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Abstract
Background modeling is a promising field of study in video analysis, with a
wide range of applications in video surveillance. Deep neural networks have
proliferated in recent years as a result of effective learning-based approaches
to motion analysis. However, these strategies only provide a partial description
of the observed scenes’ insufficient properties since they use a single-valued
mapping to estimate the target background’s temporal conditional averages.
On the other hand, statistical learning in the imagery domain has become one
of the most widely used approaches due to its high adaptability to dynamic
context transformation, especially Gaussian Mixture Models. Specifically, these
probabilistic models aim to adjust latent parameters to gain high expectation
of realistically observed data; however, this approach only concentrates on
contextual dynamics in short-term analysis. In a prolonged investigation, it
is challenging so that statistical methods cannot reserve the generalization of
long-term variation of image data. Balancing the trade-off between traditional
machine learning models and deep neural networks requires an integrated
approach to ensure accuracy in conception while maintaining a high speed of
execution.

In this research, we present a novel two-stage approach for detecting changes
using two convolutional neural networks in this work. The first architecture
is based on unsupervised Gaussian mixtures statistical learning, which is used
to classify the salient features of scenes. The second one implements a light-
weighted pipeline of foreground detection. Our two-stage system has a total of
approximately 3.5K parameters but still converges quickly to complex motion
patterns. Our experiments on publicly accessible datasets demonstrate that
our proposed networks are not only capable of generalizing regions of moving
objects with promising results in unseen scenarios, but also competitive in terms
of performance quality and effectiveness foreground segmentation.

Apart from modeling the data’s underlying generator as a non-convex optimiza-
tion problem, we briefly examine the communication cost associated with the
network training by using a distributed scheme of data-parallelism to simulate
a stochastic gradient descent algorithm with communication avoidance for
parallel machine learning
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1
Introduction
Computer vision is an cross-disciplinary research area that concentrates on
how to simulate high-level perception on computers and electronic devices
from digitals images and videos [1]. The field involves techniques to collect,
and gain the interpretation of cognitive data from real-world contexts with a
goal to formulate visual understanding in form of numerical representation
with the assistance of statistics, linear systems, and learning theories.

With the rapid advancement of computer vision, surveillance systems using
static cameras are emerging as exciting technologies for performing advanced
tasks such as behavior analysis [2], object segmentation [3], and motion anal-
ysis [4], [5]. Among their various functionalities, background reconstruction
is critical for a proper understanding of scene dynamics and thus for the ex-
traction of desired attributes. A background is a scene that is devoid of moving
objects and elements that that are not of interest to the system (e.g., streets,
houses, trees). Thus, by comparing visual inputs to the background, desired
objects, called foregrounds (e.g., cars, pedestrians), can be located for further
study. Due to the fact that real-world situations require varying degrees of
dynamics, such as lighting shifts, scene dynamics, or bootstrapping, there are
several approaches to model background scenes with context-specific adapta-
tion [6].

A couple of closely related issue to background modelling are multi-contextual
foreground detection and dynamic scene adaptation as they was explicated in
Belmar’s study [7]. The former problem, foreground detection or background
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2 chapter 1 introduction

subtraction, is a particular cases of estimating the difference between two
scenes: one is the observed image and the other one is the corresponding
background scene. Accordingly, the changes, which are due to moving objects,
are taken into consideration to extract regions of moving objects. The latter
problem aims to examine the semantic dynamics regarding intensity spaces
of color to incorporate a fast and simple pre-attentive adaptation of modelling
learning. The importance of this strategy is emphasized when we need to
avoid distortions from anomalous updates and facilitate consistent modelling
amidst variations [8]. There is a fact that in the real-world scenarios, a system of
backgroundmodelling is fundamentally susceptible to particular scenarios with
a variety of confounding factors thatmake learning systems not discriminate the
input, including but not limit to illumination changes, continuous motion, slow-
moving objects, camouflage, camera shaking. Hence, a rendering ofmisperceive
signal is unexpectedly performed, which ruins out the data distribution in the
backgroundmodel andmake the system prone to prolonged noise effects.

Another significant attention of background modelling is related to data-driven
learning. Typically, a background model is commonly proposed as an unified
framework to speculate underlying scenes’ properties via presenting optimiza-
tion problems in form of generative models that basically are grounded on
statistical physics to learning towards collected data. One of the most popu-
lar approaches to achieve the generalization of this energy-based model is to
perform the gradient-based method for inference with a large-scale of training
sample [9]. Besides concerns on accuracy due to the completeness of data,
learning on a great deal of sampling peculiarities requires an appropriate
scheme of resource usage which takes advantage of computational parallelism
among leading-edge processing units to gain highly efficient model learning
while balancing accuracy in evaluation [10].

In this research, we introduce a novel, unsupervised, background subtraction
method that is capable of high adaptation to dynamic context transformation.
The proposed framework deals with a situation where there is a lack of labelled
data for both background and foreground estimation, while still maintaining
rapid convergence to complex motion patterns. Besides modeling the underly-
ing generator of the data as a non-convex optimization problem, we investigate
the cost of communication when training the network with an adaptive batch
size. The trade-off between energy efficiency and accuracy in the model will
be investigated with an adaptive batch size throughout network training
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1.1 Problem Definitions and Research Questions

One of the most prominent approaches in tackling the background model-
ing problem is to employ pixel-based statistical frameworks such as Gaussian
Mixture Models (GMM) [11], [12], [13], [8]. These methods are based on the hy-
pothesis that background intensities appear predominantly throughout a scene,
thereby constructing usefully explicit mathematical structures for exploitation
of the dominance. In addition, an important property of such approaches is
their adaptability to changing conditions of real-world scenarios, even under
illumination changes (e.g. moving clouds), view noises (e.g. rain, snow drops)
and implicit motions (e.g. moving body of water). However, the generaliza-
tion of the methods’ correctness is hindered when the hypothesis fails under
appearances of stopped objects or high degrees of view noises (e.g. camera
shaking, abrupt view changes), thereby producing corruptive backgrounds that
often leads to poor estimations of foregrounds. Furthermore, the statistical
schemes still follow the sequential processing paradigm that under-utilizes
modern parallel processing units in the presence of big data.

On the other hand, riding on the increasing advancement wave of special-
ized processing units for large-scale data, Deep Neural Networks (DNNs) have
emerged as a prominent pattern matching and visual prediction mechanism.
Deep learning approaches for the motion detection problem are rapidly demon-
strating their effectiveness not only in utilizing tremendous sets of processing
cores of modern parallel computing technologies, but also in producing highly
accurate predictions from data-learning. However, the typical DNNs’ architec-
tures are very computationally expensive if they actually can produce highly
accurate results, especially regarding those providing solutions to the problem
of background modeling and foreground detection. Furthermore, the DNNs in
the literature have experienced two primary shortcomings:

• A requirement of a huge-scale dataset of labeled images: DNNs-based mod-
els for motion detection exploit weak statistical regularities between
input sequences of images and annotated background scenes. Thus, to
generalize all practical scenarios in real life, a prohibitively large dataset
consisting of all practical scenarios and effects is needed. With few train-
ing labels in video sequences for building generalized backgroundmodels
[14], there are currently no universal data-driven experiments to assure
that the scenes’ true properties are appropriately presented.

• A prevailing fail on contextual variation: Recently, foreground segmen-
tation has been considered from the perspective of binary classification
schemes. It has been proposed to minimize a sum-of-squares or a cross-
entropy error function in DNNs-based approaches to reflect the motion
analysis problem’s true objective as closely as possible. In this approach,
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models are usually trained to represent the semantics properties on the
training sets when the actual aim is to generalize well to experimental
datasets’ specific target video sequence. This conditional average will be
inadequate for various unseen contextual semantics and dynamics that
might occur in real-world [15, 16]. In other words, DNNs-based methods
usually perform well on experimental datasets of background modeling
and change detection but can still fail on unseen situations in real-world
scenarios.

Recent years have witnessed the proliferation of convolutional neural networks
via effective learning-based approaches in change detection. However, these
techniques only provide a limited description and the observed scenes’ insuffi-
cient properties, where the single-valued mapping is learned to approximate
the conditional averages of the target background conditioned on color and
motion features of each image batch. On the other hand, statistical learning in
imagery domains has become one of the most popular approaches with high
adaptation to dynamic context transformation, especially the Gaussian Mixture
Model. Simulating the statistical learning of a Gaussian mixture on a convolu-
tional neural network exploits a statistical inference on scene analysis with only
about a few hundreds of parameters while still maintaining rapid convergence
to complex motion patterns. In this work, we exploits a statistical inference on
scene analysis by simulating the statistical learning of a Gaussian mixture on
a convolutional neural network with only about a few hundreds of parameters
while still maintaining rapid convergence to complex motion patterns. Besides
modeling the underlying generator of the data as a non-convex optimization
problem, we investigate the cost of communication when training the network
with an adaptive batch size technique. The trade-off between energy efficiency
and accuracy in the model will be investigated with an adaptive batch size
throughout network training. In summary, with an assumption that the back-
ground scene of a video sequence contains the most commonly seen intensity
value at each image point, our contributions in this work are proposed towards
three following research questions:

• The first part of this work investigates the modeling methodology to
answer the research question: “RQ1: How to represent a conditional prob-
ability density function of a Mixture of Gaussians, which models the time-
related history at each pixel location on a feed-forward Convolutional Neural
Network?".

• The second study of this research answers the: “RQ2: How to devise the
underlying generator of the background scenes from observed sequences of
images with a trainable, unsupervised Convolutional Neural Network of
Gaussian Mixture?".
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• The third part of this thesis aims to address the research question: “RQ3:
How significant is the trade-off between energy efficiency and accuracy of
the model with an adaptive batch size throughout the training of the neural
network?".

1.2 Research Contributions

The DNNs-based approach is particularly promising as the literature has rapidly
demonstrated their ability to approximate any functions up to arbitrary accu-
racy within highly parallelizable architectures. In other words, we can exploit
their parallelizable capability to approximate the mechanism behind the op-
timization of GMM, in a way that boosts the construction of statistical model
estimations of our data using modern parallel computing technologies. Hence,
it becomes possible to efficiently exploit GMM-based background models’ char-
acteristics, which are clear and consistent with their mathematical framework,
for functional extension, i.e. tackling stopped objects and high-degreed view
shifts via DNNs’ common data-driven effectiveness. In this thesis, to address the
issues of DNNs while also utilizing its benefits, we incorporate the mathematics
of modeling statistical GMM into our processes, and introduce a novel, light-
weighted, dual framework of two convolutional neural networks (CNN): (1) the
Convolutional Density Network of Gaussian Mixtures (CDN-GM) for the task
of generalistically modeling backgrounds; and (2) the Motion Estimation with
Differencing Approximation via Learning on a convolutional network (MEDAL-
net), for context-driven foreground extraction. Specifically, our contributions
are actually three-fold, and they are summarized as follows:

• Firstly, by leveraging existing technologies and being inspired by Bishop
[17], we propose our CDN-GM, a feed-forward, highly parallelizable CNN
representing a conditional probability density function that models the
temporal history for each pixel location in the first pipeline of the pro-
posed framework. In this architecture, conditioned on pixel-wise vec-
tors of intensity values across a time period, the network approximates
a Gaussian-Mixture statistical mapping function to efficiently produce
models of their underlying multimodular distributions. Accordingly, at
each pixel, the mixture is characterized by the weighted combination of
its Gaussian components, where each capture and highlight a context-
relevant range of pixel-wise values in the manner of a mean and variance.
Thus, from statistical models of data in Gaussian Mixtures at pixel level,
backgrounds are extracted from the most informative components, re-
sulting in our compressed, light-weighted and efficient architecture (See
Section 3.1).
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• Secondly, with the goal of modeling the underlying generator of the data,
we propose a loss function in the manner of unsupervised learning. This
loss function serves to direct the proposed CDN-GM’s architectural param-
eters into approximating the mathematical structure behind GMM-driven
modeling of the data with expectation maximization. Thus, because of
this, the resulting inferences will consist of mixtures of Gaussian compo-
nents describing the data, and the most likely background description
of actually observed data can be made, with the trained network be-
ing subsequently presented with new values of input. In conjunction
with CDN-GM, the proposed background modeling architecture not only
achieves higher degrees of interpretability compared to the idea of esti-
mating an implicit hidden function in previous neural network methods,
but it also gains better capability of adaptation under contextual dynam-
ics with statistical learning, as it is able to utilize a virtually inexhaustible
amount of data for incorporation of expectation maximization into the
neural-network parameters (See Section 3.2).

• Thirdly, in the latter pipeline of the proposed framework,we design a com-
pact convolutional auto-encoder for context-driven foreground extraction
called MEDAL-net, which simulates a context-driven difference mapping
between input frames and their corresponding background scenes. This
is greatly encouraged because even though real-life scenarios involve
various degrees of contextual variations that yet any existing mathemat-
ical framework can completely capture, we can construct consistently
GMM-driven background models of those variations with CDN-GM to
provide semantic understanding of the scene. Thus, we are able to make
good use of information from features in images from the first module
of background modeling, and even from features seemingly corruptive
to motion extractions (e.g. stopped objects), for formulating foreground
extraction from raw inputs, thereby resulting in a very light-weighted
and efficient structure with high accuracy. The network is trained in a
supervised manner in such a way that it maintains good generalization to
various views, and to even unseen situations of similar scenery dynamics
(See Section 3.3 and Chapter 4).

• Finally, we survey recent framework of distributed machine learning for
data-driven model with a goal of communication reduction (See Section
2.2). Then, we investigate the training of the proposed model with an
event-triggered scheme of communication with a strategy of data paral-
lelism. The analysis concentrates on the communication cost among a
distributed crew of processing elements regarding model training when
we vary different batch sizes of feed-forwarding samples and the thresh-
old of gradient slope that triggers the message passing among processes
(See Section 5).
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1.3 Thesis Roadmap

The content of this thesis is organized as follows:

• Chapter 2 encapsulates the problem background, including the synthe-
sis of recent approaches in background initialization and foreground
segmentation. In addition, a general survey of communication-efficient
distributed deep learning is also provided in this chapter.

• Chapter 3 presents the details of our couple of neural networks. The prin-
cipal research contributions which are explicated in this chapter includes
a convolutional density network for background modelling, associating
with an unsupervised approach of model training, and an auto-encoder
pipeline to simulate frame-background differencing with a goal of motion
extraction.

• Chapter 4 mentions the perspective of implementation and experimental
evaluation of the proposed method. We aims to analyze the capability of
generalization of the approach in both aspects: learning with shortage of
labelled data and inferencing in unseen samples. The trade-off between
the accuracy and the speed of execution, which is a significant concern
in the most of neural-network-based studies, is also discuss at the end of
this chapter.

