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AFIT/GE/ENG/OOM-08 

Abstract 

Recent developments in aviation have made micro air vehicles (MAVs) a reality. 

These featherweight palm-sized radio-controlled flying saucers embody the future of air-to- 

ground combat. No one has ever successfully implemented an autonomous control system 

for MAVs. Because MAVs are physically small with limited energy supplies, video signals 

offer superiority over radar for navigational applications. 

This research takes a step forward in realtime machine vision processing. It 

investigates techniques for implementing a realtime stereovision processing system using two 

miniature color cameras. The effects of poor-quality optics are overcome by a robust 

algorithm, which operates in realtime and achieves frame rates up to 10 fps in ideal 

conditions. The vision system implements innovative work in the following five areas of 

vision processing: fast image registration preprocessing, object detection, feature 

correspondence, distortion-compensated ranging, and multiscale nominal frequency-based 

object recognition. 

Results indicate that the system can provide adequate obstacle avoidance feedback for 

autonomous vehicle control. However, typical relative position errors are about 10%—to 

high for surveillance applications. The range of operation is also limited to between 6-30 

m. The root of this limitation is imprecise feature correspondence: with perfect feature 

correspondence the range would extend to between 0.5 - 30 m. Stereo camera separation 

limits the near range, while optical resolution limits the far range. Image frame sizes are 

160x120 pixels. Increasing this size will improve far range characteristics but will also 

decrease frame rate. Image preprocessing proved to be less appropriate than precision camera 

alignment in this application. A proof of concept for object recognition shows promise for 

applications with more precise object detection. Future recommendations are offered in all 

five areas of vision processing. 
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REALTIME COLOR STEREOVISION PROCESSING 

1.   INTRODUCTION 

1.1    BACKGROUND 

Since the 1970s, image processing has been a hot topic on the fine edge between 

science and computing. Recent acceleration of computer technology has hailed an 

ongoing explosion in image processing research. Research began to escalate considerably 

in the late 1990s. The reason is simple—we now have the capacity to perform image 

processing real time, eliminating the need to spend hours or days on what the human eye 

can do in a split second. 

The forerunner of digital image processing originated in the 1960s when National 

Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) designed 

a system to enhance images from the Ranger 7 mission [6:410]. This system corrected 

for image blurring, geometric distortions, and other sources of background noise [6:410]. 

Image processing has also found its way into many other fields, including medicine, 

biology, agriculture, physics, forensics, and geography. The research reported here 

applies image processing to automatic navigation and control of mobile defense systems. 

More specifically, the focus is on adding autonomy to cutting-edge technology already 

invested in micro air vehicle (MAV) design. 
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According to Aviation Weekly, the first MAV was constructed in 1997 as part of a 

$35 million, four-year DARPA (Defense Advanced Research Projects Agency) effort to 

develop the latest in defense weaponry [2]. The current model operates for a minimum of 

10 minutes with a 1-km radius. By March 2000 the MAV is expected to have a 3-km 

operating radius with 20 minutes of continuous flight. 

Some applications for MAVs include micromunitions and covert surveillance. 

According to former Air Force Explosive Ordinance Disposal (EOD) Technician, B. 

Reece Tredway, a 20 g payload of plastic Composition-4 (C-4) explosive is sufficient to 

self destruct an MAV along with a sizeable enemy communications circuit [7]. 

Rapid advances in MAV technology have created the demand for an advanced 

control mechanism, allowing MAVs to fly with at least partial autonomy. DARPA's 

program manager for MAV research, James McMichael, has said that autonomous 

control is a major worry for the future of the program [2]. It makes good sense to develop 

a vision system as the core element of a control mechanism for such a platform. There are 

two reasons backing this up: 1) Vision systems use cameras—passive devices allowing a 

vessel to operate covertly; 2) Cameras are lighter and more efficient than other remote 

sensing elements. Bulky radar technology concedes to vision processing systems on both 

accounts. 

The vision system developed in this research offers an alternative to radar, 

bridging  the  gap  between  traditional   aircraft  technology  and  more  recent  MAV 
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technology. By using a color stereovision apparatus, this system detects and locates 

objects in front of the vehicle. In the context of an MAV platform, the video would be 

transmitted back to a control center for processing. Then the control center would return 

the proper feedback required to appropriately adjust the motion of the aircraft. In this 

research, however, the test bed being used is not an MAV, and therefore it harbors a 

rudimentary onboard control system. The name given to this platform is "The 

RAVEN"—Remote-sensing Autonomous Vehicle ENgineering test bed. The RAVEN is 

actually a Club Car® golf cart, equipped with two additional batteries, two color cameras, 

an on-board dual processing computer with video capture board, and a low-powered 

liquid crystal display (LCD) heads-up display (HUD). The RAVEN is shown in Figure 

1.1. Note the relative left-hand coordinate frame with the origin at the center of the right 

camera. In the future, the car will be modified to contain automatic steering, acceleration, 

and braking capabilities. Future research will focus on integrating the vision system with 

inertial navigation system (INS) and differential global positioning system (DGPS) data 

to extend the platform's navigational capabilities. 

1.2    PROBLEM STATEMENT 

Research on real-time vision processing systems is directly applicable to cutting- 

edge military technology since MAV technology faces an impending limit until a control 

mechanism, sophisticated enough to provide autonomy, is developed. The process 
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Figure 1.1 RAVEN test bed and left-hand local coordinate frame. 

performed by any stereo vision system is fivefold. Figure 1.2 diagrams this generic 

process, as explained below. 

The first step is feature extraction. During this phase, essential information is 

extracted from the stereo images in order to compare the left and right image pairs. 

Optionally, this step may involve some form of preprocessing to correct for optical 

distortions. 

The next step is to find correspondences between the two feature sets from each 

image. This involves taking a feature from one image and searching for it in the other. 

The problem is difficult because some features are not in both images. It is also very easy 

to have false features appearing in both images. If improperly handled, these two 
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Figure 1.2 Generic procedure for stereo machine vision processing 

problems can confuse the vision system into thinking that objects are misplaced. It can 

also convince the system that an object exists when it really does not. Such objects are 

called phantoms. This research introduces some advances, discussed later, that ensure 

stability for resolving these problems. 

The third step in processing stereo image pairs is to cluster features in such a way 

that each cluster contains all the features representing a particular object. Errors in this 

step create multiple objects where only one really exists, or they can cause the system to 

mistake several smaller objects for a single larger object. Some systems, including the 

one onboard the RAVEN, perform the second and third steps in reverse order. 
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Fourth in the process is object ranging. In this step, the real-world boundaries for 

each object are determined, as well as object locations relative to the local coordinate 

frame. 

The final step is object recognition. In this step the system attempts to recognize 

objects using some appropriate pattern recognition algorithm. This research reveals 

innovative techniques for each of the five steps in the process. 

1.3    SUMMARY OF CURRENT KNOWLEDGE 

In order to recognize the contributions of this research, it is important to examine 

current technology first. This section is dedicated to that purpose. It has been organized 

into two subsections—one outlines applications of current technology, and the other 

discusses the status of relevant theoretical knowledge. 

1.3.1   APPLIED KNOWLEDGE 

In   Germany,  Daimler-Benz  has  made  extensive  progress   in  the  field  of 

autonomous vehicle control. Their Stop&Go system, powered by a network of four 

computers in a parallel configuration, enables a car to navigate its way autonomously 

through city traffic. It uses a vision system to recognize pedestrians, road signs, street 

markings, stoplights, and traffic patterns [3:40-41]. Most improvements to stereo 

machine vision presented in this research are modifications to current processes used by 

the Stop&Go system.  The research reported here does not yet have autonomous control 
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mechanisms comparable to that of Stop&Go, but all the necessary bare-bone components 

are in place for improving the vision techniques used by that system. 

NorthropGrumman has been developing a GPS-driven UAV (Unmanned Aerial 

Vehicle), named the Global Hawk Navigation System [4:1]. The technology used by 

Global Hawk might one day be combined with a vision system to improve navigational 

capabilities. NAVSYS Corporation has a video feedback system closely tied to this 

emerging technology [1:1]. This system fuses GPS and INS data for attitude and 

positioning determination [1:2]. Then the data is mapped to a database, containing 

locations of all known objects in the vicinity. Objects are pulled from the database and 

displayed on a HUD in the exact manner in which they would have been seen through the 

windshield under ideal visibility. 

NAVSYS is developing this system in contractual agreement with the US Army 

and the ONR (Office of Naval Research) [1:8]. It has direct applications for MAV 

technology. Consider a fleet of networked MA Vs. This low-profile flying team could 

swarm a tactical location, fusing their observations onto a central GPS-based map. Each 

MAV could provide coordinates and descriptions of all objects encountered. The 

resulting map would be a three-dimensional representation of the site encountered. This 

map could then be used to generate war-fighting simulations and thus more effective 

attack plans. Eventually, it could also allow critical targets to be accurately modeled at 

full scale for practicing an actual attack. 
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1.3.2    THEORETICAL KNOWLEDGE 

Theoretical knowledge supporting stereo vision systems falls into six major 

categories. The first category is edge detection. An edge detector creates a line drawing 

from of a photographic image. Perhaps the most popular theoretical contribution in edge 

detector design is a remarkable innovation credited to John Canny [8]. While there are at 

least a half a dozen other edge detectors available, most current systems seem to favor the 

characteristics of the Canny edge detector. The purpose of edge detection is to reduce the 

overall data set being used for dynamic vision processing, which speeds up the 

processing. 

Another contribution that increases the utility of edge-detection is a 

polygonization procedure developed by T. J. Davis [9]. This algorithm accepts an edge- 

detected image as input and generates sets of endpoints for each edge as output. This step 

is useful because it further reduces the volume of data required for processing. Other 

techniques, such as artificial neural networks [10] and variable-scale smoothing [11], 

have been proposed for accelerating and enhancing edge detection. This research does 

not incorporate edge detection techniques because they are computationally too expensive 

to use in the system. A dedicated edge-detection/polygonization image-processing chip, 

however, may provide the additional computing power needed to make edge detection a 

viable alternative. 
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Object detection is another aspect of machine vision. Again, Stop&Go is 

recognized for its powerfully simple histogramming technique for detecting objects 

[12:340]. A completely different technique for object detection is presented in [13]. This 

novel method uses Haar wavelet energy distributions as inputs to a multi-layer perceptron 

(MLP) neural network for locating objects. The results are surprisingly accurate, but the 

computational intensity for wavelet processing is also high. Todd Williamson, et al., 

developed a specialized multibaseline stereo technique for obstacle detection [14]. This 

technique also has merit in its simplicity. A drawback is that it operates on the entire 

image instead of a small set of feature points. However, the multibaseline technique 

could be adapted to operate on only a subset of image points. The technique examines 

pixel disparities and calculates real-world positions, assigning a new pixel values which 

increase monotonically with both relative depth and height. The result is an image 

highlighting vertical objects. 

