proteins confirmed by domain verification.

Species	BLASTp results	Script results	Results share	Putative homologues Detected
Arabidopsis thaliana		SINE: 4 WIP: 3 TIK: 1		SINE: 4 WIP: 3 TIK: 1
Arabidopsis lyrata	SINE: 3 WIP: 3 TIK: 2	SINE: 3 WIP: 1 TIK: 1	SINE: 2 WIP: 1 TIK: 0	SINE: 4 WIP: 3 TIK: 3
Brassica rapa	SINE: 4 WIP: 4 TIK: 1	$\begin{aligned} & \text { SINE: } 7 \\ & \text { WIP: } 3 \\ & \text { TIK: } 0 \end{aligned}$	$\begin{aligned} & \text { SINE: } 4 \\ & \text { WIP: } 3 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 7 WIP: 3 TIK: 1
Prunus persica	SINE: 1 WIP: 0 TIK: 1	SINE: 3 WIP: 1 TIK: 0 Other : 2	SINE: 0 WIP: 0 TIK: 0	SINE: 4 WIP: 1 TIK: 1
Glycine max	SINE: 4 WIP: 2 TIK: 1	SINE: 5 WIP: 2 TIK: 1	SINE: 4 WIP: 1 TIK: 0	SINE: 5 WIP: 3 TIK: 2
Carica papaya	SINE: 1 WIP: 1 TIK: 0	SINE: 2 WIP: 1 TIK: 0 Other : 1	$\begin{aligned} & \text { SINE: } 1 \\ & \text { WIP: } 1 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 2 WIP: 1 TIK: 1
Theobroma cacao	SINE: 1 WIP: 1 TIK: 1	SINE: 1 WIP: 1 TIK: 0 Other : 1	$\begin{aligned} & \text { SINE: } 1 \\ & \text { WIP: } 1 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 1 WIP: 1 TIK: 1
Nelumbo nucifera	SINE: 2 WIP: 1 TIK: 1	SINE: 2 WIP: 0 TIK: 0	SINE: 2 WIP: 0 TIK: 0	SINE: 2 WIP: 1 TIK: 1
Vitis vinifera	SINE: 1 WIP: 1 TIK: 1	SINE: 1 WIP: 1 TIK: 0	$\begin{aligned} & \text { SINE: } 1 \\ & \text { WIP: } 1 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 1 WIP: 1 TIK: 1
Populus trichocarpa	SINE: 2 WIP: 2 TIK: 1	SINE: 2 WIP: 1 TIK: 1	$\begin{aligned} & \text { SINE: } 0 \\ & \text { WIP: } 1 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 4 WIP: 2 TIK: 2
Solanum lycopersicum	SINE: 1 WIP: 0 TIK: 1	SINE: 4 WIP: 1 TIK: 0 Other : 1	SINE: 1 WIP: 0 TIK: 0	SINE: 4 WIP: 1 TIK: 1
Zea mays	SINE: 1 WIP: 0 TIK: 0	SINE: 4 WIP:2 TIK: 0 Other : 1	SINE: 1 WIP: 0 TIK: 0	SINE: 4 WIP: 2 TIK: 0
Oryza sativa	$\begin{aligned} & \text { SINE: } 1 \\ & \text { WIP: } 0 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 4 WIP: 1 TIK: 0	SINE: 1 WIP: 0 TIK: 0	SINE: 4 WIP: 1 TIK: 0
Musa acuminata	SINE: 2 WIP: 1 TIK: 0	SINE: 1 WIP: 0 TIK: 0	SINE: 1 WIP: 0 TIK: 0	SINE: 2 WIP: 1 TIK: 0
Amborella trichopoda	SINE: 1 WIP: 0 TIK: 1	SINE: 1 WIP: 1 TIK: 1 Other : 1	SINE: 1 WIP: 0 TIK: 0	SINE: 1 WIP: 1 TIK: 2
Picea abies	SINE: 3 WIP: 0 TIK: 1	$\begin{aligned} & \text { SINE: } 1 \\ & \text { WIP: } 0 \\ & \text { TIK: } 0 \end{aligned}$	SINE: 1 WIP: 0 TIK: 0	SINE: 3 WIP: 0 TIK: 1
Physcomitrella patens	SINE: 3 WIP: 0 TIK: 0	SINE: 6 WIP: 0 TIK: 0 Other: 1	SINE: 2 WIP: 0 TIK: 0	SINE: 7 WIP: 0 TIK: 0
Selaginella moellendorffii	SINE: 1 WIP: 0 TIK: 0	SINE: 0 WIP: 0 TIK: 0 Other : 1	SINE: 0 WIP: 0 TIK: 0	SINE: 1 WIP: 0 TIK: 0
Chlamydomonas reinhardtiio Ostreococcus lucimarinus0		0	0	0

few proteins in this cluster are detected by BLASTp (3 proteins), the majority only being detected by the script (13 proteins).

After deletion of sequences with the lowest similarity or without the conserved domain, SINE1/SINE2 proteins are present in all species except the unicellular algae and club moss, while SINE3/SINE4 display fewer protein homologues, and are not present in all species.

In summary, SINE especially the SINE1/SINE2 cluster and WIP proteins are detected in basal angiosperms whereas the TIK protein is detected only in A. thaliana (Table 4.6).

4.4.2 Inner nuclear membrane proteins and lamin-like homologues detection

Cter-SUN and mid-SUN homologues

The Cter-SUN and mid-SUN homologues werefound in species studied, though no Cter-SUN protein was detected for Chlamydomonas reinhardtii (4.6 and see Appendix Table C. 9 and Table C.8). Thirty-three Cter-SUN and fi y mid-SUN homologues were found (Table 4.6, and also Appendix Table C. 8 and C.9). The majority of the species possess at least two mid-SUN and one Cter-SUN proteins except for Solanum lycopersicum, Picea abies, and the two unicellular algae which have only one mid-SUN. These results are in good agreement with previous studies that have highlighted the conservation ofboth Cter-and mid-SUN proteinsin mosteukaryotes [Graumann et al., 2014]. Mid-SUN homologues and Cter-SUN were detected in all species suggesting that SUN emergence pre-dates the evolution of multicellularity (Figure 4.3 and Figure 4.2 and see Appendix Table C. 9 and C.8).

Putative nuclear lamina homologues

Two proteinfamilieshavebeen suggested to be components oftheputative"lamina" in A. thaliana, CRWN and KAKU4 (Chapter 1 Section 1.4) and the new protein family NEAP discovered by the Evans and Graumann group is also proposed to be part of the plant lamina [Pawar, 2015]. These three components of the nuclear lamina structure are investigated in this section.

The NEAP proteins are characterised by a TM at the C-terminus, a functional NLS and extensive coiled coil domains [Pawar, 2015]. There are four NEAP genes in A. thaliana, and the analysis of the evolution rate shows an increased accumulation
of non-synonymous mutations in AtNEAP4 suggesting its evolution as a pseudogene. The three other NEAPs are localised inside the nucleus around the INM [Pawar, 2015]. The results of BLASTp show a conservation of NEAP1, NEAP2, and NEAP3 in gymnosperms and angiosperms and 28 proteins were detected (Table 4.6 and also Appendix Table C.3).

KAKU4homologues areonly detected in angiosperms. OnlyoneKAKU4homologue is detected in each species except for Glycine max and Brassica rapa (Table 4.6 and also Appendix Table C.4)).

TheCRWNgenefamily, characterisedbyaNLS andextensivecoiled coildomains has four members in A. thaliana. CRWN proteins were detected by BLASTp in all multicellular plants, fi y homologues have been detected in moss, club moss, gymnosperm and angiosperm. Ciska and Moreno Diaz de la Espina (2013) defi two groups of plant CRWNs. The fi group combines AtCRWN1, AtCRWN2 and AtCRWN3, and the second group is made up of the homologues of AtCRWN4. This work was done with few species. For the present analysis, twenty species were included, adding more diversity. AtCRWN protein homologues were detected in all species except unicellular algae. At least two homologues were detected for each species except for Selaginella moellendorffii for which only one homologous protein is detected (Table 4.6 and Appendix Table C.2).

$\stackrel{\text { 匕 }}{n}$		WIP	TIK	SINE1 2	SINE3 4	Other KASH	Cter-SUN	Mid-SUN	CRWN	NEAP	KAKU4
	Arabidopsis thaliana	3	1	2	2	0	2	3	4	4	1
	Arabidopsis lyrata	3	0	3	2	2	3	3	2	3	1
	Brassica rapa	3	0	3	3	3	2	4	5	4	2
	Prunus persica	1	0	1	0	5	1	2	3	2	1
	Glycine max	3	0	4	0	3	2	6	7	2	2
	Carica papaya	1	0	1	0	2	1	3	3	1	1
	Theobroma cacao	1	0	1	0	1	1	2	3	1	1
	Nelumbo nucifera	1	0	2	0	0	1	2	3	2	1
	Vitis vinifera	1	0	1	0	0	1	2	3	2	1
	Populus trichocarpa	2	0	2	0	3	2	3	3	2	1
	Solanum lycopersicum	1	0	1	0	5	1	1	3	1	1
	Zea mays	2	0	2	0	6	2	2	2	2	0
	Oryza sativa	1	0	2	0	4	2	2	2	1	0
	Musa acuminata	1	0	2	0	0	3	2	4	2	1
	Amborella trichopoda	1	0	1	0	3	1	2	2	1	0
	Picea abies	0	0	3	0	0	2	1	2	2	0
	Physcomitrella patens	0	0	2	0	5	2	2	2	0	0
	Selaginella moellendorffii	0	0	0	0	1	4	6	1	0	0
	Chlamydomonas reinhardtii	0	0	0	0	0	0	1	0	0	0
	Ostreococcus lucimarinus	0	0	0	0	0	1	1	0	0	0

[^2]
4.4.3 Phylogenetic analysis of the inner nuclear membrane proteins

Cter-SUNs are the classical "core" of the LINC complex. Their coding genes are expressedinalltissues. The monocots and theeudicots form two paraphyletic ${ }^{1}$ groups, because the homologue detected for Vitis vinifera is more similar to the monocot Cter-SUN sequence. The Brassicaceae group made of A. thaliana, A. Iyrata and Brassica rapa form a monophyletic ${ }^{2}$ group and the duplication of the Cter-SUN gene seems to occur late during plant evolution because duplicated Cter-SUNs remain grouped within a given species (Figure 4.2). In some cases, one of the two Cter-SUNs is more strongly expressed in the seedling (e.g.: AtSUN1 more strongly expressed than AtSUN2; OsaSUN-a more strongly expressed than OsaSUN-b) (Figure 4.2).

The expression data for diff t tissues shows a similar level of expression for all the tissue analysed in diff t species (see Appendix C.3). A. trichopoda encodes only one Cter-SUN that is highly expressed in all tissues. This suggests the simplest functional LINC complex may be based on a single Cter-SUN, and strengthens the suggestion that duplication of the Cter-SUN gene occurred after speciation.

One or two Cter-SUN proteins were identified in most plants, moss and club moss. In A. thaliana, the Cter-SUN proteins share almost the same activity and localisation [Graumann et al., 2010]. This is in contrast to mammals, where fi e Cter-SUN orthologues have clearly diff tiated functions. It appears that the gene duplication resulting in these orthologues occurred earlier in the evolution of mammals with many species possessing them. One likely consequence is the lack of specificity of function of plant Cter-SUN homologues in contrast to mammals. For example, a disruption of a single SUN gene results in an infertility phenotype in animals [Ding et al., 2007], but in A. thaliana, a single Cter-SUN deletion does not affect meiosis or fertility whereas a double mutant atsun1, atsun2 impacts fertility and cell division [Varas et al., 2015]. This result suggests a significant redundancy in Cter-SUN function in plants and that double knock-out or knock-down mutants are required for recognisable phenotypes to be obtained.

The mid-SUN homologous proteins of the of angiosperms in the tree are clustered in two groups, the SUN3/SUN4 homologues and the SUN5 homologues. In each mid-SUN homologous group, the basal angiosperm, monocots and eudicots form

[^3]

Figure 4.2: Phylogenetic tree of Cter-SUN proteins. Left: maximum likelihood tree of Cter-SUN protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).
monophyletic groups. These results suggest that mid-SUN gene duplication occurred after speciation between angiosperms and gymnosperms (Figure 4.3). In all tissue analysed the SUN3/SUN4 group tends to be more highly expressed than the SUN5 group (see Appendix C.3).

It has been suggested that AtSUN5 has a meiotic function [Graumann et al., 2014] and this is also true for maize with ZmaSUN5 [Murphy et al., 2010]. A. trichopoda has two mid-SUN proteins, one SUN3/SUN4 homologue and a SUN5 homologue. In A. trichopoda, AtrSUN3/SUN4 is more highly expressed than AtrSUN5. This suggests that the simplest LINC complex has two mid-SUNs with each a specific function as in A. thaliana.

Figure 4.3: Phylogenetic tree of Mid-SUN proteins. Left: maximum likelihood tree of mid-SUN protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).

4.4.4 Phylogenetic analysis of the outer nuclear membrane proteins

The WIP protein family was the fi KASH protein family detected in A. thaliana, andconsistsofthreegenes; thesethreeKASH proteinsinteractwiththeSUNdomain protein. Homologues of WIP proteins were not detected in unicellular algae, moss, club moss or gymnosperms (Table 4.6); suggesting that they are angiosperm specific
proteins. Within angiosperms one WIP homologue was detected for A. trichopoda. The monocots form a monophyletic group, with one protein for Musa acuminata and rice, and two for maize suggesting a gene duplication in maize (Figure 4.4).

Figure 4.4: Phylogenetic tree of WIP proteins. Left: maximum likelihood tree of WIP protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. The labels without the homologue name were detected with the Perl script (eg: Atr 00061Goo420).Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).

The eudicots form a paraphyletic groupbecause the WIP homologue of Nelumbo nucifera diff from the WIPs of eudicots and monocots and is positioned outside of these two groups. The Brassicaceae form a monophyletic group (Figure 4.4). This suggests that an ancestral duplication in the Brassicaceae ancestor gave rise to WIP1/WIP2 and WIP3, and then WIP1 and WIP2 resulted from a more recent gene duplication. These results are consistent with Figure 4.1, in which two partial genome duplications were positioned on the Brassicaceae branch. Expression of the three genes is found in all the tissues analysed. In A. thaliana AtWIP3 is more expressed than AtWIP1 and AtWIP2 in all tissues. This diff may be due to the redundancy in AtWIP1 and AtWIP2 activities, and in A. trichopoda, the WIP homologue is highly expressed (see Appendix C.3). This result suggests that WIP3 can be the functional homologue of A. trichopoda WIP.

SINEs were characterised in A. thaliana [Zhou and Meier, 2014] in two groups SINE1/SINE2 and SINE3/SINE4. These proteins interact with the SUN domain proteins, and are positioned at the NE. AtSINE1 is more expressed in guard cells, and the Armadillo domain of AtSINE1 forms F-actin-associated fi which are involved in nuclear positioning in the guard cell [Zhou and Meier, 2014]. AtSINE2 seems to be involved in the immune response of leaves [Zhou and Meier, 2014]. No expression and activity information is available for AtSINE3 and AtSINE4.

The phylogenetic analysis of SINE3 and SINE4 is not possible due to the low similaritybetweensequences and a lack of real conserved domains. Although SINE3 and SINE4 are detected in the Brassicaceae group, the other sequences are divergent. So these two proteins seem to be conserved in Brassicaceae but not in other species.

SINE1/SINE2 proteins were not found in unicellular algae and in club moss but, in contrast to WIPs, two and three SINE homologues were found in moss and gymnosperms, respectively. Of the three SINE1/SINE2 detected in the gymnosperms, two members are very similar (PabSINE-a and PabSINE-b). This can be due to recent gene duplication, or an error in the protein prediction in the proteome data (Figure 4.5). The angiosperms form a monophyletic group (Figure 4.5) and one SINE1/SINE2 homologue was detected for A. trichopoda and positioned at the base of the angiosperm group. The angiosperm group is therefore separated into two monophyletic groups (monocots and eudicots) (Figure 4.5).

In the monocots two protein homologues were detected for each species: Musa acuminata, Oryza sativa and Zea mays. However, the phylogeny suggests the presence of recent gene duplication in Musa acuminata (Figure 4.5). In contrast, the gene duplication between the two other monocots seems to have occurred before their speciation. All the eudicots possess at least one SINE1/SINE2 homologue. Four homologues that group together were found in Glycine max. This suggests a recent gene duplication during the evolutionary history of the Glycine max genome. As for WIPs, Brassicaceae proteins cluster together, and one group of homologues is detected for each gene SINE1 and SINE2. The organisation between the two groups suggests a gene duplication in Brassicaceae ancestral gene to form SINE1 and SINE2.

SINE expression is very interesting in A. thaliana: AtSINE1 and AtSINE2 are expressed at the same level in all tissues, but at a higher level than AtSINE3 and

Figure 4.5: Phylogenetic tree of SINE1, SINE2 homologues proteins. Left: maximum likelihood tree of SINE protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. The labels without the homologue name were detected with the Perl script (eg: ZmaGRMZM2Go94850). Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).

AtSINE4. However, SINE1/SINE2 homologues in other species showlowest level of expression for for all KASH proteins for all tissues analysed expect for maize, rice, A. trichopoda and Physcomitrella patens (see Appendix C.3). In these species WIP and SINE expression is at the same level for all tissues and this suggests there may be redundancy between KASH families. In A. thaliana, AtWIPs are more expressed than AtSINE; this suggests a new expression pattern of KASH protein genes in specific tissue in Brassicaceae [Zhou and Meier, 2014].

4.4.5 Phylogenetic analysis of the putative nuclear lamina proteins

The analysis of the KAKU4 phylogeny, shows two monophyletic groups, for the monocot and eudicot homologues (Figure4.6). The KAKU4 gene is expressed at a level similar to the reference gene SAND in all species analysed. The protein was not detected in basal angiosperms, gymnosperms, moss, club moss and unicellular
algae. Either KAKU4 is a protein with specific function in angiosperms, or was not detected due to a high variability between species. The pattern of expression of KAKU4 homologues shows a basal expression in all tissues (see Appendix C.3).

Figure 4.6: Phylogenetic tree of KAKU4 proteins. Left: maximum likelihood tree of KAKU4 protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. Right: red bar represents the value of the transcription level in seedlings, except for species indicated by ${ }^{*}$, the RNA-seq data was obtained from leaf tissue (Table 4.3).

Two NEAPs were detected in gymnosperms, and one in A. trichopoda. The monocots form a monophyletic group with two potential specific gene duplications for Musa acuminata and Zea mays (Figure 4.7). As for monocots, the eudicots form a monophyletic group (Figure 4.7), and the gene duplication seems specific to species. SothethreeNEAPgenesinBrassicaceae appeartoresultfromaduplication event during the speciation of Brassicaceae.

The NEAP gene in A. trichopoda is expressed at very high level, AtNEAP4 does not have protein homologues and is not expressed, implying that it is a pseudogene. The other NEAP genes are expressed in seedlings and in the other tissues but at a low level (see Appendix C.3).

The two clusters defi in the previous publication [Ciska and Moreno Diaz de la Espina, 2013] are found in this tree, but gymnosperm homologues seem to have only one type of CRWN protein, CRWN4 (Figure 4.8). The cluster of CRWN4 homologues constitute monophyletic groups found for monocots and eudicots, and one A. trichopoda homologousprotein is detected(Figure4.8). Onlyoneprotein was found for all species except for Glycine max. Surprisingly, no CRWN4 homologue was detected for A. lyrata, maybe due to the loss of this gene during its evolution.

Eudicots

Figure 4.7: Phylogenetic tree of NEAP proteins. Left: maximum likelihood tree of NEAP protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. Bootstrap value below 0.5 the bootstrap are not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana homologues. Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).

For the second group made up of the homologues of the three other CRWN proteins, the same organisation was found, with a monophyletic group for monocots and eudicots, and the detection of onlyone homologue in the A. trichopoda proteome (Figure 4.8). In the monocot group, only Musa acuminata possess three homologues, the other monocots possessing only one (Figure 4.8). In the eudicot group, two clusters can be distinguished; one for the homologues of AtCRWN1 and the other for AtCRWN2/AtCRWN3 and this reveals a gene duplication which occurred after speciation between monocots and eudicots. The other speciation, which gave rise to CRWN2 and CRWN3, occurred after the Brassicaceae speciation and formed a monophyletic group.

The genes belonging to the cluster CRWN1/CRWN2/CRWN3 show higher expression in comparison of CRWN4. Other than in theBrassicaceae, CRWN2 is less expressed than CRWN1 and CRWN3 for all the tissues analysed. The CRWN genes seem more highly expressed in all tissues in comparison to the other genes of this
analysis (Figure 4.8 and see Appendix C.3).

Figure 4.8: Phylogenetic tree of CRWN proteins. Left: maximum likelihood tree of CRWN protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. If the bootstrap is below 0.5 the bootstrap is not indicated. The colour of the label shows the lineage of the plant. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A.thaliana homologues. Right: red bar represents the value of the transcription level in seedlings, except for species indicated by *, the RNA-seq data was obtained from leaf tissue (Table 4.3).

Surprisingly, no lamin-like proteins were detected in unicellular algae (Table 4.6). However, NE81 and NUP1, two lamin-like proteins have already been described in unicellular organisms[Krügeretal.,2012, DuBoisetal.,2012], butare not present in higher plants. It remains possible that lamin-like proteins exist in unicellular algae,
but while their sequences are not conserved, their functions are. Alternatively, it may be that these proteins evolved as part of the development of multicellularity and may have a function related to cellular interactions in tissues and organs.

4.5 Conclusion

This approach has permitted for the fi time the detection of homologous proteins for the LINC complex and some of its interactors in twenty species. The detection of homologues was based on the a priori knowledge of the nuclear proteome in A. thaliana (Table 4.2). The sequence queries for BLASTp were A. thaliana sequences, and the motifs in the Perl script for KASH protein detection were defi only with motifs known in A. thaliana. Basing the analysis only on the knowledge of A. thaliana restrains outcomes to the most probable results; but this stringency may lead to omission of putative homologues. This choice of stringency is based on the fact that the majority of the proteomes were constructed only by bioinformatics predictions, and several errors or interpretation problems can be caused by these predictions. For example the high number of orthologues detected in Glycine max species may be due to the protein prediction or real gene duplication.

One major limitation of research to better describethe LINCcomplex andits interactors results from the lack of strong morphological phenotypes. Only atcrwn mutants display reduced plant growth which is an easily recognisablephenotype,whilst all other T-DNA insertion lines require microscopic analysis to investigate nuclear size and shape [Dittmer et al., 2007, Graumann et al., 2010, Graumann et al., 2014, Goto et al., 2014] or careful characterisation of meiotic fi [Varas et al., 2015]. The presence of multiple copies of KASH and SUN genes in A. thaliana and thelackofstrong phenotypesinsinglemutantssuggeststhepresence ofgeneredundancy due to gene duplication. This is further supported by lack of tissue-specific expressionofmostoftheproteinsinvestigatedinthisstudy. WhilstT-DNAinsertion lines have predominantly been used, it is likely that in most cases combinations of mutations in several genes are needed for further functional analysis such as the double mutant atsun1/atsun2 [Zhou et al., 2012] or the quintuple mutant wifi (atwip1 atwip2 atwip3 atwit1 atwit2) [Zhou et al., 2015b]. The research presented here will inform future mutant strategies both for A. thaliana and other species in enabling researchers to identify combinations of genes to be knocked out to overcome redundancy and will also suggest thetissues in which effects aremostlikelytobeobserved.

The simple A. trichopoda model may represent the minimal requirement with only two KASH proteins (one WIP and one SINE), three SUN proteins (one CterSUN andtwo mid-SUNs) and three lamin-likeproteins (twoCRWNs and oneNEAP). Therefore, studying the LINC complex and its interactors in this plant model seems promising, given that it can be cultivated in a controlled environment, and also
easier in comparison to the complexity of the situation in A. thaliana. However, diffi in its cultivation mean that alternative experimental models would be more promising. Many other species were shown to have simpler LINC complexes than A. thaliana; for instance, Physcomitrella patens and Solanum lycopersicum with respectively 4 SUNs, 2 KASHs, 2 putative nuclear lamina proteins and 2 SUNs, 2 KASHs, 5 putative nuclear lamina proteins. This information will also be of use to plant breeders as they develop strategies based on increased knowledge of epigenetics and chromatin positioning.

Chapter 5

Discussion and perspectives

The work described in this thesis provides new insights into the role of NE anchored proteinsin chromatin organisation and nuclear morphologyin A. thaliana. This role was investigated using 3D images of nuclei of three cell types (root epidermis (RC) or cotyledon epidermis (GC and PC)) (see Chapter 3). For this purpose, NucleusJ, an ImageJ plugin, was developed to segment the nucleus and the chromocentres in the initial 3D image from light microscopy. NucleusJ then computes 3D quantitative parameters from single images or large data sets of the two types of detected objects (Table 2.1) [Poulet et al., 2015].

Before studying NE-anchored or chromatin mutants it was important to analyse the three cell types of interest in wild-type plants, to determine variability and organisation of the wild type. Analysis of Nucleus J parameters permits to distinguish nuclei of the three cell types of interest which exhibit diff t nuclear morphology and chromatin organisation (seeChapter 3Section 3.4.1). Furthermore, the analysis of the chromocentre distance to the nuclear periphery shows a preferential position of thechromocentreininterphase nucleiat asmall distancefrom the nuclear periphery (see Chapter 3 Section 3.4.2).