• Chapter 5 extends the training scheme of the proposed model in terms of
a distributed environment. Available techniques that support pipeline of
distributed parallelism are introduced. Then, we describe a distributed
scheme of model training with a data parallelism strategy to analyze the
cost of message passing.

• Chapter 6 discusses the findings, outlines future work and concludes the
thesis





2
Problem Background
In this section, we will outline the previous and current work that is related to
the problem of background modelling and foreground detection. Also, a brief
overview of communication-avoidance mechanism for distributed training of
neural networks is provided.

2.1 Background Modeling and Change Detection:
A Review

The new era of video analysis has witnessed a proliferation of methods that
concentrate on background modeling and foreground detection. Prior studies
in recent decades were encapsulated in various perspectives of feature concepts
[7,15,18]. Among published methods that meet the requirements of robustness,
adaptation to scene dynamics,memory efficiency, and real-time processing, two
promising approaches of background subtraction are statistical methods and
neural-network-basedmodels. Statistical studies aim to characterize the history
of pixels’ intensities with a model of probabilistic analysis. On the other hand,
neural-network-driven approaches implicitly estimate a mapping between an
input sequence of observed scenes and hand-labeled background/foreground
images on non-linear regularities.

9
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2.1.1 Background Modelling with Statistical Learning on
Image Intensity

In statistical approaches, the pixels’ visual features are modeled with an ex-
plainable probabilistic foundation regarding either pixel-level or region-level
in temporal and spatial resolution perspectives. In the last decades, there have
been a variety of statistical models that were proposed to resolve the problem
of background initialization. Stauffer and Grimson [11] proposed a pioneer-
ing work that handled gradual changes in outdoor scenes using pixel-level
GMM with a sequential K-means distribution matching algorithm. Another
modification on CIE L*a*b* color space is Boosted Gaussian Mixture Model
(BMOG) [13] which was introduced to investigate the adaptation of GMM with
different color schemes. To enhance the foreground/background discrimina-
tion ability regarding scene dynamics, Pulgarin-Giraldo et al. [19] improved
GMM with a contextual sensitivity that used a Least Mean Squares formulation
to update the parameter estimation framework. Validating the robustness of
backgroundmodeling in a high amount of dynamic scene changes,Ha et al. [20]
proposed a GMM with high variation removal module using entropy estima-
tion. To enhance the performance, Lu et al. [21] applied a median filter on an
input frame to reduce its spatial dimension before initializing its background.
To address the sequential bottleneck among statistical methods in pixel-wise
learning, an unsupervised, tensor-driven framework of GMM was proposed by
Ha et al. [8] with balanced trade-off between satisfactory foreground mask
and exceptional processing speed. However, the approach’s number of param-
eters requires a lot of manual tuning. In addition to GMM, Cauchy Mixture
Models (CMM) was exploited to detect foreground objects via eliminating
noise and capturing periodical perturbations in varying lighting conditions and
dynamic scenarios [22]. Overall, statistical models were developed with ex-
plicit probabilistic hypotheses to sequentially present the correlation of history
observation at each image point or a pixel block, added with a global thresh-
olding approach to extract foreground. This global thresholding technique
for foreground detection usually leads to a compromise between the segre-
gation of slow-moving objects and rapid adaptation to sudden scene changes
within short-term measurement. This trade-off usually damages the image-
background subtraction in multi-contextual scenarios, which is considered as a
sensitive concern in motion estimation. Hence, regarding foreground segmenta-
tion from backgroundmodeling, it is critical to improve frame differencing from
constructed background scene with a better approximation mechanism, and
utilize parallel technologies. There are also other developments in background
modeling with fuzzy concepts recently. A post-processing scheme that utilizes
Gibb’s Markov Random Field fuzzy clustering and gray level co-occurrence
matrix features [23] was proposed to more effectively remove the moving
shadows out of the moving objects. Zeng et al. [24] introduced an adaptive
histogram learning method where histogram accumulation is monitored by a
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fuzzy controller to address the susceptibility to outliers and the randomness of
histogram partitioning. To improve the quality of foreground segmentation, Yu
et al. [25] adopted a fuzzy adaptive background maintenance method with a
dynamic fuzzy nearness degree threshold update. Subudhi et al. [26] were one
of the groundbreakers who used higher space of kernelized fuzzy set-theoretic
method via the projection of the highly non-linear 3-dimensional feature space
to classify foreground-background image points.

2.1.2 Change Detection via Exploiting Deep Visual Learning

Recently, there have also been many attempts to apply DNNs into background
subtraction and background modeling problems with supervised learning. In-
spired from LeNet-5 [27] used for handwritten digit recognition, one of the
earliest efforts to subtract the background from the input image frame was
done by Braham et al. [28]. This work explores the potential of visual features
learned by hidden layers for foreground-background pixel classification. Sim-
ilarly, Wang et al. [29] proposed a deep CNN trained on only a small subset
of frames as there is a large redundancy in a video taken by surveillance sys-
tems. The model requires a hand-labeled segmentation of moving regions as
an indicator in observed scenes. This period has experienced an evolutionary
development of background subtraction with novel architectures in data-driven
learning theories. Zhenshen et al. [30] proposed one of pioneering work that
exploits a context-encoder for the task of constructing background scenes via
learning latent visual properties of motion context within a video. Lim et
al. [31] improved the learning mechanism of auto-encoder by inheriting a set
of feature encoding layers from VGG-16 [32]. The proposed encoder-decoder
network takes a video frame, along its corresponding grayscale background
and its previous frame as the network’s inputs to compute their latent represen-
tations, and to deconvolve these latent features into a foreground binary map.
An adaptive Restricted Boltzmann Machine [33] was proven to be efficient in
structuring the correlation among a batch of consecutive images to capture
background scenes. An improved variant of generative network, Unet, was
augmented by Tao et al. [34] to give attention to the probabilistic heat map
of intensity values in color spaces to extract a static scene via unsupervised
approach. Bridging the gap point-wise, time-series analysis in traditional statis-
tical learning and the spatialpyramid feature sampling, a learning model with
attention-guided module, named STAM [35], was proposed by Liang et al. The
solution takes advantage of the synthesis of features, which was derived from
both traditional methods and a modern deep neural network, to bolster the
feature of motion. The theoritical perspective of this approach is intriguing;
however, the execution requires us a great computational resources to achieve
real-world deployment. Another method is DeepBS [36] which was proposed
by Babaee et al. to compute the background model using both SuBSENSE [37]



12 chapter 2 problem background

and Flux Tensor method [38]. The authors extract the foreground mask from
a small patch from the current video frame and its corresponding background
to feed into the CNN, and the mask is later post-processed to give the result.
Nguyen et al. proposed a motion feature network [39] to exploit motion pat-
terns via encoding motion features from small samples of images. The method’s
experimental results showed that the network obtained a promising results
and well-performed on unseen data sequences. Another method that used a
triplet convolutional autoencoder to learn multi-scale hidden representations
for motion mask extraction of the observed scenes was proposed by Lim et al.
as FgSegNet [40]. The authors utilized multi-scale feature space of an image
with a network, whose decoder module was constructed with transposed con-
volutional layers. The main purpose of this method is to associate the latent
feature space of moving components with the outcome image space. Experi-
mental results showed that the work is sustainable to various scene dynamics
in CDnet-2014 dataset with high accuracy, including camera jitter, camouflage,
light switching Perceiving the barrier in model training of FgSegNet with the
shortage of labelled foreground samples, the authors devised an improved
version, FgSegNet_v2 [41]. This variant has a better grasp of motion charac-
teristics via feature fusion inside the former edition with a section of feature
pooling. Although this technique gains a state-of-the-art accuracy in experimen-
tal results, there is a compromise between the correctness and the execution
speed with an exceptional hardware configurations. Recently, there is also a
work from Chen et al. [42] which aims to exploit high-level spatial-temporal
features with a deep pixel-wise attention mechanism and convolutional long
short-term memory (ConvLSTM). Recently, Akilan et al. [43] demonstrate the
effectiveness of ConvLSTM via the consideration of operations in 3D space. The
model employed both 3D convolution and ConvLSTM operations to extract
both short-term and long-term temporal features with double-encoding and
slow-decoding. Another approach that adopts generative adversarial networks
(GAN) was introduced by Sultana et al. [44]. The authors utilized two CNNs,
which are a context prediction network to estimate the background in regions
with moving objects removed after a pre-processing step and a texture optimiz-
ing network to enhance the predicted context. Particularly, the whole method
is performed in an unsupervised way. An architecture of background modeling
with a self-organizing neural network was investigated in RGBD-SOBS [45].
The work modeled the video frame’s color and depth information separately
to give the foreground mask in each model.
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2.2 Communication-Efficient Distributed Deep
Learning: A Survey

With the rapid development of data-driven models in perceptual learning,
distributed machine learning has become a pivotal research field that focuses
on minimizing the amount of training time via reducing the communication
among computing units (e.g., CPUs, GPUs). As the scale of training datasets and
model sizes increases dramatically, data exchange between processing units
could potentially become a severe bottleneck in degrading the effectiveness of
computing tasks. This section demystifies the recent research in this topic as
a comprehensive review of communication-efficient distributed deep learning
with two conceptions: system-level and algorithmic level in model optimization.
Regarding the perspective of systems, we summarize distributed environments
that are beneficial to the optimization of learning models. At the algorithmic
level, we provide a taxonomy of data-parallel distributed pipelines in two
approaches: message synchronization, and parallelism of computation and
data communication.

2.2.1 Energy-based Models and Stochastic Gradient
Descent

In general, deep learning problems can be formulated as an optimization model
of data prediction. Given a data sample b8 , our goal is to predict an outcome
value ~ = � (x; b8) so that

min
x∈R#

5B (x) := Eb8∼D� (x; b8) (2.1)

where the training sample b8 has a probabilistic distribution D (i.e., sampling
a data example from a learning dataset), the target model is constructed with
learnable parameters x, and 5B : R# → R present the objective function of our
optimization problem.

One of the most popularly-used approach to solve the above problem is gradient-
based optimization method. Bottou et al. [46] proved that with an assumption
where 5B (·) is a non-convex function and is differentiable with Lipschitzian
continuous gradients, Eq. (2.1) can be solved with an iterative process of
optimization, which comprises of four elementary and repetitive steps:

1. A mini-batch of sample data, b8 , is sampled from the training data D.

2. The loss value, �C (xC ; bC ), is retrieved from the learning model via a
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feed-forward pass of b8 .

3. The gradients with respect to model parameters, ∇�C (xC ; bC ), are com-
puted via backward propagation.

4. The model parameters are updated along the estimated gradients.

From classical version, the stochastic gradient descent (SGD) technique was mo-
tivated with mini-batch learning, which has become wide-spread in distributed
deep learning communities. The SGD with mini-batch is mathematically for-
mulated as:

�C (xC ) = ∇�C (xC ; bC )
xC+1 = xC − W�C (xC ) (2.2)

where xC and xC+1 respectively represent the model parameters at time step C
and C + 1. The model parameters are iteratively adjusted with a learning rate
W .

Obviously, with a large-scale dataset, the traditional pipeline of SGD becomes
time-consuming. Hence, it is necessary to parallelize the mini-batch learning
on multiple processing units to accelerate the speed of model training with a
distributed perspective. As a result, data communication in training should be
optimized in order to fully leverage the computational power of distributed clus-
ters of devices. In other words, recent research in distributed learning of deep
training model concentrates on maintaining a high ratio of the computation
to communication ratio with different strategies.

2.2.2 Parallelism Schemes of Distributed Training

In model training, there are a couple of architectural design of implementing
parallelism: model parallelism and data parallelism. Each of them is devised
to deal with different routines. While model parallelism is proposed to cope
with huge network design that does not fit on a single computational device,
data parallel is originated to compartmentalize a large dataset with replicated
entity of learning model on processing units.

Model Parallelism

Model parallelism aims to segregate parameters of a large model on multiple
processing workers [47]. In this context, each processing unit hold a part
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of the model as illustrated in Fig 2.1. There are two approaches regarding
this technique: vertical splitting and horizon splitting. The key idea of these
approaches is to make the training of a huge-sized neural network become
feasible because we do not need to allocate all components of a model on a
single device. However, there is a fact that because of the separated ownership of
model parameters among workers, there is an inevitable dependency between
different layers within model training. This means that a worker has to suffer a
high latency when they must wait for the computing output results from other
workers before initiating the local computation. Unbalance allocation of model
parameters is considered as a critical problem in this issue. Model partitioning
is a NP-complete [48] where we need to relax the computing dependency while
the robustness of model parallelism must be conserved. A non-trivial solution
for device placements has been recently suggested to assign the parameters to
appropriate computing nodes [49].

Figure 2.1: A scheme of model parallelism

Data Parallelism

Data parallelism is a type of distributed training where each of all computing
nodes occupies a replication of a learning model. In this strategy, at each iter-
ation, workers fetch different mini-batches of learning data, and the perform
local SGD optimization as in conventional model. Fig 2.2 illustrates an archi-
tecture of data parallelism. Significantly, to ensure the consistence and the
convergence of the model, they have to exchange the gradient updates to each
other before updating new values for model parameters. However, the mech-
anism of gradient synchronization may vary in order to balance the trade-off
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between communication cost and computational performance. Using a crew
of = distributed workers for data parallelism, Eq. (2.2) is rewritten as:

5 ∗ := min
x∈R3
[5 (x) :=

1
=

=∑
8=1
Eb8∼D8

�8 (x; b8)︸             ︷︷             ︸
=:58 (x)

] (2.3)

where 58 : R3 → R is a local objective function which a worker of an id 8
focuses on. At the end of each training step, the scheme aims to optimize the
average of the target function at all processing nodes.

Figure 2.2: An architectural design of data parallelism

In following sections, we present communication-avoidance techniques in
stochastic gradient descent regarding distributed training of multi-layered
models with data parallelism.

2.2.3 Approaches of Communication-Avoidance in
Distributed Stochastic Gradient Descent

The key idea of data parallelism is to parallelize SGD update in multiple
processing nodes. A straightforward idea for this issue is to handle bulk syn-
chronization of parallel SGD (BSP-SGD) [50] with an architecture of parameter
server (PS) [51–53]. In this pipeline, at the same time, each processing element
first reloads the global model parameters from PS, then the sample of training
data is loaded and model gradients are calculated independently. At the end
of each iteration, the gradient values are synchronized at all workers, and
then they are aggregated on the PS. The global model is then updated after
averaging all received local gradients at PS. This update scheme of distributed
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SGD can be formulated as:

�8,C (xC ) = ∇�8,C
(
xC ; b8,C

)
xC+1 = xC − W 1

=

∑=
8=1�8,C (xC )

(2.4)

where �8,C presents the local gradient of processing element 8 at time-step C ,
�8,C .

