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Abstract

Studies show that software developers spend about 19% of their development time in web sur�ng. While

collecting necessary information using traditional web search, they face several practical challenges. First,

it does not consider context (i.e., surroundings, circumstances) of the programming problems during search

unless the developers do so in search query formulation, and forces the developers to frequently switch between

their working environment (e.g., IDE) and the web browser. Second, technical details (e.g., stack trace) of an

encountered exception often contain a lot of information, and they cannot be directly used as a search query

given that the traditional search engines do not support long queries. Third, traditional search generally

returns hundreds of search results, and the developers need to manually analyze the result pages one by one

in order to extract a working solution. Both manual analysis of a page for content relevant to the encountered

exception (and its context) and working an appropriate solution out are non-trivial tasks. Traditional code

search engines share the same set of limitations of the web search ones, and they also do not help much in

collecting the code examples that can be used for handling the encountered exceptions.

In this thesis, we present a context-aware and IDE-based approach that helps one overcome those four

challenges above. In our �rst study, we propose and evaluate a context-aware meta search engine for pro-

gramming errors and exceptions. The meta search collects results for any encountered exception in the IDE

from three popular search engines�Google, Bing and Yahoo and one programming Q & A site�StackOver�ow,

re�nes and ranks the results against the detailed context of the encountered exception, and then recommends

them within the IDE. From this study, we not only explore the potential of the context-aware and meta search

based approach but also realize the signi�cance of appropriate search queries in searching for programming

solutions. In the second study, we propose and evaluate an automated query recommendation approach that

exploits the technical details of an encountered exception, and recommends a ranked list of search queries.

We found the recommended queries quite promising and comparable to the queries suggested by experts. We

also note that the support for the developers can be further complemented by post-search content analysis. In

the third study, we propose and evaluate an IDE-based context-aware content recommendation approach that

identi�es and recommends sections of a web page that are relevant to the encountered exception in the IDE.

The idea is to reduce the cognitive e�ort of the developers in searching for content of interest (i.e., relevance)

in the page, and we found the approach quite e�ective through extensive experiments and a limited user

study. In our fourth study, we propose and evaluate a context-aware code search engine that collects code

examples from a number of code repositories of GitHub, and the examples contain high quality handlers for

the exception of interest. We validate the performance of each of our proposed approaches against existing

relevant literature and also through several mini user studies. Finally, in order to further validate the appli-

cability of our approaches, we integrate them into an Eclipse plug in prototype�ExcClipse. We then conduct

a task-oriented user study with six participants, and report the �ndings which are signi�cantly promising.
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Chapter 1

Introduction

1.1 Motivation

Studies show that up to 85%�90% of global cost of a software system is spent in its maintenance [70,

78]. During the development and the maintenance of a software system, software developers face di�erent

programming challenges, and one of the major challenges is� dealing with programming errors and exceptions.

Existing IDEs (e.g., Eclipse, Visual Studio, NetBeans) are equipped with various debugging supports for the

encountered errors and exceptions, and a developer may get useful clues about the solution from the stack

trace1 of an exception reported by an IDE. However, neither the tracing information nor the context code2

in the IDE often help enough in resolving the exceptions, especially when the developer lacks necessary skills

(i.e., novice developer) or the encountered programming errors or exceptions are relatively unfamiliar (i.e.,

new API exceptions). Thus the developers often look into web and search for more helpful and up-to-date

information. According to the study of Brandt et al. [35], developers spend about 19% of their development

(i.e., programming) time in web sur�ng.

While collecting information using traditional web search, developers face several practical challenges.

First, the traditional search does not consider context (i.e., surroundings, circumstances) of the programming

problems during search unless the developers prepare queries good enough by analyzing their context, which

is a non-trivial task. It also forces the developers to leave their working environment (e.g., IDE) and look

for the search results in the web browser. The keyword-based traditional search often does not help much in

problem solving, and the frequent switching between the IDE and the web browser is both distracting and

time-consuming. Second, the stack trace of an encountered exception reported by the IDE generally contains

a lot of information, and it cannot be directly used as a search query given that the traditional search

engines such as Google, Bing or Yahoo do not support long queries. On the other hand, the technical error

message (i.e., generally found in the �rst line of the stack trace) often contains a very limited information

(e.g., an exception name only) which is not su�cient enough for a search query. Thus the developers often

face di�culties in choosing a suitable search query for the encountered error or exception. Third, traditional

search generally returns hundreds of result pages, and developers manually analyze them one by one in order

1A report of the active stack frames at a certain point in time during the execution of a program
2A segment of the code that triggers the exception

1



to extract a working solution. Both manual checking of a page for content relevant to the exception (and its

context), and working an appropriate solution out are non-trivial tasks. They are even more complex and

time-consuming with the bulk of irrelevant and noisy (e.g., advertisements) sections in the pages. Most of the

modern programming languages (e.g., object-oriented, functional) provide exception handling features that

enable one to deal with the programming errors and exceptions. However, studies show that the developers

either misuse those features [77] or use them ine�ectively [38] during software development. They even

consider e�ective exception handling as either a daunting or a counter-productive task. One way to support

them in this regard is to recommend code examples containing quality handlers for the exception of interest.

Existing code search engines such as Ohloh [18], Krugle [16] or GitHub Code Search [7] su�er from the same

set of limitations of the web search ones. They also do not consider the context of the programming exception

to be handled in the IDE, and thus do not help much in �nding relevant code examples that can be used for

exception handling.

1.1.1 Problem Statement

A number of existing studies are conducted to address the above challenges with traditional web search

[43, 50, 51, 68, 69, 70, 79] and code search [32, 33, 55, 80]. Unfortunately, none of them except a few [33, 43]

are targeted for dealing with programming errors and exceptions. There exist other studies focusing on

programming errors and exceptions, that recommend simpli�ed error messages [62], relevant bug reports [52],

and exception solving tips [54]. However, they do not involve ones in the web search or in the code example

search. An error or an exception in the IDE is generally associated with the technical details comprising of an

error message and a stack trace, and the exception is triggered from a certain programming context. A web

search or a code search that retrieves an e�ective solution or a quality handler for the exception should take

the technical details and the programming context into account. Most of those existing approaches are not

IDE-based, and thus they ignore the technical details and the context code in the IDE and rely entirely on

the user provided search queries. Thus if the queries are not prepared carefully or fail to capture the context

of the problems, they may not return useful results. The existing IDE-based approaches apply the technical

details (e.g., stack trace) and the code under development either from di�erent perspectives (i.e., not targeted

for exceptions) [69, 70] or in a limited fashion (i.e., analyzes stack trace only) [43]. Thus these approaches

are either non-applicable or not very e�ective in the search related to programming errors and exceptions. In

this thesis, we attempt to address the above four challenges through an integrated and IDE-based solution

that leverages the available information in its disposal. Thus the research problem we attempt to solve is�

the e�ective and diversi�ed use of the technical details and the programming context of an error or exception

in di�erent search-related activities. We analyze the research problem and formulate the following research

questions, which we attempt to answer in this thesis:

• Is a context-aware meta search more e�ective than a keyword-based traditional web search for pro-

gramming errors and exceptions?
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• Are context-aware search queries more e�ective than traditional or user provided queries for the search

with traditional web search engines?

• How the technical details and the context of an exception can be used in recommending relevant sections

from a web page?

• Is a context-aware code search more e�ective than a traditional code search or an existing approach

from the literature for collecting exception handling code examples?

1.1.2 Our contribution

In this thesis, we propose and evaluate four novel approaches that support developers in di�erent search-

related activities associated with programming errors and exceptions. We consider the error message, stack

trace and programming context (i.e., context code) in the IDE as the context of an encountered exception, and

leverage them in the recommendation of di�erent items such as search queries, relevant web pages, relevant

sections of a given web page, and relevant code examples for exception handling. In the �rst study, we

propose SurfClipse, an IDE-based context-aware meta search engine, that collects search results from three

popular search engines�Google, Bing and Yahoo and one programming Q & A site�StackOver�ow, for an

encountered exception, re�nes them against the context of the exception, and then returns the ranked results.

The proposed engine outperforms the traditional search engines and similar existing approaches in terms of

di�erent performance metrics. In the second study, we propose QueryClipse that exploits the context of an

exception and recommends context-aware search queries for the exception. The recommended queries are

found to be more e�ective compared to traditional search queries or the queries by existing approaches, and

found comparable to the queries suggested by experts. In the third study, we focus on the use of such context

in post-search content analysis in order to help developers collect relevant information with reduced e�ort.

In this study, our proposed approach, ContentSuggest, exploits the context of an exception, and recommends

such sections of a web page that are relevant to the exception. In the last study, we propose SurfExamle, a

context-aware code search engine, that collects exception handling code examples from Github repositories

for an exception, re�nes them against the context of the target exception in the IDE, and then returns the

ranked code examples for exception handling. All four proposed approaches are evaluated extensively, and

their performance is also validated against existing relevant approaches. Finally, in order to validate the

applicability of those approaches in real world software development, we incorporate them into an Eclipse

plug in, ExcClipse, and conduct a task-oriented user study with six participants. In this study, each of

the participants performs four search-related tasks associated with four programming exceptions using both

ExcClipse and traditional search engines, where they compare our prototype with traditional counterpart for

di�erent technical features and supports. The study shows that our proposed approaches are promising and

our prototype is signi�cantly preferred to traditional means for the provided features and supports.
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1.2 Related Publications

Several parts of this thesis are published and accepted in di�erent conferences, and we provide the list of

publications here. In each of the papers, I am the primary author, and all the studies are conducted by

me under the supervision of Dr. Chanchal K. Roy. While I wrote the papers, the co-authors took part in

advising, editing, and reviewing the papers.

• M. Masudur Rahman, S. Yeasmin, and C.K. Roy, "An IDE-Based Context-Aware Meta Search Engine",

Working Conference on Reverse Engineering (WCRE), 2013, pp. 467-471

• M. Masudur Rahman, S. Yeasmin, and C.K. Roy, "Towards a Context-Aware IDE-Based Meta Search

Engine for Recommendation about Programming Errors and Exceptions", CSMR/WCRE Software

Evolution Week (SEW), 2014, pp. 194-203.

• M. Masudur Rahman and C.K. Roy, "SurfClipse: Context-Aware Meta Search in the IDE", Interna-

tional Conference on Software Maintenance and Evolution (ICSME), 4 pp., 2014 (to appear).

• M. Masudur Rahman and C.K. Roy, "On the Use of Context in Recommending Exception Han-

dling Code Examples", International Working Conference on Source Code Analysis and Manipulation

(SCAM), 10 pp., 2014 (to appear).

1.3 Outline of the Thesis

The thesis contains eight chapters in total. In order to deal with programming errors and exceptions e�ciently,

we conduct four independent but interrelated studies followed by a user study, and this section outlines

di�erent chapters of the thesis.

• Chapter 2 discusses several background concepts of this thesis such as static relation and data depen-

dency graphs, text or graph similarity matching algorithms, PageRank algorithm and so on.

• Chapter 3 discusses the �rst study that proposes SurfClipse, a context-aware meta search engine. It

analyzes the context details (e.g., stack trace, context code) of an encountered exception in the IDE,

and recommends relevant web pages by exploiting multiple search engines.

• Chapter 4 studies design and e�ectiveness of context-aware search queries in web search, and proposes

an Eclipse plugin, QueryClipse.

• Chapter 5 focuses on ContentSuggest that exploits the technical details (e.g., stack trace) and program-

ming context (e.g., context code) of an encountered exception, and recommends such sections from a

web page that are both noise-free and relevant to the exception in the IDE.
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• Chapter 6 discusses our fourth study that proposes SurfExample, a context-aware code search engine, for

exception-handling code examples. It analyzes the code under development in the IDE, and recommends

relevant code examples from GitHub repositories for exception handling.

• Chapter 7 discusses detailed design and �ndings of the conducted user study.

• Chapter 8 concludes the thesis with a list of directions for future works.
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Chapter 2

Background

In this chapter, we introduce the required terminologies and concepts to follow the remaining of the thesis.

Section 2.1 de�nes cosine similarity, a text similarity matching algorithm, Section 2.2 de�nes degree of interest,

a heuristic measure associated with stack trace of an exception, and Section 2.3 illustrates Document Object

Model (DOM). Section 2.4 and Section 2.5 discuss static relationship and data dependency graph as well as

stack trace token graph respectively, and Section 2.6 focuses on graph-matching. Section 2.7 de�nes logistic

regression, Section 2.8 explains PageRank algorithm and �nally, Section 2.9 summarizes the chapter.

2.1 Cosine Similarity

Cosine Similarity1 is a measure that indicates the orientation between two vector spaces with di�erent

number of dimensions. It is frequently used in information retrieval in order to estimate similarity between

two text documents, where each distinct term within the documents is considered as a dimension and each

document is considered as a vector of such terms. In our research, we often use cosine similarity measure to

determine relevance between two stack traces, two code segments [80] or a search query and the discussion

texts of a candidate web page. We consider each of the two items of interest (e.g., search query and text

block in the web page) as a bag of words2, remove the stop words (i.e., insigni�cant words in a sentence), and

then perform stemming (i.e., extracting the root of a word using Porter Algorithm3) on each term (especially

required for natural language texts) which provides a normalized form of the term. We prepare a combined

vector of normalized terms, C, from the two items, and then calculate cosine similarity (Scos) applying the

following equation:

Scos =

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(2.1)

Here, Ai represents the frequency of i
th term from C in vector A (i.e., search query), and Bi represents that

frequency in vector B (i.e., text block in the web page). This measure values from zero (i.e., complete lexical

dissimilarity) to one (i.e., complete lexical similarity), and helps to estimate the lexical relevance between the

search query and the web page.

1http://en.wikipedia.org/wiki/Cosine_similarity
2A collection of words with no �xed order
3http://ir.dcs.gla.ac.uk/resources/linguistic_utils/porter.java
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Figure 2.1: DOM Tree of the Example HTML Page in Listing 2.1

Listing 2.1: An Example HTML Segment (adapted from [13])

<div id="content">
<div id="question−header">
<h1 itemprop="name">
<a>How to instantiate inner class using
reflection?</a></h1></div>
<div class="post−text" itemprop="description">
<p>I get this exception:</p>
<pre class="lang−java prettyprint prettyprinted">
<code>java.lang.InstantiationException ..</code>
</pre></div></div>

2.2 Degree Of Interest (DOI)

The stack trace of an encountered exception comprises of an error message and a list of method call references.

Cordeiro et al. [43] propose Degree Of Interest (DOI), which is a measure associated with the method call

references of a stack trace. They consider the measure as an estimate of proximity of a call reference (and

its terms) to the location of the target exception in the code. In our research, we leverage the measure in

determining not only the relevance between two stack traces but also the appropriateness of a term of the

stack trace in a search query for the corresponding exception. Suppose, a stack trace has N method call

references, then degree of interest (DOI) measure, Sdoi, for each call reference can be calculated as follows:

Sdoi = 1− ni − 1

N
(2.2)

Here, ni represents the position of the reference in the stack trace. The measure values from zero to one,

where zero represents that the reference is the the most distant one from the location of exception, and one

means that it is the most likely reference that generates the exception. Thus the top-most reference in the

trace information is of the highest interest.
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2.3 Document Object Model (DOM)

It is a cross-platform and language independent convention to represent the content (i.e., objects) of an

HTML or an XML document [6]. In this model, a document is considered as a tree, where each of the

tags is represented as an inner node and textual or graphical elements are represented as leaf nodes. For

example, the HTML code segment in Listing 2.1 shows the title and body of a programming question posted

on StackOver�ow Q & A site, and Fig. 2.1 shows the corresponding DOM tree. In our research, we use

Jsoup [15], a popular Java library, in order to parse and analyze the DOM tree of HTML web pages.

2.4 Static Relationship and Data Dependency

Nguyen et al. [67] propose a graph-based approach for API usage pattern extraction, where they represent

the usage of di�erent API objects in the code using graphs. In the graph, each API object and its properties

such as �elds, constructors and methods are represented as nodes, and static relationships between the object

and its properties or its dependencies on other objects are represented as connecting edges. They classify the

dependencies into two� data dependency and temporal usage order. If an API object accepts an instance or

an attribute of another object as the parameter either in the constructor or in the method, the �rst object

is said to be dependent on the second object by data. On the other hand, certain methods can be invoked

only after the invocation of another method from the same object. For example, all method invocations of

an object are followed by the initialization (i.e., <init> method) of the object, and this type of dependency

of sequence is termed as the temporal usage order.

In our research, we exploit the static relationships between API objects and their properties (e.g., meth-

ods, �elds and constructors) as well as the data dependencies among di�erent objects in the code in order to

determine the structural relevance between two code segments. Listing 2.2 shows a code example that reads

from and writes data to a network using a Socket object. Fig. 2.2 shows the static relationships (i.e., green

coloured solid edges) and the data dependencies (i.e., magenta coloured dashed edges) in the code example

(Listing 2.2) that uses four API classes� Socket, PrintWriter, InputStreamReader and Bu�eredReader. We

note that PrintWriter and InputStreamReader objects access Socket object, and Bu�eredReader object ac-

cepts an instance of InputStreamReader class in its constructor, and the dependencies are identi�ed as dashed

edges. On the other hand, object to property (e.g., method) static relationships are represented as green

coloured solid edges.
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Figure 2.2: Static Relationships and Data Dependencies in Listing 2.2

Listing 2.2: An Example Code Segment (adapted from [2])

try {

Socket socket = new Socket(hostName, 15432);

PrintWriter out = new PrintWriter(socket.getOutputStream(),true);

BufferedReader input = new BufferedReader(new InputStreamReader(socket.

getInputStream()));

//sending and receiving data from the network

out.println(Integer.toString(menuSelection));

String outputString;

while (((outputString = input.readLine()) != null) &&

(!outputString.equals("END_MESSAGE"))) {

//process the output

} }

catch (Exception e){} // generic exception handler

2.5 Stack Trace Token Graph

We adapt the graph-based approach of Nguyen et al. (Section 2.4) for the stack trace of an exception, and

encode the implied static relationships and the call dependencies (i.e., temporal usage order) found in the

trace information into a graph, hereby we call it stack trace token graph. Listing 2.3 shows an example stack

trace containing such relationships and dependencies, and it involves four Java classes� ObjectInputStream,

PeekInputStream, DataInputStream and HighScores and �ve methods�main, init, readStreamHeader, read-

Short and readFully. While the Java objects are statically related to their corresponding methods, and we

also note that the program control �ows from HighScores.main() method to PeekInputStream.readFully()

method through a series of intermediate method invocations. The corresponding token graph for the stack

trace in Fig. 2.3 visualizes those static relationships and call dependencies among di�erent program tokens

(e.g., class name and method name). In the graph, each of the class tokens and method tokens are rep-

resented as vertices, and both class-to-method relationships (e.g., ObjectInputStream-to-readStreamHeader)
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Figure 2.3: Stack Trace Token Graph of Listing 2.3

and call dependencies or control �ows (e.g., readShort-to-readFully) are represented as directed connecting

edges among those vertices. The graph provides a mean to explore the connectivity (i.e., importance) of

a token in the token network developed from the stack trace, and we exploit such information in order to

choose a token for a search query for the exception (Chapter 4).

Listing 2.3: An Example Stack Trace (taken from [27])

Exception in thread "main" java.io.EOFException

at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java: 2281)

at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:

2750)

at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java: 780)

at java.io.ObjectInputStream.<init>(ObjectInputStream.java: 280)

at HighScores.<init>(HighScores.java:45)

at HighScores.main(HighScores.java:151)

2.6 Graph Matching

In graph theory, matching graphs involves matching a set of independent edges along with their vertices [8].

Fig. 2.2, the adapted API usage graph of our toy example in Listing 2.2, shows the static relationships and

the data dependencies in the code in terms of vertices and edges. In our research, we estimate the structural

relevance between a candidate code example and the context code in the IDE, where we determine matching

between two such corresponding usage graphs. We consider maximum matching in the graphs, and also

estimate di�erent heuristic weights (i.e., relative importance) for di�erent types of matching (e.g., dependency,

static relations) using a machine learning based approach (Section 6.3.4). For example, a data dependency

matching is considered more important than a static relationship matching for relevance estimation. The

static relationship matching between two graphs explains that two graphs merely contain similar set of API
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objects with their properties (e.g., method or �eld). On the other hand, the data dependency matching

explains that those API objects also interact with each other in a similar fashion in both graphs, which adds

more value in relevance estimation.

