889 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationStochastic methods, dense free-form mapping, atlas construction, and total variation are examples of advanced image processing techniques which are robust but computationally demanding. These algorithms often require a large amount of computational power as well as massive memory bandwidth. These requirements used to be ful lled only by supercomputers. The development of heterogeneous parallel subsystems and computation-specialized devices such as Graphic Processing Units (GPUs) has brought the requisite power to commodity hardware, opening up opportunities for scientists to experiment and evaluate the in uence of these techniques on their research and practical applications. However, harnessing the processing power from modern hardware is challenging. The di fferences between multicore parallel processing systems and conventional models are signi ficant, often requiring algorithms and data structures to be redesigned signi ficantly for efficiency. It also demands in-depth knowledge about modern hardware architectures to optimize these implementations, sometimes on a per-architecture basis. The goal of this dissertation is to introduce a solution for this problem based on a 3D image processing framework, using high performance APIs at the core level to utilize parallel processing power of the GPUs. The design of the framework facilitates an efficient application development process, which does not require scientists to have extensive knowledge about GPU systems, and encourages them to harness this power to solve their computationally challenging problems. To present the development of this framework, four main problems are described, and the solutions are discussed and evaluated: (1) essential components of a general 3D image processing library: data structures and algorithms, as well as how to implement these building blocks on the GPU architecture for optimal performance; (2) an implementation of unbiased atlas construction algorithms|an illustration of how to solve a highly complex and computationally expensive algorithm using this framework; (3) an extension of the framework to account for geometry descriptors to solve registration challenges with large scale shape changes and high intensity-contrast di fferences; and (4) an out-of-core streaming model, which enables developers to implement multi-image processing techniques on commodity hardware

    Spatially Adaptive Computation Time for Residual Networks

    Full text link
    This paper proposes a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image. This architecture is end-to-end trainable, deterministic and problem-agnostic. It is therefore applicable without any modifications to a wide range of computer vision problems such as image classification, object detection and image segmentation. We present experimental results showing that this model improves the computational efficiency of Residual Networks on the challenging ImageNet classification and COCO object detection datasets. Additionally, we evaluate the computation time maps on the visual saliency dataset cat2000 and find that they correlate surprisingly well with human eye fixation positions.Comment: CVPR 201

    Comparative evaluation of instrument segmentation and tracking methods in minimally invasive surgery

    Get PDF
    Intraoperative segmentation and tracking of minimally invasive instruments is a prerequisite for computer- and robotic-assisted surgery. Since additional hardware like tracking systems or the robot encoders are cumbersome and lack accuracy, surgical vision is evolving as promising techniques to segment and track the instruments using only the endoscopic images. However, what is missing so far are common image data sets for consistent evaluation and benchmarking of algorithms against each other. The paper presents a comparative validation study of different vision-based methods for instrument segmentation and tracking in the context of robotic as well as conventional laparoscopic surgery. The contribution of the paper is twofold: we introduce a comprehensive validation data set that was provided to the study participants and present the results of the comparative validation study. Based on the results of the validation study, we arrive at the conclusion that modern deep learning approaches outperform other methods in instrument segmentation tasks, but the results are still not perfect. Furthermore, we show that merging results from different methods actually significantly increases accuracy in comparison to the best stand-alone method. On the other hand, the results of the instrument tracking task show that this is still an open challenge, especially during challenging scenarios in conventional laparoscopic surgery

    A robust FLIR target detection employing an auto-convergent pulse coupled neural network

    Get PDF
    © 2019 Informa UK Limited, trading as Taylor & Francis Group. Automatic target detection (ATD) of a small target along with its true shape from highly cluttered forward-looking infrared (FLIR) imagery is crucial. FLIR imagery is low contrast in nature, which makes it difficult to discriminate the target from its immediate background. Here, pulse-coupled neural network (PCNN) is extended with auto-convergent criteria to provide an efficient ATD tool. The proposed auto-convergent PCNN (AC-PCNN) segments the target from its background in an adaptive manner to identify the target region when the target is camouflaged or contains higher visual clutter. Then, selection of region of interest followed by template matching is augmented to capture the accurate shape of a target in a real scenario. The outcomes of the proposed method are validated through well-known statistical methods and found superior performance over other conventional methods

    Realtime Color Stereovision Processing

    Get PDF
    Recent developments in aviation have made micro air vehicles (MAVs) a reality. These featherweight palm-sized radio-controlled flying saucers embody the future of air-to-ground combat. No one has ever successfully implemented an autonomous control system for MAVs. Because MAVs are physically small with limited energy supplies, video signals offer superiority over radar for navigational applications. This research takes a step forward in real time machine vision processing. It investigates techniques for implementing a real time stereovision processing system using two miniature color cameras. The effects of poor-quality optics are overcome by a robust algorithm, which operates in real time and achieves frame rates up to 10 fps in ideal conditions. The vision system implements innovative work in the following five areas of vision processing: fast image registration preprocessing, object detection, feature correspondence, distortion-compensated ranging, and multi scale nominal frequency-based object recognition. Results indicate that the system can provide adequate obstacle avoidance feedback for autonomous vehicle control. However, typical relative position errors are about 10%-to high for surveillance applications. The range of operation is also limited to between 6 - 30 m. The root of this limitation is imprecise feature correspondence: with perfect feature correspondence the range would extend to between 0.5 - 30 m. Stereo camera separation limits the near range, while optical resolution limits the far range. Image frame sizes are 160x120 pixels. Increasing this size will improve far range characteristics but will also decrease frame rate. Image preprocessing proved to be less appropriate than precision camera alignment in this application. A proof of concept for object recognition shows promise for applications with more precise object detection. Future recommendations are offered in all five areas of vision processing