Disparity estimation is the next category of stereo machine vision theory and is 

the most difficult aspect of vision processing. The disparity of a pixel is the horizontal 

shift of that pixel between the left and right image frames. The epipolar constraint is the 

notion that corresponding pixels between left and right image frames cannot have vertical 

offsets between them. The perspective constraint mandates that pixels in the left image 

frame corresponding to pixels in the right image frame must be shifted to the right of the 

corresponding pixel positions in the right image frame.    Each of these constraints 
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simplifies the correspondence problem—the problem of determining which pixels 

correspond and what their disparities are. Disparity estimation is not as difficult as the 

correspondence problem that precedes it. 

Stop&Go classifies every point in the image into eighty-one categories and then 

performs a columnwise search for correspondences within each category. 

Correspondences which generate the least disparity are chosen where discrepancies exist. 

While this approach is straightforward and simple, there are at least four others worth 

mentioning. 

One alternative is to bypass the problem completely. Shinsaku Hiura and Takashi 

Matsuyama have experimented with a multifocus camera [35]. By determining the 

"blurriness" of various regions in the image at different foci, they determine a depth map 

of an image with some success. Their system does not require processing two images, 

but it does require the use of a specialized camera capable of capturing three images 

simultaneously, where each of the images is focused differently. 

A novel method, developed as part of this research, determines the disparity 

between regions of homogeneous color. This method had limited success due to varied 

lighting effects, causing poor interimage color correspondence. No amount of color 

preprocessing corrected this problem, so the idea was abandoned. Rabie Tamer, et al., 

devised a method for aligning multiple images into a mosaic [15]. If this method had not 

been so computationally intensive, it may have been implemented to align corresponding 
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colored regions between left and right image frames. Another technique that failed was a 

modification to the Stop&Go contrast pixel classifier that used color channel variance and 

norm color differences to perform pixel classification. While this method did a good job 

of identifying key pixels in each image, it did not lead to robust feature correspondence. 

See Appendix A for details. 

Object recognition is the next category of theoretical research supporting vision 

systems. Since the RAVEN is operating in a road-centered environment, it is prudent to 

examine road sign recognition techniques. Dan Ghica, et al., [16] and Giulia Piccioli, et 

al., [20] have both researched this specific application of object recognition. 

More generally, D. Ernst, et al., is developing a classifier which extracts not only 

geometric data from tracked objects but also motion parameters of individual parts of the 

objects to assist in their recognition [17:1]. 

In 1991, Si Wei Lu and Andrew Wong outlined a method for recognizing partially 

occluded objects by a hypergraph representation [19], which means that they combined 

search techniques with graph theory and mapped it to the domain of occluded objects. 

Their work, although ahead of its time, was somewhat sketchy, and therefore not useable 

for application onboard the RAVEN. 

D. M. Gavrila and L. S. Davis have researched a very fast phase-coded filtering 

method for correlating images from large databases [18]. This technology could be 

applied to locate objects of interest within a single image.    In this adaptation a 
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predetermined target would be identified more quickly. The alternative is to identify 

every object detected and then determine whether the desired target has been acquired—a 

much more time-intensive process. 

Object tracking is another discipline serving machine vision. Stop&Go uses a 

Kaiman filter to estimate future motion of objects through a sequence of image frames 

[12:342-343]. Li Biao, et al., [21] and Haixin Chen, et al., [22] are two groups that have 

examined tracking methods using infrared imagery. Biao's team uses a weighted-average 

filter for tracking, while Chen's uses a variation of match filter tracking. Match filter 

tracking locates a point of maximum correlation of an object from one image shifted over 

a sequential image. T. Darrell, et al., [23] has succeeded at person tracking using apriori 

knowledge about the structure of the human body to extract and identify features of 

humans. 

Structure from motion is a process where multiple frames in an image sequence 

allow for complete three-dimensional modeling of objects encountered. The structure is 

implied from observations of motion. John Oliensis [31] developed an algorithm that not 

only accomplishes this task but also corrects for situations where perspective effects are 

large. Unfortunately, his method is unacceptably slow. 

Gideon Stein and Amnon Shashua [26] devised a unique twist to the traditional 

structure-from-motion problem. They used spatio-temporal derivatives between two 

sequential stereo image pairs to fuse the stereo structure information from two pairs of 
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sequential frames.   This is done by removing the estimated motion effects determined 

from the optical flow of the sequence. 

Another powerful technique related to the structure-from-motion problem uses 

multiple images from a sequence to segment the image into regions [30]. Each region 

corresponds to an object. This technique could be used with the proposed region 

disparity estimation method to utilize color information in stereo processing more fully. 

A drawback is that there must be relative motion between objects and the detector. 

Another fault is that the background is a difficult feature to identify for removal from the 

process. 

Christopher Eveland, et al., [29] developed a method for statistically modeling 

foreground and background behaviors which is intended to solve this problem. For a 

brief explanation of the original structure-from-motion algorithm, refer to Min Shin and 

Kevin Bowyer's study, which uses this technique for comparing various edge detectors 

[32:191]. 

One final idea, related to the structure-from-motion category and created by John 

Oliensis [25], is to determine camera heading from multiple image frames. The difficulty 

with this and most of the other methods presented in this section is that they are 

computationally expensive. This observation does not mean they will never be applied to 

realtime Stereovision; it just means that technology is not advanced enough to implement 

them yet. 
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1.4 ASSUMPTIONS 

It is assumed that no objects in front of the camera are distorted by the camera 

lens. It is also assumed that the cameras are oriented such that the ground is below the 

sky in all images and that the cameras are aimed parallel to each other in a direction 

normal to the front plane of the test bed. All objects of interest are assumed to contrast 

against their backgrounds and to have rectangular form with one pair of edges normal to 

the local ground plane. Color sensitivity is assumed to be identical for each camera, and 

it is assumed that no specular variations exist between left and right image frames. One 

final assumption is that left and right image frames are captured simultaneously, with all 

objects of interest appearing within the field of view (FOV) of both cameras. 

1.5 SCOPE 

This research implements a stereo vision-processing scheme that accomplishes all 

of the five steps outlined in Section 1.2. Contributions are presented for each step of the 

process. No attempt is made to perform object tracking, and no GPS/INS data is being 

incorporated at this time. Innovative techniques are proposed for assisting camera 

alignment calibration, target detection, the correspondence problem, and object 

recognition. Shortcomings are explained, and suggestions are made for further 

refinement. Accuracies are well-documented and interpreted for object detection, 

location, and recognition. The resulting system is a realtime vision processing apparatus 
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that can be used readily to demonstrate the effectiveness of the principles detailed by this 

document. 

1.6 APPROACH 

The approach taken by this research was to design the requirements of the vision 

system and then to acquire appropriate hardware for implementing the design. After 

familiarization with the hardware, a large number of vision processing techniques were 

investigated for possible application to the project. The techniques used by the Daimler- 

Benz Stop&Go system were selected for implementation and analysis for baseline 

comparison. Unfortunately, the emulation of Stop&Go was unsuccessful. Then a new 

vision process was developed using techniques which are all potentially original works of 

the author (a continuing comprehensive search for similar techniques is in progress). 

While time constraints dictated that the RAVEN could not yet harbor a fully autonomous 

control system, much progress has been made toward this goal. 

1.7 MATERIALS AND EQUIPMENT 

The RAVEN consists of a battery-powered Club Car® golf cart with two 

auxiliary 12 V marine recreational continuous-duty lead acid batteries configured in 

series. A 24 V charger accompanies this battery set, while a separate charger is used for 

the car batteries. A 120 VAC power inverter operates on auxiliary power and is used to 

run an overclocked, homemade, dual 500 MHz Celeron computer with 128 MB RAM 
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and an internal high G-rated laptop hardrive. The computer runs Windows NT® 4.0 SP5 

with MATLAB® 5.3 and Microsoft® Visual C++® 6.0. The computer also houses a 

Matrox® Meteor H® frame grabber. Two Marshall® V-1246T lA" CCD color cameras are 

mounted on the front of the car and fed into the frame grabber. The cameras have fixed 

focal lengths of 3.7 mm. Maximum horizontal and vertical viewing angles are 57° and 

41°, respectively. A flat-panel LCD monitor rests above the steering wheel in a bracket, 

which was made in-house. An Ashtech® differential Global Positioning System (DGPS) 

receiver collects relative positioning data from a local ground station for determining 

errors in vision measurements. Other standard miscellaneous tools were also used in 

modifying the platform. 

1.8    THESIS ORGANIZATION 

Chapter 2 reviews background theory as a prerequisite to understanding the 

methodology given in Chapter 3. Chapter 3 provides a detailed description of the ideas 

that were developed during this research. Chapter 4 presents qualifying results which 

validate the adequacy of this research, and Chapter 5 summarizes key contributions and 

proposes future endeavors. The Appendix contains information about the process of 

emulating the Stop&Go system for purposes of baseline comparison. 
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2.   BACKGROUND THEORY 

2.1 CHAPTER OVERVIEW 

This chapter offers a tutorial in image processing fundamentals applicable to this 

research. Topics covered include image characteristics, feature extraction, stereo 

imaging, and feature analysis. 

2.2 IMAGE CHARACTERISTICS 

An image is a two-dimensional sequence of real numbers between zero and one. 

Color images are really three images blended together. Each of the three images is 

assigned to a primary color—red, green, or blue. Every element of the sequence is called 

a picture element or pixel. The value of the each element corresponds to the brightness of 

the pixel. In this document, brightness and intensity are used interchangeably. Pixels are 

referenced by horizontal and vertical offsets within the image. Figure 2.1 illustrates the 

pixel ordering system. The ordering system is zero-based, with row numbers increasing 

downward and column numbers increasing to the right. Rows are designated by the 

abscissa while columns are indicated in the ordinate position. 