2.7 Logistic Regression

It is a probabilistic and statistical classi�cation model that predicts binary or categorical outcomes based

on a set of predictor variables (i.e., features). It is widely used in medical and social science �elds. In our

research, we use the regression model in association with a machine learning technique in order to estimate

the relative weights (e.g., importance) of di�erent metrics [61] proposed in each of the four studies. Logistic

regression models the probabilities of di�erent outcomes of a single trial as a function of predictor variables

using a logistic function4. The logistic function is a common sigmoid function, F (t), as follows:

F (t) =
et

et + 1
, t = β0 + β1x1 + β2x2 (2.3)

where F (t) is a logistic function of a variable t, which is again a function of the predictor variables x1 and x2.

Here, β1, β2 are coe�cients, and β0 is the intercept in the regression equation. The function always returns a

value between zero and one, and thus provides a probabilistic measure for each type of outcomes for the trial.

In our studies, we consider the coe�cients (or their logarithmic transformations) of the regression equation

generated during machine learning as the relative weights (i.e., relative importance) for the corresponding

features (i.e., proposed metrics), and use them in our di�erent ranking algorithms.

2.8 Page Rank Algorithm

PageRank algorithm by Lawrence Page and Sergey Brin is an e�cient tool for ranking a list of web pages

which are inter-linked with one another [19]. It is also widely used in other �elds of research such as web

spam detection, text mining, text summarization, word sense disambiguation, natural language processing

and so on. The algorithm treats a hyper link in a web page to another website as a vote cast for that site,

and it analyzes both incoming links and outgoing links of the page for the ranking. If the web page is highly

hyper-linked (i.e., recommended) to other popular pages, it is also considered as a popular page, and vice

versa. Thus, the PageRank score of the web page can be calculated as follows:

PR(A) = (1− d) + d(
PR(T1)

C(T1)
+ ... ...+

PR(Tn)

C(Tn)
) (2.4)

Here, PR(A) represents the PageRank of page A, PR(Ti) represents the PageRank of pages Ti which link

to page A, d refers to damping factor5 which has a value between zero and one, and C(Ti) is the number of

outbound links on page Ti. In this research, we adapt this algorithm for the token network (e.g., Fig. 2.3)

4http://en.wikipedia.org/wiki/Logistic_regression
5The probability of jumping from one page to another by a visitor
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developed from the stack trace of an exception, and determine the applicability of a token in a candidate

search query for the exception (Chapter 4).

2.9 Summary

In this chapter, we introduced di�erent terminologies and background concepts that would help one to follow

the remaining of the thesis. We de�ned cosine similarity, a widely used text similarity matching technique

throughout the thesis, degree of interest, a heuristic measure associated with stack trace, and DOM, a cross-

platform document representation technique for an HTML or an XML document. We also discussed static

relationships and data dependency graphs, stack trace token graph and graph-matching technique. Finally,

we discussed logistic regression and PageRank algorithm that are used for metric weight estimation and

determination of trace token rank respectively.
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Chapter 3

An IDE-Based Context-Aware Meta Search Engine

Traditional web search does not consider context (i.e., surroundings, circumstances) of a programming prob-

lem (e.g., an error or an exception), and involves software developers into a trial and error based search

activity for solution. It also forces them to switch frequently between their working environment (i.e., IDE)

and the web browser, which is both distracting and time-consuming. In this chapter, we discuss our �rst

study that proposes a solution to such problems.

The rest of the chapter is organized as follows. Section 3.2.1 discusses our proposed system model for

IDE-based web search, and Section 3.2.2 presents our proposed content-based and context-based metrics and

algorithms. Section 3.3 discusses experimental design, results and validation details, Section 3.4 identi�es

the possible threats to validity, Section 3.5 discusses the existing studies related to our research and �nally,

Section 3.6 summarizes the chapter with future works.

3.1 Introduction

Existing related studies focus on integrating commercial-o�-the-shelf (COTS) tools into Eclipse IDE [71],

recommending StackOver�ow posts and then displaying them within the IDE [43, 70], embedding traditional

web browser inside the IDE [36] and so on. Cordeiro et al. [43] propose an IDE-based recommendation

system that recommends relevant StackOver�ow posts for programming errors and exceptions. They extract

a number of question and answer posts from StackOver�ow data dump, and suggest those question posts

that contain stack traces similar to that of an encountered exception in the IDE. Ponzanelli et al. [70] propose

Seahawk, an Eclipse plugin, that analyzes the context (i.e., code under development) of the programming task

at hand and recommends relevant StackOver�ow posts in the IDE. It also visualizes di�erent components

(e.g., code segment, stack trace) of a recommended post through an embedded and customized web browser for

legibility. Although these approaches have their inherent strengths, they also su�er from several limitations.

First, they consider only one source� StackOver�ow Q & A site for information, and thus the search scope

is limited. Second, the developed corpus cannot be easily updated and is subjected to the availability of the

data dump. For example, they use the StackOver�ow data dump of September 2011, that means, it does not

contain the posts created after September 2011. Thus their approach cannot suggest the StackOver�ow posts

discussing the recently introduced software bugs or errors (e.g., exceptions from new API libraries). Third,
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they only consider either stack trace or source code under development as the context of a programming

problem, which is partial and often does not help much. For example, the approach by Cordeiro et al. does

not consider the code segment that triggers an exception and thus recommends solutions which might be

non-applicable or even irrelevant to the code of interest given that the same exception could be triggered

from di�erent code context. Similarly, Seahawk [70] cannot recommend properly for the programming tasks

associated with errors and exceptions as it does not analyze the stack traces reported by the IDE.

In this study, we propose a context-aware meta search solution, SurfClipse, to the encountered pro-

gramming errors and exceptions in the IDE, which also addresses the concerns identi�ed with the existing

approaches. We package the solution as an Eclipse plugin prototype [25] which collects search results from

a remotely hosted web service [30] and displays them within the IDE. The proposed approach (1) exploits

the search and ranking algorithms of three reliable web search engines� Google, Bing and Yahoo and one

programming Q & A site� StackOver�ow through the use of their API endpoints, (2) provides both a content

(e.g., error or exception message) relevance and context (e.g., stack trace, associated context code) relevance

based ranking of the extracted results in step one, (3) collects the most recent posts and accesses the com-

plete and extensible question and answer set of StackOver�ow, and pulls solutions from a number of forums,

discussion boards, blogs, programming Q & A sites and so on, and (4) demonstrates a potential use of web

service technology for problem context-aware web search which can be easily leveraged by any IDE of any

development framework.

We conduct experiments on SurfClipse using 75 programming errors and exceptions related to Eclipse

plugin framework and standard Java applications, and compare with two existing approaches [43, 70] and

three traditional web search engines. The proposed approach recommends correct solutions for 68 (90.66%)

exceptions, which essentially outperforms the existing techniques and the keyword-based traditional search

engines in terms of recall and other performance measures. We note from the experiments that neither stack

trace nor context code alone can capture the complete context of an encountered exception, rather their

combination represents a more precise context which is likely to help collect more relevant results. This work

is a signi�cantly extended and re�ned version of our earlier work [73], where we just outlined the idea of an

IDE-based meta search engine with limited experiments and validations.

3.2 Proposed Approach for IDE-Based Context-Aware Meta Search

3.2.1 Proposed System Model

Fig. 3.1 shows the schematic diagram of our proposed approach for IDE-based context-aware web search.

We implement our approach as an IDE-based search provider, and this section discusses the architectural

design of our proposed system which includes the working modules, working modes and so on.
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Figure 3.1: Schematic Diagram of Proposed Approach (SurfClipse)

Web Service Provider and Client Plugin

Our proposed system is based on client-server architecture and it has two major entities� Eclipse plugin

(client) and web service provider (server). They communicate with each other through HTTP (Hyper Text

Transfer Protocol) and facilitate web search within the IDE environment. Once a developer selects an

encountered exception from Console View (e.g., Fig. 3.1-(a)) or Error Log in the IDE, the client plugin collects

associated context� stack trace and context code (i.e., a segment in the code that triggers the exception),

and generates a web search request to the service provider [30]. The service provider works as a meta search

engine, that means, it collects results from multiple search engines against a search query and analyzes them to

provide an enriched set of results. In our proposed model, Data collector module of the service provider (e.g.,

Fig. 3.1-(d)) collects results from three state-of-the-art search engines (Google, Bing and Yahoo) and one

programming Q & A site (StackOver�ow), and then accumulates the results to form a Corpus. The corpus

is developed using about 100-150 results from di�erent sources, and Metrics calculator module computes
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di�erent proposed metrics (Section 3.2.2) for each of the results in the corpus. The metrics capture the

relevance of each result to the encountered exception as well as its context (i.e., stack trace, context code).

Once metrics are computed, Score calculator calculates the �nal score of each result, and Rank manager

and dispatcher ranks the results, and returns them to the client. The client plugin then captures them and

displays within the IDE in a convenient way. It also facilitates the browsing of a result page through a

customized web browser widget.

Plugin Working Modes

Eclipse plugin in the proposed model works in two modes� interactive and proactive. In interactive mode, a

developer can select a search query by choosing a suitable phrase from the stack trace (e.g., Fig. 3.1-(a)) or

associated context code of an encountered exception, and can make a web search request to the server (e.g.,

Fig. 3.1-(d)). The plugin also provides a �exible interface (e.g., Fig. 3.1-(b)) for keyword-based web search,

where the developer can search with customized queries about the exception. In case of proactive mode, the

web search request is initiated by the client plugin. In this mode, the plugin assigns a listener to the Console

View which constantly checks for exception. Once an exception detected, the listener sends error message

and context information to the plugin, and then plugin makes web search request to the service provider.

Thus in this mode, the developer gets rid of the burden of carefully choosing the search query and making

the search request manually, and she can concentrate on her current task without interruption.

Corpus Development

Reusing existing data and services in order to provide an enriched output is an interesting idea, and we use

it for corpus development in our research. We exploit the available API services provided by three popular

search engines� Google, Bing and Yahoo and one large programming Q & A site� StackOver�ow to collect the

top 30-50 ranked results from each of them against an encountered error or exception, and then use them to

develop a corpus dynamically. The idea is� leveraging the existing search services and their recommendations

to reduce search scope and to produce an e�ective solution set. Unlike a traditional search engine, which

develops an index of all the result pages with some sort of relevance score against a query term, we store

necessarily the complete HTML source of each result page. The source is parsed and analyzed for relevant

stack traces, source code segments, and exception messages in the later phases for metric calculation.

3.2.2 Proposed Metrics

Search Engine Con�dence Score (Ssec)

According to Alexa1, one of the widely recognized web tra�c data providers, Google ranks �rst, Yahoo ranks

fourth, Bing ranks nineteenth and StackOver�ow ranks 67th based on the volume of their site tra�c among

1http://www.alexa.com/topsites, Visited on September, 2013
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all websites in the web in the year 2013. While these ranks indicate their popularity (i.e., site tra�c) and

reliability (i.e., users' trust) as information service providers, and existing studies show that di�erent search

engines perform di�erently, and even the same search engine performs di�erently based on the type of search

query [59, 81], it is essentially reasonable to think that search results from di�erent search engines with

di�erent ranks have di�erent levels of acceptance. To determine the acceptance level of each search service

provider, we conduct an experiment with 139 programming errors and exceptions2. We collect the top 10

search results against each of the exceptions from each search tool, and get their Alexa ranks [1]. We then

consider the Alexa ranks of all result links provided by each search tool and calculate the average rank for a

result link provided by them. The average rank for each search tool is then normalized and inversed which

provides a value between zero and one, and we consider this value as a heuristic measure of con�dence for

the search tool. We use Equations (3.1) and (3.2) to get the search engine con�dence for a result link.

Ri,normal =
R̄i∑n
i=1 R̄i

(3.1)

Si,sec =

1
Ri,normal∑n
i=1

1
Ri,normal

(3.2)

Here, R̄i represents the average Alexa rank for each search tool results, Ri,normal is the normalized version of

R̄i and Si,sec refers to the �nal con�dence score for each search tool based on Alexa search tra�c statistics.

We get a normalized con�dence of 0.29 for Google, 0.35 for Bing, 0.36 for Yahoo and 1.00 for StackOver�ow.

Given that StackOver�ow is a popular programming Q & A site that has drawn the attention of a vast

programming community (1.9 million3) and contains about 12 million questions and answers, its result pages

have the maximum con�dence. The idea is� the occurrence of a result link in multiple search engines against

a single query would issue the corresponding con�dence scores of the search engines to the link. Thus if a

result occurs in all search provider results, it gets a con�dence score of 2.00; however, the con�dence scores

of all results in the corpus are normalized for practical use.

Content Matching Score (Scms)

During errors or exceptions, an IDE or Java framework generally issues noti�cations from a �xed set of

error or exception messages unless a developer handles the exception manually. Thus there is a great chance

that a web page titled with an error or exception message similar to the search query (i.e., error message

of the encountered exception) would discuss a programming problem similar to the one encountered by the

developer, and would contain relevant and useful information. We propose a metric, Title to Title Similarity

(Stts), that measures the content similarity between the query message and the title of each result page

in the corpus. We use cosine similarity measure for this purpose which returns a value between zero (i.e.,

completely dissimilar) and one (i.e., exactly similar). As we noted that the result title may not always

2http://homepage.usask.ca/∼mor543/query.txt
3http://en.wikipedia.org/wiki/Stackover�ow, Visited on September, 2013
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provide enough information about the discussed problem(s) in the page, the body content of the page needs

to be consulted. We consider stack traces, source code segments and discussion texts extracted from the

page as legitimate sources of information about the discussed exceptions, and propose two cosine similarity-

based metrics� Title to Context Similarity (Stcx) and Title to Description Similarity (Stds). Title to Context

Similarity score determines the content relevance between the query error message and the extracted context

(e.g., stack traces, associated code snippets) of the discussed exceptions, and Title to Description Similarity

score denotes the possibility of the occurrence of query error message in the discussion texts.

According to Arif et al. [31], terms contained in di�erent parts of a document deserve di�erent levels of

attention. For example, a phrase in the page title is more important than a phrase in discussion texts for

specifying the subject matter of the document. We re�ect this idea in content matching, and assign di�erent

weights to di�erent content similarity scores. We use Equation (3.3) to determine the content relevance

between the search query and each result page in the corpus.

Scms = α× Stts + β × Stcx + γ × Stds (3.3)

Here, α, β and γ are the assigned weights to result page title, extracted context (stack trace and code snippet)

and discussion texts respectively, and they sum to one. Given that the similarity scores are generated from

cosine-based measures, Content Matching Score always ranges from zero (i.e., completely irrelevant) to one

(i.e., completely relevant).

Stack Trace Matching Score (Sstm)

In the resolution of programming errors or exceptions, the associated context such as stack trace reported by

the IDE plays an important role. A stack trace contains the encountered error or exception type, a system

message and a list of method call references. In this research, we consider an incentive to the result pages

in the corpus containing stack traces similar to that of the encountered (i.e., target) error or exception.

We consider both the lexical and structural perspectives of a stack trace, and propose two metrics� Lexical

Similarity Score (Slex) and Structural Similarity Score (Sstc), in order to determine the relevance between

stack traces. The information in the stack trace can be categorized into two� a detailed technical error

message (�rst part) and possible locations of the exception (second part). We parse the exception name and

the error message from the �rst part and extract package name, class name and method name tokens from

each of the call references of second part, and develop a token set for the stack trace. We use this token set

to determine the lexical relevance between the stack trace of the target exception and a candidate stack trace

from a result page, and we use Cosine Similarity Score for the purpose. It should be mentioned that we do

not decompose the camel case tokens into granular levels (i.e., granularization introduces false positives) in

order to perform meaningful similarity checking, which makes the relevance checking e�ective and useful.

Method call references and their sequence in the stack trace provide important clues about the location

of the target exception and thus they also can be leveraged for determining relevance between two stack

traces. We calculate Degree of Interest Score for each reference in the target (i.e., encountered) stack trace
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using Equation (2.2) (Section 2.2) and use them to determine structural relevance with the candidate stack

traces from the result pages. The idea is to determine the occurrence of method call references of the target

stack trace in the candidate stack traces. However, complete matching between two references may not be

likely and we exploit the idea of con�dence coe�cient proposed by Cordeiro et al. [43]. We get the Structural

Similarity Score between the stack trace of the encountered exception and a candidate stack trace using

Equations (3.4) (proposed by Cordeiro et al. [43]) and Equation (3.5).

msi = Sdoi × ci (3.4)

Sstc =
1

N

N∑
i=0

msi (3.5)

Here, msi denotes the matching score between two references, ci refers to con�dence coe�cient and N

represents the number of method call references in the stack trace of the encountered exception. We consider

a heuristic value of 0.50 for ci if method name and class name tokens match between two call references, and

consider 0.90 when package name tokens also match. We consider ci=1.00 only when all four tokens�package

name, class name, method name, and line number match between two call references. The heuristic values

are inspired by those of Cordeiro et al. [43]. Once both lexical relevance and structural relevance are found,

we get the Stack Trace Matching Score using the following equation:

Sst = δ × Sstc + σ × Slex (3.6)

Here, δ and σ denote two heuristic weights assigned to structural similarity and lexical similarity scores

respectively, and they sum to one. Stack Trace Matching Score values from zero and one, where zero represents

total irrelevance and one represents the complete relevance between two stack traces.

Source Code Context Matching Score (Sccx)

Sometimes, stack trace alone may not provide enough information about the encountered exception for

analysis, and the source code triggering the exception needs to be consulted. In programming Q & A sites,

forums and discussion boards, users often post source code snippets related to the exception besides the stack

traces for clari�cation. We are interested to check if the code snippets in the result page are similar to the

source code associated with the encountered (i.e., target) exception in the IDE. This coincidence is possible

with the notion that developers often reuse code snippets from di�erent programming Q & A sites, forums or

discussion boards in their programs directly or with minor modi�cations. Therefore, a result page containing

code snippets similar to the code associated with the target exception is likely to discuss relevant issues that

a developer needs to know in order to solve the target exception. We consider the code surrounding the

exception location in the source �le in the IDE as the source code context of the target exception, and use a

code clone detection technique [75] to determine its relevance with the code snippets extracted from the result

pages. The idea is to identify the longest common subsequence of tokens between two token sets extracted

19



from two di�erent code snippets. We use Equation (3.7) in order to determine the relevance between the

context code (i.e., source code context) of the target exception and a code snippet from the result page.

Sccx =
|Slcs|
|Stotal|

(3.7)

Here, Slcs denotes the longest common subsequence of tokens, and Stotal denotes the set of tokens extracted

from the code block considered as the context of the encountered exception in the IDE. The Source Code

Context Matching Score values from zero to one.

StackOver�ow Vote Score (Sso)

StackOver�ow, a popular programming Q & A site with 1.9 million users, maintains a score for each question,

answer and comment posted by the users, and the score can be considered as a social and technical recognition

of their merit [65]. In StackOver�ow, a user can up-vote any question or answer post if she likes something

about them, and can also down-vote if the post content seems erroneous, confusing or not helpful. Thus the

di�erence between up-votes and down-votes from a vast community of technical users, the score of post, is

considered as an important metric for evaluation of the quality of the solution posted. In our research, we

consider such scores of the posted question and answers in the result page from StackOver�ow, and calculate

StackOver�ow Vote Count using Equation (3.8). We then normalize the vote count and get StackOver�ow

Vote Score using Equation (3.9).

SOk =
∑
∀pεP

Vp (3.8)

Sso =
SOk − λ

max(SOk)− λ
(3.9)

Here, SOk refers to the StackOver�ow vote count for a result page, Vp denotes the vote count for a post in

the page, p refers to any post, and P denotes the set of question and answer posts found in a result page. λ

denotes the minimum vote count, max(SOk) represents the maximum vote count and Sso is the normalized

StackOver�ow Vote Score for the result link. The score values from zero (i.e., least signi�cant) to one (i.e.,

most signi�cant) and it indicates the relative quality or popularity of the StackOver�ow link in the eyes of a

large crowd of technical users.

Search Tra�c Rank Score (Sstr)

The amount of search tra�c to a site can be considered as an important indicator of its popularity. In

this research, we consider the relative popularity of the result links extracted from di�erent search engines.