The analysis of the link between nuclear morphology and chromatin was analysed with three types of mutants, NE-anchored, chromatin and histone chaperones mutants. A phylogenetic analysis carried out for the NE-anchored protein families (lamin-like, KASH and SUN) revealed several gene duplications specific to the Brassicaceae group (see Chapter 4). Among this group, my model plant A. thaliana possesses 8 lamin-like, 5 SUN and 8 KASH proteins suggesting some functional redundancy. This organisation complicates research on these proteins, and multiple mutants are needed to obtain strong phenotype. Analysis of 3D nuclear morphology of several NE-anchored mutants (SUN: sun1 sun4 sun5, KASH: wifi and wip1 wip2 wip3 and lamin-like: crwn1 crwn2 and lamin-binding: emphkaku4-2) was carried
out and shows a decrease in nuclear volume correlated with an increase in sphericity compared to wild type(seeChapter 3 Section 3.4.3). These changes werefound to be stronger in lamin-like mutants. Nuclear morphology changes involve new chromatin organisation, but specific mis-organisation of the NE-anchored proteins remained diffi to be detected using only NucleusJ parameters, whereas analysis with 2D and 3D FISH, for chromocentre condensation and transcriptional reactivation analysis at heterochromatic loci shows the impact of mutations of the LINC complex proteins in chromatin organisation (see Chapter 3 Section 3.4.4). In contrast to the proteins of the LINC, mutants for the two proteins associated with the plant lamina, crwn1 crwn2 and kaku4-2, show the exact opposite effect, crwn1 crwn2 possesses more condensed chromocentres, correlated with a decrease in the expression of the normallysilentrepetitive sequences, and the conversefor kaku4-2. Finally, thesetwo lamina components do not play the same role in the nucleus, CRWN1 and CRWN2 proteins seem to be more involved in shape regulation whereas KAKU4 seems to possess a role more strongly related to chromatin organisation and may be involved in the organisation of silenced domains. We hypothesise that the impact of NE associated mutations on chromatin organisation may have been due to the release of specific interactions between cytoskeleton and nucleoskeleton (Figure 1.4), which can lead to chromatin disorganisation (see Chapter 1 section 1.2).

The chromatin mutants (atxr5 atxr6 and ddm1-10) and histone chaperone mutants (atrx-1, atrx-2, asf1a, and asf1b) do not appear to have a great effect on nuclear morphology but, as expected, histone chaperone and atxr5 atxr6 mutants globally impact the chromatin organisation parameters of NucleusJ, except ddm1-10 (see Chapter 3 Section 3.4.4). Condensation of chromocentre in these mutants is generally reduced and correlated with an increase of TSI expression. Finally, it is not clear from the mutants that chromatin disorganisation leads to changes in nuclear morphology. Before the role of NE-anchored and chromatin and histone chaperone mutants can be discussed, validation and limitations of the imaging method will be considered (see Section 5.1 and 5.3 below).

5.1 NucleusJ a user friendly ImageJ plugin for 3Dimages of nucleus

5.1.1 NucleusJvalidation

NucleusJ was developed as an ImageJ plugin and published in the Bioinformatics journal [Poulet et al., 2015]. The fi version of NucleusJ was released as an ImageJ
plugin and is also available on the Fiji platform. Documentation was written and is available on the wiki of ImageJ (http://imagejdocu.tudor.lu/doku.php?id= plugin:stacks:nuclear_analysis_plugin:start). NucleusJ has been presented in several scientific congresses (IPNC 2013, 2015, JOBIM 2015, and the one day doctoral school in Clermont Ferrand in 2014). We had several contacts with endusers during the past year; however our Bioinformatics paper has been cited only twice (Source: web of Science, Thompson Reuters) and it will be important in the coming years to continue publishing new analyses performed with NucleusJ as well as to inform users about new improvements such as the new 3D segmentation processes developed during this thesis.

5.1.2 NucleusJ limitations

Several limitations exist in NucleusJ. The main limitation in the 3D image processing and analysis tool used in this study is the manual step of 3D segmentation of the chromocentres.This manual step is a well known drawback of the contrast map calculated on the region obtained with the watershed method. To fi the segmentation of the contrast map, it is needed to apply a manual threshold, this last step increases the time taken for the analysis. A method based on a histogram distribution could be developed to automatically detect chromocentres. Two dependencies, the Java library (morpholib.jar, imagescience.jar) and the plugin containing of the Euclidean distance map (See Chapter 2 Section 2.4.1) used by NucleusJ limit the development of the plugin and increase the risk of errors through the updating of these plugins. The Euclidean distance map method used during the computing of chromocentre distance increases the time of analysis. It would be interesting to implement the Euclidean distance method for NucleusJ to facilitate source code homogeneityinthenextmodifi of NucleusJ.

Radial distance, defi concentric circles from the nucleus centre is frequently used to compute position within the nucleus. While this strategy applies well to round nuclei, it is more complicated to defi the nucleus centre when the nuclei adopt ellipsoid or elongated shapes. Here, spatial positioning was used to compute the radial distance within a nucleus, but with radial distance, all the 3D information waslost, and transformedintounidimensional information. Tokeep and analyse the current distribution of position of the chromocentres, it would be advantageous to implement the distribution method of Andrey et al. (2010) (Figure 1.7). With the radial distanceinformation and the distributionfunction information, it wouldthen be possible to identify specific chromocentre distribution phenotypes in the mutants of interest.

Hoechst or chromatin staining/marking used for the images analysed by Nucleus J also provides a limitation. These types of staining are limited by the fact that only chromatin and not the nuclear envelope is stained. As part of the work for this thesis, a nuclear envelope stain (FM4-64FX) was tested but the method need to be improved before its use. As an alternative, several transgenic constructs for expression of tagged proteins targeted to the diff t types of membranes already exist, but fusion proteins can disorganise the morphology of the NE. One drawback of this approach it that each construct needs to be introduced in the mutant of interest. To establish possible bias produced by Hoechst staining and preparation for light microscopy, alternative methods, for instance 3D electron microscopy (serialblockface scanning electron microscopy (SBFSEM)) should be undertaken with osmium staining which permits the detection of NE (Figure 5.1). Indeed, this work was initiated during my stay at Oxford Brookes and images of plant nuclei were collected from Col-o cotyledon, using SBFSEM. I also started to adapt NucleusJ to process such images. However this will requires further developments in the future in order to be able to perform 3D segmentation on SBFSEM, the main diffi lties being the presence of many other structures stained during the osmium treatment including ER and mitochondria while chromatin remain poorly contrasted (Figure 5.1).

Figure 5.1: Image of Arabidopsis thaliana root with electron microscope SBF SEM.Fixed tissue observed after osmium staining and observed by SBF SEM: organelles and membranes are well stained, but chromatin within the nucleus is not well contrasted.(Source: Image obtained from Dr Louise Hughes, Oxford Brookes University)

5.1.3 Future improvement of NucleusJ

New developments are ongoing, and algorithms presented in Chapter 2 Section 2.4.2 and Section 2.4.3 need to be integrated into a new version of NucleusJ. The new version will have a new program architecture, to easily perform modifi or to
implement the improvements of the code using Unified Modelling Language (UML). This work is currently done in collaboration with Pr R. Malgouyres. Furthermore, a method for analysis of 3D electron microscope images will be developed to segment the nucleus. This method will be integrated in the new version of Nucleus J to permit the comparison of the parameters obtained with the NE staining and chromatin methods. Other methods can be added to NucleusJ to permit automatic segmentation of the chromocentre in order to decrease the time of computation. To complete the NucleusJ plugin, it will be interesting to test if the segmentation of the nucleolus is possible in images stained with Hoechst or with other techniques to specifically stain the nucleolus, to get new insights about the position of the nucleolus within the nucleus. To continue to analyse the position of DNA sequences or chromatin domains, methods for 3D FISH should be integrated, and then integration of distribution function used to analyse the distribution in the nucleus of these domains or sequences. All these new developments would actively promote the efficiency and relevance of NucleusJ as a useful tool to analyse the 3D organisation of chromatin.

5.2 Heterochromatin organisation and chromocentre positioning in wild-type plants

One aim was to determine whether nuclear structure would impact chromatin decompaction and genome. First, we showed that the positioning of chromocentre is closed to the nuclear periphery. Endoreplicated PC and RC nuclei have more internal chromocentres than diploid GC suggesting that chromocentres formed by the 45 S rDNA clusters are also located at the nuclear periphery. This suggests that the nucleolus position is also close to the nuclear periphery. This remains to be demonstrated by specifically labelling the nucleolus, using for instance nucleolin or fi antibodies. The data produced, also support the fact that larger nuclei tend to have a reduced heterochromatic content. Onehypothesis can be that endoreplicated nuclei contain uncompleted chromosome replication at heterochromatic regions maybe due to its late replicating properties. However this is not well supported by previous data [Jacob et al., 2010]. Another hypothesis is that endoreplicated nuclei may have a more decondensed heterochromatic organisation which reduced chromocentre detection as previously proposed [Schubert et al., 2012]

5.3 NE-anchored proteins disrupt nuclear morphology as well as chromatin organisation

Here, effects of alteration of NE-anchored proteins were investigated on nuclear morphology and chromatin organisation. All the mutants analysed (wip1 wip2 wip3, wit1 wit2, wifi, sun1 sun4 sun5, crwn1 crwn2 and kaku4-2) present a more spherical nucleus and for the majority, a smaller nucleus in comparison with the wild-type. In previous studies, all the defects have already been shown, but these analyses had been carried out by analysis of 2D paramaters, and it is the fi time that effects of all these NE-anchored proteins have been investigated in 3D and analysed together in a single set of experiments with standardised procedures [Dittmer et al., 2007, Graumann et al., 2010, Zhou et al., 2012, Graumann, 2014, Goto et al., 2014, Zhou et al., 2015b]. Finally, we hypothesis that mutations of NE-anchored protein proteins impact interaction between cyto- and nucleoskeleton, and lead to a decrease of the constraint force applied to the nucleus resulting in the increase of sphericity and decrease of nuclear volume [Alam et al., 2014].

The analysis of chromatin organisation was motivated by previous results in other species such as in yeast in which Mps3p a Cter-SUN homologue of AtSUN1 and AtSUN2 is involved in the recruitment of telomeric repeats at the nuclear envelope, an essential process needed for telomeric silencing [Friederichs et al., 2012]. In plants and animals, Cter-SUN proteins also interact with telomeres although the molecular mechanisms of this interaction remain elusive[Murphy and Bass, 2012, Varas et al., 2015]. To date, only the Dictyostelium SUN-1 has been described to directly bind DNA through its N-terminal domain [Xiong et al., 2008] and this function does not seem to be conserved in other species. AtSUNs do not contain any Zinc fi or other conserved domains in the N-terminal part of the protein [Graumann et al., 2010, Graumann, 2014]. The analysis of the NE-anchored proteins revealed that the triple sun1 sun 4 sun 5 mutant increases the distance of chromocentres from the nuclear boundary, induces chromocentre decompaction as well as transcriptional derepression at heterochromatic repeats. Alteration of heterochromatic markers can be the result of a global disorganisation of the transcriptional machinery due to modifi ofnuclear morphology. Thusthetranscriptionalstatus of euchromatic sequences was thus investigated. To test this hypothesis three genes were chosen with high, middle and low transcription levels [Duc et al., 2015] and located at euchromatic sites. Transcription level at those genes is very similar in wild type and mutants (data not shown) suggesting that transcriptional alteration specifically affect heterochromatic sequences. In summary, we propose that SUN proteins are
important to keep chromocentres at the nuclear periphery and that altering this function affect the transcriptional repression of heterochromatic sequences which are enriched in chromocentres.

Interestingly, this does not imply that the nuclear periphery is a required environment to achieve heterochromatin repression. This is well illustrated by the lamin-like mutant crwn1 crwn2 in which chromocentres are fused together and are at a more internal position. In that case, neither decompaction nor transcriptional release for repetitive sequence silencing was observed, but instead a more repressed state occured. The crwn phenotype recalls Sir4 overexpression in yeast in which telomeric repeats are delocated from the periphery and became more central. In the sir 4 mutant, repression becomes higher in this new central repressive chromatin domain [Taddei et al., 2004]. The nuclear periphery may contain all the required repressive complexes needed to insure transcriptional repression. CRWN may be a key component of the nuclear periphery which recruits some of these repressive factors.

The analysis of KASH5 in mice shows also a decrease in the mutant of the associations between telomere and NE [Morimoto et al., 2012]. Horn et al. (2013) hypothesise that the absence of KASH_{5} impacts SUN1 organisation in the NE reducing the efficiency or stability of telomere attachment to the NE [Horn et al., 2013]. The three types of mutants analysed (wip1 wip2 wip3, wit1 wit2, wifi) do not exhibit a disturbance of the chromocentre distance as for the triple mutant sun, while only the triple wip mutants show a weak increase of this distance. These three mutants show a decompaction of the chromocentres but only for wifi decompaction was correlated with transcriptional derepression at heterochromatic repeats. The activity and functional redundancy shown in the phylogenetic analysis (Chapter 4), can explain the weak phenotype of these mutants. A. thaliana has 8 KASH proteins which interact with SUN proteins and with the cytoskeleton and it is likely that other KASH proteins can complement the wip mutation, explaining why wip1 wip2 wip3 conserves a certain order in the chromatin organisation.

From this initial set of mutants, we have now set up standardised procedures that can be now extended to other mutations such as nup136 [Tamura and HaraNishimura, 2011], gip1 gip2 [Janski et al., 2012], kaku1 [Tamura and Hara-Nishimura, 2013] that havebeen described to alter nuclear morphology.

5.4 Chromatin and histone chaperone mutants disrupt chromatin organisation but not nuclear morphology

Chromatin and histone chaperone mutants were included in this study to test the impact of chromatin misorganisation on nuclear shape. In this case, these mutants impact chromatin organisation as expected but show no effect on nuclear morphology. However, this maybe due to mutations used, for example the weak ddm1 allele. Other alternatives would be to include the H3.1 quintuple mutant, since the H3.1 histone has been shown to be enriched in heterochromatin and may involve a loss of connection between heterochromatin and the NE. Interestingly, the defects in chromatin organisation found for the NE-anchored proteins are stronger that those for the chromatin and histone chaperone mutants and show the importance of the NE on chromatin organisation and regulation. It will be also probably very intersting to evaluatehistone variants specific of pericentromeric sequences such as H2AW which havebeen shown to affect chromocentre compaction [Yelagandula et al., 2014].

5.5 Future work

5.5.1 Chromatin organisation of the NE-anchored mutants

To continue the analysis of NE organisation on chromatin, it would be interesting to use several sequencing techniques. RNA sequencing of the NE-anchored mutants allows the analysis of the expression of genes, and a change of their regulation in these mutants. The technique of Chromatin Conformation Capture sequencing can complete the analysis of chromatin organisation in these mutants, and allow understanding of how chromatin is organised and would maybe help to explain the hereochromatin derepression we observed in the analysed mutants. This technique has already been successfully applied to crwn1 and crwn4 mutants and revealed their implication in heterochromatic sequence interaction[Grob et al., 2014].

Then, as already discussed in the Section $5 \cdot 3$, other mutants can be analysed with the same methods. Preliminary experiments have already been carried out on the NEAP mutants (neap1, neap3 and neap1 neap3). The results for these mutants show that they impact chromatin organisation and the phenotypeobserved is closed to that of kaku4-2. We hope that the analysis of more mutants will increase of the understanding of the link betweenthe NE and chromatin organisation.

5.5.2 Chromatin organisation of the natural ecotype of Arabidopsis thaliana

Tessadori et al. (2009) showed that chromatin compaction is correlated with geographic latitude of the ecotype [Tessadori et al., 2009]. This fact is interesting since it is shows natural variation in 3D organisation in chromatin and nuclear morphology. Preliminary results of the comparison with NucleusJ between three diff t ecotypes (Cape Verde Islands, Wassilewskija and Columbia) show diff t nuclear morphology and chromatin organisation. To pursue these experiments, it would be interesting to add more ecotypes and also to control the growing conditions of each ecotype to avoid introducing a bias due to these conditions.

5.5.3 Length and number of cells in cotyledon epidermis

Several studies in mammals have shown that nuclear morphology is correlated with the cellular morphology and an elongated cell typically exhibits an elongated nucleus [Weiss and Garber, 1952, Khatau et al., 2009, Versaevel et al., 2012]. It is interesting to replace the nucleus analysis in the context of the cell with the context of the vacuole, a compartment which can represent up 90% to of the cellular volume in plant, and to establish whether N / C ratio is conserved for various vacuolar volumes. In addition, it would be useful to explore whether mutations altering nuclearvolume or shape also alter the shape or volume of cells. This could be achieved by analysing cell shape and size for many cells in the epidermis of the cotyledon.

5.5.4 Impact of stress conditions on the nuclear shape and chromatin organisation

In vivo, the nucleus is typically spherical or elipsoidal in mammals; dramatic morphological changes of the nucleus can occur in response to physical or environment stresses [Kim et al., 2015]. Vigouroux et al. (2001) demonstrated an increase sensitivity to heat stress of nuclei from laminopathy cells [Vigouroux et al., 2001]. Furthermore in A. thaliana, stress conditions involve changes in chromatin organisation [Pecinka and MittelstenScheid, 2012]. It will be interesting to do the same 3D analysis on wild-type and NE-anchored mutants to know the impact of NE mutation on stress sensitivity and the capacity to react to stress.

References

Abbe, E. (1873). Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für mikroskopische Anatomie, 9(1):413-418.

Airy, G. B. (1835). On the diff of an object-glass with circular aperture. Transactions of the Cambridge Philosophical Society, Vol. 5, 1835, p. 283-291.

Alam, S., Lovett, D. B., Dickinson, R. B., Roux, K. J., and Lele, T. P. (2014). Nuclear forces and cell mechanosensing. Progress in Molecular Biology and Translational Sscience, 126:205-215.

Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A., and Rout, M. P. (2007). The molecular architecture of the nuclear pore complex. Nature, 450(7170):695-701.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basiclocal alignment searchtool. Journal of MolecularBiology, 215(3):403-410.

Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeqa Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2):166-169.

Anderson, D. J. and Hetzer, M. W. (2008). Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. The Journal of Cell Biology, 182(5):911-924.

Andrey, P., Kiu, K., Kress, C., Lehmann, G., Tirichine, L., Liu, Z., Biot, E., Adenot, P.-G., Hue-Beauvais, C., Houba-Hrin, N., Duranthon, V., Devinoy, E., Beaujean, N., Gaudin, V., Maurin, Y., and Debey, P. (2010). Statistical analysis of 3d images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS ComputBiol, 6(7):e1000853.

Argout, X., Salse, J., Aury, J.-M., Guiltinan, M. J., Droc, G., Gouzy, J., Allegre, M., Chaparro, C., Legavre, T., Maximova, S. N., Abrouk, M., Murat, F., Fouet, O., Poulain, J., Ruiz, M., Roguet, Y., Rodier-Goud, M., Barbosa-Neto, J. F., Sabot, F., Kudrna, D., Ammiraju, J. S. S., Schuster, S. C., Carlson, J. E., Sallet, E., Schiex, T., Dievart, A., Kramer, M., Gelley, L., Shi, Z., Brard, A., Viot, C., Boccara, M., Risterucci, A. M., Guignon, V., Sabau, X., Axtell, M. J., Ma, Z., Zhang, Y., Brown, S., Bourge, M., Golser, W., Song, X., Clement, D., Rivallan, R., Tahi, M., Akaza, J. M., Pitollat, B., Gramacho, K., D'Hont, A., Brunel, D., Infante, D., Kebe, I., Costet, P., Wing, R., McCombie, W. R., Guiderdoni, E., Quetier, F., Panaud, O.,

Wincker, P., Bocs, S., and Lanaud, C. (2011). The genome of Theobroma cacao. Nature Genetics, 43(2):101-108.

Ariel, F., Jegu, T., Latrasse, D., Romero-Barrios, N., Christ, A., Benhamed, M., and Crespi, M. (2014). Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Molecular Cell, 55(3):383396.

Banks, J. A., Nishiyama, T., Hasebe, M., Bowman, J. L., Gribskov, M., dePamphilis, C., Albert, V. A., Aono, N., Aoyama, T., Ambrose, B. A., Ashton, N. W., Axtell, M. J., Barker, E., Barker, M. S., Bennetzen, J. L., Bonawitz, N. D., Chapple, C., Cheng, C., Correa, L. G. G., Dacre, M., DeBarry, J., Dreyer, I., Elias, M., Engstrom, E. M., Estelle, M., Feng, L., Finet, C., Floyd, S. K., Frommer, W. B., Fujita, T., Gramzow, L., Gutensohn, M., Harholt, J., Hattori, M., Heyl, A., Hirai, T., Hiwatashi, Y., Ishikawa, M., Iwata, M., Karol, K. G., Koehler, B., Kolukisaoglu, U., Kubo, M., Kurata, T., Lalonde, S., Li, K., Li, Y., Litt, A., Lyons, E., Manning, G., Maruyama, T., Michael, T. P., Mikami, K., Miyazaki, S., Morinaga, S.-i., Murata, T., Mueller-Roeber, B., Nelson, D. R., Obara, M., Oguri, Y., Olmstead, R. G., Onodera, N., Petersen, B. L., Pils, B., Prigge, M., Rensing, S. A., Riaño-Pachón, D. M., Roberts, A. W., Sato, Y., Scheller, H. V., Schulz, B., Schulz, C., Shakirov, E. V., Shibagaki, N., Shinohara, N., Shippen, D. E., Srensen, I., Sotooka, R., Sugimoto, N., Sugita, M., Sumikawa, N., Tanurdzic, M., Theien, G., Ulvskov, P., Wakazuki, S., Weng, J.-K., Willats, W. W., Wipf, D., Wolf, P. G., Yang, L., Zimmer, A. D., Zhu, Q., Mitros, T., Hellsten, U., Loqu, D., Otillar, R., Salamov, A., Schmutz, J., Shapiro, H., Lindquist, E., Lucas, S., Rokhsar, D., and Grigoriev, I. V. (2011). The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants. Science (New York, N. Y.), 332(6032):960-963.

Bapteste, E., Charlebois, R. L., MacLeod, D., and Brochier, C. (2005). The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biology, 6(10):R85.

Bass, H. W., Bordoli, S. J., and Foss, E. M. (2003). The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L.) cause distinct telomeremisplacement phenotypes during meiotic prophase. Journal of Experimental Botany, 54(380):39-46.

Baubec, T., Finke, A., Mittelsten Scheid, O., and Pecinka, A. (2014). Meristemspecific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO reports, 15(4):446-452.

Bauwens, S., Katsanis, K., Van Montagu, M., Van Oostveldt, P., and Engler, G. (1994). Procedureforwhole mountfl in situ hybridization of interphase nuclei on Arabidopsis thaliana. The Plant Journal, 6(1):123-131.

Baye, L. M. and Link, B. A. (2008). Nuclear migration during retinal development. Brain Research, 1192:29-36.

Benavente, R., Krohne, G., and Franke, W.W. (1985). Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell, 41(1):177190.

Benoit, M., Layat, E., Tourmente, S., and Probst, A. V. (2013). Heterochromatin dynamics during developmental transitions in Arabidopsis - a focus on ribosomal DNA loci. Gene, 526(1):39-45.

Berr, A. and Schubert, I. (2007). Interphase chromosome arrangement in Arabidopsis thaliana is similar in diff tiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics, 176(2):853-863.

Bian, Q. and Belmont, A. S. (2012). Revisiting higher-order and large-scale chromatin organization. Current Opinion in Cell Biology, 24(3):359-366.

Bickmore, W. A. and van Steensel, B. (2013). Genome architecture: domain organization of interphase chromosomes. Cell, 152(6):1270-1284.

Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., Müller, S., Eils, R., Cremer, C., Speicher, M. R., and Cremer, T. (2005). Three-dimensional maps of all chromosomes in human male fi nuclei and prometaphase rosettes. PLoSBiology, 3(5).

Bone, C. R., Tapley, E. C., Gorjánácz, M., and Starr, D. A. (2014). The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Molecular Biology of the Cell, 25(18):2853-2865.

Bourbousse, C., Mestiri, I., Zabulon, G., Bourge, M., Formiggini, F., Koini, M. A., Brown, S. C., Fransz, P., Bowler, C., and Barneche, F. (2015). Light signaling controls nuclear architecture reorganization during seedling establishment. Proceedings of the National Academy of Sciences of the United States of America, 112(21):E2836-2844.

Bowler, C., Benvenuto, G., Laflamme, P., Molino, D., Probst, A. V., Tariq, M., and Paszkowski, J. (2004). Chromatin techniques for plant cells. The Plant Journal: For Cell and Molecular Biology, 39(5):776-789.

Brandt, A., Papagiannouli, F., Wagner, N., Wilsch-Bräuninger, M., Braun, M., Furlong, E. E., Loserth, S., Wenzl, C., Pilot, F., Vogt, N., Lecuit, T., Krohne, G., and Grohans, J. (2006). Developmental control of nuclear size and shape by kugelkern and kurzkern. Current Biology, 16(6):543-552.

Brown, C. R., Kennedy, C. J., Delmar, V. A., Forbes, D. J., and Silver, P. A. (2008). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes \& Development, 22(5):627-639.

Bupp, J. M., Martin, A. E., Stensrud, E. S., and Jaspersen, S. L. (2007). Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. The Journal of Cell Biology, 179(5):845-854.

Burke, B. and Stewart, C. L. (2013). The nuclear lamins: fl y in function. Nature Reviews. Molecular Cell Biology, 14(1):13-24.