From this approach, there are a triplet of critical factors that affect the commu-
nication cost among processing elements in distributed learning:

• The synchronization of communication and the frequency of data-exchange
among participating elements

• The method of aggregation of model parameters in distributed memory

• The dimension of communication traffic among workers

To bolster the effectiveness of distributed training, recent research aims to
address these issues with respect to the scalability of learning models.

Figure 2.3: The illustrative summary of for communication synchronization in dis-
tributed training of deep learning models by Tang et al. [54]

Synchronization of Gradient Averaging

Regarding the synchonization of gradient averaging in communication-efficient
distributed training, relaxing the synchronization among processing elements
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is a research direction that defines how frequently workers exchange gradients
with each other. The communication scheduling controls the frequency atwhich
all of local models are synchronized with each others. This mechanism not only
affects the communication traffic but also interferes in the convergence and
the performance of learning model during training. Basically, there are four
frameworks of gradient synchronization: synchronous SGD, stale-synchronous
parallel (SSP), asynchronous parallel (ASP), and local GSD. Fig. 2.3 presents an
illustration of approaches regarding communication-avoidance in distributed
stochastic gradient descent.

Synchronous SGD Synchronous SGD is a classical data parallelism in dis-
tributed deep learning. They key idea of synchronous SGD is that, at each
iteration, all workers have to wait until parameter transmission completes at
every worker before continuing the next iteration of training. Bulk synchroniza-
tion parallel is a conventional synchronous SGD [55]. This scheme ensures the
model convergence as the synchronization of gradients are compulsory and con-
sistent at all processing elements. However, persistence unavoidable mitigates
the system output with the presence of stragglers. Hence, the framework intro-
duces a great communication cost and limits the scalability of learning models.
Synchronous SGD is employed in both kinds of architectures: centralize PS and
decentralized systems. Regarding implementation of PS, followed with the com-
pletion of communication, all workers update to the same global model [56].
However, for decentralized arrangement, at the end of data exchange, all pro-
cessing nodes do not necessarily keep the same learning model [57].

Stale-Synchronous Parallel The stale-synchrous parallel [51] is proposed
to release the affect of the straggler problem while maintaining a consistence
in synchronization. This framework lets the fast workers perform more updates
than the slow ones with a goal of reducing the waiting time among workers.
Particularly, a threshold of staleness is utilized to control the model consistency
to ensure the convergence in distributed training. Given a staleness threshold
B, the update at worker 8 at iteration C + 1 is formulated as

x8,C+1 = x0 − W
C∑
:=1

=∑
9=1

� 9,:
(
x9,:

)
− W

C∑
:=C−B

�8,:
(
x8,:

)
− W

∑
( 9,:) ∈S8,C+1

� 9,:
(
x9,:

) (2.5)

where S8,C+1 is some subset of the updates from other workers during period
C − B.
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Some improvement has been made to increase the effectiveness of this frame-
work. To address the straggler problem, a novel model is proposed by Chen et
al. [58], where the mini-batch SGD is only performed with a subset of extra
workers. The primary idea is to let PS avoid waiting and let them update
the model parameters from any arriving = workers. As a result, the slowest
workers will be dropped as they arrive. Another research tackled the problem
of stragglers with Round-Robin Synchronization Parallel [59] . The method
reorder the arrangement of workers’ updates by coordinating them with a fixed
round-robin technique.

Asynchronous Parallel The asynchronous parallel (ASP) framework re-
solves the problem of degrading the system throughput by eliminating the
synchronization. In this model, workers are independent to each other. Each of
them continuously transfers the local gradients to the PS after the calculation
completes. The PS updates the global model with received gradient values with-
out waiting for any workers. Under mathematical formulation, the technique
can be presented as

xC+1 = xC − W
=∑
8=1

�8,C−g8,:
(
x8,C−g:,8

)
(2.6)

where the g8,: is the delay period between the moment when worker 8 calculates
the gradient at the current iteration

The most important characteristics of the asynchronous design is to make
large-scale training system faster, more robust, and immune to the the failures
of processing elements. To improve the efficience of the framework, Li et
al. reduced the communication traffic by proposing Delayed Block Proximal
Gradient Method where only a block of parameters is transmitted between
master and workers, and they are asynchronously updated in each iteration.
Grishchenko et al. exploited the sparsification of upward communications (i.e.,
from workers to master) in an asynchronous training system [60]. The authors
simulated sparsification with a uniformly sampling of local update entries,
which aims to make data communication more efficient. In general, without
the synchronization among workers, asynchronous models usually end with a
low degree of convergence in learning model [58].

Local SGD Local SGD [61] is a model of strict synchronization that allows all
workers to perform local learning with several iterations before averaging all
of them into a global model. The mathematical foundation of this framework
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can be described as:

x8,C+1 =

{
x8,C − W�8,C

(
x8,C

)
, if C + 1 ∉ I)

x8,C − W 1
=

∑=
8=1�8,C

(
x8,C

)
, if C + 1 ∈ I)

(2.7)

Variants of this technique have been proposed to release the burden of huge
communication cost. One of those methods is One-shot Averaging [10]. The
authors aim to execute < independent workers in parallel for a number of
iterations. After that, all model parameters are then averaged. Combining the
distributed momentum SGD and the PR-SGD [62], Yu et al. [63] presented
some improvement in the performance of local SGD with a linear speed-up
of the training. Jiang et al. [64] reduced the communication complexity via
exploiting the quantization method together with a local SGD framework. In
general, with this framework, the less frequency of communication among
workers leads to a degradation in training model’s convergence. Hence this
approach may require more training iterations than the vanilla SGD to achieve
the same model accuracy. Hence, the trade-off of the communication must be
scrutinized.

Parallelism of Computations and Communications

With a goal of making computational tasks and communication execute in
parallel, studies focus on different algorithms of scheduling and pipelining.
There is a fact that deep learning models are structured from sequential layers;
so scheduling techniques take advantage of this characteristics to reduce the
wasteful time of waiting between data-exchange and computational operations
at each processing elements [65].

The common idea to diminish the communication cost is to find out the optimal
order of computation and communication [66,67]. An representative technique
of this approach is a wait-free backward propagation (WFBP) [68,69]. Another
solution to this issue is to schedule a level of parallelism between compress-
ing gradients’ communications and letting processing elements compute on
compression and backward propagation. [70].

In overall, there is not a complete solution to the communication-efficient
learning. The recently proposed techniques generally reduce the amount of
exchanged data among worker than conventional formulation; however, they
have to penalize via degrading the convergence of the learning model.



3
An Unsupervised,
Two-stage Network for
Background Density
Analysis and Motion
Difference Approximation
Deep neural networks have shown their robustness of single-value mapping
to generalize the contextual dynamics in background modelling [71, 72] and
foreground detection [29, 36, 41]. Bouwmans et al. conducted a systematic
survey with comparative evaluation of deep neural networks for background
subtraction [15]. The authors pointed out five crucial requirements that any
methods of background/foreground construction should address:

1. insensible to noise variation;

2. capable of high adaptation to contextual dynamics in background mod-
elling;

3. able to cope with complicated changes in foreground segmentation;

21
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4. coherent to the spatial and temporal arrangement of time-series data in
sequences of images;

5. efficient to perform with real-time execution

First three conditions are ensured in deep neural networks. This is because
convolutional architectures aims to learns contextual features of background
images and foreground regions. Given a sufficient dataset of change detection,
these pipelines of end-to-end networks are trained to learn all appearance
of scene changes with dense layers. Deep features outperform traditional
hand-crafted features of machine learning model with a high semantic concep-
tualization despite of high abstraction of comprehension [73]. Hence, with a
sufficiently large amount of training, deep-learning-based methods is robust
with a resistance to noise signals and a compliance with scene changes with
complicated patterns without incremental learning. In addition to this, the
processing with perspective of spatial and temporal space is one of the primary
barriers of the techniques when moving objects present with diffent scales
and aspect ratios. Several authors bridge this gap by adding spatial and/or
temporal constraints by employing multiscale strategies in CNNs [29, 31, 36].
However, because deep neural networks formulate the learning process with
single-valued mapping with a dense stack of computational layers, they are
mostly time-consuming although acceleration of dedicated processing units
(e.g., GPUs) is utilized. Criteria (4) and (5) regard challenges of deep learning
methods in video processing. Nevertheless, traditional GMMs, which simulates
the temporal learning on time-series data of images with statistical learning
and difference thresholding [11, 12], are able to resolve these two lasts issues.
In this situation, an integrated solution is an appropriate motivation to bal-
ance the trade-off between tremendous neural architectures and conventional
machine learning models.

In this work, we propose a novel compact framework of CNN-based unsuper-
vised background construction that exploits temporal information with light-
weighted convolutional non-linear difference filtering to overcome the above
drawbacks of previous studies in background subtraction, focusing on both
background and foreground modeling. Comprehensively, the introduced convo-
lutional backgroundmodel captures attention towards static distributions while
the CNN-based encoder-decoder filter focuses on representing the more general
subtraction function, which is an idea commonly employed in post-processing
steps of statistical methods to extract moving regions. The conditional density
network are modeled in a completely general framework by combining the
convention of CNN and a mixture of probabilistic functions. The key idea of this
proposed technique is to exploit statistical inference to generalize the actual
properties of observed sequences of scenes via modelling backgrounds with a
learnable and explanable mixture of data distributions.
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As shown with an overview in Fig. 3.1, the primary goal of our proposed
framework is to address the previously listed problems of DNNs and statistical
methods, via adaptively acquiring the underlying properties of a sequence of
images to construct corresponding background scenes with CDN-GM (the left
subfigure), and extract foregrounds of interest through data-driven learning
with MEDAL-net (the right lower subfigure). Following pixel-wise temporal
data reformation (the right upper subfigure), a batch of video frames is decom-
pressed into a sequence of pixel histories to estimate each pixel’s true back-
ground intensity with CDN-GM. After reconstructing the background image
from the output intensity sequence of CDN-GM, the input frame is concate-
nated along the channel dimension with the background to estimate the final
segmentation map. The concatenation before the foreground extraction step
provides information to engender context-driven difference mapping within
MEDAL-net, rather than memorizing the single-valued mapping between in-
put frames and labeled foregrounds. This difference mapping idea effectively
limits MEDAL-net’s parameter search space, while enabling our proposed fore-
ground extraction network to be more robust against various real-world motion
dynamics.

Figure 3.1: The overview of the proposed method for background modeling and fore-
ground detection

3.1 Background Modelling with a Convolution
Density Network of Gaussian Mixture

According to Zivkovic’s study [12], let 6)2 = {x1, x2, ..., x) |x8 ∈ [0, 255]2} be
the time series of the ) most recently observed color signals of a pixel where
the dimension of the vector x8 in the color space is 2, the distribution of pixel
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intensity x8 can be modeled by a linear combination of  probabilistic com-
ponents ): and their corresponding conditional probability density functions
% (x8 |): ). The marginal probability % (x8) of the mixture is defined in:

% (x) =
 ∑
:=1

% (): )% (x|): ) =
 ∑
:=1

c:% (x|): ) (3.1)

where c: is the non-negative mixing coefficient that sums to unity, representing
the likelihood of occurrence of the probabilistic component ): .

Because of the multimodality of observed scenes, the intensity of target pixels
is assumed to be distributed normally in a finite mixture. Regarding RGB space
of analyzed videos, each examined color channel in x8 was assumed to be
distributed independently and can be described with a common variance f:
to avoid performing costly matrix inversion as indicated in [11]. Hence, the
multivariate Gaussian distribution can be re-formulated as:

% (x|): ) = N(x|-: , f: )

=
1√
(2c)2f2

:

exp
(
−
‖ x − -: ‖2

2f:

)
(3.2)

where -: is the estimated mean and f: is the estimated universal covariance
of examined color channels in the :Cℎ Gaussian component.

From this hypothesis, in this work, we propose an architecture of convolutional
neural network, called Convolutional Density Network of Gaussian Mixtures
(CDN-GM), which employs a set of non-linearity transformations 5\ (·) to for-
mulate a conditional formalism of GMM density function of x given a set of
randomly selected, vectorized data points 6) :

y) = 5\ (6)2 ) ∼ % (x|6T
c ) (3.3)

The ability of multilayer neural networks that was trained with an optimiza-
tion algorithm to learn complex, high-dimensional, nonlinear mappings from
large collections of examples increases their capability in pattern recognition
via gathering relevant information from the input and eliminating irrelevant
variabilities. With respect to problems of prediction, the conditional average
represents only a very limited statistic. For applicable contexts, it is consider-
ably beneficial to obtain a complete description of the probability distribution
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of the target data. In this work, we incorporate the mixture density model
with the convolutional neural network instead of a multi-layer perceptron as
done by Bishop et al. in the vanilla research [17]. In the proposed scheme,
the network itself learns to act as a feature extractor to formulate statistical
inferences on temporal series of intensity values. First, regarding recently pro-
posed CNNmethods, the local connectivity characteristics in convolution layers
motivate CNN to learn common visual patterns in a local region of images.
Literally, a background image contains most frequently presented intensities
in the sequence of observed scenes. Hence, in CDN-GM, we take advantage
of this mechanism to exploit the most likely intensity value that will raise in
the background image via consideration of temporal arrangement. Second, the
memory requirement to store so many weights may rule out certain hardware
implementations. In convolutional layers, shift invariance is automatically ob-
tained by forcing the replication of weight configurations across space. Hence,
the scheme of weight sharing in the proposed CNN reduces the number of
parameters, making CDN-GM lighter and exploiting the parallel processing of
a set of multiple pixel-wise analysis within a batch of video frames.

Figure 3.2: The proposed architecture of Convolution Density Network of Gaussian
Mixture Model

The architecture of CDN-GM contains seven learned layers, not counting the
input – two depthwise convolutional, two convolutional and three dense layers.
Our network is summarized in Fig. 3.2. The input of our rudimentary architec-
ture of the proposed network is a time series of color intensity at each pixel,
which was analyzed with noncomplete connection schemes in four convolu-
tion layers regarding temporal perspective. Finally, the feature map of the last
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convolution layer was connected with three different configurations of dense
layers to form a three-fold output of the network which present the kernel
parameter of the Gaussian Mixture Model.