We use the statistical data from two popular site tra�c control organizations� Alexa and compete through

their provided APIs and get the average popularity rank for each result link. Then, based on these ranks,

we provide a normalized Search Tra�c Rank Score to each result link between zero and one considering

minimum and maximum ranks found.
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3.2.3 Result Scores Calculation

The proposed metrics (Section 3.2.2) focus on four aspects of each result� content relevance, context relevance,

popularity and search engine con�dence, and we consider those aspects for the calculation of �nal scores.

We use Content Matching Score of each result page as its Content Relevance, (Rcnt) with the encountered

exception. In this research, we consider stack trace and code segment triggering the exception as the context

of the encountered exception in the IDE, and use Stack Trace Matching Score and Source Code Context

Matching Score to determine the Context Relevance, (Rcxt) of each result page. Both stack trace and

context code carry di�erent levels of signi�cance and we assign two heuristic weights to the matching scores

in order to get the context relevance score.

Rcxt = wst × Sstm + wcc × Sccx (3.10)

Here, wst and wcc are the assigned weights to Sstm and Sccx respectively, and they sum to one which gives

Rcxt normalized, and it values from zero to one.

StackOver�ow Vote Score and Search Tra�c Rank Score are considered as the estimates of popularity of

each result link from di�erent viewpoints, and they deserve di�erent levels of attention. In the calculation of

Popularity Score(Spop) of each result link, we assign two di�erent heuristic weights to these metrics.

Spop = wso × Sso + wsr × Sstr (3.11)

Here, wso and wsr represent the assigned weights to Sso and Sstr respectively, and they sum to one; this

gives Spop a normalized value from zero (i.e., the least popular) to one (i.e., the most popular).

Con�dence of each result, obtained from the associated search engines, can be considered as a support

measure for the result link against a search query. We consider Search Engine Con�dence Score as the

con�dence of each result. Thus the four component scores associated with four aspects can be combined

using Equation (3.12) in order to get the �nal score for each result.

Sfinal =
∑

∃wεW,∃RSε(Rcnt,Rcxt,Spop,Ssec)

w ×RS (3.12)

Here, RS denotes a measure of content relevance, context relevance, popularity or con�dence of a result in the

corpus, and w denotes the individual weight (i.e., importance) associated with each RS. We assign a heuristic

weight of 0.35 to content-relevance, 0.85 to context-relevance, 0.20 to popularity and 0.10 to the impression

of the result link with the search engines. We choose these heuristic weights based on our extensive and

iterative controlled experiments with a subset of all exceptions, manual analysis on the experimental results,

discussion among the authors, and also some helpful ideas from the existing study [43]. While these heuristic

values might seem a bit arbitrary, we �nd the combination to be the best in our experiments to represent

the relative importance of di�erent aspects of the �nal score for a result. Once the �nal scores are found, the

results are sorted in a descending order and the top twenty or thirty of them are returned to the requesting

client.

21



3.3 Experimental Design, Results and Validation

3.3.1 Dataset Preparation

We collect the workspace logs of Eclipse IDE from six graduate research students of Software Research Lab,

University of Saskatchewan, and extract the exceptions (e.g., error message, stack trace) occurred during

the last six months. We collect a list of 214 stack traces from them. We �nd that most of the stack traces

are duplicate of one another, and we choose 38 distinct stack traces involving 44 Exception classes, which

are mostly related to Eclipse plugin development framework. To include exceptions related to standard Java

application development and prepare a balanced dataset, we choose 37 exceptions from a list of common Java

exceptions [24]. We then generate some of those exceptions using code examples, and also perform exhaustive

web search to collect stack traces and source code context associated with those exceptions. We �nally get a

list of 75 exceptions [24] associated with 75 stack traces [24] and 37 contextual code blocks [24], which we use

as the dataset for di�erent experiments. It should be noted that we cannot collect helpful context code for

the exceptions extracted from the workspace logs of the IDE. We collect the most appropriate solutions for

the exceptions with the help of di�erent available search engines such as Google, Bing, Yahoo and Ask. Given

that checking relevance of a solution is controlled by di�erent subjective factors, we select the solution list

carefully. First, one of the authors performs exhaustive web searches for two days and collects a potential list

of solutions for the exceptions which are shared with other authors. The other authors review the exception

information (e.g., stack trace, code context) and the solution list independently, and provide their feedback

about the selection of solution list. Then, the suggestions of all authors are accumulated to �nalize a solution

set [24] for the exceptions in the dataset.

3.3.2 Investigation with Eclipse IDE

We analyze the features provided by Eclipse IDE in order to �nd out how often developers can get necessary

help in solving the encountered errors and exceptions. It is interesting to note that the IDE provides nice

debugging tools for them to analyze the exceptions through check-pointing, but they do not help much in

platform-level exceptions associated with di�erent runtime libraries and con�guration �les. For example,

if a Java application tries to consume more memory space than alloted, Java framework would issue this

exception message� java.lang.OutOfMemoryError: Java heap space, and the debugging tools have a very

little opportunity to help with this problem. There is also an internal web browser widget in recent versions

of Eclipse IDE; however, it is intended for browsing web pages and is defaulted to Bing Search which does

not consider the context of the encountered exceptions, and thus cannot help the developers much e�ectively.
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3.3.3 Search Query Formulation

Every web search request from Eclipse client plugin has three components� query for search engines, stack

trace and context code. Our proposed solution works in two modes� interactive and proactive. In the case

of interactive mode, the developer forms the search query by carefully selecting keywords from the exception

message and context information of the exception, whereas the plugin is responsible for generating the search

query itself in case of proactive mode. This section discusses the query formulation technique used by our

tool during its proactive mode.

In this research, we consider both the stack trace and the code segment likely responsible for the encoun-

tered exception as the context of the exception. We thus collect information from the context besides the

exception message in order to develop a search query for the exception. Traditional search engines generally

do not allow4 or perform poorly with long queries [59, 81], and in order to collect results from them, we use

a sophisticated technique to describe the exception and its context in terms of few tokens. We capture the

exception message containing exception class name and collect �ve class name and method name tokens with

the highest Degree of Interests from the stack trace [43]. We also extract �ve most frequent method calls and

imported class names from the context code using an ASTParser library5 (i.e., in case of compilable code)

and a custom island parser (i.e., in case of uncompilable code) [70]. We then combine the extracted method

and class name tokens from both context to develop a unique list of query terms and add the list to the

exception message. We note that the exception message itself returned by the IDE is a good descriptor of the

exception; however, we �lter the message and discard di�erent irrelevant components such as absolute �le

path, URL and so on. Thus the �ltered exception message and the list describing the context of the exception

develop the search query, and the client plugin use it to collect results (i.e., for corpus development) from

di�erent search engines in proactive mode.

3.3.4 Performance Metrics

Given that our proposed approach is aligned with the research areas of information retrieval and recommen-

dation systems, we use a list of performance metrics from those areas as follows.

Mean Precision (MP)

While precision denotes the fraction of retrieved results that are relevant to the query, Mean Precision is the

average of that measure for all queries in the dataset.

4http://en.wikipedia.org/wiki/Web_search_query
5http://code.google.com/p/javaparser/
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Table 3.1: Results of Experiments on Two Working Modes of Proposed Approach

Mode Metric Top 101 Top 202 Top 303

Interactive

Mean Precision (MP) 0.1229 0.0736 0.0538

MFFP 1.2400 1.2400 1.2400

MRR 0.4604 0.4648 0.4669

TEF4 59(75) 64(75) 68(75)

Recall (R)5 78.66% 85.33% 90.66%

Proactive

Mean Precision (MP) 0.0866 0.0529 0.0380

MFFP 1.2400 1.2400 1.2400

MRR 0.4009 0.4048 0.4054

TEF 51(75) 55(75) 56(75)

Recall (R) 68.00% 73.33% 74.66%

1Metrics for the top 10 results, 2Metrics for the top 20 results

3Metrics for the top 30 results, 4Number of exceptions �xed

5Percentage of the exceptions �xed

Mean First False-Positive Position (MFFP)

First False-positive Position (FFP) is the rank of �rst false-positive result in the ranked list. Mean First

False-Positive Position measures the average �rst false-positive position for each query in the query set.

Mean Reciprocal Rank (MRR)

Reciprocal Rank is the multiplicative inverse of the rank of �rst relevant result. Mean Reciprocal Rank is a

statistical measure that averages the Reciprocal Rank for each query in the query set.

Recall (R)

Recall denotes the fraction of the relevant results that are retrieved. In our experiments, we consider recall

as the percentage of the test cases (i.e., exceptions) for which the solutions are recommended correctly.

3.3.5 Experimental Results on Proposed Approach

In our experiments, we conduct search with each exception in the dataset and collect the top 30 results. We

consider both working modes� interactive and proactive, and analyze the results using di�erent performance

metrics (Section 3.3.4). Tables 3.1, 3.2 and 3.3 show the results of the experiments conducted on our approach.

Table 3.1 shows a comparative analysis between interactive mode and proactive mode of search of the

proposed approach. Here, we see that our tool performs relatively better in interactive mode than proactive

mode in terms of di�erent performance metrics such as Mean Precision (MP), Mean First False-Positive

Position (MFFP), Mean Reciprocal Rank (MRR) and Recall (R). We also note that proactive version can

recommend correct solutions for 56 exceptions in total whereas interactive version can recommend for 68 out
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of 75 exceptions, which gives a recommendation accuracy of 90.66% for our approach. Given that formulating

search query is one of the decisive factors for the performance of interactive approach, we manually select a

list of search-friendly keywords from the context of each exception as the search query. The query collects a

richer set of initial results (i.e., for corpus development) from multiple search engines than that of proactive

approach, where the search keywords are not �ne-tuned for search engines.

Table 3.2 investigates the impacts of di�erent aspects� content relevance, context relevance, popularity

and search engine con�dence of the result link in the ranking of search results. It shows how the incremental

association of di�erent aspects can improve the search results in terms of performance metrics such as Mean

Precision (MP), Recall (R) and so on. We note that the proposed approach provides the highest MP and the

highest recall when all four aspects are considered during score calculation of a result rather than a single

aspect such as content-relevance. For example, it performs the best (e.g., 90.66%) in terms of accuracy (e.g.,

TEF (No. of total exceptions �xed), R (% of exceptions �xed)) when all four dimensions of the result score

are considered, which shows the potential of exploiting associated context information besides search query

(i.e., error or exception message) during search.

Table 3.3 compares the experimental results achieved against two di�erent sets of exceptions� one with

exception messages and stack traces (i.e., Set A) and the other with exception messages, stack traces and

context code (i.e., Set B). Here, we see that Set B, that considers context code besides stack trace and error

message of an exception, achieves higher accuracies (e.g., 97.29% and 86.48%) than Set A (e.g., 84.21% and

63.16% ) in both working modes. It also gets better results in terms of other performance metrics such as

Mean Precision (MP) and Mean Reciprocal Rank (MRR). The �ndings show that a combination of context

code and stack trace can better specify the context of the exception rather than stack trace only, and thus,

by exploiting the context, the proposed approach can recommend more solutions for the set that captures

the combination than the one that do not capture.

3.3.6 Comparison with Existing Approaches

We compare the results of our proposed approach against two existing IDE-based recommendation systems�

context-based recommendation system by Cordeiro et al. [43] and Seahawk by Ponzanelli et al. [70]. Both

of them collect data from StackOver�ow data dump and recommend StackOver�ow posts taking the current

context of the search into consideration. They select suitable tokens from either stack trace or context code

to describe the problem context in the search query, and recommend solutions in a proactive fashion. We

implement both of the existing methods and use them for experiments.

To implement the approach proposed by Cordeiro et al. [43], we use the exception name from each

exception test case and collect 100 top voted StackOver�ow posts discussing about that exception, and

develop a corpus for the test case. We download the page source of each item in the corpus and create an

Apache Lucene Index for the corpus. We then use the index and Lucene search engine to retrieve the relevant

posts against the search query associated with the test case. From Lucene, we also collect the retrieval score
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Table 3.2: Experimental Results for Di�erent Ranking Aspects

Mode Score Combination Metric Top 10 Top 20 Top 30

Interactive

Content (Rcnt)

MP 0.0899 0.0607 0.0481

TEF 43 55 65

Recall (R) 57.33% 73.33% 86.66%

Content (Rcnt) and Context (Rcxt)

MP 0.11428 0.0699 0.0514

TEF 58 63 66

Recall (R) 77.33% 84.00% 88.00%

Content (Rcnt), Context (Rcxt),
MP 0.1157 0.0699 0.0519

TEF 57 63 66

and Link Popularity (Spop) Recall (R) 76.00% 84.00% 88.00%

Content (Rcnt), Context (Rcxt),
MP 0.1229 0.0736 0.0538

TEF 59 64 68

Link Popularity (Spop) and Result con�dence (Ssec) Recall (R) 78.66% 85.33% 90.66%

Proactive

Content (Rcnt)

MP 0.0871 0.0528 0.0371

TEF 46 54 56

Recall (R) 61.33% 72.00% 74.66%

Content (Rcnt) and Context (Rcxt)

MP 0.0785 0.0499 0.0376

TEF 45 52 55

Recall (R) 60.00% 69.33% 73.33%

Content (Rcnt), Context (Rcxt),
MP 0.0857 0.0542 0.0381

TEF 49 55 56

and Link Popularity (Spop) Recall (R) 65.33% 73.33% 74.66%

Content (Rcnt), Context (Rcxt),
MP 0.0886 0.0529 0.0380

TEF 51 55 56

Link Popularity (Spop) and Result con�dence (Ssec) Recall (R) 68.00% 73.33% 74.66%

based on Vector Space Model for each retrieved post. We calculate the structural score and lexical score of

each post considering their stack traces and then normalize them. Finally, we add all three scores for each

post to get the �nal score.

In case of Seahawk proposed by Ponzanelli et al. [70], we collect the ten most frequent tokens (e.g., method

name, class name) from context code of an exception test case as the search query, and retrieve relevant posts

from StackOver�ow containing suitable code examples or discussions relevant to the corresponding exception.

Given that Apache Solr is a search service provider using Apache Lucene as the core search engine, we use

Apache Lucene to collect relevant results against a search query. Basically, we reuse the previously developed

indexes of StackOver�ow posts and collect the relevant posts as well as their relevance scores.

Table 3.4 (top part) shows a comparative analysis between the results of two existing approaches� Cordeiro

et al. [43] and Ponzanelli et al. [70], and our proposed approach. The working principles of the existing

approaches are similar to that of proactive version of our tool, and thus we compare them to the proactive

version. Here, we can see that both of the existing approaches perform poorly in terms of all performance
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Table 3.3: Results of Experiments on Multiple Sets

Mode Metric Set A1(38) Set B2(37)

Interactive

Mean Precision (MP) 0.0404 0.0604

MFFP 1.0000 1.4864

MRR 0.2695 0.6697

TEF 32 36

Recall (R) 84.21% 97.29%

Proactive

Mean Precision (MP) 0.0263 0.0450

MFFP 1.0000 1.4864

MRR 0.2563 0.5585

TEF 24 32

Recall (R) 63.16% 86.48%

1 Contains exception message and stack trace.

2 Contains exception message, stack trace and code context.

metrics compared to our approach. In the best case, they can recommend solutions for 24.00% and 18.92%

of the exceptions respectively. The �ndings show that depending on a single information source for exception

is not a good choice, and the combination of stack trace and source code context is a preferable choice to

either any of them alone for re�ecting the context of an exception during search.

3.3.7 Comparison with Existing Search Engines

We compare the results of our proposed approach against four available search engines� Google, Bing, Yahoo

and StackOver�ow (i.e., provides an API for search within StackOver�ow). The interactive mode of our

approach allows the developer to provide a search query which resembles with working principles of the

search engines. We develop search query for each exception using suitable tokens from the technical error

message and the context, and use them to collect results from the search engines as well as from the proposed

approach. It should be mentioned that the search query is simply used to develop the corpus in case of the

proposed approach, and �nal ranking of the results are determined with the help of ranking algorithms using

the automatically extracted context information from the IDE. We collect the top 30 results from each search

provider and look for expected solutions identi�ed previously (Section 3.3.1).

Table 3.4 (bottom part) shows the comparative analysis of results from di�erent search engines and

our proposed approach. Here, we see that existing search engines can recommend solutions for at most 58

(77.33%) out of 75 exceptions, where the proposed approach can recommend for 68 (90.66%) exceptions.

We also note that Google performs slightly better than our approach in terms of Mean Precision (MP), but

recommends correct solutions for only 57 exceptions.
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Table 3.4: Comparison with Existing Approaches and Search Engines

Mode Recommender #TE1 Metric Top 10 Top 20 Top 30

Proactive

Cordeiro et al. [43] 75

MP 0.0202 0.0128 0.0085

TEF2 15 18 18

R3 20.00% 24.00% 24.00%

Proposed Approach 75

MP 0.0886 0.0529 0.0380

TEF 51 55 56

R 68.00% 73.33% 74.66%

Ponzanelli et al. [70] 37

MP 0.0243 0.0135 0.0099

TEF 7 7 7

R 18.92% 18.92% 18.92%

Proposed Approach 37

MP 0.1000 0.0621 0.0450

TEF 30 32 32

R 81.08% 86.48% 86.48%

Interactive

Google 75

MP 0.1571 0.0864 0.0580

TEF 57 57 57

R 76.00% 76.00% 76.00%

Bing 75

MP 0.1013 .0533 0.0364

TEF 55 58 58

R 73.33% 77.33% 77.33%

Yahoo 75

MP 0.0986 0.0539 0.0369

TEF 54 57 57

R 72.00% 76.00% 76.00%

StackOver�ow 75

MP 0.0226 0.0140 0.0097

TEF 14 17 17

R 18.66% 22.66% 22.66%

Proposed Approach 75

MP 0.1229 0.0736 0.0538

TEF 59 64 68

R 78.66% 85.33% 90.66%

1Number of exceptions used for the experiment, 2Number of total exceptions �xed.

3Percentage of the exceptions �xed

Given that selection of appropriate query terms is an essential precondition for successful search, we

conduct another experiment with those search engines using two scenarios�keywords from only exception

message, and keywords both from exception message and exception context. Table 3.5 shows the results

of those two scenarios. Here, we see that the keyword-based query that considers the exception context,

provides more relevant results than the one that does not consider. Thus the performance of the traditional

search engines is subjected to the selection of search keywords, and the appropriateness of this selection

entirely depends on the developer's skill. In our experiments, we choose the search keywords carefully
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Table 3.5: Impact of Context, and Common and Unique Results from Search Engines

Search Query Common Google Only Bing Only Yahoo Only

Exception Message Only 32 09 16 18

Message and Context of Exception 47 09 11 10

which provides the better results (e.g., precision) for Google, but it cannot be taken for granted given the

uncertainty in query selection. On the other hand, it is interesting to note that our approach, for the same

set of queries, can recommend correct solutions for more exceptions with a little compromise in the precision,

and the developers get rid of the burden of choosing appropriate tokens from the context. They can select an

encountered exception for search from Console View in the IDE, and the plugin itself captures the detailed

context of the exception (e.g., stack trace and context code) to recommend relevant results, whereas Google

depends entirely on the developers for the context-based information.

Given the precise results from Google search engine, and the correlation between Mean Precision (MP)

and Recommendation Accuracy (e.g., R) observed at Table 3.2, one may argue that only Google results should

be considered for corpus development in the proposed approach. In our research, we investigate whether such

corpus is likely to contain the correct solutions for more exceptions or not. We develop corpus for each of 75

exceptions collecting the top 100 results from Google search API against the selected exception, and apply the

proposed ranking algorithms. From Table 3.4 (bottom part) we �nd that the Google corpus-based approach

can recommend correctly for at most 57 exceptions. Moreover, Table 3.5 shows that each search provider

contains some unique recommendations which cannot be exploited if we consider only one search engine.

Therefore, the idea of accumulating search results from multiple search engines for corpus development is

promising, and it ensures the maximum Recall (R) for our approach by leveraging the existing search services.

We also investigate into why the proposed approach provides slightly less precise results compared to

Google. Given that our approach involves scraping of semi-structured data from the result web page, it

may sometimes fail to extract the exception context information properly if the page does not contain the

information in the expected tags (e.g., code, pre, blockquote). From our manual analysis with ten cases

having the most precise and the least precise recommendations, we �nd that recommended pages containing

context information (e.g., stack trace, context code snippets) relevant to the exception of interest (i.e., query

exception) are likely to rank higher than those which do not contain such information. In case of the least

precise results, the recommended pages contain that information either in an unstructured way which is

di�cult to extract or they do not contain it at all. Since our proposed approach emphasizes on the context

of the problem discussed in a result page, it does not perform well for those cases. Therefore, improvement

of the context information extraction techniques from web page can help to enhance the precision of the

proposed approach, which we consider as a scope for future study.