Cao, X. and Jacobsen, S. E. (2002). Locus-specifi control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 4:16491-16498.

Castleman, K. R. (1996). Digital Image Processing. Prentice Hall Press, Upper Saddle River, NJ, USA.

Cavalier-Smith, T. (2005). Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany, 95(1):147-175.

Chambliss, A. B., Khatau, S. B., Erdenberger, N., Robinson, D. K., Hodzic, D., Longmore, G. D., and Wirtz, D. (2013). The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Scientific Reports, 3:1087.

Chen, C.-Y., Chi, Y.-H., Mutalif, R., Starost, M., Myers, T., Anderson, S., Stewart, C., and Jeang, K.-T. (2012). Accumulation of the inner nuclear envelope protein sun1 is pathogenic in progeric and dystrophic laminopathies. Cell, 149(3):565-577.

Cheng, Z., Buell, C. R., Wing, R. A., Gu, M., and Jiang, J. (2001). Toward a cytological characterization of the rice genome. Genome Research, 11(12):21332141.

Chi, Y.-H., Cheng, L. I., Myers, T., Ward, J. M., Williams, E., Su, Q., Faucette, L., Wang, J.-Y., and Jeang, K.-T. (2009). Requirement for Sun1 in the expression of meiotic reproductive genes and piRNA. Development, 136(6):965-973.

Chi, Y.-H., Haller, K., Peloponese, J.-M., and Jeang, K.-T. (2007). Histone acetyltransferase halp and nuclear membrane protein hssun1 function in de-condensation of mitotic chromosomes. Journal of Biological Chemistry, 282(37):27447-27458.

Chow, K.-H., Factor, R. E., and Ullman, K. S. (2012). The nuclear envelope environment and its cancer connections. Nature reviews. Cancer, 12(3):196-209.

Ciska, M. and Moreno Diaz de la Espina, S. (2013). NMCP/LINC proteins: putative lamin analogs in plants? Plant Signaling \& Behavior, 8(12):e26669.

Ciska, M. and Moreno Diaz de la Espina, S. (2014). The intriguing plant nuclear lamina. Frontiers in Plant Science, 5.

Cohen, M., Lee, K. K., Wilson, K. L., and Gruenbaum, Y. (2001). Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends in Biochemical Sciences, 26(1):41-47.

Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M., and Jacobsen, S. E. (2008). Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452(7184):215-219.

Conklin, E. G. (1912). Cell size and nuclear size. Journal of Experimental Zoology, 12(1):1-98.

Consortium, T. G. (2012). The tomato genome sequence provides insights into fl y fruit evolution. Nature,485(7400):635-641.

Cremer, M., von Hase, J., Volm, T., Brero, A., Kreth, G., Walter, J., Fischer, C., Solovei, I., Cremer, C., and Cremer, T. (2001). Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 9(7):541-567.

Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., Stahl, P. D., and Hodzic, D. (2006). Coupling of the nucleus and cytoplasm role of the LINC complex. The Journal of Cell Biology, 172(1):41-53.

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139(1):5-17.

Dahl, K. N., Engler, A. J., Pajerowski, J. D., and Discher, D. E. (2005). Powerlaw rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophysical Journal, 89(4):2855-2864.

Dahl, K. N., Kahn, S. M., Wilson, K. L., and Discher, D. E. (2004). The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. Journal of Cell Science, 117(20):4779-4786.
de Nooijer, S., Wellink, J., Mulder, B., and Bisseling, T. (2009). Non-specific interactions are sufficient to explain the position of heterochromatic chromocenters and nucleoli in interphase nuclei. Nucleic Acids Research, 37(11):3558-3568.

Dechat, T., Adam, S. A., Taimen, P., Shimi, T., and Goldman, R. D. (2010). Nuclear lamins. Cold Spring Harbor Perspectives in Biology, 2(11).

DeGrasse, J. A., DuBois, K. N., Devos, D., Siegel, T. N., Sali, A., Field, M. C., Rout, M. P., and Chait, B. T. (2009). Evidence for a shared nuclear pore complex architecture that is conserved from the last common eukaryotic ancestor. Molecular \& Cellular Proteomics, 8(9):2119-2130.

Dekker, J., Marti-Renom, M. A., and Mirny, L. A. (2013). Exploring the threedimensional organization of genomes: interpreting chromatin interaction data. Nature Reviews. Genetics, 14(6):390-403.

Dey, P. (2010). Cancer nucleus: morphology and beyond. Diagnostic Cytopathology, 38(5):382-390.

Ding, X., Xu, R., Yu, J., Xu, T., Zhuang, Y., and Han, M. (2007). Sun1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Developmental Cell, 12(6):863-872.

Dittmer, T. A., Stacey, N. J., Sugimoto-Shirasu, K., and Richards, E. J. (2007). Little nuclei genes affecting nuclear morphology in Arabidopsis thaliana. The Plant Cell, 19(9):2793-2803.

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398):376-380.

Douet, J., Blanchard, B., Cuvillier, C., and Tourmente, S. (2008). Interplay of RNA Pol IV and ROS1 During Post-Embryonic 5s rDNA Chromatin Remodeling. Plant and Cell Physiology, 49(12):1783-1791.

Droc, G., Lariviére, D., Guignon, V., Yahiaoui, N., This, D., Garsmeur, O., Dereeper, A., Hamelin, C., Argout, X., Dufayard, J.-F., Lengelle, J., Baurens, F.-C., Cenci, A., Pitollat, B., DHont, A., Ruiz, M., Rouard, M., and Bocs, S. (2013). The banana genome hub. Database: The Journal of Biological Databases and Curation, 2013.

DuBois, K. N., Alsford, S., Holden, J. M., Buisson, J., Swiderski, M., Bart, J.M., Ratushny, A. V., Wan, Y., Bastin, P., Barry, J. D., Navarro, M., Horn, D., Aitchison, J. D., Rout, M. P., and Field, M. C. (2012). Nup-1 is a large oiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biology, 10(3).

Duc, C., Benoit, M., Le Goff, S., Simon, L., Poulet, A., Cotterell, S., Tatout, C., and Probst, A. V. (2015). The histone chaperone complex HIR maintains nucleosome occupancy and counterbalances impaired histone deposition in CAF-1 complex mutants. The Plant Journal: For Cell and Molecular Biology, 81(5):707722.

Duroc, Y., Lemhemdi, A., Larchevque, C., Hurel, A., Cuacos, M., Cromer, L., Horlow, C., Armstrong, S. J., Chelysheva, L., and Mercier, R. (2014). The kinesin atpss1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genetics, 10(10).

Ea, V., Baudement, M.-O., Lesne, A., and Forn, T. (2015). Contribution of topological domains and loop formation to 3d chromatin organization. Genes, 6(3):734750.

Edens, L. J., White, K. H., Jevtic, P., Li, X., and Levy, D. L. (2013). Nuclear size regulation: from single cells to development and disease. Trends in Cell Biology, 23(4):151-159.

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5:113.

Ellenberg, J., Siggia, E. D., Moreira, J. E., Smith, C. L., Presley, J. F., Worman, H. J., and Lippincott-Schwartz, J. (1997). Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. The Journal of Cell Biology, 138(6):1193-1206.

Esbelin, H.-A. and Malgouyres, R. (2014). Taylor optimal kernel for derivative estimation. In Barcucci, E., Frosini, A., and Rinaldi, S., editors, Discrete Geometry for Computer Imagery, number 8668 in Lecture Notes in Computer Science, pages 384-395. Springer International Publishing.

Even-Faitelson, L., Hassan-Zadeh, V., Baghestani, Z., and Bazett-Jones, D. P. (2015). Coming to terms with chromatin structure. Chromosoma, pages 1-16.

Fang, Y. (2005). Centromere positioning and dynamics in living arabidopsis plants. MolecularBiology of the Cell, 16(12):5710-5718.

Feng, S., Cokus, S. J., Schubert, V., Zhai, J., Pellegrini, M., and Jacobsen, S. E. (2014). Genome-wide Hi-C analyses in wild-type and mutants reveal high-resolution chromatin interactions in Arabidopsis. Molecular Cell, 55(5):694-707.

Ferrera, D., Canale, C., Marotta, R., Mazzaro, N., Gritti, M., Mazzanti, M., Capellari, S., Cortelli, P., and Gasparini, L. (2014). Lamin B1 overexpression increases nuclear rigidity in autosomal dominant leukodystrophy fi The FASEB Journal, 28(9):3906-3918.

Field, M. C., Horn, D., Alsford, S., Koreny, L., and Rout, M. P. (2012). Telomeres, tethers and trypanosomes. Nucleus, 3(6):478-486.

Fiserova, J., Kiseleva, E., and Goldberg, M. W. (2009). Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. The Plant Journal: ForCell and MolecularBiology, 59(2):243-255.

Folker, E. S., Östlund, C., Luxton, G. W. G., Worman, H. J., and Gundersen, G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proceedings of the National Academy of Sciences, 108(1):131-136.

Fourey, S. and Malgouyres, R. (2009). Normals estimation for digital surfaces based on convolutions. Computers \& Graphics, 33(1):2-10.

Fransz, P. and de Jong, H. (2011). From nucleosome to chromosome: a dynamic organization of genetic information. The Plant Journal, 66(1):4-17.

Fransz, P., Soppe, W., and Schubert, I. (2003). Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 11(3):227-240.

Fransz, P. F., Armstrong, S., de Jong, J. H., Parnell, L. D., van Drunen, C., Dean, C., Zabel, P., Bisseling, T., and Jones, G. H. (2000). Integrated cytogenetic map
of chromosome arm 4s of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell, 100(3):367-376.

Fransz, P. F. and de Jong, J. (2002). Chromatin dynamics in plants. Current Opinion in Plant Biology, 5(6):560-567.

Fridkin, A., Penkner, A., Jantsch, V., and Gruenbaum, Y. (2009). SUN-domain and KASH-domain proteins during development, meiosis and disease. Cellular and Molecular Life Sciences, 66(9):1518-1533.

Friederichs, J. M., Gardner, J. M., Smoyer, C. J., Whetstine, C. R., Gogol, M., Slaughter, B. D., and Jaspersen, S. L. (2012). Genetic analysis of mps3 sun domain mutants in Saccharomyces cerevisiae reveals an interaction with the sun-like protein slp1. G3: Genes|Genomes|Genetics, 2(12):1703-1718.

Fussner, E., Ching, R. W., and Bazett-Jones, D. P. (2011). Living without 30nm chromatin fi ers. Trends in Biochemical Sciences, 36(1):1-6.

Gant, T. M., Harris, C. A., and Wilson, K. L. (1999). Roles of lap2 proteins in nuclear assembly and dna replication: truncated lap2 β proteins alter lamina assembly envelope formation, nuclear size, and dna replication efficiency in xenopus laevis extracts. The Journal of CellBiology, 144(6):1083-1096.

Gardner, J. M., Smoyer, C. J., Stensrud, E. S., Alexander, R., Gogol, M., Wiegraebe, W., and Jaspersen, S. L. (2011). Targeting of the SUN protein Mps3 to the inner nuclear membrane by the histone variant H2a.Z. The Journal of Cell Biology, 193(3):489-507.

Gaut, B. S. and Ross-Ibarra, J. (2008). Selection on major components of angiosperm genomes. Science, 320(5875):484-486.

Gerace, L. and Huber, M. D. (2012). Nuclear lamina at the crossroads of the cytoplasm and nucleus. Journal of Structural Biology, 177(1):24-31.

Gerlach, W. L. and Bedbrook, J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Research, 7(7):1869-1885.

Gerlitz, G. and Bustin, M. (2011). The role of chromatin structure in cell migration. Trends in cell biology, 21(1):6-11.

Geyer, P. K., Vitalini, M. W., and Wallrath, L. L. (2011). Nuclear organization: taking a position on gene expression. Current Opinion in Cell Biology, 23(3):354359.

Goldberg, M. W., Fiserova, J., Huttenlauch, I., and Stick, R. (2008a). A new model for nuclear lamina organization. Biochemical Society Transactions, 36(Pt 6):1339-1343.

Goldberg, M. W., Huttenlauch, I., Hutchison, C. J., and Stick, R. (2008b). Filaments made from A- and B-typelamins diff in structure and organization. Journal of Cell Science, 121(Pt 2):215-225.

Gonzalez, D., Malgouyres, R., Esbelin, H.-A., and Samir, C.(2013). Convergence of level-wise convolution diff ntial estimators. In Gonzalez-Diaz, R., Jimenez, M.-J., and Medrano, B., editors, Discrete Geometry for Computer Imagery, number 7749 in Lecture Notes in Computer Science, pages 335-346. Springer Berlin Heidelberg.

Gonzalez, R. and Woods, R. (1992). Digital image processing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Görlich, D. and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annual Review of Cell and Developmental Biology, 15:607-660.

Goto, C., Tamura, K., Fukao, Y., Shimada, T., and Hara-Nishimura, I. (2014). The novel nuclear envelope protein kaku4 modulates nuclear morphology in arabidopsis. The Plant Cell, 26(5):2143-2155.

Graumann, K. (2014). Evidence for LINC1-SUN associations at the plant nuclear periphery. PLoS ONE, 9(3):e93406.

Graumann, K. and Evans, D. E. (2010). Plant SUN domain proteins: components of putative plant LINC complexes? Plant Signaling \& Behavior, 5(2):154-156.

Graumann, K. and Evans, D. E. (2011). Nuclear envelope dynamics during plant cell division suggest common mechanisms between kingdoms. The Biochemical Journal, 435(3):661-667.

Graumann, K., Irons, S. L., Runions, J., and Evans, D. E. (2007). Retention and mobility of the mammalian lamin B receptor in the plant nuclear envelope. Biology of the Cell/Under the Auspices of the European Cell Biology Organization, 99(10):553-562.

Graumann, K., Runions, J., and Evans, D. E. (2010). Characterization of SUN-domain proteins at the higher plant nuclear envelope. The Plant Journal, 61(1):134-144.

Graumann, K., Vanrobays, E., Tutois, S., Probst, A. V., Evans, D. E., and Tatout, C. (2014). Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. Journal of Experimental Botany, page eru368.

Gregory, T. R. (2005). The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Annals of Botany, 95(1):133-146.

Grob, S., Schmid, M. W., and Grossniklaus, U. (2014). Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the fl locus of Drosophila. Molecular Cell, 55(5):678-693.

Guilak, F. (1995). Compression-induced changes in the shape and volume of the chondrocyte nucleus. Journal of Biomechanics, 28(12):1529-1541.

Guilly, M. N., Kolb, J. P., Gosti, F., Godeau, F., and Courvalin, J. C. (1990). Lamins A and C are not expressed at early stages of human lymphocyte diff tiation. Experimental Cell Research, 189(1):145-147.

Guimil, S. and Dunand, C. (2007). Cell growth and diff tiation in Arabidopsis epidermal cells. Journal of Experimental Botany, 58(14):3829-3840.

Habermann, F. A., Cremer, M., Walter, J., Kreth, G., Von Hase, J., Bauer, K., Wienberg, J., Cremer, C., Cremer, T., and Solovei, I. (2001). Arrangements of macro- and microchromosomes in chicken cells. Chromosome research an international journal on the molecular supramolecular and evolutionary aspects of chromosome biology, 9(7):569-584.

Hancock, R. (2004). A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. JournalofStructural Biology, 146(3):281290.

Haque, F., Mazzeo, D., Patel, J. T., Smallwood, D. T., Ellis, J. A., Shanahan, C. M., and Shackleton, S. (2010). Mammalian sun protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. Journal of Biological Chemistry, 285(5):3487-3498.

Harris, H. (1967). The reactivation of the red cell nucleus. Journal of Cell Science, 2(1):23-28.

Heitz, E.(1928). Dasheterochromatin der moose. Jahrb WissBotanik 69: 762818.
Hildebrand, T. and Rüegsegger, P. (1997). A new method for the modelindependent assessment of thickness in three-dimensional images. Journal of Microscopy, 185(1):67-75.

Hirochika, H., Okamoto, H., and Kakutani, T. (2000). Silencing of retrotransposons in arabidopsis and reactivation by the ddm1 mutation. The Plant Cell, 12(3):357369.

Ho, C. Y. and Lammerding, J. (2012). Lamins at a glance. Journal of Cell Science, 125(Pt 9):2087-2093.

Hoffmann, K., Sperling, K., Olins, A. L., and Olins, D. E. (2007). The granulocyte nucleus and lamin B receptor: avoiding the ovoid. Chromosoma, 116(3):227-235.

Horn, H. F., Kim, D. I., Wright, G. D., Wong, E. S. M., Stewart, C. L., Burke, B., and Roux, K. J. (2013). A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. The Journal of Cell Biology, 202(7):1023-1039.

Horvitz, H. R. and Sulston, J. E. (1980). Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis Elegans. Genetics, 96(2):435454.

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J.-F., Clark, R. M., Fahlgren, N., Fawcett, J. A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J. D., Ossowski, S., Ottilar, R. P., Salamov, A. A., Schneeberger, K., Spannagl, M., Wang, X., Yang, L., Nasrallah, M. E., Bergelson, J., Carrington, J. C., Gaut, B. S., Schmutz, J., Mayer, K. F. X., Van de Peer, Y., Grigoriev, I. V., Nordborg, M., Weigel, D., and Guo, Y.-L. (2011). The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 43(5):476-481.

Husson, F., Josse, J., and Lê, P. (2009). FactoMineR, An R package dedicated to exploratory multivariate analysis.

Initiative, T. A. G. (2000). Analysis of the genome sequence of the fl wering plant Arabidopsis thaliana. Nature, 408(6814):796-815.

International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature, 436(7052):793-800.

Iwabuchi, K. and Takagi, S. (2008). How and why do plant nuclei move in response tolight? Plant Signaling \& Behavior, 3(4):266-268.

Jacob, Y., Feng, S., LeBlanc, C. A., Bernatavichute, Y. V., Stroud, H., Cokus, S., Johnson, L. M., Pellegrini, M., Jacobsen, S. E., and Michaels, S. D. (2009). ATXR5 and ATXR6 are H3k27 monomethyltransferases required for chromatin structure and gene silencing. Nature Structural \& Molecular Biology, 16(7):763-768.

Jacob, Y., Stroud, H., LeBlanc, C., Feng, S., Zhuo, L., Caro, E., Hassel, C., Gutierrez, C., Michaels, S. D., and Jacobsen, S. E. (2010). Regulation of heterochromatic DNA replication by histone H_{3} lysine 27 methyltransferases. Nature, 466(7309):987-991.

Jaillon, O., Aury, J.-M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., Choisne, N., Aubourg, S., Vitulo, N., Jubin, C., Vezzi, A., Legeai, F., Hugueney, P., Dasilva, C., Horner, D., Mica, E., Jublot, D., Poulain, J., Bruyére, C., Billault, A., Segurens, B., Gouyvenoux, M., Ugarte, E., Cattonaro, F., Anthouard, V., Vico, V., Fabbro, C. D., Alaux, M., Gaspero, G. D., Dumas, V., Felice, N., Paillard, S., Juman, I., Moroldo, M., Scalabrin, S., Canaguier, A., Clainche, I. L., Malacrida, G., Durand, E., Pesole, G., Laucou, V., Chatelet, P., Merdinoglu, D., Delledonne, M., Pezzotti, M., Lecharny, A., Scarpelli, C., Artiguenave, F., Pé, M. E., Valle, G., Morgante, M., Caboche, M., Adam-Blondon, A.-F., Weissenbach, J., Qutier, F., and Wincker, P. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161):463-467.

Janesick, J. R. (2001). Scientific charge-coupled devices. SPIE Press.
Janski, N., Masoud, K., Batzenschlager, M., Herzog, E., Evrard, J.-L., Houln, G., Bourge, M., Chabout, M.-E., and Schmit, A.-C. (2012). The GCP3-interacting proteins GIP1 and GIP2 are required for -tubulin complex protein localization, spindle integrity, and chromosomal stability. The Plant Cell, 24(3):1171-1187.

Jasencakova, Z., Meister, A., and Schubert, I. (2001). Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma, 110(2):83-92.

Jeong, S. Y., Rose, A., Joseph, J., Dasso, M., and Meier, I. (2005). Plant-specific mitotic targeting of RanGAP requires a functional WPP domain. The Plant Journal, 42(2):270-282.

Jevtić, P., Edens, L. J., Vuković, L. D., and Levy, D. L. (2014). Sizing and shaping the nucleus: mechanisms and significance. Current Opinion in Cell Biology, 28:1627.

Jevtić, P. and Levy, D. L. (2014). Mechanisms of nuclear size regulation in model systems and cancer. In Schirmer, E. C. and Heras, J. I. d. l., editors, CancerBiology and the Nuclear Envelope, number 773 in Advances in Experimental Medicine and Biology, pages 537-569. Springer New York.

Jiao, Y., Leebens-Mack, J., Ayyampalayam, S., Bowers, J. E., McKain, M. R., McNeal, J., Rolf, M., Ruzicka, D. R., Wafula, E., Wickett, N. J., Wu, X., Zhang, Y., Wang, J., Zhang, Y., Carpenter, E. J., Deyholos, M. K., Kutchan, T. M., Chanderbali, A. S., Soltis, P. S., Stevenson, D. W., McCombie, R., Pires, J. C., Wong, G. K.-S., Soltis, D. E., and dePamphilis, C. W. (2012). Agenome triplication associated with early diversification of the core eudicots. Genome Biology, 13(1):R3.

Jiao, Y., Wickett, N. J., Ayyampalayam, S., Chanderbali, A. S., Landherr, L., Ralph, P. E., Tomsho, L. P., Hu, Y., Liang, H., Soltis, P. S., Soltis, D. E., Clifton, S. W., Schlarbaum, S. E., Schuster, S. C., Ma, H., Leebens-Mack, J., and dePamphilis, C. W. (2011). Ancestral polyploidy in seed plants and angiosperms. Nature, 473(7345):97-100.

Jorgensen, P., Edgington, N. P., Schneider, B. L., Rupe, I., Tyers, M., and Futcher, B. (2007). The size of the nucleus increases as yeast cells grow. Molecular Biology of the Cell, 18(9):3523-3532.

Kasper, L. H., Brindle, P. K., Schnabel, C. A., Pritchard, C. E., Cleary, M. L., and van Deursen, J. M. (1999). CREB binding protein interacts with nucleoporinspecific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Molecular and Cellular Biology, 19(1):764-776.

Ketelaar, T., Faivre-Moskalenko, C., Esseling, J. J., de Ruijter, N. C. A., Grierson, C. S., Dogterom, M., and Emons, A. M. C. (2002). Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. The Plant Cell, 14(11):2941-2955.

Khatau, S. B., Hale, C. M., Stewart-Hutchinson, P. J., Patel, M. S., Stewart, C. L., Searson, P. C., Hodzic, D., and Wirtz, D. (2009). A perinuclear actin cap regulates nuclear shape. Proceedings of the National Academy of Sciences of the United States of America, 106(45):19017-19022.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4):R36.

Kim, D.-H., Li, B., Si, F., Phillip, J. M., Wirtz, D., and Sun, S. X. (2015). Volume regulation and shape bifurcation in the cell nucleus. Journal of Cell Science, 128(18):3375-3385.

Kiseleva, E., Morozova, K. N., Voeltz, G. K., Allen, T. D., and Goldberg, M. W. (2007). Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth. Journal of Structural Biology, 160(2):224-235.

Krüger, A., Batsios, P., Baumann, O., Luckert, E., Schwarz, H., Stick, R., Meyer, I., and Gräf, R. (2012). Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Molecular Biology of the Cell, 23(2):360-370.

Kyte, J. and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1):105-132.

Lammerding, J., Fong, L. G., Ji, J. Y., Reue, K., Stewart, C. L., Young, S. G., and Lee, R. T. (2006). Lamins A and C but not lamin b1 regulate nuclear mechanics. Journal of Biological Chemistry, 281(35):25768-25780.

Layat, E., Sáez-Vásquez, J., and Tourmente, S. (2012). Regulation of Pol ITranscribed 45 s rDNA and Pol III-Transcribed 5s rDNA in Arabidopsis. Plant and Cell Physiology, 53(2):267-276.

Lehner, C. F., Stick, R., Eppenberger, H. M., and Nigg, E. A. (1987). Differential expression of nuclear lamin proteins during chicken development. The Journal of Cell Biology, 105(1):577-587.

Letunic, I. and Bork, P. (2011). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39(suppl 2):W475-W478.

Levy, D. L. and Heald, R. (2010). Nuclear size is regulated by importin α and ntf2 inxenopus. Cell, 143(2):288-298.

Li, B., Carey, M., and Workman, J. L. (2007). The role of chromatin during transcription. Cell, 128(4):707-719.

Lin, F. and Worman, H. J. (1993). Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. The Journal of Biological Chemistry, 268(22):16321-16326.

Lindeman, R. E. and Pelegri, F. (2012). Localized products of futile cycle/lrmp promote centrosome-nucleus attachment in the zebrafish zygote. Current Biology, 22(10):843-851.

Liu, C. and Weigel, D. (2015). Chromatin in 3d: progress and prospects for plants. Genome Biology, 16(1):170.

Louwers, M., Bader, R., Haring, M., van Driel, R., de Laat, W., and Stam, M. (2009). Tissue- and expression level-specific chromatin looping at maize b1 epialleles. The Plant Cell, 21(3):832-842.

Lu, W., Schneider, M., Neumann, S., Jaeger, V.-M., Taranum, S., Munck, M., Cartwright, S., Richardson, C., Carthew, J., Noh, K., Goldberg, M., Noegel, A. A., and Karakesisoglou, I. (2012). Nesprin interchain associations control nuclear size. Cellular and Molecular Life Sciences, 69(20):3493-3509.

Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648):251-260.

Lüke, Y., Zaim, H., Karakesisoglou, I., Jaeger, V. M., Sellin, L., Lu, W., Schneider, M., Neumann, S., Beijer, A., Munck, M., Padmakumar, V. C., Gloy, J., Walz, G., and Noegel, A. A. (2008). Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. Journal of Cell Science, 121(11):1887-1898.

Lukosz, W. and Marchand, M. (1963). Optischen abbildung unter überschreitung der beugungsbedingten auflösungsgrenze. Optica Acta: International Journal of Optics, 10(3):241-255.

Luthra, R., Kerr, S. C., Harreman, M. T., Apponi, L. H., Fasken, M. B., Ramineni, S., Chaurasia, S., Valentini, S. R., and Corbett, A. H. (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. The Journal of Biological Chemistry, 282(5):3042-3049.

Mahy, N. L., Perry, P. E., Gilchrist, S., Baldock, R. A., and Bickmore, W. A. (2002). Spatial organization of active and inactive genes and noncoding DNA within chromosometerritories. The Journal of Cell Biology, 157(4):579-589.

Makova, K. D. and Hardison, R. C. (2015). The effects of chromatin organization on variation in mutation rates in the genome. Nature Reviews Genetics,16(4):213223.

Malone, C. J., Fixsen, W. D., Horvitz, H. R., and Han, M. (1999). UNC-84 localizes tothenuclearenvelope and is required for nuclearmigration and anchoring during C. elegans. Development, 126(14):3171-3181.

Maluszynska, J. and Heslop-Harrison, J. (1991). Localization of tandemly repeated DMA sequences in Arabidopsis thaliana. The Plant Journal, 1(2):159-166.

Margalit, A., Brachner, A., Gotzmann, J., Foisner, R., and Gruenbaum, Y. (2007). Barrier-to-autointegration factor a BAFfling little protein. Trends in Cell Biology, 17(4):202-208.

Martinez-Zapater, J. M., Estelle, M. A., and Somerville, C. R. (1986). A highly repeated DNA sequence in Arabidopsis thaliana. Molecular and General Genetics MGG, 204(3):417-423.

Martini, F. J. and Valdeolmillos, M. (2010). Actomyosin contraction at the cell rear drives nuclear translocation in migrating cortical interneurons. The Journal of Neuroscience, 30(25):8660-8670.

Masoud, K., Herzog, E., Chabout, M.-E., and Schmit, A.-C. (2013). Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. The Plant Journal, 75(2):245-257.

Melaragno, J. E., Mehrotra, B., and Coleman, A. W. (1993). Relationship between endopolyploidy and cell size in epidermal tissue of arabidopsis. The Plant Cell, 5(11):1661-1668.

Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Marchal-Drouard, L., Marshall, W. F., Qu, L.-H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C.L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernández, E., Fukuzawa, H., González-Ballester, D., González-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J.-P., Riaño-Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C.-J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martnez, D., Ngau, W. C. A., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S., and Grossman, A. R. (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science (New York, N.Y.), 318(5848):245-250.

Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J. H., Senin, P., Wang, W., Ly, B. V., Lewis, K. L. T., Salzberg, S. L., Feng, L., Jones, M. R., Skelton, R. L., Murray, J. E., Chen, C., Qian, W., Shen, J., Du, P., Eustice, M., Tong, E., Tang, H., Lyons, E., Paull, R. E., Michael, T. P., Wall, K., Rice, D. W., Albert, H., Wang, M.-L., Zhu, Y. J., Schatz, M., Nagarajan, N., Acob, R. A., Guan, P., Blas, A., Wai, C. M., Ackerman, C. M., Ren, Y., Liu, C., Wang, J., Wang, J., Na, J.-K., Shakirov, E. V., Haas, B., Thimmapuram, J., Nelson, D., Wang, X., Bowers, J. E., Gschwend, A. R., Delcher, A. L., Singh, R., Suzuki, J. Y., Tripathi, S., Neupane, K., Wei, H., Irikura, B., Paidi, M., Jiang, N., Zhang, W., Presting,
G., Windsor, A., Navajas-Prez, R., Torres, M. J., Feltus, F. A., Porter, B., Li, Y., Burroughs, A. M., Luo, M.-C., Liu, L., Christopher, D. A., Mount, S. M., Moore, P. H., Sugimura, T., Jiang, J., Schuler, M. A., Friedman, V., Mitchell-Olds, T., Shippen, D. E., dePamphilis, C. W., Palmer, J. D., Freeling, M., Paterson, A. H., Gonsalves, D., Wang, L., and Alam, M. (2008). The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 452(7190):991-996.

Ming, R., VanBuren, R., Liu, Y., Yang, M., Han, Y., Li, L.-T., Zhang, Q., Kim, M.-J., Schatz, M. C., Campbell, M., Li, J., Bowers, J. E., Tang, H., Lyons, E., Ferguson, A. A., Narzisi, G., Nelson, D. R., Blaby-Haas, C. E., Gschwend, A. R., Jiao, Y., Der, J. P., Zeng, F., Han, J., Min, X. J., Hudson, K. A., Singh, R., Grennan, A. K., Karpowicz, S. J., Watling, J. R., Ito, K., Robinson, S. A., Hudson, M. E., Yu, Q., Mockler, T. C., Carroll, A., Zheng, Y., Sunkar, R., Jia, R., Chen, N., Arro, J., Wai, C. M., Wafula, E., Spence, A., Han, Y., Xu, L., Zhang, J., Peery, R., Haus, M. J., Xiong, W., Walsh, J. A., Wu, J., Wang, M.-L., Zhu, Y. J., Paull, R. E., Britt, A. B., Du, C., Downie, S. R., Schuler, M. A., Michael, T. P., Long, S. P., Ort, D. R., Schopf, J. W., Gang, D. R., Jiang, N., Yandell, M., dePamphilis, C. W., Merchant, S. S., Paterson, A. H., Buchanan, B. B., Li, S., and Shen-Miller, J. (2013). Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 14(5):R41.

Minguez, A. and Espina, S. M. D. d. l. (1993). Immunological characterization of lamins in the nuclear matrix of onion cells. Journal of Cell Science, 106(1):431-439.

Mitcham, J. L., Parnet, P., Bonnert, T. P., Garka, K. E., Gerhart, M. J., Slack, J. L., Gayle, M. A., Dower, S. K., and Sims, J. E. (1996). T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. Journal of Biological Chemistry, 271(10):5777-5783.

Miyoshi, D. and Sugimoto, N. (2008). Molecular crowding effects on structure and stability of DNA. Biochimie, 90(7):1040-1051.

Mizuguchi, T., Fudenberg, G., Mehta, S., Belton, J.-M., Taneja, N., Folco, H. D., FitzGerald, P., Dekker, J., Mirny, L., Barrowman, J., and Grewal, S. I. S. (2014). Cohesin-dependent globules and heterochromatin shape 3d genome architecture in S. pombe. Nature, 516(7531):432-435.

Morimoto, A., Shibuya, H., Zhu, X., Kim, J., Ishiguro, K.-i., Han, M., and Watanabe, Y. (2012). A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis. The Journal of Cell Biology, 198(2):165-172.

Murphy, S. P. and Bass, H. W. (2012). The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. Journal of Cell Science, 125(Pt 15):3681-3690.

Murphy, S. P., Simmons, C. R., and Bass, H. W. (2010). Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the
existence of two divergent classes of SUN proteins in plants. BMC Plant Biology, 10(1):269.

Nagai, R. (1993). Regulation of intracellular movements in plant cells by environmental stimuli. in International Review of Cytology eds Jeon K. W., Jarvik J., editors. (San Diego, CA: Academic Press;) 251310.

Nagaki, K., Talbert, P. B., Zhong, C. X., Dawe, R. K., Henikoff, S., and Jiang, J. (2003). Chromatin immunoprecipitation reveals that the 180 -bp satellite repeat is the key functional dna element of Arabidopsis thaliana centromeres. Genetics, 163(3):1221-1225.

Neil, M. A., Juskaitis, R., and Wilson, T. (1997). Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics Letters, 22(24):1905-1907.

Neumann, F. R. and Nurse, P. (2007). Nuclear size control in fi yeast. The Journal of Cell Biology, 179(4):593-600.

Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., Gribnau, J., Barillot, E., Blüthgen, N., Dekker, J., and Heard, E. (2012). Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485(7398):381-385.

Nyquist, H. (1928). Certain topics in telegraph transmission theory. American Institute of Electrical Engineers, Transactions of the, 47(2):617-644.

Nystedt, B., Street, N. R., Wetterbom, A., Zuccolo, A., Lin, Y.-C., Scofield, D. G., Vezzi, F., Delhomme, N., Giacomello, S., Alexeyenko, A., Vicedomini, R., Sahlin, K., Sherwood, E., Elfstrand, M., Gramzow, L., Holmberg, K., Hällman, J., Keech, O., Klasson, L., Koriabine, M., Kucukoglu, M., Käller, M., Luthman, J., Lysholm, F., Niittylä, T., Olson, A., Rilakovic, N., Ritland, C., Rosselló, J. A., Sena, J., Svensson, T., Talavera-López, C., Theien, G., Tuominen, H., Vanneste, K., Wu, Z.-Q., Zhang, B., Zerbe, P., Arvestad, L., Bhalerao, R., Bohlmann, J., Bousquet, J., Garcia Gil, R., Hvidsten, T. R., de Jong, P., MacKay, J., Morgante, M., Ritland, K., Sundberg, B., Lee Thompson, S., Van de Peer, Y., Andersson, B., Nilsson, O., Ingvarsson, P. K., Lundeberg, J., and Jansson, S. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature, 497(7451):579-584.

Oda, Y. and Fukuda, H. (2011). Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. The Plant Journal, 66(4):629641.

Olins, A. L., Zwerger, M., Herrmann, H., Zentgraf, H., Simon, A. J., Monestier, M., and Olins, D. E. (2008). The human granulocyte nucleus: unusual nuclear envelope and heterochromatin composition. European Journal of Cell Biology, 87(5):279-290.

Otero, S., Desvoyes, B., and Gutierrez, C. (2014). Histone H3 dynamics in plant cell cycle and development. Cytogenetic and Genome Research, 143(1-3):114-124.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 9 (1): 6266.

Palenik, B., Grimwood, J., Aerts, A., Rouz, P., Salamov, A., Putnam, N., Dupont, C., Jorgensen, R., Derelle, E., Rombauts, S., Zhou, K., Otillar, R., Merchant, S. S., Podell, S., Gaasterland, T., Napoli, C., Gendler, K., Manuell, A., Tai, V., Vallon, O., Piganeau, G., Jancek, S., Heijde, M., Jabbari, K., Bowler, C., Lohr, M., Robbens, S., Werner, G., Dubchak, I., Pazour, G. J., Ren, Q., Paulsen, I., Delwiche, C., Schmutz, J., Rokhsar, D., Van de Peer, Y., Moreau, H., and Grigoriev, I. V. (2007). The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 104(18):7705-7710.

Parry, G. (2015). The plant nuclear envelope and regulation of gene expression. Journal of Experimental Botany, 66(6):1673-1685.

Pawar, V.(2015). Novel plant nuclearenvelope-associated coiled-coil proteins. PhD thesis, Oxford Brookes University, Oxford.

Pawley, J. B. (2006). Handbook Of Biological Confocal Microscopy. Springer.
Pearson, C. G. and Bloom, K. (2004). Dynamic microtubules lead the way for spindle positioning. Nature Reviews. Molecular Cell Biology, 5(6):481-492.

Pecinka, A. and Mittelsten Scheid, O. (2012). Stress-Induced Chromatin Changes: A Critical View on Their Heritability. Plant and Cell Physiology, 53(5):801-808.

Pecinka, A., Schubert, V., Meister, A., Kreth, G., Klatte, M., Lysak, M. A., Fuchs, J., and Schubert, I. (2004). Chromosome territory arrangement and homologous pairing in nuclei of Arabidopsis thaliana are predominantly random except for NOR-bearing chromosomes. Chromosoma, 113(5):258-269.

Pilot, F., Philippe, J.-M., Lemmers, C., Chauvin, J.-P., and Lecuit, T. (2006). Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation. Development, 133(4):711-723.

Poulet, A., Arganda-Carreras, I., Legland, D., Probst, A. V., Andrey, P., and Tatout, C. (2015). NucleusJ: an ImageJ plugin for quantifying 3d images of interphase nuclei. Bioinformatics (Oxford, England), 31(7):1144-1146.

Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). Fasttree 2 approximately maximum-likelihood trees for large alignments. PLoS ONE, 5(3):e9490.

Probst, A. V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nature Reviews MolecularCell Biology,10(3):192-206.

Probst, A. V., Fransz, P. F., Paszkowski, J., and Mittelsten Scheid, O. (2003). Two means of transcriptional reactivation within heterochromatin. The Plant Journal: For Cell and Molecular Biology, 33(4):743-749.

Project, A. G., Albert, V. A., Barbazuk, W. B., dePamphilis, C. W., Der, J. P., Leebens-Mack, J., Ma, H., Palmer, J. D., Rounsley, S., Sankoff, D., Schuster, S. C., Soltis, D. E., Soltis, P. S., Wessler, S. R., Wing, R. A., Albert, V. A., Ammiraju, J. S. S., Barbazuk, W. B., Chamala, S., Chanderbali, A. S., dePamphilis, C. W., Der, J. P., Determann, R., Leebens-Mack, J., Ma, H., Ralph, P., Rounsley, S., Schuster, S. C., Soltis, D. E., Soltis, P. S., Talag, J., Tomsho, L., Walts, B., Wanke, S., Wing, R. A., Albert, V. A., Barbazuk, W. B., Chamala, S., Chanderbali, A. S., Chang, T.-H., Determann, R., Lan, T., Soltis, D. E., Soltis, P. S., Arikit, S., Axtell, M. J., Ayyampalayam, S., Barbazuk, W. B., Burnette, J. M., Chamala, S., Paoli, E. D., dePamphilis, C. W., Der, J. P., Estill, J. C., Farrell, N. P., Harkess, A., Jiao, Y., Leebens-Mack, J., Liu, K., Mei, W., Meyers, B. C., Shahid, S., Wafula, E., Walts, B., Wessler, S. R., Zhai, J., Zhang, X., Albert, V. A., Carretero-Paulet, L., dePamphilis, C. W., Der, J. P., Jiao, Y., Leebens-Mack, J., Lyons, E., Sankoff, D., Tang, H., Wafula, E., Zheng, C., Albert, V. A., Altman, N. S., Barbazuk, W. B., Carretero-Paulet, L., dePamphilis, C. W., Der, J. P., Estill, J. C., Jiao, Y., Leebens-Mack, J., Liu, K., Mei, W., Wafula, E., Altman, N. S., Arikit, S., Axtell, M. J., Chamala, S., Chanderbali, A. S., Chen, F., Chen, J.-Q., Chiang, V., Paoli, E. D., dePamphilis, C. W., Der, J. P., Determann, R., Fogliani, B., Guo, C., Harholt, J., Harkess, A., Job, C., Job, D., Kim, S., Kong, H., Leebens-Mack, J., Li, G., Li, L., Liu, J., Ma, H., Meyers, B. C., Park, J., Qi, X., Rajjou, L., Burtet-Sarramegna, V., Sederoff R., Shahid, S., Soltis, D. E., Soltis, P. S., Sun, Y.-H., Ulvskov, P., Villegente, M., Xue, J.-Y., Yeh, T.-F., Yu, X., Zhai, J., Acosta, J. J., Albert, V. A., Barbazuk, W. B., Bruenn, R. A., Chamala, S., Kochko, A. d., dePamphilis, C. W., Der, J. P., Herrera-Estrella, L. R., Ibarra-Laclette, E., Kirst, M., Leebens-Mack, J., Pissis, S. P., Poncet, V., Schuster, S. C., Soltis, D. E., Soltis, P. S., and Tomsho, L. (2013). The Amborella Genome and the Evolution of Flowering Plants. Science, 342(6165):1241089.

Prüfert, K., Vogel, A., and Krohne, G. (2004). The lamin CxxM motif promotes nuclear membrane growth. Journal of Cell Science, 117(25):6105-6116.

Qian, P.,Hou, S., and Guo, G.(2009). Molecular mechanisms controlling pavement cell shape in Arabidopsis leaves. Plant Cell Reports, 28(8):1147-1157.

R Core Team (2013). R: A language and environment for statistical computing.
Rabl, C. (1885). Über zelltheilung.
rapa Genome Sequencing Project Consortium, T. B. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 43(10):1035-1039.

Reinsch, S. and Gonczy, P. (1998). Mechanisms of nuclear positioning. Journal of Cell Science, 111(16):2283-2295.

Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S.-i., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola, A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L.,

Blankenship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H., Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov, A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rombauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S.-H., Stueber, K., Theodoulou, F. L., Tu, H., Peer, Y. V. d., Verrier, P. J., Waters, E., Wood, A., Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski, R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008). The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319(5859):64-69.

Röber, R. A., Sauter, H., Weber, K., and Osborn, M. (1990). Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. Journal of Cell Science, 95 (Pt 4):587-598.

Ronneberger, O., Baddeley, D., Scheipl, F., Verveer, P. J., Burkhardt, H., Cremer, C., Fahrmeir, L., Cremer, T., and Joffe, B. (2008). Spatial quantitative analysis of fl tly labeled nuclear structures: problems, methods, pitfalls. Chromosome Research: An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 16(3):523-562.

Rosa, S., De Lucia, F., Mylne, J. S., Zhu, D., Ohmido, N., Pendle, A., Kato, N., Shaw, P., and Dean, C. (2013). Physical clustering of FLC alleles during Polycomb-mediated epigenetic silencing in vernalization. Genes \& Development, 27(17):1845-1850.

Rose, A. and Meier, I. (2001). A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proceedings of the National Academy of Sciences of the United States of America, 98(26):15377-15382.

Rosin, F. M., Watanabe, N., Cacas, J.-L., Kato, N., Arroyo, J. M., Fang, Y., May, B., Vaughn, M., Simorowski, J., Ramu, U., McCombie, R. W., Spector, D. L., Martienssen, R. A., and Lam, E. (2008). Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 55(3):514-525.

Rothballer, A. and Kutay, U. (2013). The diverse functional LINCs of the nuclear envelope to the cytoskeleton and chromatin. Chromosoma, 122(5):415-429.

Roudier, F., Teixeira, F. K., and Colot, V. (2009). Chromatin indexing in Arabidopsis: an epigenomictaleof tails and more. Trends in Genetics, 25(11):511-517.

Sáez-Vásquez, J. and Gadal, O. (2010). Genome organization and function: a view from yeast and Arabidopsis. Molecular Plant, 3(4):678-690.

Saito, T. and Toriwaki, J.-I. (1994). New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recognition, 27(11):1551-1565.

Sakamoto, Y. and Takagi, S. (2013). LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. Plant and Cell Physiology, 54(4):622-633.

Saksouk, N., Simboeck, E., and Djardin, J. (2015). Constitutive heterochromatin formation and transcription in mammals. Epigenetics \& Chromatin, 8:3.

Santos, A. P. and Shaw, P. (2004). Interphase chromosomes and the Rabl configuration: does genome size matter? Journal ofMicroscopy, 214(Pt2):201-206.

Sasaki, Y., Miyoshi, D., and Sugimoto, N. (2006). Effect of molecular crowding on DNA polymerase activity. Biotechnology Journal, 1(4):440-446.

Sauer, F. C. (1935). Mitosis in the neural tube. The Journal of Comparative Neurology, 62(2):377-405.

Schatten, G., Maul, G. G., Schatten, H., Chaly, N., Simerly, C., Balczon, R., and Brown, D. L. (1985). Nuclear lamins and peripheral nuclear antigens during fertilization and embryogenesis in mice and sea urchins. Proceedings of the National Academy of Sciences of the United States of America, 82(14):4727-4731.

Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010). A guide to superresolution fl microscopy. The Journal of Cell Biology, 190(2):165-175.

Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., FutrellGriggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C., and Jackson, S. A. (2010). Genome sequence of the palaeopolyploid soybean. Nature, 463(7278):178-183.

Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T. A., Minx, P., Reily, A. D., Courtney, L., Kruchowski, S. S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S. M., Belter, E., Du, F., Kim, K., Abbott, R. M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S. M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M. J., McMahan, L., Buren, P. V., Vaughn, M. W., Ying, K., Yeh, C.-T., Emrich, S. J., Jia, Y., Kalyanaraman, A., Hsia, A.-P., Barbazuk, W. B., Baucom, R. S., Brutnell, T. P., Carpita, N. C., Chaparro, C., Chia, J.-M., Deragon, J.-M., Estill, J. C., Fu, Y., Jeddeloh, J. A., Han, Y., Lee, H., Li, P., Lisch, D. R., Liu, S., Liu, Z., Nagel, D. H., McCann, M. C.,

SanMiguel, P., Myers, A. M., Nettleton, D., Nguyen, J., Penning, B. W., Ponnala, L., Schneider, K. L., Schwartz, D. C., Sharma, A., Soderlund, C., Springer, N. M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T. K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J. L., Dawe, R. K., Jiang, J., Jiang, N., Presting, G. G., Wessler, S. R., Aluru, S., Martienssen, R. A., Clifton, S. W., McCombie, W. R., Wing, R. A., and Wilson, R. K. (2009). The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 326(5956):1112-1115.

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7):671-675.

Schubert, V., Berr, A., and Meister, A. (2012). Interphase chromatin organisation in Arabidopsis nuclei: constraints versus randomness. Chromosoma, 121(4):369387.

Seo, H.-S., Blus, B. J., Jankovic, N. Z., and Blobel, G. (2013). Structure and nucleic acidbinding activity of the nucleoporin Nup157. Proceedingsofthe National Academy of Sciences of the United States of America, 110(41):16450-16455.

Sequeira-Mendes, J. and Gutierrez, C. (2015). Genome architecture: from linear organisation of chromatin to the 3 d assembly in the nucleus. Chromosoma.

Serra, J. (1983). Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando, FL, USA.

Serra, J. P. and Soille, P. (1994). Mathematical morphology and its applications to image processing. Kluwer Academic Publishers, Dordrecht, Boston.

Shannon, C. (1949). Communication in the Presence of Noise. Proceedings of the IRE, 37(1):10-21.

She, C., Liu, J., Diao, Y., Hu, Z., and Song, Y. (2007). The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. Journal of Genetics and Genomics, 34(5):437-448.

Shumaker, D. K., Dechat, T., Kohlmaier, A., Adam, S. A., Bozovsky, M. R., Erdos, M. R., Eriksson, M., Goldman, A. E., Khuon, S., Collins, F. S., Jenuwein, T., and Goldman, R. D. (2006). Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proceedings of the National Academy of Sciences, 103(23):8703-8708.

Shumaker, D. K., Lopez-Soler, R. I., Adam, S. A., Herrmann, H., Moir, R. D., Spann, T.P., and Goldman, R.D. (2005). Functions and dysfunctions of the nuclear lamin Ig-fold domain in nuclear assembly, growth, and EmeryDreifuss muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 102(43):15494-15499.

Simon, D. N. and Wilson, K. L. (2011). The nucleoskeleton as a genomeassociated dynamic'network of networks'. Nature Reviews. MolecularCell Biology, 12(11):695-708.

Simon, D. N. and Wilson, K. L. (2013). Partners and post-translational modifi tions of nuclear lamins. Chromosoma, 122(o):13-31.

Simon, L., Voisin, M., Tatout, C., and Probst, A. V. (2015). Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana. Frontiers in Plant Science, 6.

Slater, D. N., Rice, S., Stewart, R., Melling, S. E., Hewer, E. M., and Smith, J. H. F. (2005). Proposed Sheffi quantitative criteria in cervical cytology to assist the grading of squamous cell dyskaryosis, as the British Society for Clinical Cytologydefi require amendment. Cytopathology, 16(4):179-192.

Sohaskey, M. L., Jiang, Y., Zhao, J. J., Mohr, A., Roemer, F., and Harland, R.M. (2010). Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. The Journal of Cell Biology, 189(3):511-525.

Soppe, W. J. J., Jasencakova, Z., Houben, A., Kakutani, T., Meister, A., Huang, M. S., Jacobsen, S. E., Schubert, I., and Fransz, P. F. (2002). DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. The EMBO journal, 21(23):6549-6559.

Sosa, B. A., Kutay, U., and Schwartz, T. U. (2013). Structural insights into LINC complexes. Current Opinion in Structural Biology, 23(2):285-291.

Sosa, B. A., Rothballer, A., Kutay, U., and Schwartz, T. U. (2012). Linc complexes form by binding of three kash peptides to the interfaces of trimeric SUN proteins. Cell, 149(5):1035-1047.

Starr, D. A. (2009). A nuclear-envelopebridge positions nuclei and moves chromosomes. Journal of Cell Science, 122(5):577-586.

Steimer, A., Amedeo, P., Afsar, K., Fransz, P., Mittelsten Scheid, O., and Paszkowski, J. (2000). Endogenous targets of transcriptional gene silencing in Arabidopsis. The Plant Cell, 12(7):1165-1178.

Sugimoto-Shirasu, K., Roberts, G. R., Stacey, N. J., McCann, M. C., Maxwell, A., and Roberts, K. (2005). RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy-dependent cell growth. Proceedings of the National Academy of Sciences of the United States of America, 102(51):18736-18741.

Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., Stewart, C. L., and Burke, B. (1999). Loss of a-Type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. The Journal of Cell Biology, 147(5):913-920.