Color images have three color planes. The first is red; the second is green; and the 

third is blue, as shown in Figure 2.2. Alternatively, a color pixel may be viewed as 

having three channels, each corresponding to a color plane. This alternative 

representation is also depicted in Figure 2.2. 
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Pixel (j,k) 
j = row 
k = column 

Figure 2.1 Pixel reference system 

Red color channel for pixel (0,4) 

Blue color plane 

Green color plane 

Red color plane 

Figure 2.2 Color image representation 

In a computer, images are stored in buffers. An image buffer is simply an array of 

pixel data stored contiguously by rows. This idea is illustrated in Figure 2.3. 
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Color Image Buffer 

BGRBGRBGRBGR... 

Buffer data is stored contiguously by rows 

Figure 2.3 Image data structure 

2.3    FEATURE EXTRACTION 

Images are inherently expensive to process.   Image data sets are reduced by a 

process called feature extraction. Feature extraction is the process of identifying and 

stripping key characteristics from a data set. These features are kept while the rest of the 

data is discarded for some or all of the remaining processing tasks. 

Image segmentation is one category of feature extraction. Region growing is one 

common form of image segmentation. Region growing, as illustrated in Figure 2.4, 

begins by choosing a seed pixel at random. After the seed pixel is compared to its 

neighbors, the region grows in directions of homogenous color. When the region stops 

growing, a new seed pixel is chosen and the process repeats. The result is a small set of 

regions which segment the entire image according to color. Examples of other common 

forms of image segmentation are polygonization [9] (via edge detection) and split-merge 
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Random seed pixel Fully grown region 

^> 

Figure 2.4 Region growing 

[34:461-464].  In general, segmentation methods are computationally expensive, so they 

are not used in this research. 

This research uses a technique from the other class of feature extraction. This 

class is called image point isolation because features correspond to isolated points versus 

segments. The form of image point isolation used by Stop&Go is contrast detection [3]. 

Contrast detection extracts pixels significantly different than their neighbors. Figure 2.5 

shows features detected from a test image. Note that contrast features always occur in 

adjacent pairs, which follows from the fact that pixels are mutually similar or dissimilar. 

2.4    STEREO IMAGING 

Stereo imaging introduces additional image processing concepts.  Stereo imaging 

is  fusing  information  from  two  simultaneously captured images  to  obtain  depth 
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Original Image Contrast Feature Image 

=> 

Figure 2.5 Contrast detection—an image point isolation technique 

information. Two constraints of stereo imaging accelerate the information fusion process. 

The epipolar constraint, shown in Figure 2.6, preserves the order of corresponding rows 

between left and right images [12]. If the images are perfectly aligned, so are all their 

rows. 

The ordering constraint, shown in Figure 2.7, requires the order of pixels within a 

row to be the same for two corresponding rows [3]. This constraint is an assumption, not 

a natural characteristic of all images, and it assumes that objects do not completely trade 

locations between the left and the right image. In general this assumption is valid. It 

works especially well for wide objects at relatively equal depths in the image. 

Feature correspondence is the essence of stereo imaging. The previous section 

outlined feature extraction.   Feature correspondence is deciding how to correctly pair 
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Pixels from a column Pixels from a corresponding 
in left image column in right image 

Example column violating 
the epipolar constraint 

Figure 2.6 Epipolar constraint 

Left image of stereo image pair Pixels from a row in the left image 

Row in 
right image 

Right image of stereo image pair 

Alternative row in right image which violates the 
assumption of the ordering constraint 

Figure 2.7 Ordering constraint (assumed) 
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features extracted from the two images and is the most difficult problem encountered in 

stereo imaging. If perfect feature correspondence were guaranteed, then stereo vision 

systems would extend to abundantly more applications. Although feature correspondence 

was the primary error contributor, it does not capture the focus of this research. 

Feature correspondence results in a quantity called disparity. The disparity of a 

feature is the horizontal offset for that feature between two images. This concept is 

diagramed in Figure 2.8. 

A feature's disparity is the basis for determining the real-world coordinates of that 

feature. When depth information, obtained from feature coordinates, is superimposed on 

the image data, the result is a depth map for that image. A depth map generally does a 

good job isolating individual objects in an image. The example shown in Figure 2.9 

illustrates how the depth map does not always isolate objects. This research also assumes 

that in outdoor settings objects are far enough apart to be resolved individually. 

2.5    FEATURE ANALYSIS 

Object detection becomes trivial when it is assumed that individual objects are 

always resolvable from any given depth map. Detecting an object is merely locating 

contiguous regions of similar depth. If the depth map is coarse and complete, as in 

Figure 2.10, this process is identical to the image segmentation problem. Completeness 

implies that every pixel in the image has associated depth information. Unfortunately, 

depth maps are never coarse and complete. Chapter 3 outlines how to use histogramming 
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Left image of stereo image pair 

Right image of stereo image pair 

Figure 2.8 Disparity 

Right image of stereo image pair 
Same image encoded with ideal coarse 
depth map 

Figure 2.9 Depth map 
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Right image of stereo image pair 
Object detection assisted by depth 
information 

Figure 2.10 Depth-assisted object detection 

to solve this problem. 

Seldom does a vision system ever have a requirement for detecting objects 

without classifying them in some sense. This classification process is called object 

recognition. The two basic types of object recognition are template matching and 

template filtering. Template matching compares object features to features of various 

object templates. The collection of object templates is called an object library. Template 

matching associates the object with the closest matching object template within 

acceptable tolerance. Figure 2.11 illustrates the concept of template matching. 

Template filtering methods differ from template matching methods because they 

compare features from the entire image to every object template in the object library. 

Figure 2.12 illustrates this method. Each object template filters the entire set of image 

features at once. This filtering results in a series of probability density images (pdi) for 

each object in the library. The local maxima of each pdi above some tolerable threshold 

2-9 



Object library 

£& 
M ^ 

A 
Ir 

! > 

Detected object 

Figure 2.11 Template matching 

Probability Density Image 

Object template 

Figure 2.12 Template filtering 
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are identified as matches for the template used in generating the pdi. While template 

matching is efficient for classifying multiple objects in an image, template filtering is 

better for determining whether an image contains a given object. 

2.6    CHAPTER SUMMARY 

This chapter provided an overview of the basic image processing concepts 

required for understanding the core contributions this research offers. The major 

concepts are image characteristics, feature extraction methods, stereo imaging, and object 

analysis. Chapter 3 explains how these concepts explicitly tie into this research. 
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3.   METHODOLOGY 

3.1 CHAPTER OVERVIEW 

This chapter considers theoretical methods and the contributions of this research. 

It outlines new methods for preprocessing, feature clustering, feature group 

correspondence, depth mapping, and object recognition. 

3.2 SYSTEM OVERVIEW 

The RAVEN vision system is a computer program divided into ten steps.  This 

ten-step process is shown in Figure 3.1. In the first step a pair of stereo images is 

captured in computer memory. One of the images is immediately rotated and shifted 

vertically to compensate for any camera misalignment. Next both images are processed 

for contrast feature extraction using an image point isolation technique. Then features are 

clustered together in a process called histogram zooming. These feature groups or 

clusters are assumed to represent whole objects. Features groups are made to correspond 

between left and right image frames. Some of these pairings are inevitably erroneous, 

requiring the elimination of some correspondence data. A unique multiscale nominal 

frequency signature is generated for each object to fully characterize the object in highly 

compressed form. Object signatures are compared to object library templates and 

organized in variable-branch tree form. If a tolerable match is found the object is 

considered identified. Finally, all objects (identified or not) are graphically represented to 
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Capture stereo image pair Calculate world coordinates of features 

i i 
Correct translation and rotation errors Eliminate erroneous feature correspondences 

I i 
Extract contrast features Compute object signatures 

i 4 
Cluster features into objects Compare object signatures to library 

1 4 
Find feature correspondences Visualize results 

Figure 3.1 RAVEN stereovision process 

the user in real time. The object recognition step described is not yet fully implemented 

in the realtime system. Instead, a proof of concept was developed and evaluated. 

3.3    HARDWARE CONFIGURATION 

The RAVEN is equipped with both onboard AC and DC power supplies, 

providing an easy way to transfer the vision system hardware on and off the RAVEN. 

The vision system consists of a dual processor computer equipped with a PCI card frame 

grabber. Ideally, a laptop would be used, but (presumably) no portable economical 

configuration supports both dual processing and stereo frame grabbing. The solution is to 

use a power inverter, allowing normal devices to be used with little-to-no modification. 

One necessary modification was to install a laptop hardrive inside the computer to 

increase the G-rating of the system. 

A diagram of the RAVEN hardware configuration is shown in Figure 3.2. Power 
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Figure 3.2 Hardware configuration diagram 

is indicated by dashed lines and solid lines depict signals. The LCD HUD is a flat-panel 

13.3" LCD monitor mounted directly above the steering wheel. Two color cameras are 

mounted on a bracket that runs crosswise in front of the canopy. The overall system is 

shown in Figure 1.1. 

Due to limited funding, a frame grabber capable of continuous stereo color 

capture could not be obtained, complicating matters for the data acquisition phase. To 

compensate, an affordable multi-channel color capture board was selected. The 

purchased system did not meet manufacturer specifications, but the procedure outlined in 

Figure 3.3 proved to solve this complication. First the left camera is selected as the input 

device. Then a command is issued to wait for any previous asynchronous grabs to finish. 
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Select left camera 

i I * Select right camera 

Wait for any previous grab to finish * 
I Asynchronously grab image 

Asynchronously grab image ^ 
4 Extract intensity information from left image 

Wait for grab to finish (100 ms timeout) 1 
i Extract intensity information from right image 

Did an error occur? 
No 

Yes 

Figure 3.3 Stereo capture process 

This step is a precautionary measure taken to compensate for occasional acquisition 

errors. Next an image is captured asynchronously from the left camera into memory. 