29



3.4 Threats to Validity

During the research, we identify a few threats to validity which we discuss in this section. First, the pro-

posed approach still does not provide the search results in real time. Given that the approach involves into

scraping of web page content for context of the discussed problem, it takes 20-25 seconds in average to return

the recommendations. We applied Java based multi-threading to speed up the computation; however, the

approach can be made returning results in real time by more extensive parallelization on the web server, and

we have already designed it for multi-core systems.

During the experiments, we note that the existing search engines evolve rapidly, especially Google, within

days and weeks, and the recommendations from the search engine vary over time for the same query. There-

fore, the statistics from the experiments with the search engines are very likely to change. Given that our

approach exploits the live API services from them, it would also evolve, and it is also subjected to the

strength and weaknesses of the search engines. However, adoption of meta search based approach is likely

to aggregate the strength and mitigate the weaknesses of each individual search engine as we showed the

e�ectiveness.

Most of the programming errors and exceptions we selected for the experiments are frequently encountered

by the developers , and their solutions are also widely discussed in the web. One may argue if the wide

availability of those solutions contributes to the better performance of the proposed approach or not. Our

approach does not di�erentiate between frequent and rare programming exceptions, and it returns the relevant

recommendations as long as su�cient data are collected from the search engines. However, the approach is

subjected to the availability of the appropriate context information (e.g., stack traces, context code) in the

web page for relevance checking.

3.5 Related Work

Existing studies related to our research focus on integrating commercial-o�-the-shelf (COTS) tools into

Eclipse IDE [71], recommending StackOver�ow posts and displaying them within IDE environment [43, 70],

recommending previously visited web pages [76] and open source codes [32], embedding traditional web

browser inside the IDE [36] and so on. Poshyvanyk et al. [71] integrate Google Desktop Search API into

Eclipse environment to facilitate customized search within the IDE, which can be leveraged by di�erent

software maintenance activities. Cordeiro et al. [43] propose an IDE based recommendation system for

programming exceptions. They extract question and answer posts from StackOver�ow data dump, and

suggest posts proactively relevant to an encountered exception in the IDE by analyzing the stack trace

reported by the IDE. In contrast to StackOver�ow data dump, our research exploits the existing web search

and StackOver�ow API services to collect �ltered and relevant data from multiple sources. It also considers

context code of the exception besides the stack trace as well as popularity and search engine con�dence of

the result link for ranking. Ponzanelli et al. [70] propose another Eclipse IDE based recommendation system,
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Seahawk, that analyzes the code under development in the IDE and recommends relevant StackOver�ow posts

containing code examples and discussions helpful to the coding. However, it does not consider the stack trace

as a component of problem context, and thus its recommendations are not su�cient for programming tasks

associated with errors and exceptions. Brandt et al. [36] embed a custom code search engine, Blueprint,

in Eclipse IDE and conduct a user study in the laboratory environment to investigate whether IDE-based

browser can help developer productivity compared to stand-alone web browser. They conclude that the tool

helped the developers signi�cantly to write better code and to �nd code examples, and task-speci�c search

interface can greatly in�uence the web search usage. Our research is related to it in the sense that we also

attempt to address the context-switching issues through IDE based web search features and suitable user

interfaces. Sawadsky et al. [76] propose Reverb, a tool that considers the code under active development

within the IDE, and proactively recommends previously visited and relevant web pages from the browsing

history. Bajracharya et al. [32] propose Sourcerer, an open source code search engine that considers both

TF-IDF and structural relationships among the code elements to recommend Java classes from 1500 open

source projects. Both Sawadsky et al. and Bajracharya et al. exploit lexical and structural features of the

source code for recommendation. In our research, we apply similar set of features of the code with the focus

on matching local code context of an encountered exception in the IDE against that of the exceptions and

programming problems discussed in the web pages for relevant recommendation within the IDE. For some of

the existing approaches [43, 70], the detailed comparison results can be found in Section 3.3.6.

3.6 Summary

To summarize, we propose a novel IDE-based context-aware web search solution for programming errors

and exceptions in the IDE. The approach exploits three reliable web search engines and a programming Q

& A site through their API endpoints for search results, and it considers both the problem content and

problem context during search. It also considers the popularity and the impression of each result to di�erent

search engines during ranking of the results. We conduct experiments on our approach with 75 programming

errors and exceptions, and compare with two existing approaches, three search engines� Google, Bing and

Yahoo and StackOver�ow search feature. Experiments show that our approach outperforms the existing

approaches, search engines and StackOver�ow search feature in terms of recall and other performance metrics.

Experiments also show that inclusion of all types of context information (i.e., detailed context) of an exception

during search can improve the accuracy of a recommendation system. Given the decisive role of a search query

in our proposed approach (i.e., especially in interactive mode), the search can be further complemented with

automated support in query development. In Chapter 4, we thus propose an approach for context-aware

search query recommendation. In order to validate the applicability of our proposed meta search based

approach in real life problem solving, an extensive user study should be conducted which is also later done

in Chapter 7.
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Chapter 4

Context-Aware Search Query Recommendation

The �rst study in Chapter 3 explores the potential for the use of technical details (e.g., stack trace) and

programming context (e.g., context code) of an encountered error or exception in the ranking of search

results. It also shows how meta search based idea can improve the performance of the search where our

proposed approach outperforms two existing approaches from the literature in terms of all performance

metrics. Our approach also performs signi�cantly better than three traditional search engines especially in

terms of recall, and its precision is comparable to Google, the best performing search engine. It should

be noted that in the �rst study, we did not focus much on the development of �ne-tuned search queries

for the encountered exceptions, which might be a possible explanation for the comparable precision of our

approach. Each search query was used to collect the top results from di�erent search engines (for dynamic

corpus development), and as we noted in the study, sometimes those queries failed to return the potential

result links for the corresponding exceptions. In this chapter, we thus discuss our second study that proposes

a novel approach for context-aware search query recommendation for programming errors and exceptions.

The rest of the chapter is organized as follows� Section 4.2 presents a motivating example and Section

4.3 explains the working methodologies, proposed metrics, and the ranking algorithms. Section 4.4 discusses

the experimental design, results and validation details, Section 4.5 identi�es the possible threats to validity,

Section 4.6 focuses on the related works, and �nally Section 4.7 summarizes the chapter with future works.

4.1 Introduction

A number of studies are conducted on supporting developers with errors and exceptions, and they can be

grouped into two broad categories�static analyzer and recommendation system. The �rst group of studies

[41, 49, 74] analyze exceptional control �ows, program behaviours and other details in order to understand the

exception handling structures of a software system. On the other hand, the recommendation systems in the

latter group recommend di�erent relevant items for a given exception to the developers such as web pages

[43, 62, 69, 72], bug reports [52], solution history [54], and exception handling code examples [33]. Most

of these recommendation systems generate search queries explicitly or implicitly by extracting necessary

keywords from the technical details (e.g., stack trace) or the context (e.g., context code) of an encountered

exception. However, none of them are specialized in search query recommendation, and their queries might
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not be applicable for direct use in the traditional web search due to certain restrictions. First, the queries

are often formatted with speci�c notations to meet the speci�cations of the corresponding recommender

service module [33, 52], and they cannot be directly used as search queries. Second, the queries generated by

those existing systems are often long (i.e., contain up to ten program tokens) [69, 70], and the traditional web

search engines (e.g., Google, Bing and Yahoo) do not support long queries. Third, existing approaches [43, 70]

analyze either the stack trace or the context code of an encountered exception in order to extract suitable

tokens for a search query for the exception. They also consider either degree of interest [43] or frequency [69]

of a token, and determine the appropriateness (i.e., suitability) of the token in the search query. Both the

heuristic metrics are overly simple or not much e�ective in isolation, and thus, the chosen tokens might not

represent the exception or its context in the search query properly. Our �ndings from the experiments in the

�rst study (Section 3.3.6) also support this observation.

In this study, we propose a novel query recommendation approach that recommends suitable search queries

for given programming errors and exceptions by exploiting their technical details and contexts. To the best of

our knowledge, there exist no studies for such query recommendation. The proposed approach exploits stack

trace and context code (i.e., a segment of the code that triggers the exception) of an encountered exception

in the IDE, and adopts a popular graph-based term-weighting technique [34] (e.g., Google's PageRank) in

addition to combining and re�ning existing heuristics (e.g., degree of interest, frequency) in order to choose

suitable keywords for a search query. It recommends a ranked list of suitable queries within the IDE, which

can be readily used by a developer for web search. The approach also overcomes certain limitations with the

existing recommendation systems. First, each of the queries is recommended as a list of keywords chosen

from the detailed context (e.g., stack traces, context code) of an exception, and it is readily applicable to

keyword-based web search. Second, the recommended queries are generally of short-length, and our approach

also provides query-length customization feature. Third, the proposed approach not only combines or re�nes

the existing heuristics [43, 69, 70] of token importance in the context of the exception but also applies a

popular graph-based term-weighting technique (i.e., widely used in information retrieval) in order to capture

the importance (i.e., suitability) of a program token (e.g., class name and method name) for the search query.

Fourth, the search query consists of only program artifacts such as exception name, class name or method

name, and thus it could be possibly used with code search engines as well for relevant code examples.

We conduct experiments on the proposed approach using 50 exceptions and associated details (stack

traces and context code) collected from our previous study [72] that recommends relevant web pages for

programming errors and exceptions. We analyze exception message, stack trace and context code of each

of the exceptions, and collect solution links from three popular search engines (Google, Yahoo and Bing) in

order to develop an oracle (i.e., a gold-set of solutions). We then collect search results against the top ranked

queries by our approach for each of the exceptions, and evaluate them using the oracle. The experiments show

that our recommended queries return relevant web pages with 55.31% mean-average precision and 35.23%

recall, and the results solve 80% of the exceptions, which are promising according to the relevant existing
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Listing 4.1: Context Code of an Exception

44 FileInputStream fis = new FileInputStream(file);
45 ObjectInputStream ois = new ObjectInputStream(fis);
46 ArrayList<Record> currentList = new ArrayList<>();
47 // restore the number of objects
48 int size = ois.readInt();
49 // restore the objects
50 for (int i = 0; i < size; i++) {
51 Record current = (Record) ois.readObject();
52 currentList.add(current); }

Listing 4.2: Corresponding Stack Trace of the Exception from Listing 4.1

1 Exception in thread "main" java.io.EOFException
2 at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
3 at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java

:2750)
4 at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:780)
5 at java.io.ObjectInputStream.<init>(ObjectInputStream.java:280)
6 at HighScores.<init>(HighScores.java:45)
7 at HighScores.main(HighScores.java:151)

literature [43, 72]. We also compared our queries against traditional search queries and queries from three

existing approaches for the same dataset, and found that the recommended queries by our proposed approach

are more e�ective than others in terms of mean average precision, recall, and percentage of exceptions solved.

Finally, in order to further validate the applicability of our queries, we conducted a user study with �ve

participants (graduate research students), and found that the search queries provided by the participants

matched with our recommended queries with a pyramid score of 0.84, which is also highly promising.

4.2 Motivating Example

Let us consider a problem solving scenario where a developer attempts to restore a list of serialized objects

from a �le, and encounters an EOFException. The exception is triggered from the context code in Listing

4.1, and the IDE reports the corresponding stack trace in Listing 4.2. The reported information by the IDE

does not provide much insight into how to solve the exception, and the developer looks into web for relevant

information. However, she faces several challenges in formulating the search query. First, the technical error

message (e.g., Line 1 in Listing 4.2) is too generic, and the stack trace contains a lot of information. Neither

the error message nor the trace information is a good candidate for search query. Second, although the stack

trace helps her identify the source line (e.g., Line 45 in Listing 4.1) that triggers the exception, she needs

more insightful analysis about the structure (e.g., hierarchical method calls) and behaviour of the exception as

well as automatic supports (e.g., automatic query suggestion and completion) in order to be able to actually

choose a suitable search query, which are not provided by either the IDE or any of the existing approaches.

Third, the traditional search engines suggest query phrases during web search, which might be popular but

not often appropriate enough for the programming problem at hand.
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Figure 4.1: Stack Trace Token Graph of Stack Trace in Listing 4.2

Now let us consider the supports provided by our proposed approach in formulating search queries for

the encountered exception. Listing 4.3 shows a ranked list of top �ve recommended queries by our approach.

These queries can bene�t the developer in the formulation of suitable queries from several perspectives. First,

the queries are developed by carefully extracting (e.g., AST analysis, island parsing) suitable tokens from

the stack trace in Listing 4.2 and context code in Listing 4.1. They then are recommended in the form of

automatic suggestions within the IDE, which reduces the developer e�ort for query formulation. Second,

each of the queries are represented as a list of tokens tuned for keyword-based search, and one can readily

use them. Third, the approach visualizes the static relationships (i.e., between classes and methods) and

call dependencies (i.e., method call sequences) found in the trace information as a trace token graph (Fig.

4.1), and demonstrates the importance of a token among other candidate tokens in terms of connectivity. In

other words, the graph provides a high-level overview of the structure and the control �ow of the encountered

exception, which may help the developer in preparing customized search queries or even may facilitate the

resolution of the exception without a web search.

Listing 4.3: Recommended Queries for Context Code in Listing 4.1 and Stack Trace in Listing 4.2

1 java.io.EOFException ObjectInputStream readShort readFully

2 java.io.EOFException readStreamHeader readShort readFully

3 java.io.EOFException readShort readFully PeekInputStream

4 java.io.EOFException ObjectInputStream readStreamHeader readFully

5 java.io.EOFException ObjectInputStream readFully PeekInputStream

4.3 Proposed Approach

In this section, we discuss the working methodology of our approach, our proposed metrics and ranking

algorithms for query tokens, and query formulation, ranking and recommendation techniques.
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Figure 4.2: Schematic Diagram of Proposed Approach (QueryClipse)

4.3.1 Methodology

The schematic diagram of our proposed approach in Fig. 4.2 shows di�erent steps involved in search query

recommendation. We package our recommendation service as an Eclipse plugin, QueryClipse [23]. Once

an exception occurs and a developer requests for search queries (Fig. 4.2-(a)), technical details (e.g., error

message and stack trace) (Fig. 4.2-(b)) and context code (Fig. 4.2-(c)) of the exception are collected, and the

trace information is analyzed to develop a token graph (Fig. 4.2-(d)). The graph encodes the connectivity

among di�erent trace tokens based on implied static relationships (e.g., class-to-method relations, Object-

InputStream-to-readStreamHeader) and call dependencies (i.e., sequence of calls) among di�erent methods

in the stack trace (Fig. 4.2-(b)). The computation module (Fig. 4.2-(d)) then analyzes the constructed

graph, exception details and the context code in order to derive di�erent metrics and heuristic measures,

which are used to calculate the score (i.e., relative importance) of each of the individual tokens in the graph.

It then chooses the top �ve tokens, and develops di�erent combinations of tokens, which are ranked (i.e.,

based on individual token score), and then recommended to the developer in the IDE (Fig. 4.2-(e)). The

proposed approach also visualizes the constructed token graph (e.g., Fig. 4.2-(f)), and the developer can

prepare customized search queries by choosing appropriate tokens from the graph for the exception.
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4.3.2 Proposed Metrics

To the best of our knowledge, there exist no studies that focus on the search query recommendation for

programming errors and exceptions. Existing studies [43, 69, 70] that recommend relevant posts from Stack-

Over�ow1 Q & A site for a given programming exception or any other problem, generate search queries

implicitly. They consider either frequency of a program token in the context code [69, 70] or proximity of a

trace token to the location of exception in the stack trace [43], and use the top ranked tokens to develop a

search query. However, both heuristic measures are overly simple and are derived from the partial context

(i.e., only either stack trace or context code) of the exception, and thus they may not be very e�ective for

query formulation. In our study, we re�ne those heuristics, adapt another metric from information retrieval

domain, and then combine all three measures into a compound metric� token score. This section discusses

our proposed metrics that are used to determine the suitability or appropriateness of a trace token in the

search query for the exception.

Trace Token Rank (TTR)

Existing studies on information retrieval [31, 34, 56] often use a graph-based term-weighting technique, where

they consider a text document as a network (i.e., graph) of interdependent (i.e., for meaning) terms. The

dependencies among the terms are determined based on their co-occurrences in the document. In our research,

we consider the stack trace (e.g., Listing 4.2) of an exception as such a document, and exploit the dependencies

and static relationships among the trace tokens in order to determine their applicability or importance in

the search query. However, we adopt a di�erent approach other than the approach of co-occurrence in

determining the relationships and the dependencies among the tokens. Nguyen et al. [67] propose a graph-

based representation for API usage in a code segment, where they show the static relationships (e.g., attribute

to class relationships) and dependencies (e.g., data dependency and temporal usage order) among di�erent

program elements (e.g., API objects, methods) in the graph. A stack trace generally contains a series

of method call references, which also encode such static relationships and dependency (e.g., control �ow)

information. We thus adapt the graph-based representation by Nguyen et al. for the stack trace, and develop

a token graph (e.g., Fig. 4.1) by extracting suitable tokens such as class name and method name from the

trace information. We also exploit the static relationships between Java classes and their methods as well as

the caller-callee relationships among the methods in order to connect the tokens in the graph. In the graph

(e.g., Fig. 4.1), the tokens are connected with inbound and outbound links, and we apply the graph-based

term-weighting technique by Blanco and Lioma [34], an adaptive version of PageRank algorithm (Section

2.8), in order to determine the Trace Token Rank (TTR) as follows:

TTR(Ti) = (1− d) + d×
∑

kεIn(Ti)

(
TTR(Tk)

|Out(Tk)|
) (4.1)

1http://stackover�ow.com
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Here, In(Ti) refers to the list of tokens to which token Ti is connected through inbound links, Out(Ti) refers

to such a list to which Ti is connected with outbound links, and d is the damping factor. In the context of

PageRank algorithm that models browsing behaviours of the web surfers, damping factor is the probability

of randomly clicking a page by a surfer in the web for browsing. In our research, we use it as the probability

of a token to be selected as a keyword in the search query. We use an iterative version of PageRank score

calculation with a limit of 100 iterations, and collect token rank score for each of the tokens in the token

graph. In order to simplify the �nal score calculation, we also normalize the token rank of each of the tokens.

Degree of Interest (DOI)

Cordeiro et al. [43] propose a heuristic measure, Degree of Interest, in order to estimate the proximity of a

method call reference in the stack trace to the location of corresponding exception in the code. They apply

the measure to each of the tokens in each call reference, and then use the tokens along with those measures

for query formulation and for determining structural similarity between two stack traces. In our research,

we leverage this heuristic measure in order to determine the applicability of a stack trace token in the search

query. The idea is� the closer a token is to the location of exception, the more applicable it is for a search

query. If a trace block contains N method call references, then Degree of Interest, Sdoi, for each of the call

references can be estimated as follows:

Sdoi = 1− ni − 1

N
(4.2)

Here, ni represents the position of a method call reference in stack trace. We consider each of the tokens

in the token graph (e.g., Fig. 4.1) as a query token candidate, and collect the degree of interest from its

corresponding method call reference. In case of the presence of a single token in multiple call references, we

average the measures. The proximity measure values from zero to one, where zero indicates that the token

(or its call reference) is far away from the location of exception, and one means that the token is most likely

in the reference that triggers the exception.

Trace Token Frequency (TTF)

Ponzanelli et al. [69] analyze the source code under development in the IDE, and use the ten most frequent

program tokens (e.g., class name, method name) as a search query in order to collect relevant StackOver�ow

posts for the programming task at hand. In this research, we consider such source code tokens that are found

in the trace information. The idea is that the reported classes and methods in the stack trace are more likely

responsible for the encountered exception, and an appropriate search query for the exception should include

them. However, the stack trace often contains a number of tokens, and the most frequent ones in the context

code should be privileged. In our research, we thus consider each of the tokens in the token graph, and

calculate their frequency in the context code (e.g., Listing 4.1) of the encountered exception. In case of Java

classes, we consider the number of instances, and in case of methods, we consider the invocation frequency.
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We then assign a normalized frequency score, TTF (Ti), to each of the tokens as follows:

TTF (Ti) =
Fi

max(Fi)
(4.3)

Here Fi denotes the actual frequency of a trace token in the context code, andmax(Fi) refers to the maximum

frequency among those of all tokens in the token graph.