Themain goal of CDN-GM is to construct an architecture of CNNwhich presents
multivariate mapping in forms of Gaussian Mixture Model with the mechanism
of offline learning. With the simulated probabilistic function, we aim to model
the description of the most likely background scenes from actual observed data.
In other words, the regularities in the proposed CNN should cover a generalized
presentation of the intensity series of a set of consecutive frames at pixel level.
To achieve this proposition, instead of using separate GMM for each pixel-wise
statistical learning, we consider to use a single GMM to formulate the temporal
history of all pixels in the whole image. Accordingly, CDN-GM architecture is
extended through a spatial extension of temporal data at image points with an
extensive scheme defined in Table 3.1.

Table 3.1: Architecture of Convolutional Density Network

Type / Stride Filter Shape Output Size
Input - (� ∗, ) × 1 ×) × 3
Conv dw / s7 1 × 7 × 1 dw (� ∗, ) × 1 × 35 × 3
Conv / s1 1 × 1 × 3 × 7 (� ∗, ) × 1 × 35 × 7
Conv dw / s7 1 × 7 × 7 dw (� ∗, ) × 1 × 5 × 7
Conv / s1 1 × 1 × 7 × 7 (� ∗, ) × 1 × 5 × 7
Dense / s1  ×� (� ∗, ) ×  × 3
Dense / s1 / Softmax  (� ∗, ) ×  
Dense / s1  (� ∗, ) ×  

The network output yT, whose dimension is (2 + 2)× , is partitioned into three
portions y`

(
6)2

)
, yf

(
6)2

)
, and yc

(
6)2

)
corresponding to the latent variables

of GMM model:

yT = [y`
(
6)2

)
, yf

(
6)2

)
, yc

(
6)2

)
]

= [y1
`, . . . , y

 
` , y

1
f , . . . , y

 
f , y

1
c , . . . , y

 
c ]

(3.4)

With our goal of formulating the GMM, we impose a different restriction on
threefold outputs from the network:

• First, as the mixing coefficients c: indicate the proportion of data ac-
counted for by mixture component :, they must be defined as indepen-
dent and identically distributed probabilities. To achieve this regulation,
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in principle, we activate the network output with a softmax activation
function:

c: (6)2 ) =
exp(y:c )∑ 
;=1 exp(y;c )

(3.5)

• Second, in the realistic scenarios, the measured intensity of observed
image signals may fluctuate due to a variety of factors, including illumi-
nation transformations, dynamic contexts and bootstrapping. In order
to conserve the estimated background, we have to restrict the value of
the variance of each component to the range [f̄<8=, f̄<0G ] so that each
component does not span spread the entire color space, and does not
focus on one single color cluster:

f: (6)2 ) =
f̄<8= × (1 − f̂: ) + f̄<0G × f̂:

255
(3.6)

where f: (6)2 ) is normalized towards a range of [0, 1] over the maximum
color intensity value, 255; and f̂: is the normalized variance that was
activated through a hard-sigmoid function from the output neurons yf
that correspond to the variances:

f̂: (6)2 ) = max
[
0,min

(
1,

y:f + 1
2

)]
(3.7)

In this work,we adopt the hard sigmoid function because of the piecewise
linear property and correspondence to the bounded form of linear rectifier
function (ReLU) of the technique. Furthermore, this was proposed and
proved to be more efficient in both in software and specialized hardware
implementations by Courbariaux et al. [74].

• Third, the mean of the probabilistic mixture is considered on a normal-
ized RGB color space where the intensity values retain in a range of [0, 1]
so that they can be approximated correspondingly with the normalized
input. Similar to the normalized variance f̂: , the mixture mean is stan-
dardized from the corresponding network outputs with a hard-sigmoid



28
chapter 3 an unsupervised, two-stage network for background

density analysis and motion difference approximation

function:

`: (6)2 ) = max

[
0,min

(
1,

y:` + 1
2

)]
(3.8)

From the proposed CNN, we extract the periodical background image for each
block of pixel-wise time series of data in a period of ) . This can be done by
selecting the means whose corresponding distributions have the highest degree
of high-weighted, low-spread. To have a good grasp of the importance of a
component in the mixture, we use a different treatment of weight updates with
a ratio ofc:′ (6)2 )

/
f:′ (6)2 ). This is themanner ofweighting components within

a mixture at each pixel by valuing high-weighted, low-spread distributions in
the mixture, thereby spotlighting the most significant distribution contributing
to the construction of backgrounds.

�� (6)2 ) = max(`: · �̂�:,) ), for : ∈ [1,  ] (3.9)

where background mapping is defined at each pixel x as:

�̂�:,) (6)2 ) =


1, if 0A6<0G

:′
[c:′ (6)2 )/f:′ (6)2 )] = :

for : ∈ [1,  ]
0, otherwise

(3.10)

3.2 Background Learning via Training a Density
Network with a Unsupervised Loss Function

In practice, particularly in each real-life scenario, the background model must
capturemultiple degrees of dynamics,which is more challenging by the fact that
scene dynamics may also change gradually under external effects (e.g. lighting
deviations). These effects convey the latest information regarding contextual
deviations that may constitute new background predictions. Therefore, the
modeling of backgrounds must not only take into account the various degrees
of dynamics across multiple imaging pixels of the data source, but it must
also be able to adaptively update its predictions with respect to semantic
changes. Equivalently, in order to approximate a statistical mapping function
for background modeling, the proposed neural network function has to be
capable of approximating a conditional probability density function, thereby
estimating a multi-modular distribution conditioned on its time-wise latest raw
imaging inputs. The criteria for the neural statistical function to be instituted
can be summarized as follows:
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• As a metric for estimating distributions, input data sequences cannot be
weighted in terms of order.

• Taking adaptiveness into account, the neural probabilistic density func-
tion can continuously interpolate predictions in evolving scenes upon
reception of new data.

• The neural network function has to be generalizable such that its model
parameters are not dependent on specific learning datasets.

Hence, satisfying the prescribed criteria, we propose a powerful loss function
capable of directing the model’s parameters towards adaptively capturing the
conditional distribution of data inputs, thereby approximating a statistical
mapping function in a technologically parallelizable form. At every single pixel,
the proposed CNN estimates the probabilistic density function on the provided
data using its GMMparameters. Specifically,given the set 6)2 randomly selected,
vectorized data points, it is possible to retrieve the continuous conditional
distribution of the data target x with the following functions:

% (x) =
 ∑
:=1

c: (6)2 ) · N (x|-: , f: ) (3.11)

where the general disposition of this distribution is approximated by a finite
mixture of Gaussians, whose values are dependent on our learnable neural
variables:

N(x|-: , f: ) =
1√

2c · f: (6)2 )
2
· exp

{
−
x − `: (6)2 )

2

2f: (6)2 )
2

}
(3.12)

In our proposed loss function, the data distribution to be approximated is the
set of data points relevant to background construction. This is rationalized by
the proposed loss function’s purpose, which is to direct the neural network’s
variables towards generalizing universal statistical mapping functions. Further-
more, even with constantly evolving scenes where the batches of data values
also vary, this loss measure can constitute fair weighting on the sequence of
inputs. Our proposed loss measure is designed to capture various pixel-wise
dynamics over a video scene and to encompass even unseen perspectives via
exploiting the huge coverage of multiple scenarios across more than one case
with data. In otherwords, the order of the network’s input does notmatter upon
loading, which is proper for any statistical function on estimating distribution.
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For modeling tasks, we seek to establish a universal multi-modular statistical
mapping function on the RGB color space, which would require optimizing the
loss not just on any single pixel, but for 1 block of time-series image intensity
data fairly into a summation value.

L =

1∑
8

)∑
9

L (8)
9

(3.13)

where L (8)
9

= − ln

(
 ∑
:=1

c
(8)
:
N(x9 |` (8): , f

(8)
:
)
)

(3.14)

where x9 is the 9Cℎ element of the 8Cℎ time-series data 6),(8)2 of pixel values;
c (8) , ` (8) , and f (8) are respectively the desired mixing coefficients, means, and
variances that commonly model the distribution of 6),(8)2 in GMM.

We define L (8)
9

as the error function for our learned estimation on an observed
data point x9 , given the locally relevant dataset 6),(8)2 for the neural function.
L (8)
9

is based on the statistical log-likelihood function and is equal to the
negative of its magnitude. Hence, by minimizing this loss measure, we will
essentially be maximizing the expectation value of the GMM-based neural
probabilistic density function % (x), from the history of pixel intensities at a pixel
position. Employing stochastic gradient descent on the negative logarithmic
function L (8)

9
involves not only monotonic decreases, which are steep when

close to zero, but also upon convergence it also leads to the proposed neural
function approaching an optimized mixture of Gaussians probability density
function.

In addition, since our loss function depends entirely on the input and the output
of the network (i.e., without external data labels), the proposed work can be
considered an unsupervised approach. This is because the objective of our
network is to maximize the likelihood of the output on the data itself, not to
any external labels. With this loss function, the optimization of the network to
generalize on new data is available on the fly without needing any data labeled
manually by humans. The key thing here is that whether the neural network
can learn to optimize the loss function with the standard stochastic gradient
descent algorithm with back-propagation. This can only be achieved if we can
obtain suitable equations of the partial derivatives of the error L with respect
to the outputs of the network. As we describe in the previous section, y` , yf ,
and yc present the proposed CDN-GM’s outputs that formulate to the latent
variables of GMM model. The partial derivative mL (8)

9

/
my (:) can be evaluated

for a particular pattern and then summed up to produce the derivative of
the error function L. To simplify the further analysis of the derivatives, it
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is convenient to introduce the following notation that presents the posterior
probabilities of the component : in the mixture, using Bayes theorem:

Π (8)
:

=
c
(8)
:
N(x9 |- (8): , f

(8)
:
)

 ∑
;=1
c
(8)
;
N(x9 |- (8); , f

(8)
;
)

(3.15)

First, we need to consider the derivatives of the loss function with respect to
network outputs yc that correspond to the mixing coefficients c: . Using Eq.
(3.14) and (3.15), we obtain:

mL (8)
9

mc
(8)
:

=
Π (8)
:

c
(8)
:

(3.16)

From this expression, we perceive that the value of c (8)
:

explicitly depends on
y (;)c for ; = 1, 2, ...,  as c (8)

:
is the result of the softmax mapping from y (;)c as

indicated in Eq. (3.5). We continue to examine the partial derivative of c (8)
:

with respect to a particular network output y (;)c , which is

mc
(8)
:

my (;)c
=

{
c
(8)
:
(1 − c (8)

;
), if : = ;

−c (8)
;
c
(8)
:

, otherwise.
(3.17)

By chain rule, we have

mL (8)
9

my (;)c
=

∑
:

mL (8)
9

mc
(8)
:

mc
(8)
:

my (;)c
(3.18)

From Eq. (3.15), (3.16), (3.17), and (3.18), we then obtain

mL (8)
9

my (;)c
= c

(8)
;
− Π (8)

;
(3.19)

For y (:)f , we make use of Eq. (3.2), (3.6), (3.7), (3.14), and (3.15), by differenti-
ation, to obtain

mL (8)
9

my (:)f
=

3.2
255

Π (8)
:

©«22
√
(2c)2 (f (8)

:
)
2+2
−
‖ x9 − -: ‖2

2(2c)2 (f (8)
:
)
2+2

ª®¬ (3.20)
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for −2.5 < y (:)f < 2.5. This is because the piece-wise property in the definition
of the hard-sigmoid activation function.

Finally, for y (:)` , let ` (8)
:,;

be the ;Cℎ element of the mean vector where ; is an
integer lies in [0, 2) and suppose that ` (8)

:,;
corresponds to an output >`

:
of the

network. We can get derivative of ` (8)
:,;

by taking Eq. (3.2), (3.8), (3.14), (3.15)
into the differentiation process:

mL (8)
9

my (:)`
= 0.2 × Π (8)

:

G 9,; − ` (8):,;
f
(8)
:

(3.21)

for −2.5 < y (:)` < 2.5.

From Eq. (3.19), (3.20), and (3.21), when CDN-GM is performed data-driven
learning individually on each video sequence using Adam optimizer with a
learning rate of U , the process tries to regulate the values of laten parameters
in the mixture model via minimizing the negative of log likelihood function.
Hence, once the proposed model has been trained on video sequences, it is
obviously seen that the network can predict the conditional density function of
the target background, which is a statistical description of time-series data of
each image point, so far, the foreground mask is then segmented correspond-
ingly. The primary conceptualization in the model is to address the problems
of DNNs as we mentioned above via online adaptively acquiring the underly-
ing properties of a sequence of images to construct corresponding background
scenes at concrete moments rather than memorizing the single-valuedmapping
between input frames and labelled backgrounds.

3.3 Foreground Segmentation with a Non-Linear
Approximating Frame-Difference

In this section, we present the description of our proposed convolutional auto-
encoder, called MEDAL-net, which simulates non-linear frame-background dif-
ferencing for foreground detection. Traditionally, thresholding schemes are
employed to find the highlighted difference between an imaging input and its
corresponding static view in order to segment motion. For example, Stauffer
and Grimson [11] employed variance thresholding on background - input pairs
by modeling the static view with the Gaussian Mixture Model. While the ex-
perimental results suggest certain degrees of applicability due to its simplicity,
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the approach lacks in flexibility as the background model is usually not static
and may contain various motion effects such as occlusions, stopped objects,
shadow effects, etc.

In practice, a good design of a difference function between the current frame
and its background must be capable of facilitating motion segmentation across
a plethora of scenarios and effects. However, for the countless scenarios in
real life, where there are unique image features and motion behaviors to each,
there is yet any explicit mathematical model that is general enough to cover
them all. Because effective subtraction requires high-degreed non-linearity
in order to compose a model for the underlying mathematical framework of
many scenarios, following the Universal approximation theorem [75], we de-
sign the technologically parallelizable neural function for an approximation
of such framework. Specifically, we make use of a CNN to construct a fore-
ground segmentation network. The motive is further complemented by two
folds:

• Convolutional Neural Networks have long been known for their effective-
ness in approximating nonlinear functions with arbitrary accuracy.

• Convolutional Neural Networks are capable of balancing between both
speed and generalization accuracy, especially when given an effective
design and enough representative training data.

However, recent works exploiting CNN in motion estimation are still generating
heavy-weighted models which are computationally expensive and not suitable
for real-world deployment. In our proposed work, we exploit the use of a pair
of the current video frame and its corresponding background as the input to
the neural function and extract motion estimation. By combining this with
a suitable learning objective, we explicitly provide the neural function with
enough information to mold itself into a context-driven non-linear difference
function, thereby restricting model behavior and its search directions. This also
allows us to scale down the network’s parameter size, width, and depth to
focus on learning representations while maintaining generalization for unseen
cases. As empirically shown in the experiments, the proposed architecture is
light-weighted in terms of the number of parameters, and is also extremely
resource-efficient, e.g. compared to FgSegNet [40].