Then the system waits for the capture to complete. The image is captured asynchronously 

because significant additional overhead is associated with toggling between asynchronous 

and synchronous modes. The second image needs asynchronous capture for optimum 

performance. If the hardware times out after 100 ms, then successive attempts are made 

to recapture an image. An important note is that whenever the first image capture is 

errorless, the second image capture never times out—another design fluke of the capture 

board. After the left image is successfully captured, the right image is captured 

asynchronously while the left image is averaged across its color planes to create a 

supplementary grayscale image. Given the current processing speed, it is not necessary to 

issue another wait command before forming another supplementary grayscale image from 
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the right image. The right image capture is always complete by the time the left grayscale 

image is finished. Future research will presumably take advantage of more reliable data 

acquisition technologies. 

3.4    PREPROCESSING 

The need for preprocessing stems from the need for a self-calibrating vision 

system. Without preprocessing stereovision systems require precision alignment to take 

advantage of the epipolar constraint, meaning camera orientation about all three axes 

needs to be precise. By correcting for translation and rotation in preprocessing, this 

calibration reduces to the y-axis only. The y-axis shoots vertically upward from the 

platform; the x-axis points from left to right; and the z-axis is directly in front of the 

platform. Figure 1.1 shows the local coordinate frame. 

This research presents an innovative preprocessor design, targeted for realtime 

systems. Without the assistance of a video-processing chip, the design is required to be 

extremely lean (computationally speaking). The idea, illustrated in Figure 3.4, uses the 

least squares to find the corrective line by comparing three vertical strips of each image. 

Before delving into the mechanics of the actual technique, a few new concepts 

need to be introduced. The first new concept is that of a color band. A color bands is a 

three-plane pixel vector, representing an image, or subimage. Figure 3.5 illustrates a 

vertical color band, while Figure 3.6 illustrates a horizontal band. Color bands are 
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Three-strip cross optimization 
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Desired image orientation Uncalibrated image 

Optimal rotational slope 

>- Optimal shift 

Figure 3.4 Preprocessing method 

RGB color plane blocks 

Original image block 

Average colors 
across columns 

Resulting 
vertical color band 

Figure 3.5 Vertical color band 
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RGB color plane blocks 

Original image block 

Figure 3.6 Horizontal color band 

formed by averaging across either the rows or columns of an image or subimage. 

Averaging across rows produces a horizontal color band, and averaging across columns 

produces vertical color bands. 

Color cross optimization is the process used to compare two color bands. The 

process is visually represented by sliding one color band past another until corresponding 

colors are best matched. Figure 3.7 shows the color cross optimization technique. The 

measure of error used for determining optimal alignment is called color distance. The 

color distance between any two colors is calculated by taking the norm difference of all 

color channels: 

colordist = Vfo - rb f + {ga -gbf+ {ba - bb f (3-1) 
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Region of minimum 
average color distance 
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k = 3 

Figure 3.7 Color cross optimization 

The total error function is the mean color distance of all pixels in the region of 

overlap. The purpose of color cross optimization is to determine the optimal shift needed 

to align two colored regions by minimizing the total error function. 

Color cross optimization is the essence of the RAVEN vision preprocessor. 

Figure 3.4 outlines this process. First the left and right images are divided into three 

equal-width vertical strips. Each strip is converted to a vertical color band. 

Corresponding color bands are color cross optimized over one-fifth of the total image 

height. This prevents receiver noise from causing massive accidental error corrections 

and reduces the time required to preprocess a pair of images by a factor of five. One-fifth 

range cross-optimized processing uses the apriori knowledge that the cameras are nearly 

aligned. Refer to Figure 3.4 again for a diagram of this process. 

The three optimal shifts resulting from the color cross optimizations are fed into 
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an optimized least squares (LSQ) solver. The LSQ solver is optimized for three data 

points using a hash table. The LSQ line is converted to an intercept and angle, used to 

shift and rotate pixel coordinates. The representation of the image in memory remains 

unaffected; only the way it is accessed changes. This procedure saves time that otherwise 

would be required to allocate and deallocate new large image data structures. 

3.5    FEATURE CLUSTERING 

Each classified pixel is considered to be a feature. Feature correspondence is key 

for accurate range computations. An innovative technique for feature clustering used in 

this research is histogram zooming. Histogram zooming is performed on the right image 

frame only. Contrast feature point extraction must be performed on the image before this 

process can begin. 

The process starts by dividing an image in grid fashion. Then a two-dimensional 

histogram is taken of the contrast feature points in each image bin. Bins having a number 

of features exceeding some threshold are considered for further resolution. 

Mean geometric centers are calculated for each of the selected bins. Then a new 

rectangular window, having the same size as each histogram bin, is centered about this 

mean location. All contrast feature points located within the boundaries of this histogram 

window are used to zoom in on a particular object of interest. Objects of interest 

presumably contrast against the image background and are generally rectangular with one 

set of edges normal to the ground. This assumption makes it reasonable to further reduce 
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the size of each window using an edge density heuristic. Edge density is the ratio of the 

number of feature points within a small distance of an edge with respect to the length of 

that edge. Histogram window edge points are chosen for elimination if the edge they 

correspond to does not exceed some predetermined minimum threshold for edge density. 

Windows are iteratively reduced in this fashion until the minimum edge density is 

met collectively by all edges or until the window size is below some predetermined 

minimum threshold. The latter case is disregarded as a false detection. Finally, all 

overlapping windows are unioned together, and a new window that bounds their union is 

used in their place. Each window now represents a potential object. 

3.6    FEATÜRE GROUP CORRESPONDENCE 

The next step is to take each group of features created from histogram zooming 

and correspond them to the left image frame. Feature correspondence is the most difficult 

process in any stereovision system. This step also has the greatest potential for error, and 

thus it must be handled robustly. Frequently, simplicity is a trait associated with 

robustness. The Occam's Razor principle is applied here [33:14-15]. Section 3.4 

explained the concept of color cross optimization. This technique is also used for 

corresponding feature groups, since each histogram window is easily converted into a 

horizontal color band. The perspective constraint says that a corresponding window in 

the left image must be further to the right from the window's location in the right image. 

Therefore, a horizontal color band is formed from the leftmost edge of the histogram 
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window extending to the right edge of the left image. These two color bands are color 

cross optimized to determine the disparity of the histogram window. If the minimum 

total error is too high, the window is ignored. 

3.7   DEPTH MAP 

Disparity information is used next for computing range information. Resolving a 

camera perspective of the world is equivalent to mapping from a small slice of a sphere 

onto a small rectangular region of a plane. Because light is radially focused onto a small 

rectangular charge-coupled device (CCD), each pixel of the CCD corresponds to a unique 

set of spherical angles. This mapping is visualized in Figure 3.8. 

Projection of real world to image plane 

Image plane 

Figure 3.8 Depth map transformation 
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This research incorporates cameras aimed parallel to each other. In future MAV 

applications, this constraint may change to achieve resolvable disparities from cameras 

located closely together. In skew-aligned configurations the original depth map derived 

by this research would require simple angular corrections to «and ß. 

Suppose that the center row of the CCD pixel sensor array constitutes the image 

plane. Let this row be a chord of a circle, spanning the angle ew The circle drawn in 

Figure 3.9 has radius r, where h is the height of the chord above the center of the circle, 

and w is the width of the chord. There are n segments along the chord, each equal in 

length and representing one pixel. Define d to be the horizontal position of an 

illuminated pixel relative to the center column of the pixel array. Let k be the column 

index of the pixel, according to the convention defined in Figure 2.1. Then the following 

relationship applies: 

v = *-■£, (3-2) 
2 

where v is the standard cartesian representation of k. Let Ar be the portion of the portion 

of w covered by one pixel, and let «be the angle used to select the left edge of a pixel 

segment, measured counterclockwise from center. Then the following relationships 

apply: 

Ar = - (3-3) 
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Figure 3.9 Center row anatomy 
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Using (3-2) through (3-6) «may be obtained in terms of k, n, and a,n 

a- tan 
(f2k    \    fa,    ^ 
 1 tan 

W n 
j V    2    JJ 

(3-4) 

(3-5) 

(3-6) 

(3-7) 

This relationship for or is valid for any row in the image. Next, a vertical angle ß 

is specified in terms of a. Recall that ew* is the maximum horizontal viewing angle. It 

follows that ßmax{ä) is the maximum vertical viewing angle in some horizontal direction, 

measured «radians counterclockwise from center. At this juncture the projection is best 
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conceptualized by placing a focal point behind the image plane/sensor array. A ray drawn 

from the focal point to the image plane is restricted such that it passes through the upper 

left-hand corner of a pixel in the sensor region of the plane. A top view shown in Figure 

3.10, where / is the distance from the focal point to the image plane, and Al{a) + / is the 

distance from the focal point to a pixel in the center row at angle a. Figure 3.11 shows 

how this model affects ßmax{d). The height of the image plane hp is directly related to 

ßmaxia), the maximum vertical viewing angle. The following relationship describes 

ßmaxia): 

ßmM = 2tzn 
2{l + Al{a)) 

(3-8) 

Image plane 

Focal point 

Figure 3.10 Top view of focal point projection 

Figure 3.10 leads to the relationship: 

/ + A/(a) = ^-. 
cos(a) 

(3-9) 
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Figure 3.11 Cross-view diagram displaying vertical viewing angles 

Figure 3.11 directly leads to 

hR = 2/tan f/uon (3-10) 

Substituting (3-9) and (3-10) into (3-8) yields 

ÄnaxW^tan-1 tan 
ßmJoy 

cos (a) (3-11) 

According to Figure 3.11, (3-9) may be used to express ß(ä) as 

1 m     .1      h„ 

ß(a) = tan~ 
m f     I     ^ 

cos(ctr), 

tan --— tan 
VV2    m) 

ßmJo)- \ 
cos (a) ,   (3-12) 

where j represents the row index and m is the total number of rows in the image plane. 
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The a and ß(d) relationships are directly useable since the maximum horizontal and 

vertical viewing angles are specified for the cameras. 

Let Ak be the disparity between two corresponding pixels in the left and right 

image planes, and let d represent the distance between a point in space and the center of 

the right image plane. Figure 3.12 shows this configuration with «/ and a2 representing 

the horizontal viewing angle of the point for the right and left images, respectively. Here, 

s is the distance of separation along the x-axis between the two image planes, and the 

right image plane is centered at the origin. 