Sulston, J. E. and Horvitz, H. R. (1981). Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Developmental Biology, 82(1):41-55.

Taddei, A., Hediger, F., Neumann, F. R., Bauer, C., and Gasser, S. M. (2004). Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. The EMBO journal, 23(6):1301-1312.

Talavera, G. and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56(4):564-577.

Tamura, K., Fukao, Y., Iwamoto, M., Haraguchi, T., and Hara-Nishimura, I. (2010). Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. The Plant Cell, 22(12):4084-4097.

Tamura, K., Goto, C., and Hara-Nishimura, I. (2015). Recent advances in understanding plant nuclear envelope proteins involved in nuclear morphology. Journal of Experimental Botany, 66(6):1641-1647.

Tamura, K. and Hara-Nishimura, I. (2011). Involvement of the nuclear pore complexin morphology of the plant nucleus. Nucleus, 2(3):168-172.

Tamura, K. and Hara-Nishimura, I. (2013). The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 64(4):823-832.

Tamura, K., Iwabuchi, K., Fukao, Y., Kondo, M., Okamoto, K., Ueda, H., Nishimura, M., and Hara-Nishimura, I. (2013). Myosin XI-ilinks the nuclear membrane to the cytoskeleton to control nuclear movement and shape in Arabidopsis. Current Biology, 23(18):1776-1781.

Tanabe, H., Müller, S., Neusser, M., von Hase, J., Calcagno, E., Cremer, M., Solovei, I., Cremer, C., and Cremer, T. (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proceedings of the National Academy of Sciences, 99(7):4424-4429.

Tapley, E. C. and Starr, D. A. (2013). Connecting the nucleus to the cytoskeleton by SUNKASH bridges across the nuclear envelope. Current Opinion in Cell Biology, 25(1):57-62.

Tariq, M., Saze, H., Probst, A. V., Lichota, J., Habu, Y., and Paszkowski, J. (2003). Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proceedings of the National Academy of Sciences, 100(15):8823-8827.

Tatout, C., Evans, D. E., Vanrobays, E., Probst, A. V., and Graumann, K. (2014). The plant LINC complex at the nuclear envelope. Chromosome Research, 22(2):241-252.

Tessadori, F., Chupeau, M.-C., Chupeau, Y., Knip, M., Germann, S., van Driel, R., Fransz, P., and Gaudin, V. (2007a). Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dediff tiated Arabidopsis cells. Journal of Cell Science, 120(Pt 7):1200-1208.

Tessadori, F., Schulkes, R. K., Driel, R. v., and Fransz, P. (2007b). Lightregulated largescale reorganization of chromatin during the fl transition in Arabidopsis. The Plant Journal, 50(5):848-857.

Tessadori, F., van Zanten, M., Pavlova, P., Clifton, R., Pontvianne, F., Snoek, L. B., Millenaar, F. F., Schulkes, R. K., van Driel, R., Voesenek, L. A. C. J., Spillane, C., Pikaard, C. S., Fransz, P., and Peeters, A. J. M. (2009). Phytochrome B and histone deacetylase 6 control light-induced chromatin compaction in Arabidopsis thaliana. PLoS genetics, 5(9):e1000638.

The International Peach Genome Initiative, Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., Marroni, F., Zhebentyayeva, T., Dettori, M. T., Grimwood, J., Cattonaro, F., Zuccolo, A., Rossini, L., Jenkins, J., Vendramin, E., Meisel, L. A., Decroocq, V., Sosinski, B., Prochnik, S., Mitros, T., Policriti, A., Cipriani, G., Dondini, L., Ficklin, S., Goodstein, D. M., Xuan, P., Fabbro, C. D., Aramini, V., Copetti, D., Gonzalez, S., Horner, D. S., Falchi, R., Lucas, S., Mica, E., Maldonado, J., Lazzari, B., Bielenberg, D., Pirona, R., Miculan, M., Barakat, A., Testolin, R., Stella, A., Tartarini, S., Tonutti, P., Ars, P., Orellana, A., Wells, C., Main, D., Vizzotto, G., Silva, H., Salamini, F., Schmutz, J., Morgante, M., and Rokhsar, D. S. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5):487-494.

Thompson, H. L., Schmidt, R., and Dean, C. (1996). Identification and distribution of seven classes of middle-repetitive dna in the Arabidopsis thaliana genome. Nucleic Acids Research, 24(15):3017-3022.

Tirichine, L., Andrey, P., Biot, E., Maurin, Y., and Gaudin, V. (2009). 3d fl cent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. Plant Methods, 5:11.

Towbin, B. D., Gonzalez-Sandoval, A., and Gasser, S. M. (2013). Mechanisms of heterochromatin subnuclear localization. Trends in Biochemical Sciences, 38(7):356-363.

Traas, J., Hülskamp, M., Gendreau, E., and Höfte, H. (1998). Endoreduplication and development: rule without dividing? Current Opinion in Plant Biology, 1(6):498-503.

True, L. D. and Jordan, C. D. (2008). The cancer nuclear microenvironment: interface between light microscopic cytology and molecular phenotype. Journal of Cellular Biochemistry, 104(6):1994-2003.

Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 22(9):836-845.

Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N., Ralph, S., Rombauts, S., Salamov, A., Schein, J., Sterck, L., Aerts, A., Bhalerao, R. R., Bhalerao, R. P., Blaudez, D., Boerjan, W., Brun, A., Brunner, A., Busov, V., Campbell, M., Carlson, J., Chalot, M., Chapman, J., Chen,
G.-L., Cooper, D., Coutinho, P. M., Couturier, J., Covert, S., Cronk, Q., Cunningham, R., Davis, J., Degroeve, S., Djardin, A., dePamphilis, C., Detter, J., Dirks, B., Dubchak, I., Duplessis, S., Ehlting, J., Ellis, B., Gendler, K., Goodstein, D., Gribskov, M., Grimwood, J., Groover, A., Gunter, L., Hamberger, B., Heinze, B., Helariutta, Y., Henrissat, B., Holligan, D., Holt, R., Huang, W., Islam-Faridi, N., Jones, S., Jones-Rhoades, M., Jorgensen, R., Joshi, C., Kangasjärvi, J., Karlsson, J., Kelleher, C., Kirkpatrick, R., Kirst, M., Kohler, A., Kalluri, U., Larimer, F., Leebens-Mack, J., Lepl, J.-C., Locascio, P., Lou, Y., Lucas, S., Martin, F., Montanini, B., Napoli, C., Nelson, D. R., Nelson, C., Nieminen, K., Nilsson, O., Pereda, V., Peter, G., Philippe, R., Pilate, G., Poliakov, A., Razumovskaya, J., Richardson, P., Rinaldi, C., Ritland, K., Rouz, P., Ryaboy, D., Schmutz, J., Schrader, J., Segerman, B., Shin, H., Siddiqui, A., Sterky, F., Terry, A., Tsai, C.-J., Uberbacher, E., Unneberg, P., Vahala, J., Wall, K., Wessler, S., Yang, G., Yin, T., Douglas, C., Marra, M., Sandberg, G., Peer, Y. V. d., and Rokhsar, D. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. \& Gray). Science, 313(5793):1596-1604.

Tzur, Y. B., Margalit, A., Melamed-Book, N., and Gruenbaum, Y. (2006). Matefin/SUN-1 is a nuclear envelope receptor for CED-4 during Caenorhabditis elegans apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 103(36):13397-13402.

Ulbert, S., Antonin, W., Platani, M., and Mattaj, I. W. (2006). The inner nuclear membrane protein Lem2 is critical for normal nuclear envelope morphology. FEBS Letters, 580(27):6435-6441.

Vaillant, I., Tutois, S., Jasencakova, Z., Douet, J., Schubert, I., and Tourmente, S. (2008). Hypomethylation and hypermethylation of the tandem repetitive 5 s rRNA genes in Arabidopsis. The Plant Journal: For Cell and Molecular Biology, 54(2):299-309.

Van de Vosse, D. W., Wan, Y., Lapetina, D. L., Chen, W.-M., Chiang, J.-H., Aitchison, J. D., and Wozniak, R. W. (2013). A role for the nucleoporin Nup17op in chromatin structure and gene silencing. Cell, 152(5):969-983.
van Driel, R. and Fransz, P. (2004). Nuclear architecture and genome functioning in plants and animals: what can we learn from both? Experimental Cell Research, 296(1):86-90.
van Zanten, M., Koini, M. A., Geyer, R., Liu, Y., Brambilla, V., Bartels, D., Koornneef, M., Fransz, P., and Soppe, W. J. J. (2011). Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences of the United States of America, 108(50):20219-20224.

Vanrobays, E., Thomas, M., and Tatout, C. (2013). Heterochromatin positioning and nuclear architecture. In Evans, D. E., Graumann, K., and Bryant, J. A., editors, Annual Plant Reviews, pages 157-190. John Wiley \& Sons Ltd.

Varas, J., Graumann, K., Osman, K., Pradillo, M., Evans, D. E., Santos, J. L., and Armstrong, S. J. (2015). Absence of SUN1 and SUN2 proteins in Arabidopsisthaliana leads to a delay in meiotic progression and defects in synapsis and recombination. The Plant Journal, 81(2):329-346.

Vasnier, C., Muyt, A. d., Zhang, L., Tess, S., Kleckner, N. E., Zickler, D., and Espagne, E. (2014). Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids. Proceedings of the National Academy of Sciences, 111(38):E4015-E4023.

Versaevel, M., Grevesse, T., and Gabriele, S. (2012). Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nature Communications, 3:671.

Vigouroux, C., Auclair, M., Dubosclard, E., Pouchelet, M., Capeau, J., Courvalin, J.C., and Buendia, B.(2001). Nuclear envelope disorganizationinfi from lipodystrophic patients with heterozygous R482q/W mutations in the lamin A/C gene. Journal of Cell Science, 114(Pt 24):4459-4468.

Voeltz, G. K., Prinz, W. A., Shibata, Y., Rist, J. M., and Rapoport, T. A. (2006). A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum. Cell, 124(3):573-586.

Wang, H., Dittmer, T. A., and Richards, E. J. (2013). Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biology, 13(1):200.

Wang, H., Liu, R., Wang, J., Wang, P., Shen, Y., and Liu, G. (2014). The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. Plant Cell Reports, 33(5):819-828.

Webster, M., Witkin, K. L., and Cohen-Fix, O. (2009). Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. Journal of Cell Science, 122(10):1477-1486.

Weiss, P. and Garber, B. (1952). Shape and movement of mesenchyme cells as functions of the physical structure of the medium: contributions to a quantitative morphology. Proceedings of the National Academy of Sciences ofthe United States of America, 38(3):264-280.

Wright, S. I., Nowell, M. M., de Kloe, R., Camus, P., and Rampton, T. (2015). Electron imaging with an EBSD detector. Ultramicroscopy, 148:132-145.

Wu, Q., Merchant, F., and Castleman, K. R. (2008). Microscope Image Processing. Academic Press.

Xiang, X. and Fischer, R. (2004). Nuclear migration and positioning in fi tous fungi. Fungal genetics and biology: FG \& B, 41(4):411-419.

Xiong, H., Rivero, F., Euteneuer, U., Mondal, S., Mana-Capelli, S., Larochelle, D., Vogel, A., Gassen, B., and Noegel, A. A. (2008). Dictyostelium Sun-1 connects the centrosome to chromatin and ensures genome stability. Traffic (Copenhagen, Denmark), 9(5):708-724.

Yelagandula, R., Stroud, H., Holec, S., Zhou, K., Feng, S., Zhong, X., Muthurajan, U. M., Nie, X., Kawashima, T., Groth, M., Luger, K., Jacobsen, S. E., and Berger, F. (2014). The histone variant H2a.W defi heterochromatin and promotes chromatin condensation in Arabidopsis. Cell, 158(1):98-109.

Zhang, H. and Dawe, R. K. (2011). Mechanisms of plant spindle formation. Chromosome Research, 19(3):335-344.

Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y. V., Pellegrini, M., Goodrich, J., and Jacobsen, S. E. (2007). Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLOS Biol, 5(5):e129.

Zhao, Q., Brkljacic, J., and Meier, I. (2008). Two distinct interacting classes of nuclear envelopeassociated coiled-coil proteins are required for the tissue-specific nuclear envelope targeting of arabidopsis rangap. The Plant Cell, 20(6):1639-1651.

Zhou, X., Graumann, K., Evans, D. E., and Meier, I. (2012). Novel plant sun-kash bridges are involved in RanGAP anchoring and nuclear shape determination. The Journal of Cell Biology, 196(2):203-211.

Zhou, X., Graumann, K., and Meier, I. (2015a). The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. Journal of Experimental Botany, 66(6):1649-1659.

Zhou, X., Graumann, K., Wirthmueller, L., Jones, J. D., and Meier, I. (2014). Identification of unique SUN-interacting nuclear envelope proteins with diverse functions in plants. The Journal of Cell Biology, 205(5):677-692.

Zhou, X., Groves, N. R., and Meier, I. (2015b). Plant nuclear shape is independently determined by the SUN-WIP-WIT2-myosin XI-i complex and CRWN1. Nucleus (Austin, Tex.), 6(2):144-153.

Zhou, X. and Meier, I. (2014). Efficient plant male fertility depends on vegetative nuclear movement mediated by two families of plant outer nuclear membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 111(32):11900-11905.

Zink, D., Fischer, A. H., and Nickerson, J. A. (2004). Nuclear structure in cancer cells. Nature Reviews Cancer, 4(9):677-687.

Appendix A

Quantitative analysis of nuclear parameters using 3D images

A. 1 NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei.

paper removed from electronic version: 3rd party copyright issue

A. 2 NucleusJ documentation

NucleusJ

This plugin is dedicated to researchers interested in nuclear shape and chromatin organization. Starting from image stacks, the nuclear boundary as well as nuclear bodies are segmented. As output, NucleusJ automatically measures 15 parameters quantifying shape and size of nuclei as well as intra-nuclear objects and the positioning of the objects within the nuclear volume.

The plugin contains several methods to process and analyze 8 grey level image stacks of nuclei. For each method two versions are available, one version to analyze one image at a time and another for processing in batch mode.

NucleusJ paper : Poulet A, Arganda-Carreras I, Legland D, Probst AV, Andrey P, Tatout C. NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei. Bioinformatics. 2015 Apr 1;31(7):1144-6. doi: 10.1093/bioinformatics/btu774. Epub 2014 Nov 20. PubMed PMID: 25416749.

Authors

Axel Poulet

- UMR CNRS 6293, INSERM U1103, Genetic, Reproduction and Development, Clermont-Ferrand, France.
- Department of Biological and Medical Sciences Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, United Kingdom

Philippe Andrey

- Modeling and Digital Imaging Group, Institut Jean-Pierre Bourgin, INRA Versailles, France.

Contact: axel.poulet@etudiant.univ-bpclermont.fr

Usage

This plugin aims to characterize the nucleus by nuclear morphology and chromatin organization parameters. It is divided into three main steps:

A. First step: Nucleus Segmentation

The well known Otsu method has been combined with the optimization of a shape parameter called sphericity ($36 \pi \times$ Volume $^{\wedge} 2 /$ Surface Area^3). The threshold value provided by the standard Otsu method is used as a starting point to test a range of thresholds, which eventually leads to the selection of the value for which the sphericity is maximal. The selected threshold is subsequently used to segment the nucleus.

The user first needs to enter the minimal and maximal volume of the object to be segmented. If no object is found the program creates a log file (named: logErrorSeg.txt) when the program runs in batch mode. If the program runs in single opened image mode, a graphical window displaying this information appears. Two alternatives are possible: run the segmentation process only (A.1) or run the segmentation process and an analysis of the results (A.2).

A. 1 Nucleus Segmentation

This method only performs the segmentation.

- Nucleus Segmentation: The process uses as input an opened image and the image result is displayed on the screen
- Nucleus Segmentation (batch): before running the plugin, a WorkDirectory dedicated to a given analysis should be created by the user. Raw images have then to be saved in a new sub-directory created by the user and named hereafter RawDataNucleus. The result of the segmentation process is saved automatically in a new sub-directory created by the plugin and called SegmentedDataNucleus.

When the user is using one of these two methods, a pop up window appears:

The user has to inform the following parameters:

Work directory and raw data choice:

All the following steps are performed within the WorkDirectory

1. Raw Data: choose the WorkDirectory which contains the raw images saved in a single sub-directory. In this documentation this sub-directory is called RawDataNucleus.
2. Output Directory: choose the WorkDirectory the results are to be stored. This directory must contain the RawDataNucleus sub-directory containing the raw images.

Voxel Calibration corresponds to the voxel calibration used during the image acquisition.

1. \underline{x} : width of voxel: default value $=1$
2. y : height of voxel: default value $=1$.
3. $\underline{\underline{x}}$: depth of voxel: default value $=1$.
4. unit: length unit $(\mu \mathrm{m}, \ldots)$: default value $=$ pixel.

Choose the minimum and maximum volume of the nucleus: only objects with a volume between the minimum and the maximum allowed volume will be segmented.

1. \quad minimum volume of the segmented nucleus: default value $=15$.
2. maximum volume of the segmented nucleus: default value $=2000$.

How many CPU: number of CPU (Central Processing Unit) used for image segmentation.
Once the START button is pressed, the program will create a new sub-directory called SegmentedDataNucleus which contains the image of the segmented nuclei.

A. 2 Nucleus Segmentation \& Analysis (2D and/or 3D)

This part of the plugin first performs the segmentation and then the analysis of the segmented nucleus. Several nuclear morphology parameters listed below are computed

Details of the 2D and 3D parameters generated by the plugin

The 2D nuclear morphology parameters are :

1. AspectRatio $=$ Major Axis $/$ Minor Axis (source: imageJ documentation). This is the 2 D equivalent of the elongation parameter above.
2. Circularity $=\left(4 \pi \times\right.$ Area $/$ Perimeter $\left.{ }^{2}\right)$, ranges from 0 (infinitely elongated polygon) to 1 (perfect circle) (source: imageJ documentation). This is the 2D equivalent of the sphericity parameter above.

These 2D parameters are computed on the slice where the nucleus reaches its largest area.

The 3D nuclear morphology parameters are:

1. Volume: number of voxels in the nucleus x physical voxel size.
2. Surface Area : sum of the areas of the voxel faces at the nuclear boundary.
3. Equivalent spherical radius: radius of a sphere which has the same volume as the nucleus.
4. Sphericity $=\left(36 \pi \times\right.$ Volume $^{2} /$ Surface Area $\left.{ }^{3}\right)$. This parameter takes its maximum value 1.0 for a sphere and decreases towards 0.0 as the shape surface becomes less regular.
5. Flatness $=$ length of intermediate axis/length of shortest axis.
6. Elongation $=$ length of longest axis/length of intermediate axis.

Single image or batch analysis modes

- Nucleus Segmentation \& Analysis: The process uses as input an opened image. The image results are displayed on the screen and results of the analysis are shown in the imageJ log window.
- Nucleus Segmentation \& Analysis (batch): before running the plugin, a WorkDirectory dedicated to a given analysis should be created. Raw images have then to be saved in a new sub-directory created by the user and named hereafter RawDataNucleus. The image results of the segmented nuclei are automatically saved in the SegmentedDataNucleus sub-directory in the main WorkDirectory. The results of the analysis are saved in two tabulated files named 3DNucleiParameters.tab and 2DNucleiParameters.tab.

When the user is using one of these two methods, a pop up window appears:

The parameters are the same than for Nucleus Segmentation.
2D or/and 3D analysis:

1. 2D and 3D: Two output files are created in the work directory 2DNucleiParameters.tab and 3DNucleiParameters.tab.
2. 3D: 3DNucleiParameters.tab is created in the work directory.
3. 2D: 2DNucleiParameters.tab is created in the work directory.

When you START, the program creates the sub-directory SegmentedDataNucleus which contains the image of the segmentation. This sub-directory, results file and log file are created in the main WorkDirectory (see also the example section of this documentation).

B.Second step: Chromocenter Segmentation

This step is based on the watershed algorithm (source: Beucher and Lantuéjoul, 1979; Vincent et Soille, 1991; Beucher et Meyer, 1993) adapted in 3D (ijpb plugins). First the algorithm automatically computes the intensity contrast of the regions detected by the 3D watershed (see Andrey et al, 2010). Second chromocenters are then be extracted by manual thresholding. Thus the chromocenter segmentation requires two steps which are described below.

Automatic Step

- Chromocenter Segmentation: The process takes as input the opened image and the image results are displayed on the screen.
- Chromocenter Segmentation (batch): tbefore running the plugin, a WorkDirectory dedicated to a given analysis should be created. Raw images have then to be saved in a new sub-directory created by the user and named hereafter RawDataNucleus. The result is saved in the ConstrastDataNucleus sub-directory in the WorkDirectory, with the same name as the raw images.
When the user is using one of these two methods, a pop up window appears:

Work directory and raw data choice

1. Raw Data: The WorkDirectory should contain 2 sub-directories:

- RawDataNucleus: containing the raw images of the nuclei.
- SegmentedDataNucleus: containing the segmented images of the nuclei.

1. Output Directory: choose the WorkDirectory the results are to be stored. This directory must contain the RawDataNucleus and SegmentedDataNucleus sub-directories. Hereafter, this new sub-directory is called ConstrastDataNucleus.

Voxel Calibration which corresponds to the voxel calibration used during the image acquistion:

1. \underline{x} : width of voxel: default value $=1$.
2. y : height of voxel: default value $=1$.
3. z : depth of voxel: default value $=1$.
4. unit: unit of this calibration ($\mu \mathrm{m}$, voxel...): default value = pixel.

When press START, the program creates the sub-directory ConstrastDataNucleus which contains the image of contrast regions. This sub-directory is created in the WorkDirectory.

Manual Step

First you have to create the SegmentedDataCc sub-directory in WorkDirectory.
Then to realize the segmented image of chromocenters, you can open three images on imageJ:

1. the raw image of nucleus.
2. the segmented image of nucleus.
3. the contrast image of the nucleus.

You can synchronize images with the ImageJ tool Synchronize Windows (Analyze>Tools>Synchronize Windows)

To define chromocenters, use the threshold tool (ImageJ menu: Image>Adjust>Threshold). Check the box Dark background and Stack histogram and chose the Over/Under option in the second drop-down list. Once you have chosen your threshold value push the button Apply.

Save the segmented chromocenters (Ctrl+S or ImageJ menu: File>Save or File>Save as) with the same name as the raw image of the nucleus in the directory SegmentedDataCc.

C.Last step: Chromocenter Analysis

This step allows computing of nuclear morphology and chromatin organization parameters (see Usage). The plugin can generate 2 output files, one for the nuclear characterization (NucAndCcParameters.tab) and one for the chromocenters organization CcParameters.tab).*Chromocenter Analysis: The process uses as an input 3 opened images:

1. the raw image of the nucleus.
2. the segmented image of the nucleus.
3. the segmented image of the chromocenter(s).

The results of the analysis are displayed in the imageJ log window.

- Chromocenters Analysis Pipeline (batch): the file(s) result(s) is (are) saved in the work directory.

Work directory and raw data choice

1. Raw Data: The main WorkDirectory must contain 3 sub-directories (a given image keeps the same name in all 3 sub-directories):

- RawDataNucleus containing the raw images of the nuclei
- SegmentedDataNucleus containing the segmented images of the nuclei
- SegmentedDataCc containing the segmented images of the chromocenters

2. Output Directory: cchoose the WorkDirectory the results are to be stored.

Voxel Calibration which corresponds to the voxel calibration used during the image acquistion:

1. \underline{x} : width of voxel: default value 1 .
2. y : height of voxel: default value 1 .
3. z : depth of voxel: default value 1.
4. unit: unit of this calibration ($\mu \mathrm{m}$, voxel...): default value pixel.

Type of Relative Heterochromatin Fraction RHF (Fransz et al., 2002). This parameter determines the ratio of heterochromatin within the nucleus. This ratio can be computed with the volume (total chromocenter volume / nuclear volume) or the intensity (total chromocenter intensity / nuclear intensity).

1. VolumeRHF and IntensityRHF: computation of the 2 RHF parameters.
2. IntensityRHF: computation of RHF by the intensity.
3. VolumeRHF: computation of RHF by the volume.

Result files of interest

1. Nucleus and chromocenter: Two output files are created in the WorkDirectory NucAndCcParameters.tab and CcParameters.tab.
2. Chromocenter: CcParameters.tab is created in the WorkDirectory.
3. Nucleus: NucAndCcParameters is created in the WorkDirectory.

Once the START button is pressed, the program will created the results file(s) in the WorkDirectory.

The nuclear characterization parameters contained in NucAndCcParameters.tab are:

1. The 3D parameters listed in A. 2 Nucleus Segmentation \& Analysis..
2. The 2D parameters listed in A. 2 Nucleus Segmentation \& Analysis..
3. NbCc : number of chromocenters in the nucleus.
4. VCcMean: mean volume of the chromocenter(s) per nucleus.
5. VCcTotal: total volume of the chromocenter(s) per nucleus.
6. DistanceBorderToBorderMean: mean distance of chromocenter(s) border to nuclear periphery.
7. DistanceBarycenterToBorderMean: mean distance of chromocenter(s) barycenter to nuclear periphery.
8. IntensityRHF = total chromocenter intensity / nuclear intensity.
9. VolumeRHF = total chromocenter volume / nuclear volume.

The chromatin organization parameters in CcParameters.tab are:

1. Volume: volume of chromocenter.
2. DistanceBorderToBorder: distance of the chromocenter border to nuclear periphery.
3. DistanceBarycenterToBorder: distance of the chromocenter barycenter to nuclear periphery.