3.3.1 The Proposed Architectural Design of Foreground
Detection Network

The overall flow of the foreground detection network is shown in Fig. 3.3. We
employ the encoder-decoder design approach for our segmentation function.
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With this approach, data inputs are compressed into a low-dimensional latent
space of learned informative variables in the encoder, and the encoded feature
map is then passed into the decoder, thereby generating foreground masks.
There are two components in our network: feature decoding and foreground
upsampling. While the former element attends to compress the motion feature
of observed scenes, the latter counterpart aims to reconstruct the foreground
mask from extracted properties.

Figure 3.3: The proposed architecture of MEDAL-net grounded on convolutional au-
toencoder for foreground detection

In our design, we fully utilize the use of depthwise separable convolution
introduced in MobileNets [76] so that our method can be suitable for mobile
vision applications. Because this type of layer significantly scales down the
number of convolutional parameters, we reduced the number of parameters
of our network by approximately 81.7% compared to using only standard 2D
convolution, rendering a light-weighted network of around 2,800 parameters.
Interestingly, even with such a small set of parameters, the network still does
not lose its ability to generalize predictions at high accuracy. Our architecture
also employs normalization layers, but only for the decoder. This design choice
is to avoid the loss of information in projecting the contextual differences of
background-input pairs into the latent space via the encoder, while formulating
normalization to boost the decoder’s learning. The architecture of the proposed
model is described in Table 3.2.

Encoder The encoder can be thought of as a folding function that projects
the loaded data into an information-rich low-dimensional feature space. In our
architecture, the encoder takes in pairs of video frames and their corresponding
backgrounds concatenated along the depth dimension as its inputs. Specifically,
the background image estimated by CDN-GM is concatenated with imaging
signals such that raw information can be preserved for the neural network to
freely learn to manipulate. Moreover, with the background image also in its
raw form, context-specific scene dynamics (e.g. moving waves, camera jittering,
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Table 3.2: Body Architecture of MEDAL-net

Type / Stride Filter shape Ouput size
Input - N x H x W x 6
DW conv / s1 3 x 3 x 1 N x H x W x 6
Conv / s1 / ReLU 1 x 1 x 6 x 16 N x H x W x 16
DW conv / s1 3 x 3 x 1 N x H x W x 16
Conv / s1 / ReLU 1 x 1 x 16 x 16 N x H x W x 16
Max pool / s2 2 x 2 x 1 N x (H / 2) x (W / 2) x 16
DW conv / s1 3 x 3 x 1 N x (H / 2) x (W / 2) x 16
Conv / s1 / ReLU 1 x 1 x 6 x 16 N x (H / 2) x (W / 2) x 16
DW conv / s1 3 x 3 x 1 N x (H / 2) x (W / 2) x 16
Conv / s1 / ReLU 1 x 1 x 16 x 16 N x (H / 2) x (W / 2) x 16
Max pool / s2 2 x 2 x 1 N x (H / 4) x (W / 4) x 16
DW conv / s1 3 x 3 x 1 N x (H / 4) x (W / 4) x 16
Conv / s1 1 x 1 x 16 x 16 N x (H / 4) x (W / 4) x 16
InstanceNorm / ReLU - N x (H / 4) x (W / 4) x 16
Upsampling - N x (H / 2) x (W / 2) x 16
DW conv / s1 3 x 3 x 1 N x (H / 2) x (W / 2) x 16
Conv / s1 1 x 1 x 16 x 16 N x (H / 2) x (W / 2) x 16
InstanceNorm / ReLU - N x (H / 2) x (W / 2) x 16
Upsampling - N x H x W x 16
DW conv / s1 3 x 3 x 1 N x H x W x 16
Conv / s1 1 x 1 x 16 x 16 N x H x W x 16
InstanceNorm / ReLU - N x H x W x 16
DW conv / s1 3 x 3 x 1 N x H x W x 16
Conv / s1 / Hard Sigmoid 1 x 1 x 16 x 1 N x H x W x 1

intermittent objects) are also captured. Thus, as backgrounds are combined
with input images to formulate predictions, MEDAL-net may further learn to
recognize motions that are innate to a scene, thereby selectively segmenting
motions of interest based on the context.

In addition, by explicitly providing a pair of the current input frame and its
background image to segment foregrounds, our designed network essentially
constructs a simple difference function that is capable of extending its behaviors
to accommodate contextual effects. Thus, we theorize that approximating
this neural difference function would not require an enormous number of
parameters. In other words, it is possible to reduce the number of layers and
the weights’ size of the foreground extraction network to accomplish the task.
Hence, the encoder only consists of a few convolutional layers, with 2 max-
pooling layers for downsampling contextual attributes into a feature-rich latent
space.
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Decoder The decoder of our network serves to unfold the encoded feature
map into the foreground space using convolutional layers with two upsampling
layers to restore the original resolution of its input data.

In order to facilitate faster training and better estimation of the final output, we
engineered the decoder to include instance normalization, which is apparently
more efficient than batch normalization [77]. Using upsampling to essentially
expand the latent tensors, the decoder also employs convolutional layers to
induce non-linearity like the encoder.

The final output of the decoder is a grayscale probability map where each
pixel’s value represents the chance that it is a component of a foreground
object. This map is the learned motion segmentation results with pixel-wise
confidence scores determined on account of its neighborhood and scene-specific
variations. In our design, we use the hard sigmoid activation function because
of its property that allows faster gradient propagation, which results in less
training time.

At inference time, the final segmentation result is a binary image obtained by
placing a constant threshold on the generated probability map. Specifically,
suppose X is a probability map of size # × � ×, × 1, and let the set � be
defined as:

� =
{
(G,~, I) |XG,~,I,0 ≥ n

}
(3.22)

where G ∈ [0, # ], ~ ∈ [0, � ], I ∈ [0,, ], and n is an experimentally deter-
mined parameter. In other words, � is a set of indices of X that satisfy the
threshold n. The segmentation map Ŷ of size # ×� ×, is obtained by:

Ŷ8, 9,: =

{
1, (8, 9, :) ∈ �
0, >Cℎ4AF8B4

(3.23)

where 1 represents indices classified as foreground, and 0 represents back-
ground indices.

3.3.2 The Methodology of Network Training

We present the approach of training our proposed network in data preparation
and the training procedure.
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Data preparation CDnet1 [78] is a large-scale database of change detec-
tion. The dataset contains 53 realistic, self-captured video sequences which
are categorized in 11 different scenarios to examine the dynamic adaptation
of algorithms regarding background subtraction. Each sequence in the dataset
contains around 5000 consecutive frames of a scene on average. In each scenes,
authors hand-labelled the groundtruth of foreground mask for all of frames in
each sequence. However, at the beginning and at the end of each image set,
around one hundred of frames are set aside for model initialization; so there
is no labelled data for frames in these periods.

In this research, we chose CDnet-2014 as a base dataset for model training
because of the diversity of scene dynamics. The training dataset for MEDAL-net
is carefully chosen by hand so that the data maintains the balance between
background labels and foreground labels since imbalance data will increase
the model’s likelihood of being overfitted. We choose just 200 labeled ground
truths to train the model. This is only up to 20% of the number of labeled
frames for some sequences in CDnet, and 8.7% of CDnet’s labeled data in
overall. During training, the associated background of each chosen frame is
directly generated using CDN-GM as MEDAL-net is trained separately from
CDN-GM because of the manually chosen input-label pairs.

Training procedure We penalize the output of the network using the
cross-entropy loss function commonly used for segmentation tasks [G,~, I], as
the goal of the model is to learn a Dirac delta function for each pixel. The
description of the loss function is as follows:

! = − 1
#

#∑
8=1

�∑
9=1

,∑
:=1

[Y8, 9,: log(Ŷ8, 9,: )

+ (1 − Y8, 9,: ) log(1 − Ŷ8, 9,: )]
(3.24)

where Y is the corresponding target set of foreground binary masks for Ŷ, the
batch of predicted foreground probability maps. The network is trained for
about 1000 epochs for each sequence in CDnet using Adam optimizer with the
learning rate = 0.005.

With this straightforward learning objective applied on our CNN, the designed
architecture is enabled to learn not only pixel-wise motion estimates of the
training set, but it also is taught to recognize inherent dynamics in its data, and
perform as a context-driven neural difference function to accurately interpolate
region-wise foreground predictions of unseen perspectives.

1. http://changedetection.net/





4
Implementation and
Evaluation

4.1 Method Implementation and Experimental
Setup

In this section, we presents the perspective of implementation for both of
training and inferencing steps. The proposed scheme is then evaluated to
examine the efficiency and the effective of the approach with respect to the
state-of-the-art studies. A subjective evaluation is carried out on the CDnet-
2014 dataset, on which our model is well-trained with few hundreds of labelled
examples in each of image sequence. Moreover, an objective assessment is
performed on another unseen dataset, Wallflower, to scrutinize the contextual
generation of the framework with similar motion dynamics.

4.1.1 The Description of Implementing Methodology

From theoretical findings in the previous chapter, we simulate a scheme of
learning-based model with TensorFlow [79], a open-source interface for ma-
chine learning development. TensorFlow provides a wide range of numerical
operations that cover a degree of symbolic mathematics in tensor-driven al-
gebras. The library was initiated by Google to facilitate the development of

39
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user-defined neural networks with a particular focus on model training and
practical inference. With a pre-defined dataflow and differentiable arithmetic,
TensorFlow encourages a wide spread of customizedmachine learningmethods
in both research communities and practical industry via easing the development
of learning modules across a diversity of cutting-edge computing platforms
(e.g., CPUs, GPUs and TPUs).

The proposed model of background modelling and foreground subtraction was
implemented into two separated components. As mentioned in Section 3.1, the
key idea of the convolutional density network is to characterize the statistical
learning with an auto-differentiable pipeline at pixel level. In other words, we
presents a distinguished Gaussian Mixture model at each image point. Hence,
there are up to � ×, Mixtures in a processing prototype of the proposed
framework. This means that we can disassemble a time-series data of) images
into flexible batches of a certain number of pixels’ temporal data. On the
other hand, as described in Section 3.3, our network of foreground detection
receives pairs of input frame and background as model’s inputs. This means
that the latter network must be pending until the former module completes
the background generation if we combine two components in an end-to-end
pipeline. Because of the difference in the dimension of input data between
two models, the bottleneck will occurs at the middle of the framework as
the network of foreground segmentation must be procrastinating until the
pixel batch at density network fulfill a desired image frame during training
procedure. Hence, we found that it is necessary to separate the proposed
scheme into a couple of counterparts to optimize the training time.

Regarding model inferencing, we found that there is a considerable latency
in model initialization when the framework starts execution. This is because
there are some task of model allocation on the memory behind the top-level
of implementation. To resolve this issue, after training the model on data,
we convert all of the parameters from TensorFlow API to CUDA-accelerated,
multidimensional array on Python by using Chainer [80–82]. Chainer is a
open-souce, Python-based library that supports deep learning with a focus
on versatility. In the interface, the implementation of neural networks are
presented in form of a dynamic numerical graphs with automatic differentiation,
whichwas facilitated regarding computational parallelism on CUDA/cuDNN. In
the following part, we demonstrate the experimental evaluation regarding both
accuracy in foreground segmentation and real-time processing speed.

4.1.2 Experimental Setup and Evaluation Metrics

In this section, we proceed to verify experimentally the capabilities of the
proposed method via comparative evaluations in capturing motion attributes.
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This is in order to evaluate the effectiveness of CDN-MEDAL-net in foreground
detection. Our proposed scheme is designed to explicitly incorporate the proba-
bilistic density properties into the architecture to achieve accurate adaptiveness,
while taking advantage of parallel computing technologies often used with
DNNs to compete with state-of-the-art works in speed given its light struc-
ture. Therefore, we compare the accuracy of the proposed framework not
only with unsupervised approaches that are light-weighted and generalizable
without pretraining: GMM – Stauffer& Grimson [11], GMM – Zivkovic [12], SuB-
SENSE [37], PAWCS [83], TensorMoG [8], BMOG [13], FTSG [38], SWCD [84],
but also with the data-driven, supervised models which trade computational
expenses for high accuracy performance: FgSegNet_S [40], FgSegNet [85],
FgSegNet_v2 [41], Cascade CNN [29], DeepBS [36], STAM [35].

In terms of chosen metrics for measuring motion features, we employ quanti-
tative analysis on values that can be appraised from confusion matrices [86],
i.e. Precision, Recall, F-Measure, False-Negative Rate (FNR), False-Positive Rate
(FPR) and Percentage of Wrong Classification (PWC). The evaluating measure-
ment involves following pre-defined quantities:

• True Positive (TP): the number of accurately detected foreground pixels;

• True Negative (TN): the number of accurately detected background
pixels;

• False Positive (FP): the number of background pixels that are mistaken
as foreground;

• False Negative (FN): the number of foreground pixels which are incor-
rectly detected as background.

With the overall results being drawn from the combination of all confusion
matrices across given scenarios, the benchmarks on CDnet-2014 [78] were
performed by comparing foreground predictions against provided ground-
truths. Then, we evaluate the proposed framework trained with CDnet-2014 on
Wallflower [87] without any tuning or retraining laten parameters to examine
the capability of our proposed approach in unseen scenarios having similar
dynamics. Finally, we will also analyze all methods in terms of processing speed
with the image resolution of 320 × 240 and draw final conclusions.

In our experiment, the number of Gaussians  is empirically and heuristically
to balance the CDN-GM’s capability of modeling constantly evolving contexts
(e.g. moving body of water) under many effects of potentially corruptive noises.
With too big,many GMM components many be unused or they simply capture
the various noises within contextual dynamics. As the Gaussian component
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corresponding to the background intensity revolves around the most frequently
occurring color subspaces to draw predictions, the extra components serve only
as either placeholders for abrupt changes in backgrounds, be empty or capture
intermittent noises of various degrees. In practice, noise Gaussian components
in GMM are pulse-like as they would appear for short durations, and low-
weighted because they are not as often matched as background components.
Nevertheless, they still present corruptive effects to our model. Our proposed
CDN-GM model was set up with the number of Gaussian components  = 3
for all experimented sequences, and was trained on CDnet-2014 dataset with
Adam optimizer using a learning rate of U = 14−4.