4.3.3 Token Score Calculation

In this research, we consider three aspects�token rank, proximity to the location of exception and token

frequency for the score calculation (i.e., determining importance) of each of the chosen program tokens (e.g.,

class name and method name) from the stack trace. Token rank shows the applicability of a Java class

name or a method name as a query token by exploiting its implied static relationships and call dependency

information in the stack trace. On the other hand, the rest two heuristic measures show the importance of a

trace token in terms of its location in the stack trace and frequency in the context code respectively. In order

to determine the �nal score of a trace token, we simply combine all three normalized measures as follows:

S(Ti) = α× TTR(Ti) + β ×DOI(Ti) + γ × TTF (Ti) (4.4)

Here, TTR,DOI and TTF are trace token rank, degree of interest and trace token frequency of a token

respectively, and α, β and γ are the relative weights of the corresponding metrics. We consider a heuristic

value of 0.90 for α, 1.00 for β, and 0.50 for γ. We choose these heuristic weights based on our extensive

and iterative controlled experiments with a subset of 20 exceptions and their corresponding search queries,

manual analysis on the experimental results, discussion among the authors, and also some helpful ideas from

the existing studies [43, 72]. While these heuristic values might seem a bit arbitrary, we �nd the combination

to be the best in our experiments to represent the relative importance of di�erent aspects of the �nal score

for a trace token.

4.3.4 Query Ranking & Recommendation

Once the �nal scores of the tokens are calculated, we choose a list of the top scored �ve tokens (i.e., motivated

by the approach of Cordeiro et al. [43]). It should be noted that we do not include the insigni�cant tokens

such as main, init or (init) in the list, and the list only contains di�erent important class name and method

name tokens. We then develop di�erent combinations of tokens choosing a �xed number of tokens each time

from the list. We experimented with di�erent sizes for each token combination, and �nally choose a size of

three (i.e., �xed number) for the combinations. Each of these combinations of tokens is a candidate query,

and we calculate the score of the query based on its corresponding token scores. We then rank each of the

candidate queries, and recommend the top �ve candidates. It should be noted that name and technical error

message of the encountered exception are prepended to each of the candidates in order to develop the �nal

queries. For example, Listing 4.3 shows the top ranked �ve search queries for the showcase exception with

stack trace in Listing 4.2 and context code in Listing 4.1.
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4.4 Experimental Design, Results and Validation

In this section, we discuss the detailed design of the conducted experiments, analyze the results and validate

them against three existing approaches. We also study the applicability of the recommended search queries

by our approach using a user study with �ve participants.

4.4.1 Dataset and Tools

In our experiments, we use 50 exceptions, their technical details (e.g., stack traces) and context information

(e.g., context code). Most of them are collected from our previous work [72] on the recommendation of web

pages for programming errors and exceptions, and a few of them are collected from di�erent online sources

such as pastebin [20] and StackOver�ow. We collect the most appropriate solutions for those exceptions with

the help of four available search engines� Google, Bing, Yahoo and Ask, and develop an oracle. Given that

selection of solutions for an exception is a subjective approach, we validate the solutions in the oracle with the

help of peers. All the data used for experiments can be found online [22]. During score calculation of trace

tokens, the stack trace of each exception is analyzed for trace token graph, and we use a popular Java library,

JGraphT2 for graph-based analysis and visualization. We also analyze the context code of the exception in

order to detect the occurrences of the trace tokens. In the analysis of the code, we use an AST-based parser,

JavaParser3 (for compilable code) and an island parser (for non-compilable code) [72] in order to extract

class object instantiation and method call references.

4.4.2 Existing Query Recommender

We investigate the existing search query recommendation services. Most of the traditional keyword-based

search engines (e.g., Google, Bing and Yahoo) support search query suggestions based on past queries4

made by other users. The support sometimes helps a developer to choose an appropriate search query

for the encountered programming error or exception through several attempts; however, it comes with two

serious limitations. First, it only can recommend useful queries for the errors and exceptions which are

widely discussed and searched over the Internet in the past. Second, both an IDE and a search engine

work in di�erent context from each other, and the search engine is not generally aware of the context (i.e.,

surroundings, circumstances) of the encountered exceptions in the IDE. Thus, it recommends queries or search

results irrespective of the problem context of interest, and a developer often faces di�culties in choosing an

appropriate search query for the encountered exception. In other words, she is responsible for carefully

representing the context of the problem to the search engine in order to get either relevant query suggestions

or relevant search results.

2http://jgrapht.org
3http://code.google.com/p/javaparser
4http://www.google.com/support/enterprise/static/gsa/docs/admin/70/gsa_doc_set/xml_reference/query_suggestion.html
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4.4.3 Performance Metrics

Our proposed approach profoundly aligns with the research areas of information retrieval and recommendation

systems. In order to evaluate the e�ectiveness of our recommended queries, we conduct an extensive web

search and a user study using them, and apply the following performance metrics for evaluation:

Mean Average Precision at K (MAPK): Precision at K calculates precision at the occurrence of

every relevant result in the ranked list. Average Precision at K (APK) averages the precision at K for all

relevant results in the list for a search query. Mean Average Precision is the mean of average precision at K

for all queries in the dataset.

APK =

∑D
k=1 Pk × relk
|RR|

(4.5)

MAPK =

∑
qεQAPK(q)

|Q|
(4.6)

Here, relk denotes the relevance function of kth result in the ranked list, Pk denotes the precision at kth

result, and D refers to number of total results. RR is the set of relevant results for a query, and Q is the set

of all queries in the dataset.

Recall (R): Recall denotes the fraction of all the relevant results in the dataset (i.e., oracle) that are

retrieved.

Pyramid Score (PS): Haiduc et al. [53] use Pyramid score [66] in order to compare automatic summaries

of source code against developer provided summaries. In our research, we use this metric to compare the

recommended queries by our approach against the user provided search queries for an exception in the user

study (Section 4.4.6). Suppose N = 5 participants choose a list of total M = 10 tokens in their search

queries, and the recommended query contains K = 5 tokens. Now we sum up the frequency of each of the

recommended tokens in the user queries, and also identify the top most K frequent tokens in those queries.

Table 4.1: Pyramid Score Calculation

exception util concurrent modi�cation arraylist abstractlist java thread main next

P1 x x x x x

P2 x x x x x

P3 x x x x x

P4 x x x x x

P5 x x x x x

RQ1 x(2) x(5) x(4) x(3) x(1)

RQ=Recommended Query, Pyramid score=(5+4+3+2+1)/(5+4+3+3+3)=15/18=0.83

For example, in Table 4.1, concurrent, modi�cation, exception, arraylist and next are the recommended query

tokens by our approach, and the sum of their frequencies is 15. On the other hand, the most frequent �ve

tokens� concurrent, modi�cation, util, arraylist and abstractlist in the user queries provide such a sum of

18, and Pyramid score is calculated as a ratio of these two summations, which is 0.83 in this case. The
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score values from zero to one, where one indicates that the recommended query is comparable to �ne-tuned

user queries, and zero indicates that the recommended query does not match with the user queries at all. A

pyramid score around 0.5 indicates that the query matches with the �ne-tuned user queries moderately, and

thus may not be promising.

4.4.4 Experimental Results

We conduct experiments with 50 exceptions and their context details (stack traces and context code), where

the proposed approach analyzes the stack trace and the context code of each of the exceptions, and returns

a list of ranked search queries. We choose the top-ranked �ve queries, and collect the top 20 search results

from each of the three most popular web search engines (i.e., according to Alexa5 ranks)� Google, Yahoo and

Bing by accessing their API endpoints. The search results are then analyzed and evaluated using the oracle,

and Table 4.2 and Table 4.3 report the evaluation details.

Table 4.2 reports the �ndings of our experiments on the proposed approach, where all three metrics�

Degree of Interest, Trace Token Rank and Trace Token Frequency are considered both in isolation as well

as in combination. We note that Degree of Interest and Trace Token Frequency metrics perform quite

well in terms of percentage of exceptions solved (PTCS) (e.g., 78.00%) and mean average precision (MAPK)

(e.g., 57.00%) respectively for all search engines except Google. Trace Token Rank performs moderately (e.g.,

76.00% and 52.65% respectively) in terms of both metrics. When any two metrics are combined, we found the

combination�{Degree of Interest and Trace Token Rank} performs the best in terms of recall (e.g., 35.23%)

and percentage of exceptions solved (e.g., 78.00%), and moderate in terms of precision. On the other hand,

the combination-{Degree of Interest and Trace Token Frequency} provides a relatively better mean average

precision (e.g., 53.49%) while it solves almost equal number of exceptions. However, when we consider all

three proposed metrics (Section 4.3.2) in combination, our approach performs the best in terms of almost all

performance metrics with Bing and Yahoo search engines. For example, Yahoo solves 80% of the exceptions

with 35.23% recall and a maxiumum of 55.31% precision. We note the relatively lower performance by our

approach with Google search for both isolated and combined metrics, and we investigate the issue later in

the chapter.

Our proposed approach recommends a ranked list of search queries instead of a single query for an

exception of interest. Table 4.3 reports the �ndings of our investigation into the e�ectiveness of the ranking

in search queries. We choose the top ranked �ve queries for an exception, and conduct web search using

three search engines. Given that conducting such search with all exceptions in the dataset is a non-trivial

task, we chose ten exceptions (or stack traces) with trivial error messages (e.g., contain exception names

only). The idea is to examine the e�ectiveness of our queries for the exceptions that provide a developer with

limited opportunities to develop search queries. From Table 4.3, we note that Bing performs signi�cantly

well in terms of all three performance metrics�mean average precision (e.g., 74.26%), recall (e.g., 41.18%)

5http://www.alexa.com/topsites, visited on June 2014
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Table 4.2: Results of Experiments on Di�erent Aspects for Token Importance

Score Combination TE Metric
Google Bing Yahoo

Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

Degree of Interest (DOI) 50

MAPK 39.84% 39.84% 49.48% 47.90% 50.12% 48.56%

R 17.61% 17.61% 27.84% 30.68% 30.68% 32.95%

PTCS 52.00% 52.00% 72.00% 74.00% 78.00% 78.00%

Trace Token Rank (TTR) 50

MAPK 36.46% 36.46% 52.40% 52.65% 47.69% 46.62%

R 15.34% 15.34% 28.97% 30.11% 32.95% 34.65%

PTCS 46.00% 46.00% 70.00% 74.00% 74.00% 76.00%

Trace Token Frequency (TTF) 50

MAPK 37.57% 37.57% 57.00% 55.75% 55.47% 55.46%

R 14.77% 14.77% 22.16% 23.29% 25.57% 25.57%

PTCS 46.00% 46.00% 66.00% 66.00% 68.00% 68.00%

{DOI, TTR} 50

MAPK 36.36% 36.36% 49.24% 49.04% 51.70% 51.61%

R 15.91% 15.91% 27.84% 30.68% 34.09% 35.23%

PTCS 48.00% 48.00% 70.00% 76.00% 76.00% 78.00%

{TTR, TTF} 50

MAPK 38.23% 38.23% 50.18% 50.09% 45.46% 44.60%

R 15.34% 15.34% 29.55% 31.25% 30.68% 32.39%

PTCS 46.00% 46.00% 70.00% 74.00% 68.00% 70.00%

{DOI, TTF} 50

MAPK 37.26% 37.26% 49.53% 48.23% 53.49% 51.35%

R 17.61% 17.61% 27.84% 30.11% 30.68% 32.95%

PTCS 50.00% 50.00% 72.00% 74.00% 78.00% 78.00%

{DOI, TTR, TTF} 50

MAPK 34.06% 34.06% 51.85% 50.44% 55.31% 53.40%

R 13.64% 13.64% 27.84% 31.25% 31.82% 35.23%

PTCS 42.00% 42.00% 72.00% 76.00% 76.00% 80.00%

TE=Total exceptions in the experiment, PTCS=Percentage of the exceptions solved.

and percentage of exceptions solved (e.g., 100%) for the Rank II queries, and Yahoo does almost the same

for the Rank III queries. Both of them also perform comparatively in terms of all three performance metrics

for the top ranked (i.e., Rank I ) queries. On the other hand, both search engines perform relatively poor for

Rank IV and Rank V queries. Thus the �ndings indicate that the most e�ectives queries can be found in

the top three positions of the ranked list by our approach. It is also observed that the queries of a particular

rank may not be equally e�ective for di�erent search engines, which validates our idea of recommending a list

of queries. The reduced e�ectiveness of the queries in the bottom of the list also indicates that the ranking

of the queries might be quite meaningful, and this �nding is also partially validated by the results from our

conducted user study (Section 4.4.6).

4.4.5 Comparison with Existing Approaches

In order to validate performance of the recommended queries by our approach, we compare them with

traditional search queries and the queries from three existing approaches�Cordeiro et al. [43], Ponzanelli
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Table 4.3: Results of Experiments on Di�erent Ranked Queries

Query Rank TE Metric
Google Bing Yahoo

Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

Rank I 10

MAPK 17.43% 17.43% 67.92% 67.92% 73.10% 68.86%

R 11.76% 11.76% 38.24% 38.24% 38.24% 41.18%

PTCS 30.00% 30.00% 90.00% 90.00% 90.00% 90.00%

Rank II 10

MAPK 20.00% 20.00% 74.26% 74.26% 63.33% 63.33%

R 5.88% 5.88% 41.18% 41.18% 38.24% 38.24%

PTCS 20.00% 20.00% 100.00% 100.00% 100.00% 100.00%

Rank III 10

MAPK 27.00% 27.00% 71.43% 71.43% 68.65% 69.56%

R 11.76% 11.76% 35.29% 35.29% 41.18% 44.18%

PTCS 40.00% 40.00% 90.00% 90.00% 90.00% 100.00%

Rank IV 10

MAPK 33.67% 33.67% 61.42% 61.43% 66.76% 66.76%

R 14.71% 14.71% 29.41% 29.41% 35.29% 35.29%

PTCS 50.00% 50.00% 80.00% 80.00% 90.00% 90.00%

Rank V 10

MAPK 27.00% 27.00% 70.00% 68.02% 67.83% 67.83%

R 14.71% 14.71% 29.41% 32.35% 38.23% 38.23%

PTCS 50.00% 50.00% 90.00% 90.00% 90.00% 90.00%

TE=Total exceptions in the experiment, PTCS=Percentage of total exceptions solved

Table 4.4: Comparison with Queries from Traditional and Existing Approaches

Query Recommender TE Metric
Google Bing Yahoo

Top 10 Top 20 Top 10 Top 20 Top 10 Top 20

Traditional Approach
50

MAPK 38.97% 38.97% 44.11% 43.82% 43.18% 43.18%

R 19.88% 19.88% 24.43% 26.14% 25.00% 25.00%

(Exception message only) PTCS 52.00% 52.00% 58.00% 60.00% 56.00% 56.00%

Cordeiro et al. [43] 50

MAPK 21.33% 21.17% 19.22% 19.22% 15.94% 16.60%

R 10.80% 11.93% 11.93% 13.07% 10.80% 13.06%

PTCS 36.00% 38.00% 34.00% 36.00% 32.00% 40.00%

Ponzanelli et al. [70] 50

MAPK 14.36% 14.36% 30.27% 29.98% 28.12% 28.12%

R 9.09% 9.09% 12.50% 13.07% 12.50% 12.50%

PTCS 24.00% 24.00% 38.00% 38.00% 38.00% 38.00%

Rahman et al. [72] 50

MAPK 31.96% 31.96% 54.93% 53.73% 54.29% 52.96%

R 13.64% 13.64% 29.55% 31.82% 26.14% 28.41%

PTCS 40.00% 40.00% 74.00% 76.00% 68.00% 70.00%

Proposed Approach
50

MAPK 34.06% 34.06% 51.85% 50.44% 55.31% 53.40%

R 13.64% 13.64% 27.84% 31.25% 31.82% 35.23%

(Recommended queries) PTCS 42.00% 42.00% 72.00% 76.00% 76.00% 80.00%

TE=Total exceptions in the experiment, PTCS=Percentage of total exceptions solved
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et al. [69] and Rahman et al. [72]. It should be noted that these approaches do not focus on search query

recommendation although they generate queries for search result collection. Table 4.4 reports the �ndings

from our comparative studies.

Software developers often copy the technical error message (e.g., �rst line in the stack trace in Listing

4.2) of an encountered exception, and perform web search. In our comparative study, we consider such

message from the stack trace as a traditional search query for each exception in the dataset, and compare

them with our recommended queries. From Table 4.4, we note that our queries perform signi�cantly better

than traditional search queries in terms of all three performance metrics with especially Bing and Yahoo.

For example, the traditional queries return results from any of the search engines with a maximum of 44.11%

mean average precision and 26.14% recall, and the results solve only 60% of the exceptions. On the other

hand, the recommended queries by our approach return results with a maximum of 55.31% mean average

precision and 35.23% recall, and the results solve a maximum of 80% of the exceptions.

Cordeiro et al. [43] propose an IDE-based StackOver�ow(SO) post recommendation approach, where they

analyze tokens from the stack trace of an encountered exception in order to develop a search query. Their

query development technique is partially similar to ours in the sense that they also consider the Degree of

Interest metric. However, they simply capture all the tokens from a method call reference in the stack trace

and treat them with equal importance. On the other hand, we carefully choose the class name and method

name tokens from the reference, determine their relative importance using a graph-based term weighting

approach, and also identify their occurrences in the context code. The idea is to prepare a search query that

captures required information both from the stack trace and the context code. From Table 4.4, we note that

the search queries by Cordeiro et al. can return results with a maximum of 21.33% mean average precision

and 13.06% recall, and the results can solve only 40% of the exceptions, which are signi�cantly poor compared

to those of our queries.

Ponzanelli et al. [69] propose another IDE-based SO post recommendation approach that analyzes code

under development in the IDE, and develops a search query. The approach is not intended for recommending

SO posts about programming errors and exceptions; however, it follows a similar technique to ours in identi-

fying tokens from the code. They analyze the code and extract the ten most frequent tokens containing class

name and method name for a search query. On the other hand, we adopt a more selective strategy in this

regard besides choosing other metrics. We choose only such source code tokens (e.g., class name, method

name) those are found in the stack trace. The idea is that the reported classes and methods in the stack trace

are more likely responsible for the encountered exception, and they should be preferred over other tokens for

the search query. From Table 4.4, we note that the search queries by Ponzanelli et al. [69] can return results

with a maximum of 30.27% mean average precision and 13.07% recall, and the results can solve at most 38%

of the exceptions, which are relatively poor compared to those of our queries. The �ndings also indicate that

search queries based on highly simpli�ed heuristics (e.g., frequency) are not much e�ective.

In our previous work� SurfClipse [72], in order to develop a search query, we chose �ve tokens with the
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highest Degree of Interest from the stack trace and �ve most frequent tokens from the context code of an

encountered exception. Thus tokens from the context code were not chosen carefully, and the importance

(i.e., suitability, appropriateness) of each individual token in the search query was not properly determined.

In some cases, the generated queries were also too long to return results from the traditional search engines.

On the other hand, the proposed approach in this study analyzes three important aspects�token rank, token

frequency and proximity to the location of exception of each token in the token graph in order to determine

its applicability in a search query. More importantly, we adapt a graph-based term-weighting technique

of information retrieval domain for the stack trace of a programming exception, and estimate the relative

importance of each token in an interconnected network of tokens (e.g., Fig. 4.1). From Table 4.4, we note that

the search queries from our previous approach [72] return results with a maximum of 54.93% mean average

precision and 31.82% recall, and the results solve at most 76% of the exceptions. The �ndings indicate that

our previous approach [72] is quite comparable; however, the proposed approach still performs relatively

better in terms of all three performance metrics.

In our experiments, we note that all search queries�recommended, traditional and from existing approaches

perform relatively poorly with the Google search engine compared to with Bing and Yahoo. We investigate

the issue and observe a remarkable scenario. Google follows a strict limit (e.g., 128 characters) in the query

length [10], and does not return results for the queries that exceed that limit. However, as we noticed,

Bing and Yahoo return results for the same queries, which might be a possible explanation for the relatively

low performance of all the queries with Google. All the queries in our experiment contain multiple words,

contain programming keywords and thus are complex in nature. Two existing studies [59, 81] show that

Google performs relatively poor with complex multi-word queries compared to Yahoo, and Bing, and they

also support our observation.