The goal is to calculate the distance in the x-z plane, dxz, from the right image 

plane origin to the point of interest using «; and a2. This goal is accomplished by 

determining the intersection of the two lines at the point of interest using the slopes and 

intercepts of the lines. The slopes of the right and left lines are 

m1 = cot(öTj), 

m2 - cot(or2). 
(3-13) 

The equations for lines 1 and 2 are 

z2 =m2{x2+s). 
(3-14) 

Solving for the intersection yields 

x = • 
m, -m2 

mxm2 

(3-15) 

z=—: 5. 
ml -m2 
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Figure 3.12 Dual image plane diagram 

Solving for norm in terms of cci and «2, gives 

dxz =sl 
cot(a2)csc(a1) 

cot(afj)-cot(a2) 
(3-16) 

Next, d is calculated from this, using 

cot(or2)csc(or1) 

cos(/?!)    cos(/?!) I cot(aj) - cot(a2) 
d--^ (3-17) 

The real-world coordinates of any point are simply related to d, a, and ß by 

x = d sm(a)cos(ß), 

y = dsm(ß), 

z = d cos(a)cos(ß). 

(3-18) 
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Combining (3-17) and (3-18) gives the final result: 

x = s 
cot(a2) 

cot(aj) - cot(a2) 

/ _ / cot(a9 )csc(<x) 
y = s tan A 1 ^ ^ 

1 cot(flr,)-cot(a2) 
(3-19) 

z-s 
cot(a2)cot(al) 

cot(a{) - cot(or2) 

Equations (3-19) complete the depth map transformation derivation. Relative positioning 

data computed using this technique is used to help eliminate potential targets, which are 

markings on the road surface. 

3.8    OBJECT RECOGNITION 

Next to the correspondence problem, object recognition is the most difficult step 

to perform correctly. This research introduces a novel template-matching scheme for 

object recognition. This technique is called multiscale nominal frequency-based 

recognition. It uses a tree-based method to rapidly compare object signatures to 

templates from the object library. An object signature is created from the pixels inside 

the object-bounding rectangle. The signature is created using multiple scales of phase 

and frequency information. The technique operates under the assumption that an object is 

recognizable according to how frequencies are distributed throughout an image of that 

object. The process is charted in Figure 3.13. The idea is to apply successively finer 

short-space discrete Fourier transforms to the object image.   Each increase in detail 
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introduces more phase information into the signature. Pruning the search space, 

beginning with coarse information, allows rapid convergence of the recognition process. 

The process diagramed in Figure 3.13 begins by choosing an object to process. 

This object is classified according to its aspect ratio. There are five discrete aspect ratios: 

lA, Vi, 1, 2, 4. The object is distorted and scaled to fit the closest matching aspect ratio 

with the greater dimension measuring sixteen pixels. This forces the representative 

image to have horizontal and vertical dimensions that are powers of two. The Fast 

Fourier Transform (FFT) algorithm operates optimally on vector lengths which are 

powers of two. 

The coarsest operation performs the minimum number of short-space FFT 

operations on square subimages, and for an aspect ratio of Vi this equates to two 8x8 

operations (see Figure 3.14). Resulting phase information is discarded and coefficient 

magnitudes are saved. The magnitudes are used to determine the nominal spatial 

frequency. This number is saved for comparison. Equation 3-20 expresses the process of 

calculating the nominal frequency. 

r/2 r/2 

2    XVT^" c* 

F = _   j=-rl2+\ k=-r/2+l 

■\J2   j=-r/2+l 

r/2 r/2 

X    Xlc 
jk 

(3-20) 

k=-r/2+l 
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Figure 3.13 Multiscale nominal frequency-based recognition flow diagram 
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Figure 3.14 Multiscale nominal frequency-based recognition—detail pruning. 

where 

r = Subimage dimensions (power of 2) 

4i ■■ Maximum spatial frequency magnitude 

j = Vertical spatial frequency 

k = Horizontal spatial frequency 

V./2 +k2 = Spatial frequency magnitude 

\Cjk ~ FFT coefficients used as weights. 
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When the level of detail is increased the number of FFT operations grows by a 

factor of four, and each operation's dimensions are cut in half. The maximum level of 

detail occurs when FFT operations reach the lower bound of 2x2 in size. After the object 

being classified has a complete signature, it is compared level-by-level to signatures of 

objects in the library. Each comparison prunes the search until a match is found unless 

the object cannot be identified. 

3.9    CHAPTER SUMMARY 

This chapter provided low-level details about the theoretical contributions of this 

research. Key topics included preprocessing, feature clustering, feature group 

correspondence, depth map transformations, and the multiscale nominal frequency-based 

method of object recognition. Chapter 4 documents the results of these contributions. 
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4.   RESULTS AND ANALYSIS 

4.1    CHAPTER OVERVIEW 

This chapter provides results, analysis, and future recommendations for each of 

the five vision processing functions presented in Chapter 3. Realtime testing was 

performed for the first four of these functions. Realtime software was implemented in a 

graphical user interface (GUI) using Microsoft® Visual C++™. The name coined for this 

software is RavenVision. All other results were generated using MATLAB®. All frame 

images processed are 160x120 pixels. Realtime processing ranged between 90 and 

576 ms/frame, depending on the degree of background clutter in each frame. Nominal 

processing time was 262 ms/frame with preprocessing disabled. This time is less than 

desirable, but frame rates may be improved significantly by dual processing. 

An important note is that time constraints did not permit a baseline comparison of 

the performance of RavenVision to other vision processing systems on identical data. 

Testing was performed on three different targets; two were stop signs, and one was a 

sport utility vehicle (SUV). All results are tied to one of these three targets. 

4.2    PREPROCESSING 

Preprocessing consistently provided results accurate within ±1 pixel with an 

equally consistent overhead time of 20 ms per frame pair.    Unfortunately, variance 

information was unavailable for pixel errors; thus only the mode was determined. 
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Although the methods adopted do an effective job of determining the translational and 

rotational camera misalignments, they also require additional processor time whenever 

the altered image is accessed. The reason is that the actual image is never altered. 

Instead, coordinates are transformed when needed. Some image operations require access 

to the original untransformed image. This procedure preserves the entire image without 

clipping due to rotation, allowing all image operations to function properly. Finally, 

preprocessing does not account for rotational errors about the y-axis—the most critical 

source of errors for ranging data. 

4.2.1    FUTURE RECOMMENDATIONS 

A   preferred    solution    to   preprocessing   or   calibration    is   manufacturer 

precalibration. In the MAV context, significant translational epipolar camera separation 

is not allowed, making depth mapping more prone to errors. This type of system would 

be more like that of flying insects, such as the dragon fly. In such a compact system, 

image resolution is higher to compensate for small interimage disparities. Figure 4.1 

displays an original computer rendered solution. This precalibrated solution is more 

compact and provides more accurate results, eliminating the need for preprocessing. The 

tradeoff is that the higher resolution images take longer to process. 

4.3    FEATURE CLUSTERING 

One prerequisite to getting consistent results from any feature clustering algorithm 

4-2 



Figure 4.1 Futuristic rendition of miniature precalibrated stereo camera rig. 

is to have input from a robust feature extraction algorithm. This research examined four 

variations of contrast point feature extraction algorithms. 

4.3.1    FEATURE EXTRACTION 

All of the feature extraction methods are shown in Figure 4.2. The original image 

is the leftmost image in Figure 4.2. The target in this image is the barely visible stop sign 

indicated by a bounding rectangle. The idea is to eliminate as much background clutter as 

possible while picking out a large number of points from the desired target. The first 

method is the one used in the Stop&Go system [3]. This full-contrast detection system is 

implemented in Stop&Go as a horizontal contrast classifier. Therefore it has large 

redundancy in the points selected by the feature classification scheme. In an effort to 
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Figure 4.2 Contrast point feature extraction schemes. 

create a compatible baseline scheme, a color-based contrast classifier was developed to be 

completely compatible with the Stop&Go system. This scheme is shown in the upper 

right image of Figure 4.2. The color contrast method is detailed in Appendix A. Notice 

how all features occur in groups of two or more for each of these first two methods. 

Raven Vision needs a scheme to extract fewer points. This need led to the half contrast 

method, which yields only half as many feature points. Notice that there is still a 

significant amount of clutter in the background caused by trees near the stop sign. By 

blurring the image horizontally, fewer background points are extracted, and at least the 

pole supporting the stop sign is illuminated with features. This result is the best that can 
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be expected for a contrast feature extraction scheme operating under such poor 

conditions. 

4.3.2   HISTOGRAM ZOOMING 

The results of histogram zooming on feature sets, taken from horizontally-blurred 

half contrast point feature extraction, are surprisingly good. Figure 4.3 shows a typical 

right image frame for the SUV target. The left image in the figure shows contrast point 

features superimposed on top of the right image frame. The right image in the figure 

shows the succession of histogram zooming windows. The innermost window accurately 

bounds the target of interest. 

Figure 4.4 shows complete results from this particular image frame. Notice how 

the telephone pole, part of the building, and part of the road surface are also selected as 

potential targets. The road surface point is eliminated later by determining its y-position 

relative to the car. However, the other two objects are kept for further analysis. At this 

time, no method has been developed for eliminating false targets that are not part of the 

road surface. 

Another problem that occurs when a target is very close to the RAVEN is 

blocking. Blocking effects occur when a target is broken into several smaller targets and 

each is treated individually. Figure 4.5 illustrates this problem for the SUV target. 
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Figure 4.3 Histogram zooming results overlaid on right SUV target image frame. 

Contrast features superimposed on image All potential objects detected by histogram zooming 

Figure 4.4 Complete results of histogram zooming for image frame of Figure 4.3. 
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Contrast features superimposed on image Blocking effects from histogram zooming close targets 

Figure 4.5 Blocking effects on close range targets. 

4.3.3   FUTURE RECOMMENDATIONS 

The blocking effect could be partially eliminated by fusing windows that have 

approximately the same location. This fusing would properly identify the SUV 

(excluding tires) given the image frame in Figure 4.5. The drawback is that two targets 

located near each other are treated as one. A laser ranger may be useful in this case. 