In addition, the constants f̄<8= and f̄<0G were chosen such that no Gaussian
components span the whole color space while not contracting to a single
point that represents noises. If the [f̄<8=, f̄max] interval is too small, all of
the Gaussian components will be likely to focus on one single color cluster.
Otherwise, if the interval is too large, some of the components might still cover
all intensity values, making it hard to find the true background intensity. Based
on this assumption and experimental observations, we find that the difference
between color clusters usually does not exceed approximately 16 at minimum
and 32 at maximum.

Regarding MEDAL-net, the value of n was emperically chosen to be 0.3 in order
to extract the foreground effectively even under high color similarity between
objects and background.

4.2 Overall summary of experimental results

The proposed framework was implemented on a CUDA-capable machine with
an NVIDIA GTX 1070 Ti GPU or similar, along with the methods that require
CUDA runtime, i.e., TensorMoG, DeepBS, STAM, FgSegNet, and Cascade CNN.
Forunsupervised approaches,we conducted our speed tests on the configuration
of an Intel Core i7 with 16 GB RAM. Our results are recorded quantitatively with
execution performance in frame-per-seconds (FPS), and time (miliseconds)
versus accuracy in Fig. 4.1. For the effectiveness in accuracy of methods, we
examine F-measure score. The benchmark of correctness among approaches
will be presented in Section 4.3.

At the speed of 129.4510 fps, it is apparent that CDN-MEDAL-net is much
faster than other supervised deep learning approaches, of which the fastest -
FgSegNet_S - runs at 23.1275 fps. By concatenating estimations of background
scenes with raw signals for foreground extraction, our approach makes such
efficient use of hardware resources due of its completely lightweight archi-
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tecture and the latent-space-limitation approach. In contrast, other DNNs
architectures are burdened with a large number of trainable parameters to
achieve accurate input-target mapping. Furthermore, the proposed scheme
dominates the mathematically rigorous unsupervised methods frameworks in
terms of speed and accuracy such as SuBSENSE, SWCD, and PAWCS, as their
paradigms of sequential processing is penalized by significant penalties in exe-
cution. Significantly, the average speeds of the top three methods dramatically
disparate. With the objective of parallelizing the traditional imperative outline
of rough statistical learning on GMM, TensorMoG reformulates a tensor-based
framework that surpasses our duo architectures at 302.5261 fps. On the other
hand, GMM - Zivkovic’s design focuses on optimizing its mixture components,
thereby significantly trading off its accuracy to attain the highest performance.
Notwithstanding, our proposed framework gives the most balanced trade-off
(top-left-most) in addressing the speed-and-accuracy dilemma. Our model
outperforms other approaches of top accuracy ranking when processing at
exceptionally high speed, while obtaining good accuracy scores, at over 90%
on more than half of CDnet’s categories and at least 84%.

In overall, from the evaluating results on average F-measure benchmark and ex-
ecution speed of examining methods, we have a clear attention that supervised-
learning or neural-network-based methods focus on the optimization of per-
formance accuracy. On the contrary, traditional machine learning techniques
aim to gain scene adaptation with a high processing speed despite of low cor-
rectness. Nevertheless, our proposed method, CDN-MEDAL-net, harmonizes
the trade-off between both of the approaches. Our work perform foreground
segmentation with an average F-measure of around 89.72% while maintaining
a high processing speed at 129 frame-per-second. Although the results gained
from our framework are not the best in both of the evaluating metrics, there is
a major advantage that the method is capable of being put into practice with
an impressive execution speed.

In order to measure the overall performance of examinedmethods, we estimate
a metric of efficiency score, which is define as:

�5 5 8284=2~_B2>A4 =
Avg.F −measure

Inferencetime
(4.1)

where we penalize slow-processing method and promote approaches with high
average F-measure score. In other words, we aim to evaluate the percentage
of correct foreground segmentation on per time-step of processing time (e.g.,
a milisecond). Table 4.1 presents the detailed measurement of inference time
(in mili-second), the accuracy with average F-measure score when we bench-
mark on the whole CDnet-2014 dataset with 53 video sequences, 11 difference



44 chapter 4 implementation and evaluation

scenarios.

From the overall evaluation, there is a clear separation between unsuper-
vised learning methods and supervised counterparts. Although deep learning
networks produce results with high F-measure scores, they are penalized by
low-speed execution. In this context, traditional machine learning techniques
of unsupervised group dominate the evaluation because most of them address
the requirement of high speed execution with a relatively considerable accuracy
which varies from 55.57% to 77.38%. Significantly, our duo of neural networks
slightly drops the F-score to 89.72% while we maintain a high processing
rate of 129.451 frame-per-second. Hence, in overall evaluation of efficiency, our
proposed methods balance the trade-off among two approaches. Using a small
set of training data, and a light-weighted, explainable architectures, our work
additional enhances the comprehension in a neural network which are being
referred as a blackbox. Integrating statistical learning in the model present a
better contextual adaptation in background modelling, facilitating the percep-
tion to scene dynamics for foreground segmentation. This section is followed
by the experimental benchmark of accuracy in two aspects: evaluation with
pre-training and examination of generalization on unseen scenes.

Table 4.1: The overall evaluation of experimented methods regarding accuracy and
execution speed

Method Time‡ Avg. FM∓ Efficiency

Un
su
pe

rv
ise

d

GMM – S & G 119.697(3) 0.5688 0.0681
GMM – Zivkovic 419.950(1) 0.5557 0.2334(2)
SuBSENSE 15.717 0.7377 0.0116
PAWCS 12.159 0.7529(3) 0.0092
TensorMoG 302.526(2) 0.7738(1) 0.2341(1)
BMOG 102.025 0.6542 0.0667
FTSG 10.191 0.7256 0.0074
SWCD 20.061 0.7540(2) 0.0151

* CDN-MEDAL-net 129.451 0.8972 0.1161(3)

Su
pe

rv
ise

d

FgSegNet_S 23.128(1) 0.9803(2) 0.0227
FgSegNet 21.543(2) 0.9771(3) 0.0210
FgSegNet_v2 18.015(3) 0.9847(1) 0.0177
Cascade CNN 12.521 0.9193 0.0115
DeepBS 10.015 0.7439 0.0075
STAM 10.812 0.8959 0.0097

In each column, '43 (1) is for the best,�A44= (2) is for the 2=3 best, and �;D4 (3) is for the 3A3 best. ∗Semi-Unsupervised; ‡The inference
time is measured in frame-per-second unit (higher is better). ∓The average F-measure scores are evaluated on CDnet-2014 dataset
(higher is better). The efficiency score measures the overall evaluation between accuracy and execution speed among methods (higher
is better).
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Figure 4.1: The summary of computational speed and average F-measure comparison with state-of-the-art methods on CDnet-2014. The
upper red region defines an evaluation space where methods satisfy the applicability criteria of accuracy. The leftmost green area
indicates approaches that met the requirement of real-time processing speed. Our proposed scheme of CDN-MEDALnet balances
the trade-off of accuracy and processing speed between two approaches.
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4.3 Experimental Benchmark on CDnet 2014
dataset

Using the large-scale CDnet-2014 dataset, we demonstrate empirically the ef-
fectiveness of our proposed approach across a plethora of scenarios and effects.
For each thousands-frame sequence of a scenario, we sample only 200 fore-
ground images for training our foreground estimator. This strategy of sampling
for supervised learning is the same as that of FgSegNet’s and Cascade CNN.
The experimental results are summarized in Table 4.2, which highlights the
F-measure quantitative results of our approach compared against several ex-
isting state-of-the-art approaches, along with Fig. 4.2 that provides qualitative
illustrations. Despite its compact architecture, the proposed approach is shown
to be capable of significantly outperforming unsupervised methods, and com-
peting with complex deep-learning-based, supervised approaches in terms of
accuracy on all but only the PTZ scenario. In this experimental dataset, we pass
over the PTZ subdivision where our approach of CDN-GM is unsustainable to
model the underlying description of the most likely background because of the
fluctuation of actually observed data sequences when the recording camera
rotates continuously. Accordingly, our MEDAL-net scheme of foreground seg-
mentation encounters difficulty in estimating difference between input frames
and corresponding background scenes.

In comparison with unsupervised models built on the GMM background mod-
eling framework like GMM – Stauffer & Grimson, GMM – Zivkovic, BMOG and
TensorMoG, the proposed approach is better augmented by the context-driven
motion estimation plugin, without being constrained by simple thresholding
schemes. Thus, it is able to provide remarkably superior F-measure results
across the scenarios, especially on those where there are high degrees of noises
or background dynamics like LFR, NVD, IOM, CJT, DBG and TBL. However,
it is apparently a little worse than TensorMoG on BDW, SHD, IOM and CJT,
which may be attributed to TensorMoG carefully tuned hyperparameters on
segmenting foreground, thereby suggesting that the proposed method is still
limited possibly by its architectural size and training data. Comparison with
other unsupervised methods is also conducted, using mathematically rigorous
approaches such as SuBSENSE, PAWCS, FTSG, SWCD that are designed to
tackle scenarios commonly seen in real life (i.e. BSL, DBG, SHD, and BDW).
Nevertheless, F-measure results of the proposed approach around 0.90 sug-
gests that it is still able to outperform these complex unsupervised approaches,
possibly ascribing to its use of hand-labeled data for explicitly enabling context
capturing.

In comparison with supervised approaches, the proposed approach is appar-
ently very competitive against the more computationally expensive state-of-
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Figure 4.2: Visual quality comparison for foreground detection on all video sequences
in eleven categories in CDnet 2014. The columns include: (★) input frame,
(�) corresponding groundtruth foreground, (a) GMM – S & G, (b) GMM
– Zivkovic, (c) SuBSENSE, (d) PAWCS, (e) BMOG, (f) FTSG, (g) SWCD,
(h) CDN-MEDAL-net, (i) FgSegNet_S, (j) FgSegNet_v2 (k) Cascade CNN,
(l) DeepBS. Experimented scenarios include bad weather (BDW), baseline
(BSL), camera jitter (CJT), dynamic background (DBG), intermittent object
motion (IOM), low frame rate (LFR), night videos (NVD), shadow (SHD),
thermal (THM), and turbulence (TBL)

the-arts. For instance, our approach considerably surpasses the generalistic
methods of STAM and DeepBS on LFR and NVD, but it loses against both of
these methods on SHD and CMJ, and especially is outperformed by STAM on
many scenarios. While STAM and DeepBS are constructed using only 5% of
CDnet-2014, they demonstrate good generalization capability across multiple
scenarios by capturing the holistic features of their training dataset. However,
despite being trained on all scenarios, their behaviors showcase higher degrees
of instability (e.g. with LFR, NVD) than our proposed approach on scenarios
that deviate from common features of the dataset. Finally, as our proposed
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method is compared against similarly scene-specific approaches like FgSegNet’s,
Cascade CNN, the results were within expectations for almost all scenarios that
ours would not be significantly outperformed, as the compared models could
accommodate various features of each sequence in their big architectures. How-
ever, surprisingly, our method surpasses even these computationally expensive
to be at the top of the LFR scenarios. This suggests that, with a background for
facilitating motion segmentation from an input, our trained model can better
tackle scenarios where objects are constantly changing and moving than even
existing state-of-the-arts.

Our proposed framework adopts semi-unsupervised approach, where the back-
ground generation is purely simulated with statistical learning and foreground
segmentation is derived with few-shot learning on an architecture of an auto-
encoder. With static scenes,we incorporate probabilistic inference with a neural
network to emulate high adaptation of traditional machine learning techniques.
There are two advantages that we can benefit from this component. First, the
procedure of learning on observed scenes only enhances independence of
labelled data for background generation, which is required at the second mod-
ule. Second, simulating multi-valued mapping on a neural network overcomes
the limitation of traditional least-square approach in conventional CNNs as
describe by Bishop [17]. Fig. 4.3 illustrates the generated backgrounds of ex-
perimented scenes in CDnet-2014. Regarding foreground detection network,
we aim to design a light-weighted architecture by superseding traditional con-
volutional layers with depthwise-separable alternatives to release the burden
of memory consumption. Furthermore, because our outputs, foreground masks,
are in binary domain, instead of using transpose convolution, we utilized the
up-sampling techniques that perform up-scaling of intermediate feature maps
with bi-linear interpolation. Although this manner will degrade the accuracy as
we compare our results with those of FgSegNet’s variants, our model ensures
a sustainability in motion detection with a much smaller pipeline.

BDW LFR NVD THM SHD IOM CJT DBG BSL TBL

In
pu

t
BG

Figure 4.3: Visual illustration of background modelling using convolutional density
network on different contexts of CDnet-2014 dataset
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Table 4.2: F - measure comparisons over all of eleven categories in the CDnet 2014 dataset

Method BDW LFR NVD PTZ THM SHD IOM CJT DBG BSL TBL

Un
su
pe

rv
ise

d

GMM – S & G 0.7380 0.5373 0.4097 0.1522 0.6621 0.7156 0.5207 0.5969 0.6330 0.8245 0.4663
GMM – Zivkovic 0.7406 0.5065 0.3960 0.1046 0.6548 0.7232 0.5325 0.5670 0.6328 0.8382 0.4169
SuBSENSE 0.8619(2) 0.6445 0.5599(3) 0.3476(3) 0.8171(3) 0.8646(3) 0.6569 0.8152(2) 0.8177 0.9503(1) 0.7792(2)
PAWCS 0.8152 0.6588(3) 0.4152 0.4615(1) 0.9921(1) 0.8710(2) 0.7764(3) 0.8137(3) 0.8938(1) 0.9397(3) 0.6450
TensorMoG 0.9298(1) 0.6852(2) 0.5604(2) 0.2626 0.7993 0.9738(1) 0.9325(1) 0.9325(1) 0.6493 0.9488(2) 0.8380(1)
BMOG 0.7836 0.6102 0.4982 0.2350 0.6348 0.8396 0.5291 0.7493 0.7928 0.8301 0.6932
FTSG 0.8228 0.6259 0.5130 0.3241 0.7768 0.8535 0.7891(2) 0.7513 0.8792(2) 0.9330 0.7127
SWCD 0.8233(3) 0.7374(1) 0.5807(1) 0.4545(2) 0.8581(2) 0.8302 0.7092 0.7411 0.8645(3) 0.9214 0.7735(3)

∗ CDN-MEDAL-net 0.9045 0.9561 0.8450 - 0.9129 0.8683 0.8249 0.8427 0.9372 0.9615 0.9187

Su
pe

rv
ise

d

FgSegNet_S 0.9897(2) 0.8972(2) 0.9713(2) 0.9879(1) 0.9921(1) 0.9937(3) 0.9940(3) 0.9957(2) 0.9958(2) 0.9977(1) 0.9681
FgSegNet 0.9845(3) 0.8786(3) 0.9655(3) 0.9843(3) 0.9648(3) 0.9973(2) 0.9958(1) 0.9954(3) 0.9951(3) 0.9944(3) 0.9921(2)
FgSegNet_v2 0.9904(1) 0.9336(1) 0.9739(1) 0.9862(2) 0.9727(2) 0.9978(1) 0.9951(2) 0.9971(1) 0.9961(1) 0.9952(2) 0.9938(1)
Cascade CNN 0.9431 0.8370 0.8965 0.9168 0.8958 0.9414 0.8505 0.9758(3) 0.9658 0.9786 0.9108
DeepBS 0.8301 0.6002 0.5835 0.3133 0.7583 0.9092 0.6098 0.8990 0.8761 0.9580 0.8455
STAM 0.9703 0.6683 0.7102 0.8648 0.9328 0.9885 0.9483 0.8989 0.9155 0.9663 0.9907(3)

∗Semi-Unsupervised; Experimented scenarios include bad weather (BDW), low frame rate (LFR), night videos (NVD), pan-tilt-zoom (PTZ), turbulence
(TBL), baseline (BSL), dynamic background (DBG), camera jitter (CJT), intermittent object motion (IOM), shadow (SHD), and thermal (THM). In each
column, higher is better; '43 (1) is for the best, �A44= (2) is for the second best, and �;D4 (3) is for the third best.