Example

Example of image processing with NucleusJ

To analyze and characterize a raw image of a nucleus, you will have to run three different plugins.

The first step is the nuclear segmentation
At this step you can chose two plugins to detect the nucleus :

- 1. Nucleus Segmentation or Nucleus Segmenation (batch) : You obtain the image result of the segmentation.
- 2. Nucleus Segmentation \& Analysis or Nucleus Segmentation \& Analysis (batch). If you run the Nucleus Segmentation \& Analysis (batch) plugin you can have one or two result files, according to the option
chosen, 2DNucleiParameters.tab and3DNucleiParameters.tab. With this plugin you can have a log error file, which contains the name of the unsegmented images

The second step is the detection of the chromocenter

- 3. Plugin "Chromocenter Segmentation" generates an image representing the contrast of the analyzed regions. The results are stored in ContrastDataNucleus subdirectory. This image has to be thresholded manually to obtain the image of the segmented chromocenters and saved in the SegmentedDatadCc sub-directory with the same name as the raw image. This step could have been automatized but from our experience, automatic thresholding do not yield appropriate results. We kept that step as manual and relies on the expertise of the biologist. An example is given below: ImageJ menu at the top left, threshold tool on the right, 4 images at different stages of the process at the bottom. Green arrows indicate automatic processes while red arrow highlight the manual thresholding needed before the final analysis.

The last step is the analysis of nucleus and chromocenter

- 4. plugin "Chromocenter Analysis" creates one or two result files, according to the option chosen, NucAndCcParameters.tab and CcParameters.tab. This plugin can retrun a log error file, which contains the name of the images with a bad name.
Example of organization directory for batch analysis (recommended organization)

When starting an analysis, first the user should create a main WorkDirectory as well as a RawDataNucleus sub-directory.
Raw data from RawDataNucleus are used by Nucleus Segmentation and Nucleus Segmentation to create a new sub-directory called SegmentedDataNucleus.

Chromocenter Segmentation uses the images contain within
the RawDataNucleus and SegmentedDataNucleus to apply the 3D watershed transformation. Each new contrasted image are stored in a new sub-directory called ContrastDataNucleus.
Manual thresholding should be performed on the contrasted images contained within ContrastDataNucleus. Once the threshold is applied, the image should be stored in a new sub-directory created by the user and called SegmentedDatadCc.
Finally Chromocenter Analysis is applied on the segmented chromocenters.

The complete plugin leads to 4 sub-directories and 4 logout files. 2 logError files may also been produced. To help the user, an example is given below where:

- directories and sub-directories created by the user are in red
- sub-directories automatically created by NucleusJ are in blue.
- All the files in the work directory are created by NucleusJ.

Installation

Download (the latest NucleusJ .jar) in your ImageJ plugins folder and then restart ImageJ or simply apply the command Help>Refresh Menus.

Dependencies

- jama.jar : http://math.nist.gov/javanumerics/jama/Jama-1.0.3.jar
- MorphoLibJ_jar: download the latest version from https://github.com/ijpb/MorphoLibJ/releases
- imagescience.jar
http://www.imagescience.org/meijering/software/download/imagescience.jar

Download

The latest release (1.0.1) can be downloaded from here:

- nucleusj -1.0.1.jar

The source code can be found on GitHub.

Citation

Andrey, P., Kiêu, K., Kress, C., Lehmann, G., Tirichine, L., Liu, Z., Biot, E., Adenot, P.-G., Hue-Beauvais, C., Houba-Hérin, N., Duranthon, V., Devinoy, E., Beaujean, N., Gaudin, V., Maurin, Y.,Debey, P., 2010. Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei. PLoS Comput Biol 6, e1000853.

Beucher, S., Lantuéjoul, C., 1979. Use of watersheds in contour detection. International workshop on image processing, real-time edge and motion detection.

Beucher, S., Meyer, F., 1993. The morphological approach to segmentation: the watershed transformation. Mathematical Morphology in Image Processing.

Fransz, P., de Jong, J.H., Lysak, M., Castiglione, M.R., Schubert, I., 2002. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proceedings of the National Academy of Sciences 99, 14584-14589.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9, 62-66.

Vincent, L., Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 583-598.

Appendix B

Infl of nuclear morphology on chromocentre organisation in Arabidopsis thaliana

B. 1 Primers for genotyping and RT-qPCR

Table B.1: Primers for RT-qPCR and genotyping.

Purpose	Gene	FORWARD (F) and REVERSE (R) PRIMERS (5' to 3')
$\begin{gathered} \text { Genotyping of } \\ \text { wit1-1(GABI-Kat } \\ 470 \mathrm{E} 06) \\ \hline \end{gathered}$	At5g11390	CT383_Wit1: TTCTTCCATGTAGACAACATCCTG
		CT384_Wit1: CACCATGGAAACAGAAACGGAACATGATAGA
		GK_08409: ATATTGACCATCATACTCATTGC
$\begin{gathered} \text { Genotyping of } \\ \text { wit2-1(SALK } \\ \text { CS39986) } \\ \hline \end{gathered}$	At1g68910	CT379_WIT2_RP127765: ATC TTC TCG GAT GGA AGA AGC
		CT380_WIT2_WIT21425R:GTTGAGTTCAGAGTTTGTGGTAGA
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of wip1-1 (SAIL_390_A08)	At4g26455	CT425_SAIL390_A08_Wip1-1_LB:CAA CAC AGT TAG CCT TCA AGA
		CT425_SAIL390_A08_Wip1-1_LB:CAA CAC AGT TAG CCT TCA AGA
		LBR Sail: TAGCATCTGAATTTCATAACCAATCTCGATACAC
Genotyping ofwip2-1(SALK_052226)	At5g56210	CT286_wip2-1_SALK_052226_LP: GACCCAAACCGGTAAGAAGAG
		CT287_wip2-1_SALK_052226_RP: TGGTTCTTACTGGAATGGTGG
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of wip3-1(GABiKat line 459H07)	At3g13360	CT288_wip3-1_GABI_459H07_LP: TTGATTCGAGTCGCTTCTCTC
		CT289_wip3-1_GABI_459H07_RP: AATCAAGGTTCGTGTGCAAAC
		GK_08409: ATATTGACCATCATACTCATTGC
Genotyping ofsun1-1(SALK_123093c)	At5g04990	CT_SUN1_N668965_LP_5: CTGATCAAGATTCGTTCCCAC
		CT_SUN1_N668965_RP_6: TACCAGAGGCTTTCACATTGG
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of sun4-1 (SALK_022028)	At1g71360	CT133_SALK022028_LP: TTGAACCGGACAAAACTCTTG
		CT134_SALK022028_RP: GGGAATTTCACGGCTTTAAAC
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping ofsun5-1(SALK 126070C)	At4g23950	CT139_SALK126070_LP: TAGCAGTATCATGACCCAGCC
		CT140_SALK126070_RP: GTCAGGGAGTCTGAGTTTCCC
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of crwn1-1 (SALK 023383	At1g67230	CT_Linc1_N525347_LP_11: GCAACTTTGTCAAAGCAGAGG
		CT_Linc1_N525347_RP_12: AGTTTCCAATGCCTTCTCCTC
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of crwn2-1 (SALK_090952	At1g13220	CT_Linc2_N658767_LP_15: CTCGAACTGAGCCATTCTGTC
		CT_Linc2_N658767_RP_16: AGCTCATTGCTAGAGAAGGGG
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping of ddm1-10 (SALK_000590)	At5g66750	ddm1-10_For: CTTCTCCCAATGGACGAAAC
		ddm1-10_Rev: TCAATGCCAAAATTGCAGA
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping ofatxr5-1(SALK_130607C)	At5g09790	ATXR5_LP: TTTCTCTTGTCCGGTGAAATG
		ATXR5_RP: CCTGCAACAATCAGTGTGATG
		LBb1.3:ATTTTGCCGATTTCGGAAC
Genotyping ofatxr6-1(SAIL 181 D09)	At5g24340	ATXR6_LP: TTGAGATGAATCTGGAGACCG
		ATXR6_RP: AAACGACGACGTATTGGAGTG
		LBR Sail: TAGCATCTGAATTTCATAACCAATCTCGATACAC
$\begin{aligned} & \begin{array}{c} \text { Genotyping of } \\ \text { atrx-1 } \end{array} \\ & \text { SALK_025687 } \end{aligned}$	At1g08600	ATRX_Salk025687_LP2: TCTTCTGGCAGTTGAGAGCA
		ATRX_Salk025687_RP: GTCAAGCTCAGATGTTCCAGC
		LBb1.3:ATTTTGCCGATTTCGGAAC
$\begin{aligned} & \hline \text { Genotyping of } \\ & \quad \text { atrx-2 } \\ & \text { SAIL_861_B04 } \end{aligned}$	At1g08600	ATRX_Sail861B04_LP: AGGAACCCTCACAGCTTCTTC
		ATRX_Sail861B04_RP: TCACATGGATGGCTTCTTTTC
		LBR Sail: TAGCATCTGAATTTCATAACCAATCTCGATACAC
Genotyping of asf1b SALK 105822	At5g38110	LBb1.3:ATTTTGCCGATTTCGGAAC
		At5g38110 LP: GTG AATCCATTCCAGTTCGAG
		At5g38110RP: CAAAACCTTGGTAGGAGGCTC
$\begin{gathered} \text { Genotyping of } \\ \text { asf1a } \\ \text { GABI_200G05 } \\ \hline \end{gathered}$	At1g66740	At1g66740_LP: ATCTTGTTTGGCAACTGTTGG
		At1g66740_RP: ATCTCCTCTTTCTCCTTCCCC
		GK_08409: ATATTGACCATCATACTCATTGC
qRT-PCR of106B		AP394 106Bq-F:TCATTATGCTAGGTGGTTGA
		AP395 106Bq-R: GACAACAAGTTCATTAACCA
$\begin{gathered} \hline \text { qRT-PCR of } \\ \text { 180bp } \\ \hline \end{gathered}$		180(all)-F: ACCATCAAAGCCTTGAGAAGCA
		180(all)-R: CCGTATGAGTCTTTGTCTTTGTATCTTCT
$\begin{gathered} \hline \text { ChIP qPCR of } \\ \text { TSI } \end{gathered}$		TSIq-F: CTCTACCCTTTGCATTCATGAATCCTT
		TSIq-R: GATGGGCAAAAGCCCTCGGTTTTAAAATG
$\begin{gathered} \text { ChIP qPCR of } \\ \text { UBC28 } \end{gathered}$	At1g64230	At1964230-ChIP-F: TCATTGTTAACGGACCCAAAC
		At1g64230-ChIP-R: CCAGCTTCTCGCAGTAGACTC
$\begin{gathered} \text { ChIP qPCR of } \\ \text { HXK1 } \end{gathered}$	At4g29130	At4g29130_ChIP-F: AGGAGCTCGTCTCTCTGCTG
		At4g29130_ChlP-R: GCTCAAACAATCCACCATCC
$\begin{gathered} \text { ChIP qPCR of } \\ \text { UEV1C } \end{gathered}$	At2g36060	At2G36060_ChIP-F: GGTGACTGAAATGTGAATTTGC
		At2G36060_ChIP-R: ATGCAGCCATCTCCTTCTTC
qRT-PCR of SAND	At2g28390	SA-F: AACTCTATGCAGCATTTGATCCACT
		SA-R: TGATTGCATATCTTTATCGCCATC

B. 2 Results of statistical test between mutant and wild type

Table B.2: Guard cells comparison between wild type and LINC complex mutants.

3D parameters	col0_vs_crwn12		col0_vs_kaku4col0_vs_sun145col0_vs_wit 12		_vs_sun145col0_vs_wit\|12				col0_vs_wip123col p_vs_wifi			
	$<2.2 \mathrm{e}-16$		<2.2e-16		0.1337		0.4354		2.1e-05		0.165	
Volume	23.620	9.75189	25.29884	17.62202	25.29884	23.86394	25.29884	24.64538	23.62053	20.57520	22.67206	21.20887
Flatness	0.0339		0.0001231		0.8198		0.5539		0.8187		0.6665	
	1.300625	1.240564	1.278113	1.195224	1.278113	1.284035	1.278113	1.263713	1.300625	1.293467	1.357740	1.368812
Elongation	2.877e-10		0.00636		0.5756		0.02356		0.8374		0.0007642	
	1.246970	1.405999	$9409 \quad 1.211759$		$1.269409 \quad 1.257415$		$1.269409 \quad 1.221229$		$1.246970 \quad 1.242408$		1.2880621 .226442	
Sphericity	< 2.2e-16		<2.2e-16		0.0004957		$4.931 \mathrm{e}-07$		0.9067		0.0002892	
	0.19573	0.25312	0.1764610	0.23568	0.1764610	0.1935486	0.1764610	0.196266	0.1957387	0.1952628	0.18060610 .1934688	
RHFi	< 2.2e-16		<2.2e-16		0.0022		0.008028		0.5351		0.42	
	0.13844	0.25114	0.1345483	0.201730	0.1345	0.1540	0.1345483	0.1488698	0.1384451	0.1417610	0.14875320 .1453366	
RHFv	< 2.2e-16		$1.864 \mathrm{e}-09$		0.135		0.05486		0.00193		0.09708	
	0.07670	0.1274	0.07591	0.1075	0.07591	0.06976	0.075911	0.083254	0.07670329	0.065367	0.090560	0.085222
NbCc	< 2.2e-16		0.4943		0.04535		$4.013 \mathrm{e}-08$		0.02446		0.2147	
	4.991667	2.024390	4.834646	4.700935	4.834646	5.330357	4.834646	5.991228	4.991667	5.440000	5.217822	5.010526
Vcc Mean	$3.219 \mathrm{e}-15$		0.3128		0.001845		$2.462 \mathrm{e}-05$		$2.961 \mathrm{e}-16$		0.7111	
	02580.643		0.4021	0.3847	0.4021808	0.3316902	0.4021808	0.3339051	0.3625885	0.2462443	0.38212040 .3757047	
Vcc Total	$1.795 \mathrm{e}-15$		0.2342		$4.165 \mathrm{e}-07$		0.1751		$6.321 \mathrm{e}-11$		0.005509	
	1.761801	1.185465	1.852214	1.754193	1.852214	1.475200	1.852214	1.966536	1.761801	1.284644	1.901185	1.739440
Dstance Border	0.0001248		0.002587		$5.413 \mathrm{e}-13$		0.3259		0.0002019		0.02346	
	0.24023	0.27640	0.23352	0.2601	0.2335268	0.3027251	0.2335268	0.2414045	0.2402300	0.2706634	0.2049523	0.2194231
Distance Barycenter	8.704e-12		0.9763		0.01459		0.1546		0.0004821		0.3193	
	0.57248	0.680817	0.58851	0.58884	0.5885130	0.619497	0.5885130	0.5722164	0.5724800	0.5364228	0.5560909	0.5651065

Table B.3: Pavement cells comparison between wild type and LINC complex mutants.

3D parameters	col0_vs_crwn12		col0_vs_kaku4col		_vs_sun145col0_vs_wit\|2				col0_vs_wip123co 10 _vs_wifi			
Volume	$1.273 \mathrm{e}-08$		1.324e-07		8.752e-05		0.3678		0.0001078		0.04188	
	138.63486	76.71158	130.5478	85.32168	130.5478	95.1263	130.5478	121.7815	138.63486	100.3537	144.6653	123.0206
Flatness	< 2.2e-16		$2.489 \mathrm{e}-10$		0.6924		0.01676		0.2336		0.004172	
	1.545358	1.227230	1.555794	1.311155	1.555794	1.536931	1.555794	1.679347	1.545358	1.59659	1.519047	1.635057
Elongation	$<2.2 \mathrm{e}-16$		<2.2e-16		8.016e-09		1.297e-13		< 2.2e-16		< 2.2e-16	
	1.946777	1.205465	1.706213	1.212176	1.706213	1.348038	1.706213	1.260208	1.946777	1.252297	1.93933	1.235759
Sphericity	$<2.2 \mathrm{e}-16$		4.798e-15		1.261e-05		0.0001934		3.482e-07		1.811e-08	
	0.1140521	0.2047111	0.11512	0.16613	0.1151289	0.1448511	0.1151289	0.139731	0.1140521	0.14236	0.110968	0.1402481
RHFi	<2.2e-16		<2.2e-16		$4.323 \mathrm{e}-11$		0.003998		0.005026		0.8341	
	0.056180	0.150098	0.06905	0.114650	0.06905356	0.105753	0.06905	0.08388	0.05618	0.06724	0.057733	0.058377
RHFv	<2.2e-16		$4.154 \mathrm{e}-09$		0.002003		0.02582		0.2444		0.9138	
	0.027335	0.068622	0.033893	0.053604	0.03389372	0.044250	0.03389	0.04168	0.02733	0.03003	0.032154	0.031734
NbCc	0.09906		0.001534		0.1006		0.1814		0.6378		0.3525	
	6.928058	7.848739	8.633333	10.4049	8.633333	9.435484	8.633333	9.359375	6.928058	7.13846	7.096491	6.545977
Vcc Mean	$3.157 \mathrm{e}-06$		0.3482		0.3055		0.5103		6.036e-08		0.9497	
	0.4534476	0.5590714	0.4237	0.40477	0.4237292	0.4001207	0.4237292	0.4376171	0.4534476	0.35799	0.53571	0.5336152
Vcc Total	2.916e-05		0.01116		0.513		0.05459		0.002448		0.3063	
	3.005797	4.261573	3.487691	4.1115	3.487691	3.640923	3.487691	3.969125	3.005797	2.44406	3.506740	3.238098
Dstance	0.4231		0.2467		0.0002074		0.04475		0.009524		0.586	
Border	0.3781535	0.3892068	0.3620	0.37735	0.3620513	0.4074372	0.3620513	0.390895	0.3781535	0.41371	0.32398	0.3307296
Distance Barycenter	0.7203		0.09442		0.5237		0.0247		0.8852		0.8018	
	0.8052116	0.8123	0.78504	0.75752	0.7850434	0.7952824	0.7850434	0.82728	0.805211	0.80800	0.77074	0.7658594

Table B.4: Root hair cells comparison between wild type and LINC complex mutants.

3D parameters	col0_vs_crwn12		$\begin{array}{c\|} \hline \text { col0_vs_kaku4col0 } \\ \hline 0.6672 \end{array}$		vs_sun145col0_vs_wit				col0_vs_wip123col D_vs_wifi					
Volume	8.125e-08				0.25	0.9316		6.823e-06						
	109.08868	59.79314	113.93981	107.235			113.93981	107.584	113.93981	131.2783	109.08868	109.9967	140.4610	98.10604
Flatness	0.491		0.2633		0.6335		0.7572		0.8654		0.4357			
Flatness	1.456240	1.414238	1.558837	1.716006	1.558837	1.623213	1.558837	1.525579	1.456240	1.467172	1.384106	1.430591		
	1.151e-08		1.497e-08		$4.981 \mathrm{e}-05$		7.311e-09		0.5731		$8.613 \mathrm{e}-15$			
	3.022610	1.298324	3.569873	1.451435	3.569873	2.174565	3.569873	1.338134	3.022610	2.837785	4.689416	1.732060		
	$6.117 \mathrm{e}-15$		$2.481 \mathrm{e}-10$		$8.973 \mathrm{e}-05$		2.2e-16		0.8407		<2.2e-16			
	0.09587	0.18519	0.06558	0.14746	0.06558	0.11416	0.06558	0.13781	0.095870	0.09400	0.06542	0.1315856		
RHFi	0.001497		1.124e-05		0.003564		0.511		0.8983		0.004104			
	0.08932	0.12784	0.08783	0.12720	0.08783	0.11660	0.08783	0.08379	0.08932	0.08835	0.07322	0.08767		
RHFv	0.0005455		0.008733		0.3422		0.1664		0.8131		0.002194			
	0.04065	0.06722	0.04646	0.06086	0.04646	0.05191	0.04646	0.04094	0.04065	0.03954	0.03761	0.04723		
NbCc	$2.509 \mathrm{e}-12$		0.5859		0.9519		0.5175		0.288		0.2587			
	9.477273	6.153846	10.52	11.17647	10.52	10.44444	10.52	11.4717	9.477273	10.333333	9.98305	9.052632		
Vcc Mean	0.0005726		0.1045		0.8899		0.6863		0.09043		0.4484			
	0.42936	0.6014365	0.4878	0.56145	0.4878226	0.4950	0.48782	0.47227	0.42936	0.3752561	0.51751	0.5474954		
Vcc Total	0.8625		0.009206		0.9801		0.3984		0.8552		0.0758			
	3.666760	3.604775	4.607616	6.0390	4.607616	4.617901	4.607616	5.064176	3.666760	3.713527	4.864101	4.294374		
Dstance	0.5286		0.0003698		0.01238		0.006716		0.4763		0.4254			
Border	0.351012	0.36502	0.29744	0.38934	0.2974407	0.3687	0.2974	0.3592208	0.351012	0.3367211	0.27349	0.2838880		
Distance	0.01283		0.009523		0.07837		0.02648		0.09904		0.1508			
Barycenter	0.747509	0.81812	0.7256	0.8097	0.7256872	0.7814	0.7256	0.7891	0.7475097	0.7037618	0.66555	0.6940496		

Table B.5: Guard cells comparison between wild type and chromatin mutants.

3D parameters	col0_vs_atxr56col		p_vs_ddm1-10		col0 vs asflacol0		vs asflb		col0_vs_asflab		col0 vs atrxl		col0_vs_atrx2	
Volume			0.0007572		0.03212		0.3925		0.1508		5.001e05		0.151	
	23.62053	24.41771	23.62053	27.24945	25.29884	27.13723	25.29884	26.01476	22.67206	24.29808	25.29884	29.90898	25.29884	26.48214
Flatness	0.104		0.1641		0.3564		0.2627		0.2553		0.8187		0.4152	
Flatness	1.300625	1.355335	1.300625	1.344536	1.278113	1.301279	1.278113	1.305912	1.357740	1.390266	1.278113	1.272340	1.278113	1.259179
Elongation	3.443e-05		0.03153		0.4811		0.1666		0.5604		0.4094		0.368	
Elongation	1.246970	1.370809	1.246970	1.29561	1.269409	1.253162	1.269409	1.303215	1.288062	1.300288	1.269409	1.250939	1.269409	1.247838
	0.006946		0.6563		0.2093		0.01048		0.6526		0.8634		6.325e-12	
	0.1957387	0.1833705	0.1957	0.1938	0.1764610	0.17157	0.1764610	0.1869995	0.1806061	0.1823172	0.1764610	0.1771685	0.1764610	0.204670
RHFi	0.0671		9.225e-07		0.118		0.6763		3.27e-05		0.06304		0.6212	
	0.1384451	0.1286374	0.1384451	0.1092	0.1345483	0.1267905	0.1345483	0.1366440	0.14875	0.1297756	0.1345483	0.1256446	0.1345483	0.1372910
RHFv	1.193e-07		0.0003887		4.468e-07		0.0163		0.0009348		2625e09		0.3771	
	0.076703	0.058402	0.076703	0.06256	0.0759118	0.057739	0.075911	0.06785974	0.090560	0.079196	0.075911	0.055868	0.075911	0.07231
NbCc	0.6503		0.1974		0.006484		0.04437		6.178e-06		1.369e05		0.09426	
NoCc	4.991667	5.093458	4.991667	4.712963	4.834646	5.369748	4.834646	5.254386	5.217822	6.074074	4.834646	5.750000	4.834646	5.194175
Vcc Mean	1.757e-10		0.8909		9.522e-13		0.0004617		$7.77 \mathrm{e}-11$		3.736e-11		0.03135	
Vcc Mean	0.3625885	0.2749329	0.3625	0.3595	0.4021808	0.2837223	0.4021808	0.3413096	0.3821204	0.3094122	0.4021808	0.2872365	0.4021808	0.3642014
VccTotal	2.069e-09		0.01605		1.252e-07		0.0226		0.2191		0.0003186		0.529	
	1.761801	1.323408	1.761801	1.564690	1.852214	1.464399	1.852214	1.685919	1.901185	1.822626	1.852214	1.586863	1.852214	1.799266
Dstance	2.532e-06		0.02609		4.858e-13		2046e07		0.1913		9.698e-11		0.0003337	
Border	0.2402300	0.2801826	0.24023	0.2626	0.2335268	0.300213	0.23352	0.2789642	0.2049523	0.2136914	0.23352	0.29422	0.2335268	0.2690453
Distance	0.6767		0.004804		0.04265		0.01776		0.168		0.3011		0.1493	
Barycenter	0.5724800	0.5680153	0.57248	0.61120	0.5885130	0.6120676	0.5885130	0.6160257	0.55609	0.5430570	0.5885130	0.6010828	0.5885130	0.6061067

Table B.6: Pavement cells comparison between wild type and chromatin mutants.