After detecting targets visually and approximating their locations, a laser ranging device 

may be used to fine-tune results. 

Another possible improvement is to perform line detection on the portion of the 

image frame represented by each histogram cluster before zooming, which would 

eliminate more ground clusters. Additionally, after blocking effects are removed through 

fusing cluster windows, the line detection step may be iterated once more to verify that 

the fused targets are really one target and not multiple proximately located targets. Line 
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detection should not be performed on the entire image frame because of its computational 

expense. 

A final recommendation is the incorporation of GPS information and previous 

target history to predict where in the image to look for a previously detected target. This 

incorporation may improve confidence in target detection. 

4.4    FEATURE GROUP CORRESPONDENCE 

Once  a target is  properly selected in the right image frame,  cross color 

optimization does an accurate job of feature group correspondence. Figure 4.6 shows one 

typical result of this process. The error in this case is one pixel. Notice how the 

inaccurate window size has little effect on the robust correspondence process. 

Left image with target properly corresponded        Right image with target properly identified 

c*®*»**™ 

Figure 4.6 Proper feature group correspondence on SUV target with one pixel error. 
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A target is detected when it is identified by histogram zooming and then properly 

corresponded. To characterize the quality of target detection confidence plots were made. 

Confidence is defined as the portion of frames in some symmetric interval surrounding 

the current frame which have both the target of interest properly selected in the right 

image frame and the target window correctly corresponded to the left image frame. 

Blocking is considered an acceptable form of target detection if the individual blocks are 

corresponded properly. All plots show an eleven-point confidence interval—five frames 

on either side of the frame of interest. 

Figure 4.7 shows confidence in detection for the first stop sign target. This result 

is quite poor. A sample image frame for this poor-quality target is shown in Figure 4.2. 

Figure 4.8 shows the confidence for the SUV target, and Figure 4.9 characterizes the 

second stop sign target. Notice the trend in each of these plots. At very far range, the 

confidence in detection is low, then confidence peaks somewhere between 15 and 

25 units of normalized distance from the target. Units of distance are normalized to the 

geometric mean of the target dimensions. Confidence in detection bottoms out 

somewhere between 3 and 7 units due to severe blocking effects. In the given plotting 

convention, distance decreases to the right as a function of increasing time. 

4.4.1    FUTURE RECOMMENDATIONS 

Feature group correspondence does not work properly in all cases, as inferred 

from Figures 4.7-4.9. When the process fails it is usually due to varying backgrounds 
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Figure 4.7 Confidence in target detection for the first stop sign target. 

Confidence in Target Detection for SUV 
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Figure 4.8 Confidence in detection for the SUV target. 
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Confidence in Target Detection for StopSign2 
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Figure 4.9 Confidence in target detection for the second stop sign target. 

between perspectives or because of unmatched color characteristics between charge 

coupled device (CCD) sensors. One way to eliminate both of these causes is to perform 

line detection on the portion of the image represented by the feature group, polygonize the 

lines into endpoint sets, and then correspond matching line patterns with the left image 

frame. In the left image frame line detection should be performed on a strip that would 

otherwise be used in color cross optimization. Making the strip 10% taller might be a 

favorable way to reduce errors in this new process. For details on line detection and 

polygonization, refer to [8, 9, 10, 11]. The recommended process would also eliminate 

the need to acquire left image frames in color, offering a significant speed advantage. For 

further reading on alternate object detection schemes, refer to [12,  13,  14].    For 
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information on interframe object tracking, see [21, 22, 23, 24, 25, 26, 27, 28]. 

4.5    DEPTH MAPPING 

A problem was discovered with using the direct depth mapping model derived in 

Chapter 3: the cameras being used have optical distortion. The most prominent is the 

fisheye effect depicted in Figure 4.10. Another contributor to this problem is the error in 

manufacturer specifications on field of view ratings for the cameras. 

Desired image Image with severe fisheye effect 

Figure 4.10 Fisheye effect. 

Camera alignment was calibrated to test the significance of these errors once the 

problem was discovered. Cross-hairs were precisely taped in black on a white wall 

directly in front of the RAVEN in the laboratory with an accuracy of 13 mm—subpixel 
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accuracy at a distance of 3.327 m from each corresponding camera.   These cross hairs 

were placed normal to each CCD surface. Figure 4.11 shows the calibration setup. 

Calibration cross hairs 

Color cameras 

Calibration software 

Figure 4.11 Cross-hair camera alignment calibration setup. 

To calibrate camera alignment, Raven Vision was placed in calibration mode, 

where stereocapture is performed with red cross hairs drawn over the center of the image. 

The cameras are oriented about their ball joints until the red and black cross hairs line up, 

and then they are fastened into place. This system is subject to vibrations during driving, 

which may not occur in the same severity onboard an MAV. 

Image frame pairs were captured for 60 different target locations—3 different 

horizontal positions, 4 different depths, and 5 different heights.   These 60 test images 
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were reduced to single point contrast images and fed into the Raven Vision depth map 

processing algorithm. Figure 4.12 shows results for the a calibration and Figure 4.13 

shows results for the ß calibration. A first-order least squares fit was made to the data in 

each case. This approximation is not only more accurate but also faster to implement 

than the true depth mapping model. Once the approximation parameters were calculated, 

these new models were used to compute the effective manufacturer specifications for ow 

and ßmax, which yield the least squares error between the true model and the estimated 

model. The results are in (4-1), below. The fisheye effect is most pronounced in the 

vertical direction. 

°W   = 5 ' .0 am^(effective)  =55.1)2.3 (A-Y) 

Ana* (0) = 41-0° /W,V£) (°) = 73-610° 

Given this new model for computing a and ß for image frames, the near range 

accuracies were much improved. Table 4-1 gives the errors for the 60 test images before 

and after corrective modeling. These errors are relative to the straight-line distance of 

each test point. Notice the significant change in the z-error, shown in Figure 4.14. The 

horizontal viewing angles of the target within the right and left image frames are oci and 

0C2, respectively. The reason for the large change in the z-error is that target points are 

generally far away from the RAVEN with respect to the translational disparity between 

left and right image frames. 

Uncompensated  close  range  errors   are   shown   in  Figures 4.15-4.17,   and 
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Figure 4.12 Corrected a parameter model. 
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Figure 4.13 Corrected ß parameter model. 
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Before     After 
X 2.96% 1.91% 
Y 1.50% 1.12% 
Z    42.55%    2.42% 

Table 4.1 Relative errors in measurements before and after corrective modeling. 

Left camera 
Correct projection of otj 

Large error in Z, 
small error in X 

Actual location of 
target in X-Z plane 

* 

-*- Z 

T 
X 

Right camera 

Small error in a.      Correct projection of a. 

Figure 4.14 Small angle perspective model applied to range errors. 

Figures 4.18 - 4.20 show close range errors after applying the corrective a and ß models. 

Note that the points with a= 0 tend to have greater error. This result occurs because the 

small angle perspective model has an increased effect for small angles. 

Once calibrated for close range measurements, the RAVEN was tested for long- 

range relative position measurements with differential GPS (DGPS) as a baseline for 

comparison. Due to lack of confidence in target detection for the first stop sign target, it 

is eliminated from this discussion.   All future references to the stop sign target refer to 

4-16 



Close Range Uncompensated X Errors 

Distance to Target (m) 

Figure 4.15 True model errors in jc-direction relative to straight line distance to target. 

Close Range Y Uncompensated Errors 

I 0.015 

2.2 2 

Distance to Target (m) 

1-8        1.6 1.4 -0.5 
Alpha Parameter (rad) 

Figure 4.16 True model errors in v-direction relative to straight line distance to target. 
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Figure 4.17 True model errors in z-direction relative to straight line distance to target. 
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Figure 4.18 Relative corrective model errors in x-direction. 
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Close Range Compensated Y Errors 
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Figure 4.19 Relative corrective model errors in y-direction. 
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Figure 4.20 Relative corrective model errors in z-direction. 
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the second stop sign target. DGPS positional RMS errors for the SUV and stop sign 

target are 2.25 cm and 4.2 cm, respectively. Figures 4.21 - 4.25 show positional and 

dimensional measurement errors for the SUV target with respect to normalized target 

distance. Target detection confidence is superimposed over each plot. Figures 4.26 - 

4.30 correspond to the same results for the stop sign target. Notice the general trend that 

target errors decrease where confidence in detection is high. This trend makes intuitive 

sense at a physical level despite the fact that target detection errors and measurement 

errors are algorithmically independent events. 

4.5.1   FUTURE RECOMMENDA TIONS 

Depth mapping may be improved across multiple image frames by incorporating 

DGPS information. If a target is recognized and has a tracking history, the vision model 

is assited in estimating the new target location. Using this technique definitely makes the 

correlation between confidence in detection and positional error more pronounced. 

Dimensional errors are especially high compared to positional errors. This effect is 

attributed to target window fusing. The problem is rooted in histogram zooming, and 

may be improved by simply eliminating all overlapping target windows except the one 

with the largest area. The result is tighter target windows, leading to better dimensional 

measurements. Another recommendation is to investigate structure-from-motion 

techniques to determine target orientation and depth. 
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Figure 4.21 Relative x-direction errors for the SUV target. 
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Figure 4.22 Relatives-direction errors for the SUV target. 
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Z-Direction Errors for Target SUV 
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Figure 4.23 Relative z-direction errors for the SUV target. 
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Figure 4.24 Relative width measurement errors for the SUV target. 

4-22 



1.4 

1.2 

Height Errors for Target SUV 

Error Data 
Best Fit to Errors 
Confidence ofTarget Detection 

UlUlilL) QD       O   OOO   O OO 

o    o    o 
o 

50        45        40        35        30        25        20        15 10 5 0 
Distance to Target Normalized to Geometric Mean ofTarget Dimensions 

Figure 4.25 Relative height measurement errors for the SUV target. 
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Figure 4.26 Relative x-direction errors for the stop sign target. 
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Figure 4.27 Relatives-direction errors for the stop sign target. 
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Figure 4.28 Relative z-direction errors for the stop sign target. 
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Figure 4.29 Relative width measurement errors for the stop sign target. 
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Figure 4.30 Relative height measurement errors for the stop sign target. 
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Finally, depth mapping may be improved by designing multiple range calibration 

models. The model used for this research is optimized for objects at distances between 

1.5-3.0 m from the cameras. Selecting from different models based on disparity 

measurements may reduce errors in range calculations. 