From evaluation on F-measure scores, there is a significant difference in top-rating methods in both of approaches: supervised
learning and unsupervised estimation. Compared with methods in the supervised approach, the experiment has demonstrated
that unsupervised studies have no chance to dominate the data-driven, non-linear mapping of methods in the other counterpart.
Neural-network based solutions, including FgSegNet, FgSegNet_S, FgSegNet v2, and Cascade CNN, exploit the high-level patterns
of scene dynamics across various contexts to gain the generalization of regions that are in motion. However, they unexpectedly
sink into a dataset-specific overfitting of a given sequence, where an intensive model fine-tuning is required to incorporate new
contextual reformation. On the contrary, unsupervised-learning-based research concentrates on optimizing model’s estimation in
short-term analysis. Hence, when scenes change dramatically, like in CJT, DBG, and LFR, statistical models are distorted severely
with low adaptation to the actual contexts. Our method is proposed to harmonize the trade-off between two approaches to gain
both adaptation to circumstantial changes and generalization of motion patterns.
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Overall, these comparisons serve to illustrate the superiority of the proposed
approach in terms of accuracy over unsupervised approaches using only small
training datasets, while cementing its practical use in its ability to compete
with supervised ones despite its light-weighted structure. Table 4.4 presents
evaluation metrics of a confusion matrix.

Table 4.4: Result of quantitative evaluation on CDnet 2014 dataset

Method Average Average Average Average Average
Recall FPR FNR PWC Precision

Un
su
pe

rv
ise

d

GMM – S & G 0.6846 0.0250 0.3154 3.7667 0.6025
GMM – Zivkovic 0.6604 0.0275 0.3396 3.9953 0.5973
SuBSENSE 0.8124 0.0096 0.1876(1) 1.6780 0.7509
PAWCS 0.7718(3) 0.0051(1) 0.2282 1.1992(1) 0.7857(2)
TensorMoG 0.7772(2) 0.0107 0.2228(3) 2.3315 0.8215(1)
BMOG 0.7265 0.0187 0.2735 2.9757 0.6981
FTSG 0.7657 0.0078(3) 0.2343 1.3763(3) 0.7696(3)
SWCD 0.7839(1) 0.0070(2) 0.2161(2) 1.3414(2) 0.7527

∗ CDN-MEDAL-net 0.9232 0.0039 0.0768 0.5965 0.8724

Su
pe

rv
ise

d

FgSegNet_S 0.9896(1) 0.0003(2) 0.0104(1) 0.0461(2) 0.9751
FgSegNet 0.9836(3) 0.0002(1) 0.0164(3) 0.0559(3) 0.9758
FgSegNet_v2 0.9891(2) 0.0002(1) 0.0109(2) 0.0402(1) 0.9823(2)
Cascade CNN 0.9506 0.0032 0.0494 0.4052 0.8997
DeepBS 0.7545 0.0095 0.2455 1.9920 0.8332
STAM 0.9458 0.0005(3) 0.0542 0.2293 0.9851(1)

∗Semi-Unsupervised; For Recall and Precision, higher is better; For FPR,
FNR, and PWC, lower is better; '43 (1) is for the best, �A44= (2) is for the
second best, and �;D4 (3) is for the third best.

4.4 Experimental Benchmark on Wallflower
dataset without Parameter Fine-Tuning

In this section, using the Wallflower dataset, we aim to empirically determine
our proposed approach’s effectiveness on unseen sequences, using only trained
weights from scenarios of similar dynamics in CDnet-2014. Wallflower1 [87] is
a realistic, self-captured dataset with outdoor and indoor sequences of images.
Recalling from the previous section, we trained our model on CDnet-2014 with
200 labelled foreground samples for each input sequence. This accounts for
around 20% of the number of labelled grouth-truth data in each sequence. The
results apparently tend towards suggesting good degrees of our generalization
from trained scenarios over to those unseen. Experimental evaluations are
presented in Table 4.5, highlighting the F-measure quantitative results of our
approach compared against some state-of-the-art methods in supervised, and
unsupervised learning.

Specifically, on the Camouflage scenario, our approach presents a very high

1. https://www.microsoft.com/en-us/research/publication/wallflower-principles-and-
practice-of-background-maintenance/
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score of 0.97 in terms of F-measure using the copyMachine sequence of the
SHD scenario in CDnet-2014. As the model learns to distinguish between object
motions and the shadow effects of copyMachine, it even extends to recognizing
object motions of similar colors. Under Bootstrap where motions are present
throughout the sequence, we employ the straight-forward background sub-
traction function learned via the clear features of static-view-versus-motion of
highway in BSL, giving an F-score of 0.768. Likewise, the model’s capture of
scene dynamics with office of BSL, backdoor of SHD and fountain02 of DBG are
extended towards respective views of similar features: ForegroundAperture of
clear motions against background, TimeOfDay where there are gradual illumi-
nation changes and WavingTrees of dynamic background motions, providing
decently accurate results. On the other hand, the LightSwitch scenario presents
a big challenge where lightings are abruptly changed. As there is no scenario
with this effect on the CDnet-2014 dataset, we chose the SHD simply for its
ability to distinguish objects but the F-measure result is quite poor.

In comparison with existing methods whose aim are towards generalization
like some unsupervised approaches GMM – Stauffer & Grimson, SuBSENSE,
and CDnet-pretrained supervised approaches STAM, DeepBS, our proposed
method yields very good results on Camouflage andWavingTrees, with even rel-
atively better results on Bootstrap, ForegroundAperture and TimeOfDay. While
obviously this does not evidence that our approach is capable of completely bet-
ter generalization from training than others, it does suggest that the proposed
framework is able to generalize to scenarios with dynamics similar to those
learned, as supported by its relatively poor accuracy on LightSwitch.

Table 4.5: F - measure comparisons over the six sequences of Wallflower dataset with
model parameters tuned on CDnet-2014

Method Bootstrap LightSwitch WavingTrees Camouflage ForegroundAperture TimeOfDay

∓ U
nS

. GMM – Stauffer & Grimson 0.5306 0.2296 0.9767 0.8307 0.5778 0.7203
SuBSENSE 0.4192 0.3201 0.9597 0.9535 0.6635 0.7107

∗ CDN-MEDAL-net 0.7680 0.5400 0.8156 0.9700 0.8401 0.7429

∓ S
up

. DeepBS [33] 0.7479 0.6114 0.9546 0.9857 0.6583 0.5494
STAM 0.7414 0.9090 0.5325 0.7369 0.8292 0.3429

∗Semi-Unsupervised; ∓UnS. = Unsupervised and Sup. = Supervised; In each column, higher is better; Bold is for the best within
each scenario.





5
Event-Triggered Distributed
Training of Proposed Model
with Communication
Avoidance

Communication in distributed framework of deep model training imposes a
major overhead which refrains the pipeline of parallel learning with a severe
bottleneck among processing elements. In this section, we examine the effect
of communication reduction in our proposed model of background subtraction
when training with a distributed framework. Recent popularly-used applica-
tion programming interfaces provide a set of synchronous message-passing
operations in point-to-point level and collective communication, with which
processing elements can exchange data with an esurance of message trans-
mission. However, this technique ceases the computation flow at both ends of
sending and receiving workers. Exploiting asynchronous communicating chan-
nels release the burden of process suspending because of data communication
in processing groups. Hence, we present an implementation of data parallelism
on CDnet-2014 dataset, where the communication overhead is reduced with
presence of asynchronous behaviors and shared memory segments. This analy-
sis aims to investigate the communication costs in visual learning models with
a large-scale dataset using user-defined mechanisms.
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with communication avoidance

5.1 An Introduction to Event-Triggered
Communication

5.1.1 Existing Problems in Recently Proposed Frameworks

The presence of artificial neural networks initiated a revolution in learning-
based approach thoroughmany aspects of data analysis and reasoning in a wide
range of scientific communities. With gorgeous success in data-driven approxi-
mation, deep learning models superseded conventional techniques in machine
learning thorough automating the parameter adjustment on a large scale of
dataset. An attractive point of this methodology is that these multi-layered
architectures are capable of approximating any functions with non-linear trans-
formation with a space of interest [75]. Nevertheless, the research attention
shifts towards these approach only when the models can perform computa-
tional tasks with an affordable amount of time. Accordingly, as the numerical
perspective spans out of aspects of our life, we have to cope with scalability
of greater model designs as well as larger training datasets. Optimizing the
training steps becomes an existing challenge to research communication in
both theoretical analysis and applicable implementation.

To accommodate the rapid scalability of learning models, we have to tailor the
implementing designs of frameworks to leverage the computational capability
and the memory space of large systems for machine learning models. This is
referred as parallel computing or distributed implementation. The key idea
of this manner is to scatter models or training datasets across processing
elements. Using this pipeline, the biggest challenge of distributed training on
large systems is the communication overhead between computing nodes [88].
Specifically, to ensure the accuracy and the convergence of the model, the
weights and the bias of models’ layers are exchanged and synchronized over
the network at the end of each iteration. This compulsory requirement raises
a bottleneck of the computational model as the size of the parallel processes
increases [56,89].

Recent years have witnessed a lot of research that optimize the communication
tasks in distributed learning [59–62]. In this section, we adopt a model of
triggered communication using event-based rule, called EventGraD [90]. The
principal idea of this approach is to regulate the message exchange among
processing workers with a fixed threshold of normalized values of parameters’
values. With this framework, we re-implement our method of background
subtraction with a distributed training scheme using asynchronous message-
passing operators and global shared memory across processes. We aim to
analyze the effect of communication avoidance as the number of exchanged
messages among workers increase with respect to the control threshold during
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the procedure of training. The perspective of implementation and experimental
results are presented and discussed in the next section.

5.1.2 A Framework of Event-Triggered Communication in
Parallel Distributed Model Learning

In conventional model of decentralized, distributed training, in each iterations,
the local parameters at each workers have to be transmitted to and synchro-
nized with nearest neighbors. This pipeline may cause a prodigality in allocated
resources when the message is not necessarily communicated among process-
ing units. Hence, we need to release the strictness of this communicating
regulations. Accordingly, Ghosh et al. [90] proposed a method to trigger data
exchanges among workers in the needed scenarios. In this section, we briefly
recap the main skeleton of the techniques.

Similar to common data-parallelism approaches, in the EventGraD’s model,
each worker holds a replicated version of the learning model to perform pa-
rameters’ updates with mini-batches of data. However, the key different of
this method is that each worker have to perceive the changes in their local
models. Specifically, when the normalized values of a parameter amplifies up
to a threshold as compared with a old values in previous iterations, the node
needs to communicate the new value to neighbors. Otherwise, the local model
update is still performed as usual. At the end of each iteration, in stead of
updating the model’s parameter with local variables, we have to average the
local values with those from corresponding neighboring workers. Supposing
that at time-step :, the set of previously communicated values with respect to
= layers of the learning model is:

-̂: :=
[
Ĝ:,1 · · · Ĝ:,=

]
∈ R#×= (5.1)

where each element, Ĝ:,8 , is a vector of the norm of # parameters:

Ĝ:,8 =
[
Ĝ:,8,1 . . . Ĝ:,8,#

]> ∈ R# . (5.2)

The event-triggeredmechanism of the EventGraDmethod is expressed as:

Ĝ:+1,8,� =

{
G:+1,8,� if

Ĝ:,8,� − G:+1,8,� ≥ X:,8,�
Ĝ:,8,� if

Ĝ:,8,� − G:+1,8,� < X:,8,�
(5.3)
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where G:+1,8 indicates the vector of norm of the same parameters in model layer
� Cℎ at time-step : + 1, which is achieved from the local back-propagation; Ĝ:,8
denotes a vector of the previously communicated norm of the same parameters
at time-step :; X:,8,� is a controlling threshold for worker 8Cℎ at iteration :

Accordingly, the update of model parameters is indicated as:

-:+1 = -̂:, − Wm�
(
-̂: ; b:

)
(5.4)

Obviously, the selection of threshold estimation is important in this situation
because they will control the number of message exchanges among processing
elements. The authors chose the slope of local normalized values of parameters
as a threshold for communication control. To be more detailed, the estimation
of the slope is derived from the current value and the last communicated value
in the same worker:

X:,8,� =

Ĝ:,8,� − G:+1,8,�
: − :̂︸              ︷︷              ︸
Slope

×ℎ, (5.5)

where :̂ is the time-step of the last data exchange.

In this framework, the authors analyzed the convergence rate of the learn-
ing model as well as the adaptation of the proposed threshold [90]. In our
work, we utilize this model with a fixed value of threshold but we keep the
semantic interpretation of the orginal work. Our goal is to examine the effect
of communication-avoidance in a background subtraction model with different
batch sizes, the number of processes and the various threshold values.

5.2 An Extensive Analysis in Distributed Training
of Motion Difference Approximation

5.2.1 A Framework of EventGraD with GPU-accelerated
Computation

The vanilla model of EventGraD [90] was proposed to formulate a control of
data communication in distributed training. The work concentrated on the
utilization of CPU-based computational capability to deal with small scale
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of visual datasets. Two datasets that the authors used to experimented the
method are MNIST [91], a data of 70, 000 images of hand-written digits in a
resolution of 28 × 28, and CIFAR-10 [92], a dataset of 60, 000 32 × 32 colour
images in 10 classes for image classification. In our work, because the scope of
video sequences is much greater than those of MNIST and CIFAR-10, we need
to accelerate the training procedure with the computational power of GPUs.
The illustration of this scheme is given in Fig. 5.2.