We also investigate the ten exceptions for which our recommended queries did not return any solution

web link with any of the search engines. We analyze the search queries, and found two cases. First, most of

those exceptions are too common (e.g., FileNotFoundException, NumberFormatException) and their queries

(by our approach) are too generalized to retrieve the expected solutions within the top 20 positions. Second,

we found four queries (for four exceptions) of excessive length due to long error messages from the stack

traces, and no search engines did return results for them.

4.4.6 Conducted User Study

In order to validate the applicability of the search queries by our approach, we conducted a user study with

�ve participants (i.e., graduate research students of Software Research Lab, University of Saskatchewan).

We chose �ve exceptions from the dataset that contain little or no technical explanation about the cause of

exception in the stack trace. The idea was to reduce the bias of using error message only as a search query

and to avoid long query. We sent the stack trace and the context code of each exception to the participants,

and asked them to report the most suitable search query for the exception, which returns solutions from any
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Table 4.5: Comparison with User Provided Queries for Exceptions

Query No. 1 2 3 4 5 APS MAPS

PS (Rank I) 0.75 0.89 1.00 1.00 1.00 0.93

0.84PS (Rank II) 0.67 0.72 0.93 1.00 0.63 0.79

PS (Rank III) 0.67 0.72 1.00 0.93 0.63 0.79

PS=Pyramid score, APS=Average Pyramid Score

MAPS=Mean Average Pyramid Score

of the three search engines� Google, Bing and Yahoo. In order to help them with solution veri�cation, we also

provided the solution links from our developed oracle. Once we collected the queries from the participants, we

compared the recommended queries by our approach with them. We use Pyramid score for the comparison,

where the metric determines the extent to which an auto-generated (i.e., recommended) query resembles

with the manually prepared search queries by the participants for the same exception. Table 4.5 reports the

�ndings from the comparative analysis.

From Table 4.5, we note that each of top three recommended queries by our approach matches signi�cantly

with the queries from the participants. For example, Rank I queries returns an average pyramid score of

0.93, which is highly promising according to relevant literature [53, 66]. We also get higher score for Rank

II and Rank III queries. These �ndings indicate that the recommended queries are quite similar to the best

judged queries of the participants, and thus they are highly applicable for automated recommendation.

4.5 Threats to Validity

In our research, we identify several issues worthy of discussion. First, in order to develop a search query,

we choose the best combination of program tokens (e.g., class name, method name) extracted both from

the stack trace and the context code of an exception, and then add exception name and error message to

the combination. Thus the proposed approach might recommend long queries in the case where the error

message itself is lengthy. While describing a technical issue, the error message often contains di�erent items

such as �le name, URL and long package name of a class associated with the exception. In order to mitigate

the threat, we parse such items and remove them from the message. We also use only three tokens from the

context of the exception in the search query in order to keep it short.

Second, the proposed approach may not always return such search queries which are friendly to the search

engines, as it deals with complex program tokens from the stack trace and the context code of an exception.

The non-friendly (i.e., not �ne-tuned for a web search engine) search queries often fail to return enough results

which is a potential threat to our approach. In order to mitigate the threat, we not only discard insigni�cant

(e.g., main, init, run method tokens) and duplicate tokens (i.e., one token contains another token) from the

search query but also normalize (e.g., extracting out the root token, converting invoke0 to invoke) each of

the tokens in the query.
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Third, during the experiments, we note that the search engines evolve rapidly within days and weeks,

and the results from a search engine may vary over time for the same query. Therefore, the statistics from

the experiments with the search engines are very likely to change. We recommend a ranked list of similar

queries for an exception rather than a single best query so that the developers can adapt with the changed

behaviour of the search engines and still can retrieve the solution links.

4.6 Related Work

There exist a number of studies on supporting developers with programming errors and exceptions, and they

can be grouped into two broad categories�static analyzer and recommendation system. The �rst group of

studies analyze and visualize exceptional control �ows, program behaviours and other details in order to

understand the exception handling structures of a software system [41, 49, 74]. On the other hand, the

recommendation systems in the latter group recommend di�erent relevant items to the developers such as

web pages [43, 62, 70, 72], bug reports [52], solution history [54], and exception handling code examples [33].

Most of these recommendation systems generate search query implicitly by extracting necessary keywords

from the technical details of an encountered error or exception. However, those queries are often formatted

with speci�c notations to meet the speci�cations of the corresponding recommender service module [33, 52],

and they cannot be directly used as queries for traditional web search. Our work falls into the second category,

and to our knowledge, this is the �rst attempt to recommend search queries for especially programming errors

and exceptions.

Cordeiro et al. [43] propose a recommendation system that analyzes the stack trace of an encountered

exception in the IDE, and recommends relevant StackOver�ow links. Ponzanelli et al. [70] propose another

recommendation system that analyzes the code under development in the IDE, and recommends relevant

StackOver�ow links. While these two approaches exploit StackOver�ow data source only, our earlier work

[72] proposes a meta search engine that collects results from four search APIs�Google, Bing, Yahoo and Stack-

Over�ow about an encountered exception in the IDE, analyzes and ranks the results, and then recommends

to the developers. All three approaches above are closely related to our work since each of them generates

search queries implicitly following a similar approach like ours. We compared our recommended queries for

each exception in the dataset with theirs, and found that our queries are comparatively more e�ective. Our

queries return results with relatively better precision and recall and they return correctly for more exceptions

of the dataset. For a detailed comparison, readers are referred to Section 4.4.5.

There exist other studies which are not directly compared with our approach although they are related

to our work. Gu et al. [52] propose an IDE-based approach that returns the bug reports discussing errors

and exceptions similar to the ones encountered in the IDE. They analyze stack trace or execution trace

reported in the bug description and use Bug Query Language (BQL) to retrieve and recommend relevant

bug reports. Hartmann et al. [54] propose a social recommender system, HelpMeOut, for programming errors
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and exceptions that captures problem solving practices (e.g., a list of code �xes to solve an exception) of the

peers in the community, and recommends them in the IDE on the occurrence of similar exception. Marceau

et al. [62] conduct a series of studies with student programmers, and explore and analyze interactions of the

programmers with di�erent error or exception messages in the IDE. They report that those messages often fail

to convey the technical problems to the programmers. While the above approaches focus on recommending

di�erent programming artifacts such as bug reports, code examples or simpli�ed error messages, our proposed

approach recommends a list of context-sensitive and ready-to-use search queries by carefully analyzing the

technical details (e.g., stack trace) and associated context (e.g., context code) of an encountered exception.

Vahabi et al. [82] propose an orthogonal query recommendation approach that o�ers query reformulation

service. Their approach recommends alternative queries those are syntactically di�erent but semantically

similar to a previous unsuccessful query. Ensan et al. [45] propose a graph-based query recommendation

approach that recommends query terms sequentially based on the past behaviours of other users of the

search engine. While these studies are closely related to our work, they basically analyze the search engine

usage data for recommendation, and do not consider the technical details of an encountered exception. Thus

they might recommend popular search queries (i.e., as traditional search engines do); however, it cannot be

guaranteed that those queries would be relevant and useful for the encountered exception in the IDE.

4.7 Summary

In order to complement our meta search engine (Chapter 3) in search query generation and recommendation,

in this chapter, we propose a novel approach for context-aware search query recommendation for programming

errors and exceptions. The approach exploits token rank, frequency and proximity of a stack trace token to

exception location in order to determine the suitability of the token in a search query. We conduct experiments

with 50 exceptions and their context details (e.g., stack traces, context code), collect search results from three

popular search engines using the recommended queries, and evaluate them using the oracle. Our queries return

results with 55.31% mean average precision and 35.23% recall, and the results solve 80% of the exceptions,

which are promising. The recommended queries are also found to be more e�ective than the traditional

queries (e.g., exception message) and the queries from three existing approaches in terms of all performance

metrics. The conducted user study also shows that our queries are highly suitable for recommendation.

While both the meta search engine in Chapter 3 and the proposed query recommender in this chapter are

signi�cant additions to the developers' tool chain for automated support in problem solving, the tool support

can be further extended to post-search content analysis. In the next chapter (Chapter 5), we thus propose

a novel content recommendation approach that extracts and recommends the most relevant section from a

given web page for a programming exception of interest.
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Chapter 5

Context-Aware Content Suggestion from a Web Page

Our previous two studies (Chapter 3 and Chapter 4) are on the recommendation of suitable search queries

and relevant web pages for programming errors and exceptions. While the proposed approaches in those

studies help software developers collect a list of relevant web pages for an encountered exception, our third

study focuses on supporting them with post-search content analysis, more speci�cally, in �nding out the

sections of a web page that might help them with the exception in the IDE.

The rest of the chapter is organized as follows�Section 5.2 explains the proposed metrics, algorithms and

content extraction technique and Section 5.3 discusses the conducted experiments, results and validation.

Section 5.4 identi�es the threats to validity, Section 5.5 focuses on the related works, and �nally Section 5.6

summarizes the chapter with future works.

5.1 Introduction

While collecting information using traditional web search, developers �rst use a search engine with a few

keywords to get the relevant pages. However, in order to retrieve the required information, they need to

go through the pages one by one, which is challenging, and this study focuses on this particular research

problem. Both manual checking of a web page for relevant content against an error or an exception and its

context (i.e., surroundings, circumference) and working an appropriate solution out are non-trivial tasks, and

they require a signi�cant amount of cognitive e�orts. The tasks are even more complex and time-consuming

with the bulk of irrelevant (i.e., o�-topic) and noisy (e.g., advertisement) content in the page. As early as

2005, Gibson et al. [48] estimated that about 40%-50% of web data were noise, and they suggested that the

ratio would increase due to explosive growth of Internet and advances in information technology. Thus the

developers often spend a signi�cant amount of time and e�ort in searching and then extracting the content

of interest from the web pages. Fortunately, automated support in post-search content analysis can greatly

bene�t them in this regard. For example, extraction and recommendation of relevant sections from a selected

web page can help them get rid of information overload and locate the content of interest instantly, which in

turn reduce the overall problem-solving e�orts by the developers.

A number of existing studies concentrate on main (i.e., all noise-free sections) content extraction from a

web page by applying di�erent techniques such as template or similar structure detection [39, 58], machine
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learning [42, 44, 60], information retrieval, domain and context modeling [46], and page segmentation and

�ltration [40, 42, 50, 57, 68, 79]. However, no existing studies focus on targeted extraction such as extraction

of relevant sections (i.e., sections of interest) from the page. Furthermore, they were not driven by the

motivation of developer support, neither did they focus on analyzing any information (e.g., details of an

exception) from within the IDE for better extraction of the relevant page contents. Thus those studies fail to

direct one to the right (or relevant) sections of the page, and do not help much either in reducing information

overload or in locating solution in the page. Furthermore, most of the existing approaches are domain or

template speci�c, and they extract content from the web pages of di�erent domains such as news, consumer

products, business and real estates, Wikipedia and social networking. However, none of them deals with

programming related web pages, and thus they are also not properly applicable to our research problem.

In this study, we propose a novel web page content recommendation approach that extracts not only all

noise-free sections but also relevant sections of a programming related web page by exploiting the technical

details of an encountered programming exception in the IDE (i.e., context-aware approach). Once a developer

searches about an exception using a few keywords, the search engine (e.g., in our case Google) returns a

number of pages. Then the real challenge for her is to manually check those pages for relevant content for

the encountered exception, and our proposed approach helps her in this regard. The approach analyzes the

context (i.e., stack trace and associated code) of an encountered exception in the IDE and the Document

Object Model (DOM)1 tree of a returned web page, and recommends those sections in the page which are

relevant to the exception. For example, the code under development (hereby we call it context code) in Listing

5.1 triggers an EOFException, and the IDE reports the stack trace in Listing 5.2. Our approach analyzes

both the content of the returned web page (e.g., Fig. 5.2) and the technical details of the exception (e.g.,

Listing 5.1 and Listing 5.2), and extracts the relevant section(s) (Fig. 5.1, boxed area from Fig. 5.2) of the

page. We integrate Google search API into Eclipse IDE to collect web pages against the developer provided

search queries about an exception, and use those pages for the recommendation of relevant sections from

them one by one as the developer wishes. In this way, even though Google search may return a lot of web

pages for the chosen keywords against the exception, our approach can reduce the burden of the developer

by recommending the relevant sections of the pages or even indicating that some particular pages might not

have any relevant sections at all for the encountered exception. In the case of the developer interested in a

noise-free version of the web page for browsing, the approach discards the noisy sections, and returns the

remaining sections of the page. We package our recommendation solution into an Eclipse plug-in prototype,

ContentSuggest, that can be found online [5].

The proposed approach also complements existing techniques in order to overcome certain limitations.

First, the density metrics�text density and link density proposed by existing literature [57, 79] do not di�eren-

tiate between regular texts (e.g., news article) and programming related content (e.g., source code segments,

stack traces) in a web page, which is essential for e�ective content recommendation from programming re-

1http://en.wikipedia.org/wiki/Document_Object_Model
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Listing 5.1: Context code of an EOFException

FileInputStream fis = new FileInputStream(file);
ObjectInputStream ois = new ObjectInputStream(fis);
ArrayList<Record> currentList = new ArrayList<>();
// restore the number of objects
int size = ois.readInt();
// restore the objects
for (int i = 0; i < size; i++) {

Record current = (Record) ois.readObject();
currentList.add(current); }

lated web pages. Our approach considers a novel density metric related to such content� code density to

complement the existing density metrics. Second, the approach introduces a novel idea of leveraging content

relevance in the extraction and recommendation of web page content. Once noisy sections are discarded, the

approach estimates the relevance of di�erent sections of the page against the encountered exception (and its

technical details) in the IDE, and recommends the most relevant ones.

We conduct experiments on our approach using a collection of 500 programming related web pages and

150 programming errors and exceptions. We manually develop two gold sets� main-gold-set and relevant-

gold-set by carefully extracting all the noise-free sections and relevant sections of the pages respectively, and

use them as oracles in order to evaluate our approach. In the case of main (i.e., noise-free) content extraction,

our approach extracts content from the web pages with a precision of 89.88%, a recall of 87.48% and a F1-

measure of 87.53%, which are highly promising according to existing relevant literature [42, 57, 79]. In the

case of relevant content recommendation, the approach recommends content with a precision of 80.50%, a

recall of 78.39%, and a F1-measure of 76.40%, which are also promising. We compared with four existing

approaches in order to validate the performance of our approach in main content extraction, and compared

with one existing approach for validation with relevant content recommendation. In the case of main content

extraction, our approach outperforms them in terms of recall and F1-measure with comparable precision,

whereas the approach performs signi�cantly better than the existing one in all three performance metrics for

relevant content recommendation. Thus the study makes the following contributions:

• We complement the existing metrics, and propose code density metric in order to extract and recommend

content from programming related web pages.

• We introduce and successfully apply content relevance in content extraction from a web page, which

in turn provides a mean to support the developers in post-search content analysis and relevant content

recommendation.

• We package the proposed solution into an Eclipse plug-in prototype [5], that captures the technical

details of an encountered exception in the IDE, and recommends not only all the noise-free content

sections but also the relevant sections from a web page resulted from an IDE-based web search.
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Listing 5.2: Stack Trace of the Exception in Listing 5.1

Exception in thread "main" java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java

:2750)
at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:780)
at java.io.ObjectInputStream.<init>(ObjectInputStream.java:280)
at HighScores.<init>(HighScores.java:45)
at HighScores.main(HighScores.java:151)

Figure 5.1: An Example Relevant Section for the Exception in Listing 5.2

5.2 Proposed Approach

In this section, we discuss di�erent working modules of our proposed system, proposed metrics and ranking

algorithms for di�erent sections in the web page, metric weight estimation, and content extraction technique

from the DOM tree of the page.

5.2.1 Working Modules

In Fig. 5.3, the schematic diagram of our proposed approach shows the working modules, and explains

di�erent steps required for page content extraction, recommendation and visualization. We package the

whole solution as an installable Eclipse plug-in prototype [5], and it has three working modules as follows:

Content Collector: The proposed approach exploits the technical details� stack trace and context code

(i.e., a segment of the code that triggers the exception) of an encountered programming exception in order

to recommend relevant sections from a selected web page. The collector module collects the error message

and the stack trace from the active Console View (Fig. 5.3-(c)), and the context code from the active text

editor (Fig. 5.3-(d)) in the IDE. It also collects the HTML source of a selected web page (Fig. 5.3-(a)). Once

a developer selects a result page in the list and requests for relevant or main (i.e., noise-free) content (e.g.,

Fig. 5.3-(b)), the collector module downloads the HTML source of the page, and sends the HTML source as

well as the exception details to the extractor module.
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Figure 5.2: Relevant Section(s) in the Webpage

Content Extractor: The extractor module (i.e., dashed rectangle, Fig. 5.3-(e)) parses each of the tags

of a HTML page, and develops a DOM tree. It then analyzes each of the nodes in that tree, calculates

its content density and content relevance (Section 5.2.2), and assigns a content score. The module then

discards the noisy nodes based on their calculated scores and existing heuristics [79], and returns main (i.e.,

noise-free sections) content of the page. It also identi�es the DOM tree nodes that are the most relevant to

the encountered exception in the IDE, and recommends the corresponding sections in the page as relevant

content. It should be noted that the extractor module returns each type of content as HTML source so that

the organization of texts and other elements (i.e., layout of the page) is preserved during visualization.

Content Visualizer: The visualizer module consists of two panels� one visualizes the relevant sections

and the other visualizes the actual or noise-free version of a web page. We use SWT browser widget in order

to display the HTML content within the IDE. The relevant content panel (Fig. 5.3-(f)) displays only the

most relevant sections of a page recommended by the extractor module. It also highlights di�erent program

elements of interest� stack traces and code segments in those sections. The idea is to help a developer either
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Figure 5.3: Schematic Diagram of Proposed Approach (ContentSuggest)

locate the content of interest instantly or decide if the selected page is worth browsing or not. Once she

is convinced with the relevant sections, she can browse the noise-free version or the actual page using the

other panel (e.g., Fig. 5.3-(g)) for further analysis. It should be noted that the result panel (Fig. 5.3-(a,

b)) visualizes the estimated relevance of each result page against the exception in the IDE by analyzing the

meta description of the page collected from the search engine. This visualization helps the developer choose

an appropriate result page in the �rst place during searching for a solution.

5.2.2 Proposed Metrics

In this section, we discuss our proposed metrics that are used to extract and recommend both relevant

section(s) and all noise-free sections of a web page. The metrics analyze not only the legitimacy of a content

section in the page but also the relevance of the section against an exception in the IDE.

Content Density (CTD)

Existing studies [57, 79] propose and apply two density metrics�text or word density, and link density for

noise-free content extraction from a web page. However, these metrics are based on regular texts (e.g.,

news article), and they are neither properly applicable nor su�cient enough for content extraction from

programming related web pages. These pages contain items beyond regular texts such as stack traces and
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code segments. We thus modify existing metrics, introduce a new density metric, and �nally propose a

composite density metric.

Text Density (TD): Text Density represents the amount of any textual content each of the HTML tags

in the web page contains on average [79]. Thus in the DOM tree, text density (TDi) of a node is calculated

considering its number of child nodes (Ti) (i.e., inner nodes) and the amount of texts (Ci) it contains in the

leaf nodes as follows:

TDi =
Ci
Ti

(5.1)

Link Density (LD): Link Density represents the amount of linked (i.e., noisy) texts each of the HTML

tags contains on average. Existing literature [57, 79] considers any linked text in the web page as noise;

however, in our research, we make a careful choice about them. We analyze the relevance of each linked text

element against the exception of interest, and consider the element as noise only if its relevance is below a

heuristic threshold (η=0.75). We otherwise consider it as a legitimate textual element. Thus in the DOM

tree, the link density (LDi) of a node i is calculated considering its number of child nodes (Ti) (i.e., inner

nodes) and the amount of linked or noisy texts (LCi) it contains in the leaf nodes as follows:

LDi =
LCi
Ti

(5.2)

We consider each <a> tag, and check its relevance before considering it as noise. As Sun et al. [79] suggest,

we also consider <input> and <button> as linked elements, and their content as linked texts.

Code Density (CD): Code Density represents the amount of code related texts each of the HTML tags

contains on average. Programming related web pages generally contain di�erent program elements such as

stack traces and code segments, and they are of signi�cant interest to the developers. The developers often

analyze or reuse them in order to solve their programming problems. We believe that the code related

elements complement the discussion texts about programming, and thus code density can be considered as

an important indicator of legitimacy of a programming related web page. In the DOM tree, the code density

(CDi) of a node i is calculated considering its number of child nodes (Ti) (i.e., inner nodes) and the amount

of code related texts (CCi) it contains in the leaf nodes as follows:

CDi =
CCi
Ti

(5.3)

We observe that code related elements are generally posted in the page using <code>,<pre> and <block-

quote> HTML tags, and we consider their texts as code related texts in density calculation.