4.6    OBJECT RECOGNITION 

The multiscale nominal frequency-based recognition described in Chapter 3 

proved quite successful. This method was tested as a proof of concept only. An object 

library consisting of five different road signs was used for experiments. Four additional 

road signs were used in testing the object library. Three images were taken of each road 

sign at 10 m, 25 m, and 50 m (these measurements were approximate; see Figure 4.31). 

A single threshold was chosen for each object template to minimize the number of 

mistakes in classifying a particular sign. Then the thresholds were applied to the library 

and all objects were classified accordingly. Plots showing the effect of threshold choices 

on classification error are shown in Figures 4.32 - 4.36. False alarms increased as the 

tolerance threshold increased, while missed detections decrease. Ideally, there should be 

a point where no mistakes could be made. However, this situation only occurred in the 

case of the merge left sign. In all other cases mistakes were limited to one missed 

detection, and in each case, this was the sign photographed at 50 m away. But note that 

the image quality was greatly reduced at 50 m, and it should be expected that errors 

decrease with distance to the target. 
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Figure 4.31 Object library and additional test objects. 
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Figure 4.33 Threshold characteristics of do not enter signs. 
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Figure 4.34 Threshold characteristics of merge left signs. 
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Figure 4.35 Threshold characteristics of stop signs. 
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Figure 4.36 Threshold characteristics of yield signs. 
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4.6.1   FUTURE RECOMMENDATIONS 

The  multiscale  nominal  frequency-based  recognition   appoach  shows  great 

promise for future applications in target recognition. One drawback is that a new set of 

template data is required for each view of a target, reducing the speed at which objects 

can be classified. Classification errors may be fine tuned by applying different thresholds 

that vary with frequency scale and that vary spatially for each object. This fine-tuning 

will help to eliminate the effect of background patterns on classification. Eventually 

templates could be designed to recognize varying generalizations of object classes. For 

instance, one template may be designed to recognize a particular person, while another 

may be designed to simply identify that the target is a person. Such a scheme may be 

used to further improve the speed of object classification. Note, however, that a 

prerequisite to robust target classification is to have precise target boundary definitions. 

Currently Raven Vision does not produce target boundaries with enough precision to meet 

this criterion. For further information on the current state of the art in road sign 

recognition, see [5, 16]. 

4.7    CONCLUSIONS 

This  chapter discussed results  and future improvements for all  aspects  of 

Raven Vision. Most attention was directed toward results from target ranging and target 

recognition. All five aspects of the Raven Vision system worked with some degree of 

success, and all have well-defined recommendations which will lead to future 

improvements in the overall system. 
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5.   CONCLUSIONS 

5.1    SUMMARY 

Realtime stereovision processing consists of five steps.   This research provided 

innovative contributions to the last four steps in addition to preprocessing. Preprocessing 

was shown to be ineffective for stereovision systems. The preprocessing method 

contributed by this research works; however, stereo rigs precalibrated by the manufacturer 

would be a more efficient avenue for correcting camera alignment. 

Histogram zooming is a novel solution to feature clustering. In Raven Vision, this 

process is performed on the right image frame prior to feature group correspondence with 

the left image frame. Histogram zooming functioned properly in most cases. Failures 

due to false detections and blocking effects. Depth mapping helped to alleviate false 

detections on road surface markings. 

Feature group correspondence was accomplished by color cross optimizing the 

epipolar disparity (subject to the perspective constraint) of each histogram window in the 

left image frame. Improper feature correspondence was usually due to inadequate 

modeling of background noise surrounding the target. 

Depth mapping was shown to have little meaning in the context of real-world 

constraints. Poor manufacturer specifications coupled with poor optics made a linear 

least squares model the clear choice for performing range calculations on target 

disparities.  Due to severely band-limited detector characteristics, correspondence errors 
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of one pixel are significant, even at close range. In the MAV context, small camera 

separation is a complication. The only obvious solution is to process larger images at the 

expense of speed. 

Multiscale nominal frequency-based recognition was shown to be a concept 

worthy of development for target recognition. This technique gets its speed advantage 

from branch elimination at each scale of comparison—the more data to be compared, the 

fewer candidate classes to compare. No false alarms occurred, but missed detections 

resulted from variations in image quality. 

5.2    FUTURE RECOMMENDATIONS 

The first step in continuing this research should be to implement at least one 

baseline of comparison. This step would help to gage the progress of all future 

improvements relative to other systems. 

Preprocessing should be replaced with a custom-made miniature stereo rig. Then 

histogram zooming should be modified to operate on line-detected windows for better 

clustering characteristics. Additionally, further research should be done on methods for 

tracking objects through multiple frames. The line-detected results should be 

polygonized and compared to corresponding polygonal patterns in the left image frame. 

Perhaps this new technique and color cross optimization could be used as part of a 

weighted expert systems model for determining the correct disparity for objects.   Some 
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form of predictive modeling should be used to further assist the feature group 

correspondence process. 

Depth mapping may be improved by designing multiple range calibration models. 

The one used in this research is optimized for objects between 1.5 - 3.0 m. Selecting an 

appropriate model that depends on disparity measurements may reduce ranging errors. 

Coupling this model with a predictive model may assist in interpolating target range 

information between successive image frames. 

Future improvements to multiscale nominal frequency-based object recognition 

should include multithreshold support dependent on both frequency and scale. This 

improvement will make the recognition scheme more robust, possibly at the expense of 

speed. 
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A. EMULATING STOP&GO 

A.l    OVERVIEW 

This appendix discusses the theory used to generate a model for Stop&Go for 

purposes of baseline comparison. Unfortunately, the system was not implemented with 

measurable success. These details are provided as supplementary information only, and 

are referenced elsewhere in the document as background information. Refer to [3, 12] for 

information regarding the Stop&Go system. 

A.2   PIXEL CLASSIFIER 

After preprocessing has taken place, feature extraction needs to be performed. 

Stop&Go has a pixel classifier for feature extraction that uses information about a pixel 

and its neighbors to determine in which class the pixel belongs. The epipolar constraint 

requires that rows in one image frame correspond to the respective rows in the other 

image frame. Therefore the correspondence problem is limited to a row-by-row search. 

Pixel classification further narrows this search to a class-by-class search within each row; 

see Figure A.l for a diagram. In general, having more classes equates to faster 

correspondence. The trade off is that having more classes also equates to increased 

potential for error from mismatched classes. These errors occur when the elements of a 

feature pair are classified differently. Too few classes, however, also introduces more 

error when unpaired features arise. This problem is solved by allowing small 

misclassification errors.   The unpaired features remaining outside the misclassification 
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tolerance are discarded. The optimal number of classes varies with the average number 

of features extracted per image row. Stop&Go uses 81 classes—72 that are actually 

valid. 

Compact data structures are key to fast feature correspondence, but they are also 

required for pixel classifier design. The RavenVision system data structures are 

organized by row, class, and column, in that order. Figure A.2 shows the data structures 

used. There is an array of rows, each pointing to an array of all possible classes. Each 

class points to a variable-length list of all pixels corresponding to that class sorted by 

column. The data structure for each pixel contains fields for representing the row and 

column indices for that pixel. This data structure also includes additional fields for 

information such as the class in which the pixel belongs. 

Data from left image 

A B C D E 

**                         -m -Jk                                                                      4k             4k * 
«••       / ^ /          , \ 

/** **"A /              / \ \ /                / \ 
/         / /      / >  Rows of feature classes *—                              /               / 

/          / *••><•/      / / 
/        *"'*/ /          / /      /   -. / 

/      /         "** ^ * 

c B C D E A G 

Data from right image 

Figure A.l Pixel class correspondence 
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Stop&Go uses a contrast pixel classifier. This research also supplies an original 

color-contrast pixel classifier. The Stop&Go contrast classifier compares a pixel to its 

four nearest neighbors (top, bottom, left, and right adjacent pixels); see Figure A.3. Each 

neighboring pixel is determined to be either darker, lighter, or the same shade of gray as 

the center pixel. This presents 81 possible classes of pixels. To narrow the scope of 

detection to vertical edges, the eight classes with only horizontal edges are discarded, and 

the homogeneous class is also discarded. The contrast pixel classifier operates in the 

context of the remaining 72 classes. 

Array of image row array 
pointers 

Array of feature classes list 
pointers 

List of pixel pointers 

Row array pointer Feature class list ptr. Pixel pointer. 

row {integer} 

column {integer} 

disparity {integer} 

x-coord {real} 

y-coord {real} 

z-coord {real} 

depth {real} 

Figure A.2 Feature-related data structures 

While the contrast classifier used by Stop&Go is fast because of its monochrome 
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input, this research presents an alternate design for a color classifier. The color classifier 

uses two heuristics. The first is a Boolean decision regarding the similarity of two colors. 

Sample pixel with four 
nearest neighbors 

T 

Possible values 

Same shade = 0 
Lighter than = 1 
Darker than = 2 

^^^^^1 
B 

L = 0,R = 2,T=1,B = = 1 

Figure A.3 Contrast pixel classifier 

The second is a decision regarding the dullness of two colors. The details of this 

decision are presented in the flow diagram of Figure A.4. The decision about similarity 

between colors hinges on whether the reference pixel is gray or not. The grayness or 

dullness of a pixel is inversely related to the variance of the pixel channels. The variance 

is used in a Boolean decision as to whether the reference pixel is duller or more colorful 

than the neighboring pixel. 

The organization of the color classes is less trivial than that of the contrast 

classifier. Relative dullness only introduces a new class when the corresponding parent 

pixels are also different colors.  The resulting 81 classes are compatible with Stop&Go. 
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Again, only the vertical edges are kept, so only 72 classes are actually used by the 

classifier. Figure A.5 shows how classes are organized. 