The difference between our architecture and the original model is that we
allocate the learning model on GPUs. In each training step, the data is buffered
from the local storage to the universal memory. Afterwards, the sampling data
is copied to memory spaces on GPU. The estimation of gradient values is then
performed directly on GPU. When communication events is triggered, the data
is replicated on the central memory to exchange with other workers in the
processing cluster. Finally, the last communicated parameters from neighbors
are loaded from memory to graphical units to average all values before update
new values for model variables. In this context, supposing that the model is
initialized on memory spaces of graphical processing units, the communication
cost covers some additional aspects:

• Fetch data from local storage to the primary memory spaces

• Form tensor-driven learning samples from system memory to processing
units (e.g., GPUs, TPUs)

• Make a copy of model parameters from dedicated memory to main
memory to facilitate the training synchronization among workers

• Communicate the model parameters between each of workers and their
neighbors based on event-triggered regulation

• Allocate neighbors’ model parameters on dedicated processing units to
average the update of weights and bias of model’s layers

In this analysis, we present a new perspective to implement this approach
using asynchronous communicating operators with multi-GPU acceleration.
After structuring the framework, we examine the affect of threshold-based
control of communication within a group of processes with a varying range of
training batch sizes.



58
chapter 5 event-triggered distributed training of proposed model

with communication avoidance

5.2.2 The Discussion of Implementing Perspective

Regarding the implementation of experimental framework, we utilize UPC++
[93] and PyTorch [94,95] with C++ API to simulate the training of our pro-
posed background subtractionmodelwithCUDA-compatible acceleration.

UPC++ is application programming interface which provides a support of Global
Share Memory or Partitioned Global Address Space (PGAS) on C++ program-
ming language. The library is structured with a goal to create a platform
to develop more efficient, scalable, parallel programs on distributed-memory
systems. One of the most component in UPC++ is the PGAS model, which is
single program, multiple-data (SPMD). With this memory model, a shared
memory, which is a global address spaces on system memory, is accessible to all
of processing workers. In addition to this, each process has a private memory
that is isolated with respect to other processes. Fig. 5.1 provides an illustration
of PGAS memory model in UPC++.

To handle these kind of memory, UPC++ equips a variety of convenient methods
for accessing and utilizing this global memory, as well as transmitting data
from private space to global segments. A set of communication operations are
also implemented, including remote memory access (RMA), remote procedure
call (RPC), and collective communication (CC). All of these functions follow
asynchronous mechanisms. Specifically, RMA engages one-side communication
to facilitate memory access to remote, sharedmemory spaces, in which network
interfaces are exploited to operate a data delivery with low latency. RMA
operations use network hardware offload support to deliver low latency and
high bandwidth. RPC enables user-defined functions to be executed at remote
process. Significantly,UPC++ provides distributed objects as a mean to distribute
objects with a same type across any subset of processes. Accordingly, RPC-based
features translating distributed object arguments between global identifiers
and the local representation in each process automatically and efficiently. In
this context, explicit communication is required to obtain a global pointer from
a distant instance of a distributed object.

Figure 5.1: The model of Partitioned Global Address Space (PGAS) in UPC++.
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Figure 5.2: The illustration of the experimental data-parallelism scheme with UPC++ and PyTorch C++ API.

Using UPC++, we present the model’s parameters in two kind of instances: tensors in PyTorch on GPUs and distributed arrays in
UPC++ in main memory. When the communication is triggered by a threshold with respect to normalized values of our network’s
layers, the network’s weight and bias is migrated from dedicated devices to local memory. Then, synchronous communications
are performed with remote put operators (i.e., upcxx::rput()) to provide neighboring processes with a copies of local models.
Similarly, a process retrieves the remote model from other neighbors using global pointers. In this design, we obviously separate
communication and computation in two different kinds of processing units. In our implementation, we also extend the framework
with multi-GPU processing for computation.
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5.2.3 The Experimental Analysis of Communication
Efficiency

In this section, we present our experimental results of the proposed analysis
with the proposed framework of foreground detection. We investigate the com-
munication avoidance via measuring the number of exchanged messages when
training the model with different batch sizes and distributing the task on vari-
ous number of processing elements. Specifically, we perform the investigation
on a system with two NVIDIA RTX 6000. We execute the model with a range
of batch sizes of 4, 8, 12, 16 through 50 training epochs. For each batch size of
learning, we utilize an appropriate number of processes so that we can maxi-
mize the distributed scalability but still keep the analysis fitting the proposed
systems. Fig. 5.3 illustrates a summary of our experimental results

Table 5.1 presents the number of communicated events that was counted on a
group of distributed training workers with a batch size of 4. With the available
resources, we experiment the framework with different number of UPC++
processes: 2, 4, 8, 12, 16. In overall, as the threshold rises gradually, the amount
of exchanged messages reduces correspondingly regardless of the number of
processes. As the training processes goes on further, the learning model tends
to converge to fit the learning samples. At the moment, the difference of
layers’s weights and bias is diminished. Accordingly, workers do not perform
unnecessary communicate to synchronize the learned parameters. Hence, at the
end of the training, the number of messages approach to a convergence.

Table 5.1: The number of exchanged messages with respect to a range of threshold
where the MEDALnet was trained wich a batch size of 4

Threshold #?A>2 = 2 #?A>2 = 4 #?A>2 = 8 #?A>2 = 12 #?A>2 = 16

0.0001 57,478 114,518 226,258 22,842 40,280
0.0002 52,148 98,238 201,222 24,230 34,680
0.0004 41,688 85,076 153,052 15,756 30,078
0.0006 30,574 70,702 7,828 14,424 27,548
0.0008 28,726 53,976 22,496 12,842 23,880
0.001 21,210 48,162 12,960 16,156 23,508
0.002 9,096 33,444 9,308 11,368 18,750
0.004 5,688 9,564 9,992 11,188 16,248
0.006 3,142 5,752 9,288 11,150 15,536
0.008 2,782 3,906 8,626 13,182 15,012
0.01 2,748 3,782 11,014 11,136 14,940
0.02 2,110 3,724 8,388 11,528 14,848
0.04 1,996 3,712 7,424 11,136 15,042
0.06 1,860 3,712 7,504 11,136 14,848
0.08 1,856 3,712 7,580 11,136 14,848



5.2
an

extensive
analysis

in
distributed

training
of

m
otion

difference
approxim

ation
61

Figure 5.3: The illustration of the experimental results where we measure the number of transmitted messages with respect to various ranges
of processes on different batch sizes through 50 epochs. We vary the number of batch size: 4, 8, 12, 16 with an appropriate number
of processes that fits the experimented hardware configuration.
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With a fixed threshold, when we increase the number of workers in the learning
cluster, the communication cost experimented a significant growth. With a
larger group of processing elements, the number of communicated messages
linearly surges at the beginning of the training with respect to the size of the
crew. This communication cost accumulates as the training goes by. Hence,
we observe that the volume of data exchanges escalates when we enlarge the
scale of distributed learning. The sample phenomena can be seen with batch
size 8 in Table 5.2.

Table 5.2: The number of exchanged messages with respect to a range of threshold
where the MEDALnet was trained wich a batch size of 8

Threshold #?A>2 = 2 #?A>2 = 4 #?A>2 = 8 #?A>2 = 12 #?A>2 = 16

0.0001 29,224 57,148 113,096 20,582 39,696
0.0002 26,886 53,482 79,842 91,382 32,478
0.0004 22,008 44,726 7,774 15,400 28,630
0.0006 18,320 34,330 66,444 13,594 24,328
0.0008 15,796 30,650 65,284 57,006 24,356
0.001 13,648 28,910 17,626 12,514 20,784
0.002 8,304 18,822 9,278 11,696 18,458
0.004 4,208 4,836 9,662 11,244 15,368
0.006 2,380 3,902 8,682 11,152 15,088
0.008 2,702 3,762 7,424 11,140 14,906
0.01 2,152 3,820 8,000 11,142 14,908
0.02 2,046 3,716 8,266 11,136 14,848
0.04 1,990 3,766 7,424 11,136 14,848
0.06 1,860 3,712 7,424 11,136 14,848
0.08 1,856 3,712 7,520 11,382 14,848

From the experiment, we observe that the task of controlling communication
threshold is a dilemma. With a large batch size, we can reduce the amount of
communication cost significantly. However, in this situation, workers lacks of
the awareness of learning at their neighbors. Accordingly, irregular synchroniza-
tion among processing elements may lead to a degrading in model’s inference.
Our examination shows that with a batch size of 8, using 8 distributed learn-
ing processes, we witnessed a drop in evaluating accuracy from 95.1122%
to 82.3151% when we increase the communication threshold from 0.0001 to
0.08. On the contrary, with a small threshold, we can make the synchroniza-
tion of parameters more frequent, hence, ensuring the convergence and the
generalization of the learning model. However, in this case, we have suffer a
great amount of communication cost caused by unnecessary data exchanges
among workers.
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Discussion and Concluding
Remarks

6.1 Discussion

In this work, since the literature has showed DNN’s capacity to estimate any
functions within highly parallelizable structures, the DNN-based method is ob-
jectively evaluated as a promising technique. We made use of this parallelizable
computation on GMM to approximate the behind optimization of statistical
learning in a way that enhances the creation of probabilistic model of our
data with recent parallel computing technologies. As a result, it is possible
to effectively exploit GMM-based background models’ characteristics, which
are clear and consistent with their mathematical framework via DNNs’ similar
data-driven performance. With experimental analysis, we demonstrated that
the proposed method is robust to solve the issues of DNNs while utilizing their
benefits by incorporating the mathematics of modeling statistical GMM into
our processes. Specifically, we introduced a novel, lightweight, dual framework
of two convolutional neural networks for the task of generically modeling back-
grounds and segmenting motion regions. In this section, we aims to run over
our results in this research, which include

First, we exploited the robustness of parallel computing to present a concept
that leverages conventional GMM model with a feed-forward, highly paral-
lelizable CNN to formulate a conditional probability density function. In this
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design, the proposed network formulated statistical models of multi-modular
distributions by approximating a Gaussian-Mixture statistical mapping function
using pixel-wise vectors of intensity values that vary over time. Accordingly,
a combination of weighted Gaussian components is presented, and each com-
ponent captures and highlights a distinct contextual dynamics of pixel-wise
values. Using Gaussian Mixtures at the pixel level, we aim to estimate the
most frequently presented intensity of each pixel to model the background
scenes. We adopt this network as a pre-processing module for our architecture
of foreground detection.

Second, to make our network learnable, we mimic the underlying generator
of the data of statistical learning. We design a loss function which follows
unsupervised learning approach. This function is used to regulate the proposed
density network in approximating the mathematical concepts behind GMM-
driven modeling of the data using expectation maximization. In our network,
all of the outputs aim to present of mixes of Gaussian components which
represent the observed data, and the most probable background description of
real data. The proposed background modeling architecture not only achieves
higher degrees of interpretability when compared to the prior concept of
estimating an implicit hidden function, but it also gains greater capability of
adaptation when placed in a complex dynamic environment with statistical
learning.

Thirdly, we develop a convolutional autoencoder for context-driven foreground
extraction in the latter pipeline of the proposed framework,which replicates the
context-driven mapping of differences between input frames and associated
background scenes. This approach is strongly encouraged because real-life
scenarios involve different degrees of contextual variations. We inherit the
consistence that was formed by GMM-controlled background models to ensure
a semantine understanding of the scene. Utilizing the information from features
that are found in images from the first module of background modeling, we
are able to formulate foreground extraction from raw inputs with a extremely
lightweighted structure while ensuring a high accuracy. Experimental analysis
showed that although our proposed approach is dominated by supervised
learning methods, we present the sufficient degree of generalization of our
modelwith unseen scenarios without performingmodel fine-tuning. In addition
to a high accuracy, our method demonstrated with a high speed execution
via exploiting the parallelism of advanced computing approaches on GPU-
accelerated platform.

Finally, we reviewed the latest distributedmachine learning techniques for data-
driven models with the aim of reducing communication. Then, we perform
a straightforward analysis of an event-triggered communication scheme to
parallelize our proposed model of background subtraction. In this investigation,
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we focus on the affect of communication avoidance when we vary the threshold
of parameters’ difference. Regarding the implementation, we extend the vanilla
model with GPU-accelerated computation via segregating the computation and
the communication task on different processing units to deal with CDnet, a
large scale video dataset. The framework was implemented with asynchronous
communication operators in UPC++. We experimented to train our model on
various number of processes with different batch sizes. Observing the significant
reduction in the number of exchanged message, we perceive that the scheme
enhances the parallelism in our model training, so the procedure of training
becomes faster with multiple scene-specific learning. Further, adjusting the
threshold of parameters’ difference, we are able to control the number of
exchanged messages between processing elements.

6.2 Concluding Remarks

Our research has proposed a novel, two-stage framework with a GMM-based
CNN for background modeling, and a convolutional auto-encoder MEDAL-net
to simulate input-background subtraction for foreground detection, thus being
considered as a search space limitation approach to compress a model of DNNs,
while keeping its high accuracy. Our first and second contributions in this re-
search include a pixel-wise, light-weighted, feed-forward CNN representing a
multi-modular conditional probability density function of the temporal history
of data, and a corresponding loss function for the CNN to learn from virtu-
ally inexhaustible datasets for approximating the mixture of Gaussian density
function. In such a way, the proposed CDN-GM not only gains better capability
of adaptation in contextual dynamics with humanly interpretable statistical
learning for extension, but it is also designed in the tensor form to exploit
technologically parallelizing modern hardware. Secondly, we showed that in-
corporating such statistical features into MEDAL-net’s motion-region extraction
phase promises more efficient use of powerful hardware, with prominent speed
performance and high accuracy, along a decent generalization ability using a
small-scale set of training labels, in a deep non-linear scheme of only a few
thousands of latent parameters.

An investigation of communication-avoidance is carried out on our proposed
model to examine the effectiveness of an event-triggered framework in control-
ling the number of exchanged message within a group of distributed processes.
The experimental analysis showed that using an appropriate threshold of
parameters’ difference, we can control the cost of communication without de-
grading the accuracy of learning models. In this context, estimating an adaptive
threshold to automate the control of communication cost within distributed
training of deep learning models is a potential research in a near future.
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