7,431 research outputs found

    Exploiting Context in Dealing with Programming Errors and Exceptions in the IDE

    Get PDF
    Studies show that software developers spend about 19% of their development time in web surfing. While collecting necessary information using traditional web search, they face several practical challenges. First, it does not consider context (i.e., surroundings, circumstances) of the programming problems during search unless the developers do so in search query formulation, and forces the developers to frequently switch between their working environment (e.g., IDE) and the web browser. Second, technical details (e.g., stack trace) of an encountered exception often contain a lot of information, and they cannot be directly used as a search query given that the traditional search engines do not support long queries. Third, traditional search generally returns hundreds of search results, and the developers need to manually analyze the result pages one by one in order to extract a working solution. Both manual analysis of a page for content relevant to the encountered exception (and its context) and working an appropriate solution out are non-trivial tasks. Traditional code search engines share the same set of limitations of the web search ones, and they also do not help much in collecting the code examples that can be used for handling the encountered exceptions. In this thesis, we present a context-aware and IDE-based approach that helps one overcome those four challenges above. In our first study, we propose and evaluate a context-aware meta search engine for programming errors and exceptions. The meta search collects results for any encountered exception in the IDE from three popular search engines- Google, Bing and Yahoo and one programming Q & A site- StackOverflow, refines and ranks the results against the detailed context of the encountered exception, and then recommends them within the IDE. From this study, we not only explore the potential of the context-aware and meta search based approach but also realize the significance of appropriate search queries in searching for programming solutions. In the second study, we propose and evaluate an automated query recommendation approach that exploits the technical details of an encountered exception, and recommends a ranked list of search queries. We found the recommended queries quite promising and comparable to the queries suggested by experts. We also note that the support for the developers can be further complemented by post-search content analysis. In the third study, we propose and evaluate an IDE-based context-aware content recommendation approach that identifies and recommends sections of a web page that are relevant to the encountered exception in the IDE. The idea is to reduce the cognitive effort of the developers in searching for content of interest (i.e., relevance) in the page, and we found the approach quite effective through extensive experiments and a limited user study. In our fourth study, we propose and evaluate a context-aware code search engine that collects code examples from a number of code repositories of GitHub, and the examples contain high quality handlers for the exception of interest. We validate the performance of each of our proposed approaches against existing relevant literature and also through several mini user studies. Finally, in order to further validate the applicability of our approaches, we integrate them into an Eclipse plug in prototype--ExcClipse. We then conduct a task-oriented user study with six participants, and report the findings which are significantly promising

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    A Logic-Independent IDE

    Full text link
    The author's MMT system provides a framework for defining and implementing logical systems. By combining MMT with the jEdit text editor, we obtain a logic-independent IDE. The IDE functionality includes advanced features such as context-sensitive auto-completion, search, and change management.Comment: In Proceedings UITP 2014, arXiv:1410.785

    Developing front-end Web 2.0 technologies to access services, content and things in the future Internet

    Get PDF
    The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative
    • …
    corecore