Compute color-channel 
variance for reference pixel 

Compute color 
distance between pixels 

Is reference pixel variance low? 
Yes 

No 

Is color distance 
significant for colorful data 

No 

Yes 

Pixels are the same color 

Is color distance 
significant for gray data 

No 

Yes 

*   Pixels are different colors 

Figure A.4 Determining color likeness 

Sample pixel with four nearest 
neighbors 

Pixel set resolved into RGB planes 

Possible color classes 

^m/i 
^ 

Same color = 0 
Different color = 1 

Possible variance classes 
(only if colors are different) 

Duller = 0 
More colorful = 1 

L = (0,X)R = (1,1),T = (1,0),B = (1,0) 

Figure A.5 Color pixel classifier 
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A3   CORRESPONDENCE 

Feature correspondence is the trickiest process in any stereovision system.  This 

step has the greatest potential for error, so it is vital to handle it in a robust manner. 

Figure A.6 contains a flow diagram of the correspondence process. 

The process begins by selecting the first row of the image set. Within that row the 

first feature class is selected. If there are features belonging to this class in both images 

for the row under consideration, then an attempt is made to match the features into pairs. 

This matching process begins by selecting the leftmost remaining candidate feature in the 

right image. This feature is paired to the first valid unmatched candidate in the left 

image. Candidacy is valid for all features in the left image positioned to the right of the 

feature being matched from the right image. By pairing the first feature encountered 

minimum disparity is guaranteed. This guarantee is important because periodic structures 

can interfere with the correspondence problem [3]. 

After the two features are matched, the process repeats for all remaining features 

in the same class. If no valid unmatched features are available, existing matches are 

evaluated for rematch. If matching a leftover feature to an existing matched feature 

reduces disparity, then the old match is broken and the new leftover feature is treated as 

an erroneous response. Attempting to rematch the more recent leftover feature would 

violate the ordering constraint (see to Figure 2.7). After no more matches can be made, 

the process repeats for other classes and rows until the image feature set is completely 

corresponded. 
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Figure A.6 Correspondence flow diagram 
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A.4   DATA VALIDATION 

Inherent errors always plague data, and give rise to the need for a robust validation 

process. The best validation methods account for apriori error characteristics. Figure A.7 

illustrates one potential error scenario. In this situation feature Ei in the right image is 

matched to Ei in the left image. Then, according to the flow diagram in Figure A.6, the 

match is traded later for E2 in the right image. Here E2 should have been mapped to 

feature A2, but this feature was misclassified due to noise in the detector. The result is an 

inappropriate disparity. Low disparity values mean feature coordinates far from the 

image plane and usually results in mapping to coordinates not within the FOV of either 

camera. 

Data from left image                   /'               ""^ 
r 1 
]   (E2 -- misclassified as       ] 
]   A2 due to sensor noise)    ■ 

B c2 
i 

i 
i Ei D Aj, 

*v 

//[   JP 
\ \ \ \ \ \ \ \ 

>  Rows of feature classes 

s / / / / / 

c, B C2 E, D E2 
*■ 

Data from right image 

Figure A.7 Possible correspondence error scenario 
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Histogramming is a technique that can help detect and remove erroneous data 

from the feature set. Consider a set of feature points in an image that displays the ground 

plane. There will probably be false points having coordinates below the ground plane. In 

a system that does not use apriori details about camera height, the ground plane is 

unknown. A histogram of the data will show that the first peak always corresponds to the 

ground plane. All data below this plane is corrupted and must be removed. A more 

detailed representation of this process is shown in Figure A.8. 

Create n bins to contain data 

Clear SearchPrimedflag 

Initialize CurrentDataBin to the first data bin 

Set PreviousDataBin to CurrentDataBin   * 

Set CurrentDataBin to the next data bin 

Is CurrentDataBin larger than PreviousDataBin? 

No 

Is SearchPrimed flag set? 

Yes 

No 

Set PreviousDataBin to CurrentDataBin 

Set SearchPrimedflag 

Object feature data begins with CurrentDataBin 

Figure A.8 Histogramming flow diagram 

The   difficulty   with   histogramming   is   choosing   an   appropriate   bin   size. 

Undersized bins cause peaks to go unnoticed, while oversized bins result in extraneous 
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peaks.   Figure A.9 shows how inadequate bin size can hamper the effectiveness of the 

histogramming technique for ground plane detection. 
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f 
1 

Outliers -< 
0 

5 

9 

Ground Plane -< 
25 

13 

1 

Objects ■< 19 

Outlier — 

7 

1 

Outliers < 

Ground Plane 

Objects -< 

Actual distribution 

Outlier —\_ 

10 
11 

10 

10 

V Outliers 

> 
Ground Plane 

> Objects 

Perceived distribution 

J— Outlier 

Figure A.9 Effects of bin sizes on histogramming 

Histogramming only provides error correction for feature coordinates below the 

image plane. Imposing x, y, and z world limits is used to crop most of the remaining 

errors. Figure A. 10 presents this idea. 

A.5   DATA CLUSTERING 

Once a set of valid features is obtained, the features are ready to be clumped 

together into objects. However, histogramming is well suited for this task. 
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Perceived world limit 

Out of bounds 

Out of bounds 

Figure A. 10 Reducing data by cropping to world boundaries 

Histogramming is only used in the z-direction. The x and y-directions have multiple 

peaks per object, as illustrated by Figure A.ll. Consequently, there is no way to know 

how many peaks occur per object, so x and y histogramming is fruitless. 

Figure A. 12 diagrams the clustering algorithm. The first step is to z-histogram the 

data. Then all local maxima and surrounding foothills are grouped as individual objects. 

Each object location with respect to the image plane is determined, using an average of 

all coordinates of features representing the object. A bounding rectangle is fit to the 

features on the image plane. The calculated distance is applied to the center pixel of the 

bounding rectangle to determine the real-world coordinates of the object. This is 

accomplished until all objects have been located. 
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Contrast classified image 
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Figure A. 11 Disadvantages of x and ^-histogramming 
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Figure A. 12 Flow diagram of data clustering algorithm 
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A.6   SUMMARY 

This appendix presented the feature extraction and correspondence processes used 

to emulate Stop&Go, as described in [3, 12]. Although the emulation was unsuccessful, a 

novel color classifier compatible with Stop&Go was also designed and implemented. 

This appendix serves to assist the reader's understanding of the material presented in 

Chapter 3 and Chapter 4. 
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GLOSSARY 

Charge Coupled Device (CCD) 
An array of photosensors which produce charges in response to being exposed to 
light. These charges are read off sequentially and simultaneously discharged 
before successive readings are taken. 

Color Band 
A vector of colors formed by averaging individual color planes across either the 
rows or columns of a subimage. 

Color Channel 
Either the red, green, or blue component of a colored pixel. 

Color Cross Optimization 
The process of minimizing the average color distance between two color bands. 

Color Distance 
The square root of the sum squared differences between color channels of two 
pixels. 

Color Plane 
A monochrome image representing the values of one particular color channel of 
all pixels in an image or subimage. 

Confidence of Detection 
The ratio of number of data points in some interval, indicating that a target has 
been detected, to the total number of points in that interval. 

Correspondence Problem 
The problem of determining which features in the right image frame correspond to 
which features in the left image frame. 

Depth Mapping 
The application of a model for calculating relative position, given a pair of 
properly corresponded features. 
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Differential Global Positioning System (DGPS) 
A GPS system which uses a precisely located base station to correct for local 
errors in GPS data so that a roving receiver may be surveyed with greater 
precision. 

Edge Density 
Ratio of the number of feature points near an edge to the length of that edge. 

Edge Detection 
The process of creating a one-bit line drawing from an image. 

Epipolar Constraint 
The constraint that objects seen by both image sensors of a stereo camera rig are 
characterized by features which differ only by horizontal location within 
simultaneously captured image frames. 

Fast Fourier Transform (FFT) 
A very fast radix-two algorithm for computing the discrete Fourier transform. 

Feature 
A filtered characteristic of an image. 

Feature Clustering 
The process of locating groups of features which correspond to the same object. 

Feature Extraction 
The process of identifying features in an image or subimage. 

Feature Group Correspondence 
The process of solving the correspondence problem for a group or cluster of 
features. 

Field of View 
The horizontal or vertical viewing angle for an optical system. 

Global Positioning System (GPS) 
A constellation of satellites transmitting time-synchronized information used to 
calculate the global position of a receiver. 

Haar Wavelet Energy Distribution 
The energy distribution associated with the Haar wavelet transform. This is 
similar to an energy distribution of frequencies. 
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Heads Up Display (HUD) 
A dynamic eye-level display for visually passing information to a pilot in a timely 
fashion. 

Histogram Zooming 
A process seeded by a two-dimensional histogram of feature points that uses an 
edge density heuristic to perform feature clustering. 

Image 
A two dimensional array of pixels. 

Image Frame 
Either the left or right image that was captured during stereo data collection. 

Image Point Isolation 
A technique for feature extraction in which each feature consists only of pixel 
coordinates for a single row and column. 

Image Segmentation 
A technique for feature extraction where multiple sets of pixel coordinates make 
up each feature. 

Inertial Navigation System (INS) 
An electronic feedback mechanism which senses three-space acceleration. 

Micro Air Vehicle (MAV) 
A miniature flying machine. 

Multilayer Perceptron (MLP) 
A back-propagation neural network consisting of at least one hidden layer, used 
for multidimensional function modeling. 

Object Ranging 
See depth mapping. 

Object Recognition 
The process of classifying objects according to feature representations. 

Occam's Razor 
The principle that the simpler of two functional solutions is always better. 

Ordering Constraint 
The assumed constraint that the horizontal ordering of corresponding features will 
not change significantly between left and right image frames. 
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Perspective Constraint 
The constraint that a feature detected in the right image frame must correspond to 
a feature positioned further right in the left image frame. 

Phantoms 
Detected objects that do not really exist. 

Pixel (Picture Element) 
A vector of color brightness values corresponding to each color channel of the 
image. 

Probability Density Image (pdi) 
A monochrome image used in template filtering with high pixel values 
corresponding to high probability that an object of interest is centered about that 
pixel. 

Stop&Go 
A stereovision-centric autonomous automobile research program currently at 
Daimler-Benz in Germany. 

Subimage 
A matrix of pixels representing a portion of an image. 

Template Filtering 
The process of filtering an image for particular features that are characteristic of a 
given object in order to locate that object within the image. This results in 
generating a probability density image. 

Template Matching 
The process of identifying an object according to some predetermined template of 
features. 
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