3D parameters	col0_vs_atxr56col0		vs_ddm1-10		col0_vs_asf1acol0		vs_asf1b		col0_vs_asf1ab		col0_vs_atrx 1		col0_vs_atrx2	
Volume	0.9463		0.3209		0.2402		0.1585		0.0503		0.7647		0.9169	
	138.63486	137.8170	138.63486	127.5575	130.5478	119.8178	130.5478	146.0286	144.6653	122.607	130.5478	133.5611	130.5478	129.5747
Flatness	0.6296		0.001717		0.3226		0.3991		0.02561		0.08889		0.3601	
	1.545358	1.525124	1.545358	1.683673	1.555794	1.600264	1.555794	1.593407	1.519047	1.608679	1.555794	1.637099	1.555794	1.595746
Elongation	0.9132		0.3657		0.01186		0.1094		3.111e-06		0.7416		0.0793	
	1.946777	1.937282	1.946777	1.865705	1.706213	1.901396	1.706213	1.820757	1.939331	2.45254	1.706213	1.730258	1.706213	1.827882
Sphericity	0.7815		0.501		0.0447		0.5884		0.01723		0.6296		0.4571	
	0.1140521	0.11582	0.1140521	0.11798	0.1151289	0.10236	0.11512	0.11180	0.1109684	0.0972797	0.1151289	0.1121536	0.1151	0.1198145
RHFi	$<2.2 \mathrm{e}-16$		0.07718		0.09325		0.1079		0.002244		$9.139 \mathrm{e}-06$		0.1559	
	0.05618	0.08858	0.05618	0.06169	0.06905	0.076266	0.069053	0.075489	0.057733	0.073418	0.06905	0.088110	0.06905	0.07512
RHFv	0.008617		0.2699		0.4362		0.4828		0.03196		0.6629		0.93	
	0.027335	0.032688	0.027335	0.02938	0.033893	0.031630	0.033893	0.031942	0.032154	0.039848	0.03389	0.03516	0.033893	0.034155
NbCc	9.5e-08		0.04353		0.1709		0.001908		$1.633 \mathrm{e}-05$		2.02e-08		0.04172	
	6.928058	9.909091	6.928058	7.858268	8.633333	9.290323	8.633333	10.59285	7.096491	10.052023	8.633333	12.223077	8.633333	9.717391
Vcc Mean	6.722e-06		0.001187		0.002111		0.01582		2.287e-09		2.96e-06		0.2391	
	0.4534476	0.3712485	0.4534476	0.3966973	0.4237292	0.3613817	0.4237292	0.37719	0.5357140	0.39402	0.4237292	0.3346647	0.42372	0.4007175
Vcc Total	0.009553		0.7001		0.3342		0.06424		0.2586		0.02127		0.131	
	3.005797	3.636733	3.005797	3.085715	3.487691	3.290090	3.487691	3.996031	3.506740	3.840078	3.487691	4.039711	3.487691	3.852174
Dstance	0.01114		0.02022		2.662e-06		6.532e-08		0.2463		0.0001385		0.0003749	
Border	0.3781535	0.4129641	0.3781535	0.4094587	0.3620513	0.4259574	0.3620513	0.43734	0.32398	0.30908	0.3620513	0.4121648	0.36205	0.40823
Distance Barycenter	0.01493		0.1066		0.0001593		$3.001 \mathrm{e}-05$		0.008135		0.3011		0.01104	
	0.8052116	0.7594037	0.8052116	0.83728	0.7850434	0.85128	0.7850434	0.8613155	0.7707453	0.7214821	0.7850434	0.7845950	0.78504	0.8307762

Table B.7: Root hair cells comparison between wild type and chromatin mutants.

3D parameters	col0_vs_atxr56col p_vs_ddm1-10				col0_vs_asf1acol0		vs_asf1b		col0_vs_asf1ab		col0_vs_atrx1		col0_vs_atrx2	
Volume	0.2725		0.0622		0.1026		0.7298		0.002721		0.3865		0.4938	
Volume	109.088	119.0924	109.08868	131.5833	113.93981	88.97238	113.93981	109.0374	140.4610	177.2373	113.93981	128.2701	113.93981	123.5519
Flatness	0.03587		0.2144		0.2635		0.9401		0.3902		0.6421		0.77	
Flatness	1.456240	1.623033	1.456240	1.548614	1.558837	1.695697	1.558837	1.567275	1.384106	1.435291	1.558837	1.504086	1.558837	1.588995
Elongation	0.2225		0.9686		0.1732		0.7921		0.1207		0.729		0.3765	
Elongation	3.022610	2.585807	3.022610	3.036336	3.569873	2.963744	3.569873	3.466858	4.689416	5.371079	3.569873	3.760412	3.569873	3.212451
S	0.9583		0.1111		0.1085		0.2952		0.000901		0.05086		001566	
Sphericity	0.095870	0.095375	0.09587	0.08176	0.065588	0.080780	0.065588	0.07286462	0.065427	0.04726	0.06558	0.08112	0.065588	0.08880
RHFi	0.05895		0.01126		0.1544		0.3034		0.275		0.4567		0.3378	
R	0.08932	0.07586	0.08932	0.071134	0.087838	0.106266	0.087838	0.09516678	0.07322	0.068558	0.08783	0.09341	0.087838	0.09476
RHFv	0.05272		0.01889		0.5438		0.8831		0.2826		0.3103		0.1765	
RHFV	0.04065	0.03246	0.04065	0.030797	0.046462	0.050980	0.046462	0.045823	0.037618	0.035033	0.046462	0.041595	0.04646	0.04099
NbCc	0.7734		0.6989		0.4912		0.653		$1.372 \mathrm{e}-05$		0.7609		0.9214	
	9.477273	9.23684	9.477273	9.145833	10.52	9.50	10.52	9.914286	9.983051	14.2553	10.52	10.88462	10.52	10.63265
Vcc Mean	0.9001		0.8112		0.7147		0.4563		0.008166		0.5847		0.6221	
Vcc Mean	0.42936	0.42477	0.42936	0.42077	0.4878226	0.4698343	0.4878226	0.5276994	0.5175131	0.43606	0.4878226	0.46357	0.4878226	0.4677270
Vcc Total	0.8119		0.7713		0.2264		0.6571		0.009682		0.527		0.8559	
Vec Total	3.666760	3.604547	3.666760	3.580361	4.607616	4.018159	4.607616	4.842796	4.864101	5.86790	4.607616	4.944610	4.607616	4.685887
Dstance	0.1697		0.8543		0.229		0.6531		0.8311		0.01352		0.006544	
Border	0.351012	0.38140	0.351012	0.3548071	0.2974407	0.3294780	0.2974407	0.3083612	0.2734905	0.276843	0.2974407	0.36139	0.2974407	0.3595537
Distance Barycenter	0.2544		0.6811		0.3599		0.8668		0.7573		0.2529		0.2938	
	0.74750	0.78304	0.7475097	0.7360807	0.7256872	0.7574000	0.7256872	0.7206487	0.6655588	0.67207	0.7256872	0.76207	0.7256872	0.7595695

B. 3 Nuclear morphology of the chromatin mutants

Figure B.1: Alteration of nuclear morphology in heterochromatin mutant nuclei from guard cells, pavement cells and root cells. Boxplots of nuclear morphology parameters generated by NucleusJ highlighting the phenotypic variations in three types of nuclei (GC in gray, PC in green and RC in red) for seven mutant backgrounds. Samples and Statistical analysis are available respectively in Table 3.2 and Appendix B.2. All parameters recorded for mutant backgrounds were standardised using Col-o (WT) set as 1 (red line).

B. 4 FISH-3D

Table B.8: Sample of nuclei in GC and PC.

	Number GC nuclei	Number PC nuclei	Total of nuclei
Col-o	56	46	102
kaku4-2	32	51	83
crwn1 crwn2	35	41	76
wifi	44	29	73
sun1 sun4 sun5	27	32	59
ddm1-10	47	43	90
atxr5 atxr6	41	48	89

Table B.9: Proportion of condensed nuclei in GC and PC.

	GC condensed	PC condensed	Total condensed
Col-o	35.71	34.78	35.29
kaku4-2	40.62	13.72	24.10
crwn1 crwn2	31.43	48.78	40.79
wifi	25	13.79	20.55
sun1 sun4 sun5	18.52	21.87	20.34
ddm1-10	12.76	16.28	14.44
atxr5 atxr6	24.39	22.91	23.60

B. 5 Quantitative RT-PCR analysis of the chromatin mutants

Figure B.2: Quantitative RT-PCR analysis of TSI expression in WT and chromatin mutants. Transcription level of TSI scored by RT-qPCR. Histograms show means of transcript level \pm SEM obtained for two independent PCR amplifications of three biological replicates. The y axis shows the fold change relative to WT (WT set to 1) after normalisation to expression of At2g28390 (AtSAND). (*: p ≤ 0.05)

Appendix C

Exploring of the proteins of the plant nuclear envelope

C. 1 KASH proteins detected with the Perl script

C.1.1 Results of finding KASH homologues

Table C.1: KASH results from the Perl script.

Gene name	Organism	Gene id	Homologues	e-value	Score
AtWIP1	Arabidopsis thaliana	AT4G26455	no	no	no
AtWIP2	Arabidopsis thaliana	AT5G56210	no	no	no
AtSINE4	Arabidopsis thaliana	AT4G24950	no	no	no
AtSINE2	Arabidopsis thaliana	AT3G03970	no	no	no
AtTIK	Arabidopsis thaliana	AT5G44920	no	no	no
AtSINE1	Arabidopsis thaliana	AT1G54385	no	no	no
AtWIP3	Arabidopsis thaliana	AT3G13360	no	no	no
AtSINE3	Arabidopsis thaliana	AT3G06600	no	no	no
Aly478787	Arabidopsis lyrata	478787.v1	no	no	no
Aly 492343	Arabidopsis lyrata	492343.v1	no	no	no
AlySINE2	Arabidopsis lyrata	340556.v1	AtSINE2	0	929
AlySINE1	Arabidopsis lyrata	474709.v1	AtSINE1	0	964
AlyWIP3	Arabidopsis lyrata	904239.v1	AtSINE3	0	730
Bra.E03268.1.p	Brassica rapa	Brara.E03477.v1.3	no	no	no
BraSINE2-a	Brassica rapa	Brara.E03477.v1.3	AtSINE2	0	763
BraSINE3	Brassica rapa	Brara.A03650.v1.3	AtSINE3	1e-83	246
Bra.A01491.1.p	Brassica rapa	Brara.A01491.v1.3	no	no	no
BraWIP1	Brassica rapa	Brara.A01633.v1.3	AtWIP1	0	555
BraSINE2-b	Brassica rapa	Brara.A03794.v1.3	AtSINE2	5e-169	487
Bra.K01474.1.p	Brassica rapa	Brara.K01474.v1.3	no	no	no
BraWIP2	Brassica rapa	Brara.J01056.v1.3	AtWIP2	3e-88	272
BraWIP3-a	Brassica rapa	Brara.A03268.v1.3	AtWIP3	1e-134	393
BraSINE1	Brassica rapa	Brara.IO0153.v1.3	AtSINE1	0	823
Cpa CP00117G00040	Carica papaya	CP00117G00040	no	no	no
CpaSINE1/2	Carica papaya	CP00051G01090	AtSINE1 2	0	642
CpaWIP	Carica papaya	CP00012G00680	ATWIP	$3 \mathrm{e}-76$	250
Cpa_CP00009G00390	Carica papaya	CP00009G00390	no	no	no
Gmā.13G045900.2.p	Glycine max	Glyma.13G045900	no	no	no
GmaSINE1/2-a	Glycine max	Glyma.02G071700	AtSINE1 2	0	547
GmaSINE1/2-b	Glycine max	Glyma.16G152900	AtSINE1 2	0	550
Gma.17G035100.1.p	Glycine max	Glyma.17G035100	no	no	no
GmaSINE1/2-c	Glycine max	Glyma.19G110600	AtSINE1 2	0	540
Gma.06G321400.1.p	Glycine max	Glyma.06G321400	no	no	no
GmaSINE1/2-d	Glycine max	Glyma.16G041800	AtSINE1 2	0	525
GmaWIP-b	Glycine max	Glyma.04G113700	ATWIP	$1 \mathrm{e}-41$	157
Sly Solyc03g083980	Solanum lycopersicum	Solyc03g083980.1	no	no	no
Sly_Solyc 12g089020	Solanum lycopersicum	Solyc12g089020.1	no	no	no
Sly Solyc03g019740	Solanum lycopersicum	Solyc03g019740.1	no	no	no
Sly Solyc03g093980	Solanum lycopersicum	Solyc03g093980.1	no	no	no
Sly - Solyc07g066170	Solanum lycopersicum	Solyc07g066170.2	no	no	no
SlySINE1/2	Solanum lycopersicum	Solyc03g062700.2	AtSINE1 2	3e-176	509
MacSINE1/2-b	Musa acuminata	103993855	AtSINE1 2	3e-156	459
NnuSINE1/2-b	Nelumbo nucifera	104597698	AtSINE1 2	0	538
NnuSINE1/2-a	Nelumbo nucifera	104611165	AtSINE1 2	0	587
Os04g46790.1	Oryza sativa	LOC Os04g46790	no	no	no
Os04g39540.1	Oryza sativa	LOCOs04g39540	no	no	no
Os12g42960.1	Oryza sativa	LOC Os12g42960	no	no	no
Os04g31720.1	Oryza sativa	LOCOs04g31720	no	no	no
OsaSINE1/2	Oryza sativa	LOCOs11g37100	AtSINE1 2	$6 \mathrm{e}-151$	447
PabSINe-c	Picea abies	MA 395650 g 0010	AtSINE	$8 \mathrm{e}-94$	303
Ppa Phpat.005G028200.1.p	Physcomitrella patens	Phpat.005G028200.v3.0	no	no	no
- PpaSINe-a	Physcomitrella patens	Phpat.006G062300.v3.0	AtSINE	$9 \mathrm{e}-48$	177
Ppa Phpat.003G109500.1.p	Physcomitrella patens	Phpat.003G109500.v3.0	no	no	no
Ppa Phpat.005G024400.3.p	Physcomitrella patens	Phpat.005G024400.v3.0	no	no	no
Ppa Phpat.018G064200.2.p	Physcomitrella patens	Phpat.018G064200.v3.0	no	no	no
Ppa Phpat.006G062300.1.p	Physcomitrella patens	Phpat.006G062300.v3.0	no	no	no
PpaSINe-b	Physcomitrella patens	Phpat.022G009100.v3.0	AtSINE	$2 \mathrm{e}-50$	186
PpeSINE1/2	Prunus persica	ppa020856m	AtSINE1 2	0	575
Ppe ppa000468m	Prunus persica	ppa000468m	no	no	no
Ppe ppa003004m	Prunus persica	ppa003004m	no	no	no
Ppe ppa020688m	Prunus persica	ppa020688m	no	no	no
Ppe ppa015988m	Prunus persica	ppa015988m	no	no	no
Ppe ppa1027141m	Prunus persica	ppa1027141m	no	no	no
AtrSINE	Amborella trichopoda	evm_27.TU.AmTr v 1.0 scaffold00004.62	AtSINE	1e-135	407
Atr 00070G00090	Amborella trichopoda	evm ${ }^{-1 . T U . A m T r}{ }^{-}$v1.0 scaffold00070.9		no	no
Atr 00079G00540	Amborella trichopoda	evm 27.TU.AmTr v1.0 şcaffold00079.55		no	no
Atr 00061G00420	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00061.45		no	no
Ptr Potri.012G102300.1	Populus trichocarpa	Potri.012G102300	no	no	no
Ptr Potri.017G115200.1	Populus trichocarpa	Potri.017G115200	no	no	no
Ptr Potri.008G152700.2	Populus trichocarpa	Potri.008G152700	no	no	no
PtrWIP-b	Populus trichocarpa	Potri.011G169000	ATWIP	$8 \mathrm{e}-59$	205
Smo 432042	Selaginella moellendorffii	432042.v1	no	no	no
TcaSINE1/2	Theobroma cacao	TC0005G29190	AtSINE1 2	$2 \mathrm{e}-121$	370
TcaWIP	Theobroma cacao	TC0007G00130	ATWIP	$2 \mathrm{e}-73$	244
Tca Thece1EG029977t1	Theobroma cacao	Thecc 1EG029977t1	no	no	no
VviWIP	Vitis vinifera	VV19G06810	ATWIP	5e-157	46
VviSINE1/2	Vitis vinifera	VV08G08350	AtSINE1 2	0	534
Zma GRMZM2G034882	Zea mays	GRMZM2G034882	no	no	no
Zma GRMZM2G162319	Zea mays	GRMZM2G162319	no	no	no
Zma GRMZM2G370707	Zea mays	GRMZM2G370707	no	no	no
Zma GRMZM2G094850	Zea mays	GRMZM2G094850	no	no	no
Zma GRMZM2G151418	Zea mays	GRMZM2G151418	no	no	no
ZmaSINE1/2	Zea mays	GRMZM2G000608	AtSINE1 2	5e-143	427
Zma GRMZM2G112187	Zea mays	GRMZM2G112187	no	no	no

C.1.2 KASH proteins clustered using Perl script results

Tree scale: $1 \longmapsto$

AtSINE4
\square AtWIP
\square Other KASH
AtSINE1/2
\square AtSINE3
\square AtTIK

Figure C.1: KASH protein clustering. A maximum likelihood tree of KASH protein homologues constructed from an alignment. Bootstrap values are represented by the diameter of the pale blue circle. If the bootstrap is below o. 5 the bootstrap is not indicated. The colour of the label shows the cluster to which the KASH protein belongs. The gene label is constructed with the three letters from the species name (see Table 4.1) and the gene name of the A. thaliana.

C. 2 Homologue protein results obtain with BLASTp

C.2.1 CRWN homologue results

Table C.2: CRWN results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlyCRWN3	Arabidopsis lyrata	476006.v1	AtCRWN3	0	573
AlyCRWN2	Arabidopsis lyrata	471477.v1	AtCRWN2	0	1676
BraCRWN1-a	Brassica rapa	Brara.B01707.v1.3	AtCRWN1	0	1527
BraCRWN1-b	Brassica rapa	Brara.G02692.v1.3	AtCRWN1	0	1516
BraCRWN3	Brassica rapa	Brara.B01814.v1.3	AtCRWN3	0	1006
BraCRWN2	Brassica rapa	Brara.F00805.v1.3	AtCRWN2	0	1347
BraCRWN4	Brassica rapa	Brara.I00831.v1.3	AtCRWN4	0	1415
CpaCRWN23	Сра	CP00001G02270	AtCRWN2 3	0	544
CpaCRWN1	Carica papaya	CP00179G00320	AtCRWN1	0	607
CpaCRWN4	Carica papaya	CP00129G00560	AtCRWN4	0	653
GmaCRWN1-a	Glycine max	Glyma.08G256300.Wm82.a2.v1	AtCRWN1	0	802
GmaCRWN1-b	Glycine max	Glyma.18G280500.Wm82.a2.v1	AtCRWN1	0	791
GmaCRWN2/3-a	Glycine max	Glyma.02G101800.Wm82.a2.v1	AtCRWN2 3	1e-153	491
GmaCRWN2/3-b	Glycine max	Glyma.01G090100.Wm82.a2.v1	AtCRWN2 3	2e-130	423
GmaCRWN4-a	Glycine max	Glyma.05G109300.Wm82.a2.v1	AtCRWN4	0	699
GmaCRWN4-b	Glycine max	Glyma.17G157900.Wm82.a2.v1	AtCRWN4	0	696
GmaCRWN4-c	Glycine max	Glyma.11G045200.Wm82.a2.v1	AtCRWN4	6e-156	481
MacCRWN1/2/3-a	Musa acuminata	103971466	AtCRWN1 23	5e-160	504
MacCRWN1/2/3-b	Musa acuminata	103987369	AtCRWN1 23	$5 \mathrm{e}-141$	457
MacCRWN1/2/3-c	Musa acuminata	103994553	AtCRWN1 23	1e-137	444
MacCRWN4	Musa acuminata	103989600	AtCRWN4	3e-176	546
NnuCRWN2/3-a	Nelumbo nucifera	104603075	AtCRWN2 3	0	761
NnuCRWN2/3-b	Nelumbo nucifera	104601026	AtCRWN2 3	0	739
NnuCRWN4	Nelumbo nucifera	104591220	AtCRWN4	0	679
OsaCRWN1/2/3	Oryza sativa	LOC Os02g48010	AtCRWN1 23	8e-129	422
OsaCRWN4	Oryza sativa	LOC Ōs01g56140	AtCRWN4	$9 \mathrm{e}-139$	442
PabCRWN4-b	Picea abies	MA 10432363g0010	AtCRWN4	$2 \mathrm{e}-83$	294
PabCRWN4-a	Picea abies	MA 10432363g0010	AtCRWN4	$4 \mathrm{e}-129$	426
PpeCRWN1	Prunus persica	PPE003G21990	AtCRWN1	0	862
PpeCRWN2/3	Prunus persica	PPE001G31400	AtCRWN2 3	0	566
PpeCRWN4	Prunus persica	PPE006G22330	AtCRWN4	0	781
PtrCRWN1	Populus trichocarpa	Potri.017G111400.v3.0	AtCRWN1	0	860
PtrCRWN2/3	Populus trichocarpa	Potri.008G114800.v3.0	AtCRWN2 3	0	576
PtrCRWN4	Populus trichocarpa	Potri.012G034300.1.v3.0	AtCRWN4	0	780
TcaCRWN1	Theobroma cacao	TC0004G14630	AtCRWN1	0	926
TcaCRWN2/3	Theobroma cacao	TC0002G36050	AtCRWN2 3	0	660
TcaCRWN4	Theobroma cacao	TC0001G07580	AtCRWN4	0	795
ZmaCRWN1/2/3	Zea mays	GRMZM2G015875	AtCRWN1 23	$4 \mathrm{e}-126$	416
ZmaCRWN4	Zea mays	GRMZM2G320013.v6a	AtCRWN4	2e-119	390
SmoCRWN	Selaginella moellendorffii	45495.v1	AtCRWN	$5 \mathrm{e}-47$	170
SlyCRWN1-a	Solanum lycopersicum	Solyc03g045050.2	AtCRWN1	0	698
SlyCRWN1-b	Solanum lycopersicum	Solyc02g089800.2	AtCRWN1	0	671
SlyCRWN4	Solanum lycopersicum	Solyc02g091960.2	AtCRWN4	$4 \mathrm{e}-88$	291
VviCRWN2/3	Vitis vinifera	GSVIVT01011972001	AtCRWN2 3	0	633
VviCRWN1	Vitis vinifera	GSVIVT01031076001	AtCRWN1	1e-130	422
VviCRWN4	Vitis vinifera	GSVIVT01007428001	AtCRWN4	0	780
AtrCRWN1/2/3	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00024.349	AtCRWN1 23	6e-160	508
AtrCRWN4	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00044.217	AtCRWN4	$4 \mathrm{e}-134$	433
PpaCRWN	Physcomitrella patens	Phpat.002G143000.v3.0	AtCRWN	$6 \mathrm{e}-41$	165
PpaCRWN	Physcomitrella patens	Phpat.001G006400.v3.0	AtCRWN	$2 \mathrm{e}-18$	91.7

C.2.2 NEAP homologue results

Table C.3: NEAP results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlyNEAP3	Arabidopsis lyrata	471040.v1	AtNEAP3	0	585
AlyNEAP1	Arabidopsis lyrata	340760.v1	AtNEAP1	0	541
AlyNEAP2	Arabidopsis lyrata	326902.v1	AtNEAP2	0	560
BraNEAP3	Brassica rapa	Brara.F00604.v1.3	AtNEAP3	2e-168	471
BraNEAP1	Brassica rapa	Brara.E03339.v1.3	AtNEAP1	$2 \mathrm{e}-171$	480
BraNEAP2-a	Brassica rapa	Brara.F02817.v1.3	AtNEAP2	0	514
BraNEAP2-b	Brassica rapa	Brara.IO0491.v1.3	AtNEAP2	0	504
CpanEAP	Carica papaya	CP00048G02160	AtNEAP1 23	$9 \mathrm{e}-141$	401
GmaNEAP-a	Glycine max	Glyma.10G144000.Wm82.a2.v1	AtNEAP1 23	$4 \mathrm{e}-141$	404
GmaNEAP-b	Glycine max	Glyma.20G092900.Wm82.a2.v1	AtNEAP1 23	$4 \mathrm{e}-139$	399
MacNEAP-a	Musa acuminata	103970415	AtNEAP1 23	1e-107	318
MacNEAP-b	Musa acuminata	103993307	AtNEAP1 23	5e-99	296
NnuNEAP-a	Nelumbo nucifera	104611262	AtNEAP1 23	1e-126	366
NnuNEAP-b	Nelumbo nucifera	104607137	AtNEAP1 23	$7 \mathrm{e}-122$	354
OsaNEAP	Oryza sativa	LOC Os05g04530	AtNEAP1 23	$3 \mathrm{e}-113$	332
PabNEAP-a	Picea abies	MA 136804g0010	AtNEAP1 23	$7 \mathrm{e}-80$	244
PabNEAP-b	Picea abies	MA 902507g0010	AtNEAP1 23	5e-47	158
PpeNEAP-a	Prunus persica	PPE006G31130	AtNEAP1 23	$1 \mathrm{e}-131$	379
PpeNEAP-b	Prunus persica	Potri.005G003600.v3.0	AtNEAP1/2/3	$8 \mathrm{e}-105$	309
PtrNEAP-a	Populus trichocarpa	Potri.013G003400.v3.0	AtNEAP1 23	$2 \mathrm{e}-135$	389
TcaNEAP	Theobroma cacao	TC0005G32630	AtNEAP1 23	1-144	412
ZmaNEAP-a	Zea mays	GRMZM2G042593	AtNEAP1 23	2e-111	328
ZmaNEAP-b	Zea mays	GRMZM2G061728	AtNEAP1 23	1e-107	318
SlyNEAP	Solanum lycopersicum	Solyc01g101130.2	AtNEAP1 23	2e-127	367
VvibNEAP-a	Vitis vinifera	GSVIVT01031318001	AtNEAP1 23	$9 \mathrm{e}-134$	384
VviNEAP-b	Vitis vinifera	GSVIVT01028212001	AtNEAP1 23	2e-118	344
AtrNEAP	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00045.73	AtNEAP1 23	2e-119	347