While text density metric represents a generalized form of density for all kinds of text, code density

and link density point to special types of text. Code density can be considered as a heuristic measure of

programming elements in the text, whereas link density is a similar measure for noise in the content. In our

research, we consider all three metrics of an HTML tag i, and propose a log-based composite density metric

called content density (CTDi), which is partially motivated by the idea of Sun et al. [79].
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CTDi = (TDi +
CDi

TDi
)× log

ln(
TDi×LDi
¬LDi

+
LDb×TDi

TDb
+e)

(
TDi

LDi
+
CDi

TDi
) (5.4)

Here, TDi, CDi, LDi and ¬LDi represent text density, code density, link density and non-link density of the

HTML tag i respectively. TDb and LDb represent the text density and link density of body tag respectively.

In Equation (5.4), TDi

LDi
is a measure of the proportion of linked texts. When a tag has higher link density,

LDi

¬LDi
× TDi expression increases the log base, TDi

LDi
gets a lower value, and thus overall content density is

penalized. However, LDb×TDi

TDb
expression maintains the balance between these two interacting parts, and

prevents a lengthy and homogeneous text block from getting a higher value or a single line text (e.g., page

title) from getting a low value. Moreover, we introduce the programming text proportion of a tag, CDi

TDi
, which

improves the overall content density metric for the HTML tag that contains both programming related texts

and comprehensive regular texts.

Content Relevance (CTR)

Existing studies [57, 79] apply di�erent density metrics in order to discard the noisy sections (e.g., adver-

tisements, navigation menus) and extract the legitimate sections from a web page. However, these metrics

are not su�cient enough for relevant content extraction from the page (i.e., our research problem). We thus

leverage the technical details of the encountered exception in the IDE, and propose three relevance metrics

in order to determine the relevance of di�erent sections in the web page against the exception.

Text Relevance (TR): Text relevance estimates the relevance of the textual content within an HTML

tag against the exception (and its context) of interest (i.e., in the IDE). The context of the exception is

represented as a list of keywords extracted from corresponding stack trace and context code (Section 5.3.3).

For example Listing 5.3 shows the context of our showcase exception in Listing 5.1 and Listing 5.2. We

calculate cosine similarity between that keyword list and the texts within each tag in the page. Since cosine

similarity measure represents the lexical similarity between two texts, we consider the calculated measure as

an estimate of lexical relevance for the tag against the exception. The relevance estimate values from zero to

one, where one refers to complete lexical relevance and vice versa.

Code Relevance (CR): Code relevance is an estimate of average relevance of a code segment (e.g.,

context code) or a stack trace block embedded within an HTML tag against that of the exception of interest.

In the DOM tree of an HTML page, in order to estimate code relevance of a node, we analyze three types

of tags� <code>,<pre> and <blockquote> under the node. According to traditional heuristics [72], these

tags generally contain the program elements, and we apply two di�erent techniques for stack traces and code

segments respectively in order to estimate their relevance.

Stack trace of a programming exception contains an error message followed by a list of method call

references that point to possible error locations in the code. As suggested by Rahman et al. [72], we develop

separate token list by extracting suitable tokens (e.g., class name, method name) from each of the stack
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Listing 5.3: Used Context of the Exception

Exception in thread "main" java.io.EOFException readInt ObjectInputStream
init readStreamHeader BlockDataInputStream readObject readShort
add main readFully FileInputStream Record ArrayList PeekInputStream

trace within the HTML tag and the stack trace in the IDE respectively. We then calculate cosine similarity

between the two lists, and consider the measure as an estimate of relevance for the stack trace within the

HTML tag against the exception of interest.

In order to determine the relevance of a code segment within the HTML tag against an exception of

interest, we collect the context code of the exception, and apply a state-of-the-art code clone detection

technique by Roy and Cordy [75]. The technique determines the longest common subsequence of source code

tokens (Slcs) between two code segments. We use it to determine the code similarity of the code segment in

the HTML tag against the context code as follows, where Stotal refers to the set of all tokens collected from

the context code of the target exception.

Sccx =
|Slcs|
|Stotal|

(5.5)

Once the relevance of all the program elements (i.e., stack traces and code segments) under an HTML tag

are estimated, we average the estimates, and consider it as the code relevance (CRi) for the tag i as follows,

where N is number of program elements found under the tag in the DOM tree.

CRi =
1

N

N∑
j=1

CRj (5.6)

While text relevance focuses on the relevance of any textual element within an HTML tag, code relevance

estimates the relevance of program elements within it. We combine both relevance metrics in order to

determine the composite relevance metric called content relevance (CTR) as follows:

CTRi = α× TRi + β × CRi (5.7)

Here α and β are the relative weights (i.e., importance) of the corresponding relevance metrics, which are

estimated using a machine learning based approach (Section 5.2.4).

5.2.3 Content Score Calculation

We consider two aspects�density and relevance of di�erent content sections in the web page in order to

extract all the noise-free ones and more importantly, the relevant ones. While the density metrics focus on

the legitimacy (i.e., purity) of the content in the page, relevance metrics check the relevance of the same

content against the programming problem (i.e., an error or an exception) at hand. The idea is to recommend

both legitimate (i.e., noise-free) and relevant content to the developers. We thus combine both aspects and

propose a composite score metric called content score (CTSi) for each of the HTML tags in the web page

as follows. It should be mentioned that we use normalized metrics in content score calculation for relevant
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content extraction in order to mitigate the bias of any of the two aspects considered.

CTSi = γ × CTDi + δ × CTRi (5.8)

Here γ and δ are the relative weights (i.e., importance) of the corresponding density and relevance metrics,

which are estimated using a machine learning based approach involving logistic regression (Section 5.2.4).

5.2.4 Metric Weight Estimation

In order to determine the relative weights of two relevance metrics�text relevance and code relevance and two

composite metrics�content density and content relevance, we choose 50 random web pages from the dataset,

and collect the corresponding metrics of 705 text blocks (i.e., page sections) by our approach from those pages.

It should be noted that the individual relevance metrics are treated equally in terms of relative importance

in the calculation of content relevance metric at this stage. We also identify whether each of those blocks

is included in the gold content or not, which provides a binary class label against the set of features (i.e.,

metrics) for the text block. We then feed the feature (i.e., metric) values and class labels of the 705 block

samples to Weka tool [29] that returns a logistic regression based classi�er model [17] which is validated with

ten-fold cross validation. In the classi�er model, each of the features is associated with certain coe�cients,

which the tool tunes in order to classify a sample (i.e., text block) with maximum accuracy. We believe that

these coe�cients are an estimate of the importance of the features used in the classi�cation, and we consider

them as the weights of the corresponding metrics [61]. For the sake of simplicity and in order to reduce bias,

we normalize those coe�cients, and consider a heuristic weight α=1.00 for text relevance and β=0.59 for code

relevance metrics. In case of composite density and relevance metrics, we �nd that the proposed approach

performs signi�cantly well with equal relative weights assigned. Thus we consider a heuristic weight of 1.00

for both the composite metrics.

5.2.5 Document Content Extraction

Once content score of each of the HTML tags in a page is calculated, the noisy elements are discarded based

on a heuristic threshold. Since <body> tag contains the whole content and encloses all other tags in the

page, its content score sums up average density and average relevance estimates of the whole page. As Sun

et al. [79] suggest in case of text density, in our research, we consider the content score of <body> tag as the

threshold score, and we exploit the DOM tree of the HTML page in order to discard the noisy elements. An

HTML page is generally divided into a set of identi�able blocks which are represented as the child nodes of

body node in the DOM tree. We check each of those child nodes for its content score, and discard the ones

having scores less than the threshold. We then explore each of the remaining child nodes, and �nd out its

inner node with the highest score [79]. The highest score of a node indicates that the corresponding tag in

the HTML page contains the most legitimate content in terms of di�erent density and relevance estimates.

In order to extract the main (i.e., noise-free) content, we keep the highest scored node along with its child

nodes, and mark them as content node. We apply the same process recursively for each node in the DOM
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tree, and �nally we get each node in the tree annotated as either content or noise. We then discard the

noisy nodes, and extract the HTML tags corresponding to the remaining nodes in the tree as the main (i.e.,

noise-free) content of the page. In case of relevant content extraction, we analyze the relevance of each of the

child nodes under body node in the DOM tree, and choose the highest scored relevant node. The idea is to

ensure that the corresponding recommended sections in the page are not only relevant but also rich in terms

of legitimacy (i.e., noise-free).

For example, our ranking algorithm returns these metric values� TD=32.74, LD=2.88, CD=24.29,

CTD=0.02, CR=0.84, TR=0.83, CTR=0.99, and CTS=1.0144, for the page section in Fig. 5.1. The

section outperforms other sections in Fig. 5.2 both in terms of legitimacy (i.e., density) and relevance with

the target stack trace in Listing 5.2. Thus our approach marks the section as a relevant one, and extracts it

for recommendation.

5.3 Experimental Design, Results and Validation

5.3.1 Dataset Preparation

In our experiments, we use a dataset of 500 web pages (hereby main set) related to 150 programming

exceptions [4], a subset of main set containing 250 web pages (hereby relevant set) related to 80 exceptions,

and technical details (e.g., error messages, stack traces and context code) of the exceptions. Most of the

technical details and the web pages are collected from our previous work� SurfClipse [72], and a few of them

are collected from di�erent online sources such as Pastebin [20] and StackOver�ow. We develop two gold sets�

main-gold-set and relevant-gold-set [4] for main set and relevant set respectively, and use them to evaluate

our approach. The �rst gold set contains all noise-free sections of a web page whereas the other contains only

the relevant sections of the page. Both gold sets are developed through extensive manual analysis, and we

spent about 40-50 working hours. One of the authors carefully extracted the desired sections from each of the

pages, which were also validated by the peer. We consider di�erent items such as advertisements, navigation

menus, copyright notice, repeated discussion texts, and insigni�cant comments as noisy content, and discard

them to obtain the main (i.e., noise-free) content of a page [79]. In case of relevant content extraction, we

analyze the relevance of each of the noise-free sections in the page against the exception of interest. We

note that most of the pages in the dataset generally start with a section that describes a technical problem

involving a programming error or exception. The section contains a question title and di�erent program

elements such as stack traces and code segments. We look for such a section in each page in the dataset, and

extract it as the most relevant section for the page. Given that determining relevance of a page section is a

subjective approach, and in order to reduce the bias, we look for relevant stack traces or code segments in a

candidate section and then extract it applying our best judgement.
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Table 5.1: Dataset Statistics

Dataset SO Pages (DSO) Non-SO Pages (¬DSO) All Pages (D) Exceptions

Main set 208 (41.60%) 292 (58.40%) 500 (100%) 150

Relevant set 101 (40.40%) 149 (59.60%) 250 (100%) 80

SO=StackOver�ow, DSO=Data from StackOver�ow

Both main set and relevant set contain about 40% of the pages from StackOver�ow Q & A site, and we

were interested to contrast them with other pages. We break each set into two more subsets�StackOver�ow

pages (DSO) and Non-StackOver�ow pages (¬DSO), and thus, we use three sets�DSO, ¬DSO and D for

each of main and relevant content extraction, where D combines both DSO and ¬DSO sets. Table 5.1 shows

the statistics of the di�erent sets of web pages.

5.3.2 Traditional Web Page Content Recommendation

We investigate existing supports for page content recommendation by traditional search engines such as

Google, Bing and Yahoo. Each of the search providers returns results in the ranked list displaying the

title and a minimal description for each of the result pages. They also highlight the terms in the title and

the description that match directly with the terms in search query. However, the limited overview (i.e.,

description) and information highlighting are not often enough, and a developer is forced to browse the result

page in order to determine its relevance against an exception of interest and its context. During the browsing,

one can exploit the search feature provided by the browsers; however, still it is not much helpful to �nd out

the most relevant or interesting sections from a web page.

5.3.3 Exception Context Representation

In our research, we apply not only the density metrics but also the relevance estimates for main (i.e., noise-

free) and relevant content extraction. Each page in the dataset is relevant to a particular exception, and we

exploit the technical details (e.g., stack trace and context code) of the corresponding exception for relevance

estimation of di�erent sections in the page. We analyze the stack trace (e.g., Listing 5.2) and extract di�erent

tokens such as package name, class name and method name from each of the method call references. We also

analyze the context code (e.g., Listing 5.1) of the exception and collect class name and method name tokens.

We use Javaparser2 for compilable code and an island parser for non-compilable code in order to extract

the tokens [72]. We then combine tokens both from the stack trace and the context code, and append the

exception name along with the exception message (i.e., highlighted in Listing 5.2) to the combined set. Thus

we get a simpli�ed context for the exception of interest, which is used in text relevance estimation (Section

5.2.2). For example, Listing 5.3 shows the context for an EOFException with stack trace in Listing 5.2 and

context code in Listing 5.1.

2http://code.google.com/p/javaparser/
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5.3.4 Performance Metrics

Our proposed approach is aligned with the research areas of information retrieval and recommendation

systems, and we thus use a list of performance metrics from those areas in order to evaluate our approach as

follows [51, 72, 79]:

Mean Precision (MP): Precision determines the percentage of retrieved content that is expected (i.e.,

main content, relevant content) from a web page. In our research, we compare the retrieved content by our

approach with the manually prepared gold sets. As Sun et al. [79] suggest, we use longest common subsequence

of tokens between retrieved content and gold content. Thus precision can be determined as follows, where a

refers to the token sequence of retrieved main or relevant content and b refers to that of the corresponding

gold content.

P =
|LCS(a, b)|
|a|

, MP =

∑N
i=1 Pi
N

(5.9)

Mean Precision (MP) averages the precision measures for all the web pages (N) in the dataset.

Mean Recall (MR): Recall measure determines the percentage of the expected content (i.e., main

content, relevant content) of a web page that is retrieved by a system. We calculate the recall of a system as

follows:

R =
|LCS(a, b)|
|b|

, MR =

∑N
i=1Ri
N

(5.10)

Mean Recall (MR) averages the recall measures for all the pages (N) in the dataset.

Mean F1-measure (MF): While each of precision and recall focuses on a particular aspect of the

performance of a system, F1-measure is a combined and more meaningful metric for evaluation
3. We calculate

F1-measure from the harmonic mean of precision and recall as follows [79]:

F1 =
2× P ×R
P +R

, MF =

∑N
i=1 F1i

N
(5.11)

Mean F1(MF) averages all such measures.

5.3.5 Experimental Results

We conduct experiments with two datasets� main set and relevant set, and extract main (i.e., noise-free)

content and relevant content respectively from their pages. We then check those extracted content against

the carefully prepared main-gold-set and relevant-gold-set respectively, and evaluate the performance of our

approach. Table 5.2 and Table 5.3 summarize the �ndings of our evaluation.

3http://stats.stackexchange.com/questions/49226/
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Table 5.3: Experimental Results for Di�erent Aspects of Page Content

Content Type Score Combination Metric SO Pages (DSO) Non-SO Pages (¬DSO) All Pages (D)

Main Content

{Content Density (CTD)}

MP 90.89% 88.86% 89.71%

MR 89.38% 86.20% 87.53%

MF 89.85% 85.75% 87.45%

{Content Relevance (CTR)}

MP 89.80% 75.40% 81.39%

MR 25.66% 37.83% 32.76%

MF 33.82% 45.31% 40.53%

{Density (CTD), Relevance (CTR)}

MP 91.27% 88.90% 89.88%

MR 89.27% 86.20% 87.48%

MF 90.00% 85.76% 87.53%

Relevant Content

{Content Density (CTD)}

MP 50.91% 49.50% 50.07%

MR 91.74% 75.71% 82.18%

MF 62.32% 53.76% 57.22%

{Content Relevance (CTR)}

MP 86.63% 69.17% 76.23%

MR 52.17% 57.66% 55.44%

MF 61.07% 55.88% 57.98%

{Density (CTD), Relevance (CTR)}

MP 89.91% 74.12% 80.50%

MR 74.90% 80.76% 78.39%

MF 80.07% 73.91% 76.40%

Table 5.2: Results of Experiments on Main (i.e., noise-free) and Relevant Content

Content Type Metric SO Pages (DSO) Non-SO Pages (¬DSO) All Pages (D)

Main content

MP 91.27% 88.90% 89.88%

MR 89.27% 86.20% 87.48%

MF 90.00% 85.76% 87.53%

Relevant content

MP 89.91% 74.12% 80.50%

MR 74.90% 80.76% 78.39%

MF 80.07% 73.91% 76.40%

From Table 5.2, we note that our proposed approach extracts main content with a mean precision of

89.88% and a mean recall of 87.48%, which are highly promising. In the case of main content extraction

from a web page, both precision and recall are important, and our approach also performs well in terms

of the combined metric, F1-measure (e.g., 87.53%). The main set contains about 41.60% of the pages from

StackOver�ow. During gold set preparation, we notice that the pages from StackOver�ow (hereby SO) follow

a consistent structure with relatively less noise, and relevant content sections are more precise and persistent

than those in the pages from other web sites, which are helpful for content extraction. We were interested to

check the performance of our approach against three di�erent subsets of main set�SO Pages, Non-SO Pages

and All Pages (Table 5.1). In Table 5.2, we note that the approach performs almost equally well for all the

subsets with di�erent types (i.e., websites) and di�erent sizes (i.e., number of pages), which demonstrates

the robustness and generality of our approach.
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In case of relevant content, our approach extracts content with a mean precision of 80.50%, a mean

recall of 78.39%, and a mean F1-measure of 76.40%, which are also promising. We use the relevant set

(Table 5.1) for the experiments, which contains about 40.40% of the pages are from StackOver�ow. We

conduct experiments with di�erent subsets of pages, and �nd that the approach provides the most precise

recommendation of 89.91% with StackOver�ow pages. The aforementioned scenario of StackOver�ow might

partially help our approach to perform better; however, the approach also recommends with a mean precision

of 74.12% with non-StackOver�ow web pages, which is promising and signi�cantly better than that of the

existing approaches (Table 5.4).

Table 5.3 investigates the e�ectiveness of the two aspects�content density and content relevance that we

propose for content extraction from a web page. We consider each of those aspects in isolation as well as in

combination, and evaluate our approach with di�erent sets of web pages for di�erent types of extraction�main

content and relevant content. In case of content density, the proposed approach performs signi�cantly well

in terms of all three performance metrics for main content extraction with all three subsets�StackOver�ow

pages (DSO), Non-StackOver�ow pages (¬DSO) and D of main set. However, the metric is found not much

e�ective in case of relevant content extraction with any of the subsets of relevant set, and the approach

provides imprecise results. For example, it extracts the relevant content from a web page of any of the

three subsets (DSO, ¬DSO and D) with a maximum mean precision of 50.91% and a mean F1-measure of

62.32%. In case of content relevance metric, the proposed approach extracts relevant content from a web page

with relatively better precision (e.g., 86.63%); however, the recall rates are poor both in main content and

relevant content extraction. On the other hand, when we combine both the density and relevance metrics, we

experience signi�cant improvement in all three performance metrics for both types (e.g., main and relevant)

of extraction with each of the sets of web pages. For example, main (i.e., noise-free) and relevant sections of

a page are extracted by our approach with a mean F1-measure of 87.53% and 76.40% respectively.

It should be noted that in case of main (i.e., noise-free) content extraction, much improvements in perfor-

mance are not achieved with the combination of metrics compared to with density metric only. The �nding

disproves our primary intuition about the e�ectiveness of relevance metric in main content extraction. How-

ever, the �nding from the relevant content extraction clearly shows the e�ectiveness of the combination of

density and relevance metrics which is one of our primary objectives of this work.

5.3.6 Comparison with Existing approaches

In order to validate the performance of our approach, we compare with four existing approaches [50, 51, 68, 79]

for main content extraction, and one existing approach [79] for relevant content extraction from the literature.