    DRIMET: Deep Registration for 3D Incompressible Motion Estimation in Tagged-MRI with Application to the Tongue

    Full text link
    Tagged magnetic resonance imaging (MRI) has been used for decades to observe and quantify the detailed motion of deforming tissue. However, this technique faces several challenges such as tag fading, large motion, long computation times, and difficulties in obtaining diffeomorphic incompressible flow fields. To address these issues, this paper presents a novel unsupervised phase-based 3D motion estimation technique for tagged MRI. We introduce two key innovations. First, we apply a sinusoidal transformation to the harmonic phase input, which enables end-to-end training and avoids the need for phase interpolation. Second, we propose a Jacobian determinant-based learning objective to encourage incompressible flow fields for deforming biological tissues. Our method efficiently estimates 3D motion fields that are accurate, dense, and approximately diffeomorphic and incompressible. The efficacy of the method is assessed using human tongue motion during speech, and includes both healthy controls and patients that have undergone glossectomy. We show that the method outperforms existing approaches, and also exhibits improvements in speed, robustness to tag fading, and large tongue motion.Comment: Accepted to MIDL 2023 (full paper

    Investigating the latency cost of statistical learning of a Gaussian mixture simulating on a convolutional density network with adaptive batch size technique for background modeling

    Get PDF
    Background modeling is a promising field of study in video analysis, with a wide range of applications in video surveillance. Deep neural networks have proliferated in recent years as a result of effective learning-based approaches to motion analysis. However, these strategies only provide a partial description of the observed scenes' insufficient properties since they use a single-valued mapping to estimate the target background's temporal conditional averages. On the other hand, statistical learning in the imagery domain has become one of the most widely used approaches due to its high adaptability to dynamic context transformation, especially Gaussian Mixture Models. Specifically, these probabilistic models aim to adjust latent parameters to gain high expectation of realistically observed data; however, this approach only concentrates on contextual dynamics in short-term analysis. In a prolonged investigation, it is challenging so that statistical methods cannot reserve the generalization of long-term variation of image data. Balancing the trade-off between traditional machine learning models and deep neural networks requires an integrated approach to ensure accuracy in conception while maintaining a high speed of execution. In this research, we present a novel two-stage approach for detecting changes using two convolutional neural networks in this work. The first architecture is based on unsupervised Gaussian mixtures statistical learning, which is used to classify the salient features of scenes. The second one implements a light-weighted pipeline of foreground detection. Our two-stage system has a total of approximately 3.5K parameters but still converges quickly to complex motion patterns. Our experiments on publicly accessible datasets demonstrate that our proposed networks are not only capable of generalizing regions of moving objects with promising results in unseen scenarios, but also competitive in terms of performance quality and effectiveness foreground segmentation. Apart from modeling the data's underlying generator as a non-convex optimization problem, we briefly examine the communication cost associated with the network training by using a distributed scheme of data-parallelism to simulate a stochastic gradient descent algorithm with communication avoidance for parallel machine learnin

    Towards Accurate Multi-person Pose Estimation in the Wild

    Full text link
    We propose a method for multi-person detection and 2-D pose estimation that achieves state-of-art results on the challenging COCO keypoints task. It is a simple, yet powerful, top-down approach consisting of two stages. In the first stage, we predict the location and scale of boxes which are likely to contain people; for this we use the Faster RCNN detector. In the second stage, we estimate the keypoints of the person potentially contained in each proposed bounding box. For each keypoint type we predict dense heatmaps and offsets using a fully convolutional ResNet. To combine these outputs we introduce a novel aggregation procedure to obtain highly localized keypoint predictions. We also use a novel form of keypoint-based Non-Maximum-Suppression (NMS), instead of the cruder box-level NMS, and a novel form of keypoint-based confidence score estimation, instead of box-level scoring. Trained on COCO data alone, our final system achieves average precision of 0.649 on the COCO test-dev set and the 0.643 test-standard sets, outperforming the winner of the 2016 COCO keypoints challenge and other recent state-of-art. Further, by using additional in-house labeled data we obtain an even higher average precision of 0.685 on the test-dev set and 0.673 on the test-standard set, more than 5% absolute improvement compared to the previous best performing method on the same dataset.Comment: Paper describing an improved version of the G-RMI entry to the 2016 COCO keypoints challenge (http://image-net.org/challenges/ilsvrc+coco2016). Camera ready version to appear in the Proceedings of CVPR 201
    • …
    corecore