281 research outputs found

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Synthetic Data for Face Recognition: Current State and Future Prospects

    Full text link
    Over the past years, deep learning capabilities and the availability of large-scale training datasets advanced rapidly, leading to breakthroughs in face recognition accuracy. However, these technologies are foreseen to face a major challenge in the next years due to the legal and ethical concerns about using authentic biometric data in AI model training and evaluation along with increasingly utilizing data-hungry state-of-the-art deep learning models. With the recent advances in deep generative models and their success in generating realistic and high-resolution synthetic image data, privacy-friendly synthetic data has been recently proposed as an alternative to privacy-sensitive authentic data to overcome the challenges of using authentic data in face recognition development. This work aims at providing a clear and structured picture of the use-cases taxonomy of synthetic face data in face recognition along with the recent emerging advances of face recognition models developed on the bases of synthetic data. We also discuss the challenges facing the use of synthetic data in face recognition development and several future prospects of synthetic data in the domain of face recognition.Comment: Accepted at Image and Vision Computing 2023 (IVC 2023

    Image Forensics in the Wild

    Get PDF

    Survey of image-based representations and compression techniques

    Get PDF
    In this paper, we survey the techniques for image-based rendering (IBR) and for compressing image-based representations. Unlike traditional three-dimensional (3-D) computer graphics, in which 3-D geometry of the scene is known, IBR techniques render novel views directly from input images. IBR techniques can be classified into three categories according to how much geometric information is used: rendering without geometry, rendering with implicit geometry (i.e., correspondence), and rendering with explicit geometry (either with approximate or accurate geometry). We discuss the characteristics of these categories and their representative techniques. IBR techniques demonstrate a surprising diverse range in their extent of use of images and geometry in representing 3-D scenes. We explore the issues in trading off the use of images and geometry by revisiting plenoptic-sampling analysis and the notions of view dependency and geometric proxies. Finally, we highlight compression techniques specifically designed for image-based representations. Such compression techniques are important in making IBR techniques practical.published_or_final_versio

    Advanced European Re-Entry System Based on Inflatable Heat Shields: Detailed Design (EFESTO project)

    Get PDF
    The European Union H2020 EFESTO project is coordinated by DEIMOS Space with the end goals of improving the European TRL of Inflatable Heat Shields for re-entry vehicles (from 3 to 4/5) and paving the way towards further improvements (TRL 6 with a future In-Orbit Demonstrator, IOD). This paper presents the project objectives and the initial results of the detailed design of atmospheric entry missions based on the applications of advanced thermal protection systems implementing inflatable heat shields (flexible TPS and inflatable structures), according to aerothermodynamics constraints for future in-orbit demonstration. Placing the future IOD mission in the context of ongoing and future efforts in the European context is also one of the project goals. Two key applications, Mars Robotic Exploration and Reusable Small Launchers Upper Stages, have been identified. For the Mars Application, the robotic exploration mission class resulted in a 10 m diameter Hypersonic Inflatable Aerodynamic Decelerator (HIAD) class, combined with Supersonic Retro-Propulsion (SRP, activated about Mach 2.3) to deliver about 2800 kg of payload at MOLA +2 km. For the Earth Application, the VEGA upper stage (AVUM) has been selected as baseline case study. The current mission foresees a deorbiting from SSO orbit, a controlled entry phase (BC of about 30 kg/m2) and combines the use of a HIAD (4.5m diameter class) with parachutes and parafoil for Mid-Air-Capturing (MAR) with a helicopter. Beyond feasibility of the entry mission phase and system design with an inflated IAD, integration aspects have a key impact in the specific design solutions adopted, due to the nature of an inflatable heatshield. For both considered application cases feasible architectures are developed responding to the challenge of integrating the HIAD into the system in compliance with geometric and functional requirements. While the HIAD in folded state prior to inflation must fit in the available volume, it has limitations with respect to the density imposing a minimum cross section of the stowage volume. Simultaneously requirements with respect to the centre of gravity position during re-entry with an inflated HIAD must be respected for stability and controllability reasons. Other architectural considerations such as payload integration for the application on a launcher upper stage must be considered. Finally, heat loads constraints are considered for the trajectory and TPS deign choices due to important fluid-structure interactions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 821801

    Publishing Time Dependent Oceanographic Visualizations using VRML

    Get PDF
    Oceanographic simulations generate time dependent data; thus, visualizations of this data should include and realize the variable `time'. Moreover, the oceanographers are located across the world and they wish to conveniently communicate and exchange these temporal realizations. This publication of material may be achieved using different methods and languages. VRML provides one convenient publication medium that allows the visualizations to be easily viewed and exchanged between users. Using VRML as the implementation language, we describe five categories of operation. The strategies are determined by the level of calculation that is achieved at the generation stage compared to the playing of the animation. We name the methods: 2D movie, 3D spatial, 3D flipbook, key frame deformation and visualization program

    On the Robustness of Face Recognition Algorithms Against Attacks and Bias

    Full text link
    Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications. Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged. This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged, which can severely affect its intended working. Different types of attacks such as physical presentation attacks, disguise/makeup, digital adversarial attacks, and morphing/tampering using GANs have been discussed. We also present a discussion on the effect of bias on face recognition models and showcase that factors such as age and gender variations affect the performance of modern algorithms. The paper also presents the potential reasons for these challenges and some of the future research directions for increasing the robustness of face recognition models.Comment: Accepted in Senior Member Track, AAAI202

    Virtual human modelling and animation for real-time sign language visualisation

    Get PDF
    >Magister Scientiae - MScThis thesis investigates the modelling and animation of virtual humans for real-time sign language visualisation. Sign languages are fully developed natural languages used by Deaf communities all over the world. These languages are communicated in a visual-gestural modality by the use of manual and non-manual gestures and are completely di erent from spoken languages. Manual gestures include the use of hand shapes, hand movements, hand locations and orientations of the palm in space. Non-manual gestures include the use of facial expressions, eye-gazes, head and upper body movements. Both manual and nonmanual gestures must be performed for sign languages to be correctly understood and interpreted. To e ectively visualise sign languages, a virtual human system must have models of adequate quality and be able to perform both manual and non-manual gesture animations in real-time. Our goal was to develop a methodology and establish an open framework by using various standards and open technologies to model and animate virtual humans of adequate quality to e ectively visualise sign languages. This open framework is to be used in a Machine Translation system that translates from a verbal language such as English to any sign language. Standards and technologies we employed include H-Anim, MakeHuman, Blender, Python and SignWriting. We found it necessary to adapt and extend H-Anim to e ectively visualise sign languages. The adaptations and extensions we made to H-Anim include imposing joint rotational limits, developing exible hands and the addition of facial bones based on the MPEG-4 Facial De nition Parameters facial feature points for facial animation. By using these standards and technologies, we found that we could circumvent a few di cult problems, such as: modelling high quality virtual humans; adapting and extending H-Anim; creating a sign language animation action vocabulary; blending between animations in an action vocabulary; sharing animation action data between our virtual humans; and e ectively visualising South African Sign Language.South Afric
    • …
    corecore