C.2.3 KAKU4 homologue results

Table C.4: KAKU4 results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlyKAKU4	Arabidopsis lyrata	888976.v1	AtKAKU4	0	810
BraKAKU4-a	Brassica rapa	Brara.H01351.v1.3	AtKAKU4	2e-168	485
BraKAKU4-b	Brassica rapa	Brara.A00629.v1.3	AtKAKU4	$2 \mathrm{e}-122$	366
NnuKAKU4	Nelumbo nucifera	104603165	AtKAKU4	6e-32	131
PpeKAKU4	Prunus persica	PPE001G46440	AtKAKU4	8e-49	177
PtrKAKU4	Populus trichocarpa	Potri.018G006200.v3.0	AtKAKU4	$1 \mathrm{e}-38$	148
TcaKAKU4	Theobroma cacao	TC0009G00640	AtKAKU4	$4 \mathrm{e}-53$	191
SlyKAKU4	Solanum lycopersicum	Solyc08g006480.2	AtKAKU4	5e-33	132
VviKAKU4	Vitis vinifera	GSVIVT01035528001	AtKAKU4	7e-39	149
CpaKAKU4	Carica papaya	CP00023G00050	AtKAKU4	$3 \mathrm{e}-21$	93.6
GmaKAKU4-a	Glycine max	Glyma.04G074900.Wm82.a2.v1	AtKAKU4	$8 \mathrm{e}-38$	149
GmaKAKU4-b	Glycine max	Glyma.06G075900.Wm82.a2.v1	AtKAKU5	$1 \mathrm{e}-35$	142
OsaKAKU4	Oryza sativa	LOC Os04g56140	AtKAKU4	$2 \mathrm{e}-11$	66.6
MacKAKU4	Musa acuminata	695024736	AtKAKU4	$2 \mathrm{e}-15$	80.1
ZmaKAKU4	Zea mays	GRMZM2G104199.v6a	AtKAKU4	$2 \mathrm{e}-11$	67.4

C.2.4 SINE homologue results

Table C.5: SINE results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlySINE3	Arabidopsis lyrata	$928307 . v 1$	AtSINE3	2e-122	343
AlySINE2	Arabidopsis lyrata	340556.v1	AtSINE2	0	929
AlySINE1	Arabidopsis lyrata	474709.v1	AtSINE1	0	964
BraSINE2-a	Brassica rapa	Brara.E03477.v1.3	AtSINE2	0	763
BraSINE3	Brassica rapa	Brara.A03650.v1.3	AtSINE3	$1 \mathrm{e}-83$	246
BraSINE2-b	Brassica rapa	Brara.A03794.v1.3	AtSINE2	$5 \mathrm{e}-169$	487
BraSINE1	Brassica rapa	Brara.IO0153.v1.3	AtSINE1	0	823
CpaSINE1/2	Carica papaya	CP00051G01090	AtSINE1 2	0	642
GmaSINE1/2-a	Glycine max	Glyma.02G071700.Wm82.a2.v1	AtSINE1 2	0	547
GmaSINE1/2-b	Glycine max	Glyma.16G152900.Wm82.a2.v1	AtSINE1 2	0	550
GmaSINE1/2-c	Glycine max	Glyma.19G110600.Wm82.a2.v1	AtSINE1 2	0	540
GmaSINE1/2-d	Glycine max	Glyma.16G041800.Wm82.a2.v1	AtSINE1 2	0	525
MacSINE1/2-a	Musa acuminata	103978817	AtSINE1 2	$5 \mathrm{e}-145$	431
MacSINE1/2-b	Musa acuminata	103993855	AtSINE1 2	3e-156	459
NnuSINE1/2-a	Nelumbo nucifera	104611165	AtSINE1 2	0	587
NnuSINE1/2-b	Nelumbo nucifera	104597698	AtSINE1 2	0	538
OsaSINE1/2	Oryza sativa	LOC Os11g37100	AtSINE1 2	$6 \mathrm{e}-151$	447
PabSINE-a	Picea abies	MA 10351739g0010	AtSINE	$9 \mathrm{e}-76$	254
PabSINE-b	Picea abies	MA 162159 g 0010	AtSINE	$2 \mathrm{e}-75$	255
PabSINE-c	Picea abies	MA 395650 g 0010	AtSINE	8e-94	303
PpeSINE1/2	Prunus persica	PPE007G03120	AtSINE1 2	0	575
PtrSINE1/2-a	Populus trichocarpa	Potri.019'G033900.v3.0	AtSINE1 2	0	620
PtrSINE1/2-b	Populus trichocarpa	Potri.013G058700.v3.0	AtSINE1 2	0	632
TcaSINE1/2	Theobroma cacao	TC0005G29190	AtSINE1 2	$2 \mathrm{e}-121$	370
ZmaSINE1/2	Zea mays	GRMZM2G000608	AtSINE1 2	$5 \mathrm{e}-143$	427
SlySINE1/2	Solanum lycopersicum	Solyc03g062700.2	AtSINE1 2	3e-176	509
VviSINE1/2	Vitis vinifera	GSVIVT01033391001	AtSINE1 2	0	534
AtrSINE	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00004.62	AtSINE	1e-135	407
PpaSINE-a	Physcomitrella patens	Phpat.006G062300.v3.0	AtSINE	$9 \mathrm{e}-48$	177
PpaSINE-b	Physcomitrella patens	Phpat.022G009100.v3.0	AtSINE	$2 \mathrm{e}-50$	186
PpaSINE-c	Physcomitrella patens	Phpat.005G028100.v3.0	AtSINE	$2 \mathrm{e}-58$	196
SmoSINE	Selaginella moellendorffii	$410901 . v 1$	AtSINE	$2 \mathrm{e}-46$	175

C.2.5 WIP homologue results

Table C.6: WIP results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlyWIP1	Arabidopsis lyrata	492167.v1	AtWIP1	0	843
AlyWIP2	Arabidopsis lyrata	$950278 . v 1$	AtWIP2	0	652
AlyWIP3	Arabidopsis lyrata	904239.v1	AtWIP3	0	730
BraWIP3-b	Brassica rapa	Brara.C03463.v1.3	AtWIP3	$5 \mathrm{e}-140$	409
BraWIP1	Brassica rapa	Brara.A01633.v1.3	AtWIP1	0	555
BraWIP2	Brassica rapa	Brara.J01056.v1.3	AtWIP2	$3 \mathrm{e}-88$	272
BraWIP3-a	Brassica rapa	Brara.A03268.v1.3	AtWIP3	$1 \mathrm{e}-134$	393
CpaWIP	Carica papaya	CP00012G00680	ATWIP	$3 \mathrm{e}-76$	250
GmaWIP-a	Glycine max	Glyma.06G321400.Wm82.a2.v1	ATWIP	$7 \mathrm{e}-44$	164
GmaWIP-b	Glycine max	Glyma.04G113700.Wm82.a2.v1	ATWIP	$1 \mathrm{e}-41$	157
MacWIP	Musa acuminata	104594339	ATWIP	$3 \mathrm{e}-29$	121
NnuWIP	Nelumbo nucifera	Popli9990236	ATWIP	$1 \mathrm{e}-47$	175
PtrWIP-a	Populus trichocarpa	Potri.001G472000.v3.0	ATWIP	$1 \mathrm{e}-60$	210
PtrWIP-b	Populus trichocarpa	Potri.011G169000.v3.0	ATWIP	$8 \mathrm{e}-59$	205
TcaWIP	Theobroma cacao	TC0007G00130	ATWIP	$2 \mathrm{e}-73$	244
VviWIP	Vitis vinifera	GSVIVT01014846001	ATWIP	$5 \mathrm{e}-157$	46

C.2.6 TIK homologues results

Table C.7: NEAP results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlyTIK-a	Arabidopsis lyrata	$948593 . \mathrm{v} 1$	AtTIK	5e-45	151
AlyTIK-b	Arabidopsis lyrata	356572.v1	AtTIK	$1 \mathrm{e}-44$	149
BraTIK	Brassica rapa	Brara.F01121.v1.3	AtTIK	$3 \mathrm{e}-41$	145
GmaTIK	Glycine max	Glyma.U008300.Wm82.a2.v1	AtTIK	$2 \mathrm{e}-25$	106
NnuTIK	Nelumbo nucifera	104587523	AtTIK	3e-e28	113
PabTIK	Picea abies	MA 10437230g0040	AtTIK	$3 \mathrm{e}-21$	89.4
PpeTIK	Prunus persica	MA 10437230g0040	AtTIK	$2 \mathrm{e}-27$	110
PtrTIK	Populus trichocarpa	Potri.T039900.v3.0	AtTIK	2e-27	111
SlyTIK	Solanum lycopersicum	Solyc01g102840.2	AtTIK	$2 \mathrm{e}-25$	104
VviTIK	Vitis vinifera	GSVIVT01022984001	AtTIK	$2 \mathrm{e}-27$	108
AtrTIK	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00085.75	AtTIK	$2 \mathrm{e}-20$	89.0
TcaTIK	Theobroma cacao	TC0028G00020	AtTIK	$5 \mathrm{e}-25$	104

C.2.7 Cter SUN homologue results

Table C.8: Cter-SUN results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlySUN1	Arabidopsis lyrata	939904.v1	AtSUN1	0	804
AlySUN2-a	Arabidopsis lyrata	478408.v1	AtSUN2	0	791
AlySUN2-b	Arabidopsis lyrata	497464.v1	AtSUN2	0	786
BraSUN1	Brassica rapa	Brara.J02691.v1.3	AtSUN1	0	683
BraSUN2	Brassica rapa	Brara.E02993.v1.3	AtSUN2	0	533
CpaCterSUN	Carica papaya	CP00033G01210	AtCterSUN	1e-154	446
GmaCterSUN-a	Glycine max	Glyma.15G223100	AtCterSUN	$2 \mathrm{e}-134$	397
GmaCterSUN-b	Glycine max	Glyma.13G185300	AtCterSUN	$2 \mathrm{e}-131$	389
MacCterSUN-a	Musa acuminata	103999728	AtCterSUN	$8 \mathrm{e}-120$	358
MacCterSUN-b	Musa acuminata	103998202	AtCterSUN	$1 \mathrm{e}-118$	355
MacCterSUN-c	Musa acuminata	103971044	AtCterSUN	$3 \mathrm{e}-107$	326
NnuCterSUN	Nelumbo nucifera	104611507	AtCterSUN	$8 \mathrm{e}-127$	376
OsaCterSUN-a	Oryza sativa	LOC Os05g 18770	AtCterSUN	2e-96	298
OsaCterSUN-b	Oryza sativa	LOCOs01g16220	AtCterSUN	$3 \mathrm{e}-90$	282
PabCterSUN-a	Picea abies	MA 10431452g0010	AtCterSUN	$2 \mathrm{e}-71$	232
PabCterSUN-b	Picea abies	MA 633971 g 0010	AtCterSUN	3e-48	171
PpeCterSUN	Prunus persica	PPE002G04740	AtCterSUN	5e-157	456
PtrCterSUN-a	Populus trichocarpa	Potri.010G247900.v3.0	AtCterSUN	5e-134	395
PtrCterSUN-b	Populus trichocarpa	Potri.008G010900.v3.0	AtCterSUN	$3 \mathrm{e}-125$	373
TcaCterSUN	Theobroma cacao	TC0010G12940	AtCterSUN	1e-130	386
ZmaCterSUN-a	Zea mays	GRMZM2G109818	AtCterSUN	2e-97	301
ZmaCterSUN-b	Zea mays	GRMZM2G440614	AtCterSUN	$3 \mathrm{e}-80$	256
SmoCterSUN-a	Selaginella moellendorffii	138182.v1	AtCterSUN	$6 \mathrm{e}-79$	248
SmoCterSUN-b	Selaginella moellendorffii	122417.v1	AtCterSUN	6e-79	248
SmoCterSUN-c	Selaginella moellendorffii	64465,v1	AtCterSUN	1e-69	223
SmoCterSUN-d	Selaginella moellendorffii	89851,v1	AtCterSUN	8e-68	218
SlyCterSUN	Solanum lycopersicum	Solyc01g096780.2	AtCterSUN	$3 \mathrm{e}-110$	328
VviCterSUN	Vitis vinifera	GSVIVT01001935001	AtCterSUN	3e-65	206
AtrCterSUN	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00101.65	AtCterSUN	$3 \mathrm{e}-97$	300
PpaCterSUN-a	Physcomitrella patens	Phpat.007G018800.v3.0	AtCterSUN	3e-66	221
PpaCterSUN-b	Physcomitrella patens	Phpat.011G086200.v3,0	AtCterSUN	6e-64	214
OluCterSUN	Ostreococcus lucimarinus	24577	AtCterSUN	$3 \mathrm{e}-30$	122

C.2.8 MidSUN homologue results

Table C.9: Mid-SUN results.

Gene name	Organism	Gene id	Homologues	e-value	Score
AlySUN3	Arabidopsis lyrata	$335524 . \mathrm{v} 1$	AtSUN3	0	977
AlySUN4	Arabidopsis lyrata	339371.v1	AtSUN4	0	1009
AlySUN5	Arabidopsis lyrata	354376.v1	AtSUN5	0	1001
BraSUN3	Brassica rapa	Brara.IO3282.v1.3	AtSUN3	0	654
BraSUN4-a	Brassica rapa	Brara.G03043.v1.3	AtSUN4	0	754
BraSUN4-b	Brassica rapa	Brara.G02411.v1.3	AtSUN4	0	729
BraSUN5	Brassica rapa	Brara.A01400.v1.3	AtSUN5	0	823
CpaSUN3/4-a	Carica papaya	CP00142G00130	AtSUN3 4	9e-133	402
CpaSUN3/4-b	Carica papaya	CP00006G00590	AtSUN3 4	$3 \mathrm{e}-155$	456
CpaSun5	Carica papaya	CP00079G00080	AtSUN5	$9 \mathrm{e}-113$	346
GmaSUN3/4-a	Glycine max	Glyma.12G242200.Wm82.a2.v1	AtSUN3 4	$6 \mathrm{e}-128$	389
GmaSUN3/4-b	Glycine max	Glyma.04G110900.Wm82.a2.v1	AtSUN3 4	5e-124	382
GmaSUN3/4-c	Glycine max	Glyma.09G002200.Wm82.a2.v1	AtSUN3 4	$2 \mathrm{e}-129$	388
GmaSUN3/4-d	Glycine max	Glyma.06G323600.Wm82.a2.v1	AtSUN3 4	2e-142	427
GmaSun5-a	Glycine max	Glyma.11G016300.Wm82.a2.v1	AtSUN5	$8 \mathrm{e}-124$	377
GmaSun5-b	Glycine max	Glyma.01G226400.Wm82.a2.v1	AtSUN5	$1 \mathrm{e}-123$	376
MacSUN3/4	Musa acuminata	103979160	AtSUN3 4	$4 \mathrm{e}-137$	411
MacSUN5	Musa acuminata	103996105	AtSUN5	$6 \mathrm{e}-108$	334
NnuSUN3/4	Nelumbo nucifera	104610179	AtSUN3 4	$3 \mathrm{e}-146$	435
NnuSUN5	Nelumbo nucifera	104604783	AtSUN5	1e-133	402
OsaSUN3/4	Oryza sativa	LOC Os01g65520	AtSUN3 4	$6 \mathrm{e}-126$	384
OsaSUN5	Oryza sativa	LOCŌs01g41600	AtSUN5	$6 \mathrm{e}-97$	305
PabMidSUN	Picea abies	MA 3228g0010	AtMidSUN	$4 \mathrm{e}-120$	367
PpeSUN3/4	Prunus persica	PPE0008G00470	AtSUN3 4	$7 \mathrm{e}-160$	470
PpeSUN5	Prunus persica	PPEOO5G13080	AtSUN5	$1 \mathrm{e}-131$	397
PtrSUN3/4	Populus trichocarpa	Potri.019G068900.v3.0	AtSUN3 4	1e-170	498
PtrSUN5-a	Populus trichocarpa	Potri.003G141500.v3.0	AtSUN5	7e-132	394
PtrSUN5-b	Populus trichocarpa	Potri.001G089700.v3.0	AtSUN5	$8 \mathrm{e}-126$	382
TcaSUN3/4	Theobroma cacao	POPTR 0019s09690.1	AtSUN3 4	$2 \mathrm{e}-154$	456
TcaSUN5	Theobroma cacao	TC0003G29550	AtSUN5	$7 \mathrm{e}-136$	407
ZmaSUN3/4	Zea mays	GRMZM2G005483	AtSUN3 4	$3 \mathrm{e}-120$	370
ZmaSUN5	Zea mays	AC194341.4 FGP003	AtSUN5	5e-98	310
SmoMidSUN-a	Selaginella moellendorffii	$441228 . \mathrm{v} 1$	AtMidSUN	$1 \mathrm{e}-69$	234
SmoMidSUN-b	Selaginella moellendorffii	440338.v1	AtMidSUN	5e-69	231
SmoMidSUN-c	Selaginella moellendorffii	411384.v1	AtMidSUN	$6 \mathrm{e}-57$	199
SmoMidSUN-d	Selaginella moellendorffii	440339.v1	AtMidSUN	$7 \mathrm{e}-55$	193
SmoMidSUN-e	Selaginella moellendorffii	409314.v1	AtMidSUN	6e-49	176
SmoMidSUN-f	Selaginella moellendorffii	409317.v1	AtMidSUN	3e-42	158
SlySUN5	Solanum lycopersicum	Solyc08g082540.2	AtSUN5	$1 \mathrm{e}-120$	367
VviSUN3/4	Vitis vinifera	GSVIVT01037194001	AtSUN3 4	$5 \mathrm{e}-157$	461
VviSUN5	Vitis vinifera	GSVIVT01019558001	AtSUN5	1e-62	214
AtrSUN3/4	Amborella trichopoda	evm 27.TU.AmTr v1.0 scaffold00099.66	AtSUN3 4	$1 \mathrm{e}-118$	365
AtrSUN5	Amborella trichopoda	evm 27.TU.AmTr v1.0 sc̄affold00021.233	AtSUN5	$5 \mathrm{e}-118$	360
PpaMidSUN-a	Physcomitrella patens	Phpat.021G008400.v3.0	AtMidSUN	$1 \mathrm{e}-72$	244
PpaMidSUN-b	Physcomitrella patens	Phpat.018G065400.v3.0	AtMidSUN	6e-69	239
CreMidSUN	Chlamydomonas reinhardtii	Cre12.g517300.t1.1	AtMidSUN	$1 \mathrm{e}-24$	110
OluMidSUN	Ostreococcus lucimarinus	32403	AtMidSUN	9e-31	126

C. 3 Tissue expression of the LINC complex protein homologues

C.3.1 Eudicot expression results

Figure C.2: Arabidopsis thaliana results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in RPKM \pm SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

Figure C.3: Arabidopsis lyrata results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in RPRM \pm SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

Figure C.4: Solanum lycopersicum results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in $R P K M \pm$ SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

Figure C.5: Glycine max results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in $R P K M \pm$ SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

C.3.2 Monocot expression results

Figure C.6: Orysa sativa results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in RPRM \pm SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

Figure C.7: Zea Mays results. Data Table 4.3 were used in order to monitor the expression of candidategenes investigated inthisstudy. Histograms showmeans of transcriptionlevels expressed in $R P K M \pm$ SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

C.3.3 Basal angiosperm and moss expression results

Figure C.8: Amborella trichopoda results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in RPKM \pm SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

Figure C.9: Physcomitrella patens results. Data Table 4.3 were used in order to monitor the expression of candidate genes investigated in this study. Histograms show means of transcription levels expressed in RPRM \pm SEM. SAND gene was used as a reference and set at 1 RPKM (Table 4.4).

ELSEVIER LICENSE TERMS AND CONDITIONS

Feb 29, 2016
This is an Agreement between Axel Poulet ("You") and Elsevier ("Elsevier"). It consists of your order details, the terms and conditions provided by Elsevier, and the payment terms and conditions.

All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of this form.

Supplier	Elsevier Limited
	The Boulevard,Langford Lane
	Kidlington, Oxford, OX5 1GB,UK
Registered Company Number	1982084
Customer name	Axel Poulet
Customer address	Faculty of Health and Life Sciences,
	Oxford, None OX3 0BP
License number	3797270610253
License date	Jan 27, 2016
Licensed content publisher	Elsevier
Licensed content publication	Trends in Biochemical Sciences
Licensed content title	Mechanisms of heterochromatin subnuclear localization
Licensed content author	Benjamin D. Towbin,Adriana Gonzalez-Sandoval,Susan M. Gasser
Licensed content date	July 2013
Licensed content volume number	38
Licensed content issue number	7
Number of pages	8
Start Page	356
End Page	363
Type of Use	reuse in a thesis/dissertation
Intended publisher of new work	other
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	1
Format	both print and electronic
Are you the author of this Elsevier article?	No
Will you be translating?	No
Original figure numbers	Figure 1
Title of your thesis/dissertation	Chromatin organisation at the interphase in Arabidopsis Thaliana
Expected completion date	Apr 2016
Estimated size (number of pages)	100
Elsevier VAT number	GB 494627212
Price	0.00 GBP

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non-exclusive world English rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com;
Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.
Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:
A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.
Authors can share their accepted author manuscript:

- immediately
via their non-commercial person homepage or blog
byoupdating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
disectly by providing copies to their students or to research collaborators for their personal use
for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- after the embargo period
via non-commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement
In all cases accepted manuscripts should:
- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license - this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review coordination, copy-editing, formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access articles:
Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the

This is a human-readable summary of (and not a substitute for) the license. Disclaimer

You are free to:

Share - copy and redistribute the material in any medium or format

Adapt - remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

(ㅂ)
Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Proprietary Rights Notice for MBoC

Molecular Biology of the Cell (MBoC) ©2013 by The American Society for Cell Biology (ASCB). Individual articles are distributed by The American Society for Cell Biology under license from the author(s), who retain copyright. Two months after being published at www.molbiolcell.org, the material in $M B O C$ is available for non-commercial use by the general public under an Attribution-Noncommercial-Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-$\mathrm{nc}-\mathrm{sa} / 3.0$). Under this license, the content may be used at no charge for noncommercial purposes by the general public, provided that: the authorship of the materials is attributed to the author(s) (in a way that does not suggest that the authors endorse the users or any user's use); users include the terms of this license in any use or distribution they engage in; users respect the fair use rights, moral rights, and rights that the authors and any others have in the content.

For permissions to copy beyond the terms stated above and that permitted by Section 107 or 108 of the U.S. Copyright Law and for reprints, contact the Copyright Clearance Center or the ASCB (mboc@ascb.org).

ASCB®, The American Society for Cell Biology $®$, and Molecular Biology of the Cell $®$ are registered trademarks of The American Society for Cell Biology.

Warranties

In no event shall the ASCB or Stanford University be liable for any damages, including direct, special, incidental, indirect or consequential damages of any kind, or any damages whatsoever resulting from loss of use, data or profits, whether or not advised of the possibility of damage, and on any theory of liability, arising out of or in connection with the use or performance of this information.

This publication is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement.

Descriptions of, or references to, products or publications does not imply endorsement of that product or publication.
$M B O C$ is under development and changes may be made in these publications and programs at any time.

Order Number	501099505
Order date	Jan 18, 2016
Licensed content publisher	The American Association for the Advancement of Science
Licensed content publication	Science
Licensed content title	The Amborella Genome and the Evolution of Flowering Plants
Licensed content author	Amborella Genome Project, Victor A. Albert, W. Bradley Barbazuk, Claude W. dePamphilis, Joshua P. Der, James Leebens-Mack, Hong Ma, Jeffrey D. Palmer, Steve Rounsley, David Sankoff, Stephan C. Schuster, Douglas E. Soltis, Pamela S. Soltis, Susan R. Wessler, Rod A. Wing, Victor A. Albert, Jetty S. S. Ammiraju, W. Bradley Barbazuk, Srikar Chamala, Andre S. Chanderbali, Claude W. dePamphilis, Joshua P. Der, Ronald Determann, James Leebens-Mack, Hong Ma, Paula Ralph, Steve Rounsley, Stephan C. et al.
Licensed content date	Dec 20, 2013
Volume number	342
Issue number	6165
Type of Use	Thesis / Dissertation
Requestor type	Scientist/individual at a research institution
Format	Print and electronic
Portion	Not specified
Order reference number	None
Title of your thesis / dissertation	Chromatin organisation the interphase in Arabidopsis Thaliana
Expected completion date	Apr 2016
Estimated size(pages)	100
Requestor Location	Axel Poulet Faculty of Health and Life Sciences, Oxford Brookes University Headington Campus Oxford OX3 OBP UK Oxford, United Kingdom OX3 0BP Attn: Axel Poulet
Total	Not Available
Total	Not Available

[^0]: ${ }^{1}$ The union of two sets is a new set that contains all of the elements that are in at least one of the two sets. The union is written as $A \cup B$.
 ${ }^{2}$ The intersection of two sets is a new set that contains all of the elements that are in both sets. The intersection is written as $A \cap B$.

[^1]: ${ }^{3}$ Surfel is an abbreviation of "surface element".

[^2]: Table 4.6: Sequence selected for the phylogenetic and expression analysis. Each grey

[^3]: ${ }^{1}$ Paraphyletic group contains an ancestor but only some of its descendants
 ${ }^{2}$ Monophyletic group contains an ancestor and all of its descendants