It should be noted that those four approaches only extract main content from web pages, and the rest one is

adapted for relevant content extraction, whereas our approach extracts both main (i.e., noise-free) content

and relevant content from the pages. Table 5.4 summarizes the �ndings from our comparative study.
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Table 5.4: Comparison with Existing Approaches

Content Type Content Extractor Metric SO Pages (DSO) Non-SO Pages (¬DSO) All Pages (D)

Main content

Sun et al. [79]

MP 80.61% 78.70% 79.49%

MR 86.41% 75.67% 80.14%

MF 83.14% 75.48% 78.67%

ACCB [50]

MP 90.65% 93.07% 92.06%

MR 77.32% 79.98% 78.87%

MF 83.07% 84.64% 83.99%

DSC [68]

MP 98.27% 91.05% 94.05%

MR 62.69% 67.56% 65.53%

MF 74.54% 75.26% 74.96%

TCCB [51]

MP 96.47% 88.89% 92.04%

MR 65.98% 61.43% 63.32%

MF 76.96% 68.70% 72.14%

Proposed Approach
MP 90.89% 88.86% 89.71%

MR 89.38% 86.20% 87.53%

(Density Only) MF 89.85% 85.75% 87.45%

Proposed Approach
MP 91.27% 88.90% 89.88%

MR 89.27% 86.20% 87.48%

(Density and Relevance) MF 90.00% 85.76% 87.53%

Relevant content

Sun et al. [79]

MP 52.63% 38.89% 44.44%

MR 86.49% 41.84% 59.88%

MF 62.57% 34.49% 45.84%

Proposed Approach
MP 89.91% 74.12% 80.50%

MR 74.90% 80.76% 78.39%

(Density and Relevance) MF 80.07% 73.91% 76.40%

Sun et al. [79] propose a main (i.e., noise-free) content extraction approach, where they exploit the DOM-

tree of a web page and apply a text density-based scoring technique. We collect an implementation4 of the

approach from corresponding authors, and conduct experiments with the approach using our dataset (Table

5.1). From Table 5.4, we note that our approach performs signi�cantly better than their approach in terms

of all three performance metrics with each of the sets (e.g., StackOver�ow Pages (DSO), Non-StackOver�ow

Pages (¬DSO) and All Pages (D)) of web pages. For example, with Non-StackOver�ow Pages, the approach

by Sun et al. can extract main content with a mean precision of 78.70%, a mean recall of 75.67% and a

mean F1-measure of 75.48%. On the other hand, our approach extracts such content from the same dataset

with 88.90% precision, 86.20% recall and 85.76% F1-measure. Their approach performs well only with

StackOver�ow pages, whereas our approach performs more consistently with di�erent sets of web pages, and

also provides relatively more promising results. One can think of the Density Only version of our approach

4https://github.com/FeiSun/ContentExtraction
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equivalent to the approach of Sun et al. from theoretical perspective; however, experimental results (Table

5.4) show that our density metric is more e�ective than theirs in extracting main content from a web page.

Pinto et al. [68] propose another content extraction system that exploits Document Slope Curves (DSC)

�ltration technique and locates the regions of a web page where word tokens are more frequent than HTML

tag tokens using a windowing technique. We collect the author's implementation of the approach [9], and

compare with our approach. From Table 5.4, we �nd that their approach provides results with relatively

higher precisions, but the recall rates are quite poor compared to those of our approach. For example, the

approach extracts main content from our dataset with a mean precision of 94.05%, but returns only 65.53%

(i.e., recall) of the expected page content compared to 87.48% (i.e., recall) of our approach.

Gottron [50] introduces a content extraction algorithm that identi�es homogeneously formatted texts from

the HTML source token sequence of a web page. We collect the author's implementation [9] and compare

with two di�erent versions of the algorithm�ACCB [50] and TCCB [50, 51]. From Table 5.4, we note that

both approaches provide relatively more precise results compared to our approach; however, their recall rates

are relatively poor. For example, ACCB and TCCB returns 79.98% (i.e., recall) and 65.98% (i.e., recall)

of the page content respectively at a maximum level from any of the sets of pages, and they extract main

content with 93.07% and 96.47% precisions respectively. On other hand, our approach returns about 87.48%

(i.e., recall) page content with 89.88% precision, which demonstrate the robustness of our approach. More

interestingly, it extracts 89.27% (i.e., recall) of the page content with 91.27% precision for StackOver�ow

pages. It should be noted that ACCB is relatively closer to our approach in terms of F1-measure (e.g., about

84%); however, it performs comparatively poor in terms of recall which is 78.87%.

We also validate the performance of our approach for relevant content extraction, where we adapt and

implement an existing approach of Sun et al. [79] in our working environment for comparison. To our knowl-

edge, no existing approaches focus on such content extraction or recommendation despite of its appealing

motivation. We �nd the approach of Sun et al. to be the most aligned for such purpose and it also applies

metrics similar to ours for main (i.e., noise-free) content extraction. We choose the highest scored section

in terms of text density [79] as the most relevant section of a web page. However, from Table 5.4, we note

that the density-based metric of the existing approach fails to identify and extract the relevant sections of a

web page satisfactorily. For example, their approach recommends relevant content with a mean precision of

44.44% and a mean recall of 59.88%, which provide a mean F1-measure of 45.84%. On the other hand, our

proposed approach recommends such content with a precision of 80.50%, a recall of 78.39% and a F1-measure

of 76.40%. The other approaches [50, 51, 68] are not meant for relevant content extraction; however, the

way they extract di�erent content sections from a web page, they are less likely to identify and extract the

relevant content sections from a web page.
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5.4 Threats to Validity

In our research, we note a few issues worthy of discussion. First, we remove all <style> and <script> tags

from an HTML page during parsing, which are often responsible for dynamic loading of noisy sections such

as advertisement banners or irrelevant widgets. Thus the look and feel of the pages gets changed, which

is a potential threat to our work. In order to mitigate that threat, we add a customized style where we

highlight di�erent artifacts of interest (e.g., stack traces, code segments, class or method name) and visualize

the relevance of each of the retrieved sections in the page with the exception of interest.

Second, our approach provides a heuristic estimate of relevance for each of the result pages in the ranked

list from the search engine (Fig. 5.3-(b)). One might suggest that using similar heuristics the search results

could be ranked against the context of the given error or exception. While this has potential, we note that

the search engine (e.g., Google) provides a satisfactory ranking with the error message of an exception as the

search query for most of the time. Furthermore, in this research, our objective is to complement the existing

ranking with relevant information from the web page, and to help the developers in informed decision-making

with browsing during post-search content analysis.

Third, the lack of a fully-�edged user study that evaluates the usability of our approach is a potential

threat. However, our objective was to focus on the technical aspects of the approach. Furthermore, in order

at least partially evaluate the usability, we conduct a limited user study with �ve participants (i.e., graduate

research students), where three of them have professional software development experience. We ask them six

questions about the customized style of the page, relevance visualization of each page in the search result

and di�erent page sections, highlighting of the artifacts of interest, and the IDE-based information search.

Five out of �ve participants agree that the proposed approach is likely to be more helpful than traditional

browsers in problem solving for the developers. All of them feel comfortable with the modi�ed layout and

style, and they even speculate that the relevance visualization feature might be really helpful in extracting

the desired information from the web page. The details of this mini user study could be found online [4].

However, a fully-�edged user study is required to explore the true potential of our approach which is more

appropriate for future work.

5.5 Related Work

A number of existing studies are conducted on web page content extraction, and they apply di�erent tech-

niques such as template or similar structure detection [39, 58], machine learning [42, 44, 60], information

retrieval, domain modeling [46], and page segmentation and �ltration [40, 42, 50, 57, 68, 79]. The last group

of techniques�page segmentation and noise �ltration are closely related to our research in terms of working

methodologies and goals. Sun et al. [79] exploit link elements for the �ltration of noisy sections of a web page.

The approach by Pinto et al. [68] is actually designed with a table layout-based architecture of the web page
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in mind, which may not be applicable for modern complex websites. The two versions� TCCB and ACCB

of the approach by Gottron [50] based on Code Content Blurring (CCB) are only tested with news websites

containing simple and regular structures (i.e., homogeneous text blocks). We compare with all four above

approaches, and �nd that our approach performs relatively better than all of them in terms of recall and

F1-measure, and also provides a comparable precision. For a detailed comparison, the readers are referred to

Section 5.3.6.

The other studies use di�erent methodologies and are not closely related to our work, and we do not

compare with them in our experiments. Furche et al. [46] analyze real state websites and extract property

and price related information. They exploit a domain-speci�c model for content extraction which may not be

applicable for programming related websites. Chun et al. [42] analyze news-based websites, extract di�erent

densitometric features, and apply a machine learning classi�er (C4.5) in order to classify legitimate and noisy

content sections. Their approach is subject to the amount or quality of the training data as well as the

performance of the classi�er. Cafarella [39] focuses on Wikipedia pages, identi�es the tabular structures,

and mines di�erent factual information (e.g., list of American presidents) from the pages. Thus, while other

approaches focus on extracting the noise-free sections or mining the factual or commercial data from the

news-based, real state or Wikipedia pages, our approach attempts to support software developers in �nding

context-relevant information from the programming related pages. From technical point of view, it proposes

and leverages a novel metric�content relevance for content (e.g., relevant) extraction, which was not considered

by any of the existing approaches.

5.6 Summary

While our previous two studies focus on recommending useful search queries (Chapter 4) and relevant web

pages (Chapter 3) for programming errors and exceptions, in this chapter, we propose a novel web page

content recommendation approach that extracts and recommends not only all the noise-free sections but

also the sections of a web page those are relevant to an encountered exception in the IDE. We also propose

and successfully apply a novel metric, content relevance, in the extraction of relevant sections from the

page. Extensive studies with 500 web pages related to 150 programming errors and exceptions show that

our approach extracts main content with a F1-measure of 87.53%, and relevant content with a F1-measure

of 76.40%, which are promising. We compared with four existing approaches in case of main content and

one approach in the case of relevant content extraction, and found that our approach outperformed them in

terms of recall and F1-measure for the �rst case, and in terms of all three metrics for the second case. In

order to validate the applicability of our proposed approach in real life problem solving, a fully-�edged user

study should be conducted, and we did that in Chapter 7. While the �rst three studies (Chapter 3, Chapter

4 and Chapter 5) provide automated supports in the resolution of programming errors and exceptions,

studies show that developers often use the exception handling features ine�ectively and thus they also need
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automated support in handling the exceptions e�ectively. In the next chapter (Chapter 6), we thus propose

a recommendation approach that recommends suitable code examples for exception handling from di�erent

online repositories by analyzing the code under development in the IDE.
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Chapter 6

IDE-Based Context-Aware Exception Handling Code

Example Recommendation

Software developers often either misuse the exception handling features or they use them ine�ectively in real

life software development. They even consider the e�ective exception handling as a daunting task, and one

way to support them in this regard is to recommend readily available relevant code examples those contain

high quality handlers of the exceptions of their interest. While the previous studies (Chapter 3, Chapter

4 and Chapter 5) are related with web search, our fourth study in this chapter focuses on a context-aware

recommendation system that recommends relevant code examples for exception handling.

The rest of the chapter is organized as follows� Section 6.2 presents a motivating example and Section 6.3

explains the proposed metrics, weight estimation technique and the ranking algorithms. Section 6.4 discusses

the conducted experiments, results and case study, Section 6.5 identi�es the threats to validity, Section 6.6

focuses on the related works, and �nally Section 6.7 summarizes the chapter with future works.

6.1 Introduction

Exception handling is one of the most important tasks that software developers undertake during software

development and maintenance. However, studies show that developers either use the exception-handling

features ine�ectively [38] or misuse them in the real life software development [77]. Cabral and Marques

[38] conduct a study with 32 applications from Java and .NET frameworks, and report that about 40%-70%

exception handling actions are overly simpli�ed or ine�ective. The actions either log error messages and print

stack traces or simply do nothing. According to their �ndings, developing e�ective handlers is a daunting

task. One way to bene�t both the developer productivity and the quality of the exception handlers is to

recommend readily available and relevant exception handling code examples to the developers within the

scope of their working environment (e.g., IDE), which can be leveraged in handling exceptions by them.

A number of existing studies on exception handling attempt to support the developers through useful

insights from static analysis of the exception control �ows and handling structures [41, 49, 74] or comparative

�eld studies [38, 47], visualization [77], and recommendation of code examples [33]. Barbosa et al. [33]

propose an approach to recommend exception handling code examples exploiting the structural facts of the

code under development and the candidate examples. Although the approach performs considerably well
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on their carefully constructed dataset, it su�ers from several limitations. First, the approach considers only

the usage of certain API classes and API methods, and captures neither static relationships (i.e., method

belongs to which class) nor the dependencies among di�erent API objects used in the code. These static

or dependency relationships can be considered as an important structural component of a code example.

Second, the constructed dataset is static and cannot be easily updated. It also requires signi�cant amount

of manual preprocessing to be useful in the recommendation for exception handling.

In this study, we propose a context-aware recommendation approach for exception handling code examples,

which leverages not only both the structural and lexical features but also the quality of the exception handlers

in the code examples. The approach exploits the GitHub Code Search API [7], and collects about 60-70 code

examples from GitHub code repositories against a search query representing the context code (i.e., code

under development) in the IDE and the exception a developer attempts to handle. It then analyzes, �lters

and ranks the examples based on their relevance against the context code in the IDE and the quality of the

exception handlers in those code examples.

The proposed approach also overcomes certain limitations of the existing techniques. First, it adopts a

graph-based technique for structural relevance estimation, where the approach identi�es all the API objects

along with their static relationships and data dependencies in the code to develop an API usage graph. We

believe that two code fragments having similar usage graphs (i.e., similar set of API objects with similar static

or dependency relationships) are likely to accomplish similar programming tasks. The usage graph captures

more useful and more in-depth structural features of the code compared to existing structural heuristics

[33, 55]. We thus exploit the usage graph matching idea for structural relevance estimation (i.e., novelty of

our approach), and it helps to overcome the limitations of the heuristic-based techniques. Second, it applies

a state-of-the-art lexical feature-based code cloning technique [75] in order to determine the lexical similarity

between context code in the IDE and the candidate examples, which was completely ignored by the existing

studies. The idea is to recommend the code examples which are not only structurally relevant but also

lexically similar (i.e., easy to work with) to the context code. Third, the approach integrates one of the

largest and the most popular online code bases, GitHub, into the IDE, which can provide readily available

exception handling code examples from the top ranked repositories. The integration makes the corpus for

recommendation dynamic, constantly evolving, and synchronized with a number of mature and popular open

source projects hosted online.

We conduct experiments on the proposed approach using 4,400 GitHub code examples and 65 exception

handling scenarios (i.e., each scenario consists of an exception and a code segment). The exceptions and

associated context code are collected from di�erent online sources such as StackOver�ow Q & A site and

Pastebin [20]. First, we perform an extensive search into GitHub code repositories using the code search

feature, and develop an oracle by collecting the most relevant exception handling code examples for each

case (i.e., scenario). We then use the oracle in order to evaluate the proposed approach, where our approach

recommends relevant code examples with a maximum of 41.92% mean average precision, 31.07% mean pre-
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cision, 76.70% recall and 86.15% recommendation accuracy. These results are found promising according to

the existing relevant studies [59, 72, 81]. We also compare with four popular existing approaches� Barbosa

et al. [33], Holmes and Murphy [55], Takuya and Masuhara [80] and Bajracharya et al. [32], for the same

dataset, and �nd that our approach outperforms them in all corresponding performance metrics. Thus we

make the following technical contributions in this study.

• We propose a graph-based approach in order to estimate the structural relevance between two code

segments.

• In the ranking of exception handling code examples, we not only combine structural relevance and

lexical relevance but also consider the quality of the exception handlers in the examples.

• We package our solution into a tool, SurfExample [26], that captures the context code in the IDE, and

recommends relevant exception handling code examples collecting from a remote web service [26], and

the service can be leveraged by any IDE.

6.2 Motivating Example

Let us consider a problem solving scenario, where a developer implements a client module of an Eclipse

plugin that accesses a remote web service. Like many other developers, she is concerned about the functional

requirements, and uses only a generic handler for exception handling (e.g., highlighted in Listing 6.1). The

implementation serves the primary purpose (e.g., accessing information) of the client module; however, it also

poses several threats to future maintenance and evolution of the plugin. First, the generic handler catches

all exceptions

Listing 6.1: Code under Development (i.e., Context Code)

//more code ...

try {

URL url=new URL(WEB_SERVICE_URL_WITH_PARAMS);

HttpURLConnection conn=(HttpURLConnection)url.openConnection();

//more code goes here ...

} catch (Exception e) {

// generic exception handler

}

triggered from within the try block and suppresses each of them, which clearly violates the second accepted

principle1 of exception handling�if you catch an exception, do not swallow it. The suppression conceals

important information of the occurred exceptions, and identi�cation or �xation of a bug in a multilayer

application with such poorly designed handlers is highly error-prone and time-consuming. Second, exceptions

1https://www.ibm.com/developerworks/library/j-ejbexcept
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are generally associated with di�erent API methods (according to API design speci�cations), and several

exceptions can occur from a programming context. Each of those exceptions (especially checked exceptions)

deserves a speci�c treatment (e.g., handle or rethrow) based on the application context or abstraction. The

generic handler without any cleanup operations fails to meet the individual exception-speci�c requirements

[41], and thus leads to di�erent hidden bugs and resource or security issues.

Listing 6.2: Recommended Code Example for Context Code in Listing 6.1

BufferedReader breader=null;

try {

URL url = new URL(this.web_service_url);

HttpURLConnection httpconn = (HttpURLConnection) url.openConnection();

httpconn.setRequestMethod("GET");

if (httpconn.getResponseCode() == HttpURLConnection.HTTP_OK) {

breader = new BufferedReader(new InputStreamReader(

httpconn.getInputStream()));

String line = null;

while ((line = breader.readLine()) != null) {

//more code goes here ...

}

}

} catch (MalformedURLException mue) {

Log.warn("Invalid URL " + this.web_service_url, mue);

MessageDialog.openError(Display.getDefault().getShells()[0],

"Invalid URL " + this.web_service_url, mue.getMessage());

} catch (ProtocolException pe) {

Log.warn("Protocol Exception " + this.web_service_url, pe);

MessageDialog.openError(Display.getDefault().getShells()[0],

"Invalid Protocol " + this.web_service_url, pe.getMessage());

} catch (IOException ioe) {

Log.warn("Failed to access the data " + this.web_service_url, ioe);

} finally {

breader.close();

}

}

Now let us consider the code example in Listing 6.2 recommended by the proposed approach for the

current programming context (i.e., code under development) in Listing 6.1. The example performs a similar

type of programming task using a similar set of API objects, and thus is completely relevant to the current

context. The code example treats each of the exceptions that can trigger from the code, and it also provides

valuable information for exception handling. First, the developer is not often aware of the exceptions which
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Figure 6.1: Schematic Diagram of Proposed Approach (SurfExample)

might occur from the current programming context. She also might not be sure of which of the exceptions are

to be caught and handled if the IDE suggests them based on API speci�cations. The recommended relevant

example provides such information, and she can easily apply that in the current context. Second, she might

also lack necessary skills required to handle the exceptions, and the example demonstrates how certain

exceptions should be caught and handled (e.g., highlighted lines in Listing 6.2). For example, the technical

details of a MalformedURLException can be used to warn a user about the URL, and thus it is a candidate

exception for handling according to the �rst principle [11, 12] of exception handling�Always catch only those

exceptions that you can actually handle. The example handles it through reporting to the user using a dialog

box (i.e., instant noti�cation) and logging the details for future maintenance. In practice, e�ective handling

of exception is a frequently misunderstood aspect of programming especially with applications of multilayer

abstraction, and such exception handling code example can act as a helpful learning tool for the developer.

The example is not necessarily meant for reuse; however, it can guide her towards e�ective handling in her

application context through exemplary implementation.
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6.3 Proposed Approach

Fig. 6.1 shows the schematic diagram of our proposed approach for exception handling code example recom-

mendation. We package our solution into an easily accessible web service [26] and an Eclipse plugin [26]. In

this section, we discuss di�erent working modules of the solution, proposed metrics for relevance estimation

between code segments as well as exception handler quality estimation, metric weight estimation techniques

and ranking algorithms.

6.3.1 Working Modules

The proposed solution adopts a client-server architecture, and it has two working modules� client module

(Fig. 6.1-(a, b, d, e)) and computation module (Fig. 6.1-(c)). The client module, an Eclipse plugin prototype

[26], collects the code under development (hereby we call it context code) containing generic or poorly designed

exception handlers from the IDE, and prepares a search query by extracting suitable keywords from the code

(Section 6.4.2). It then sends the search query as well as the context code to the computation module. The

computation module, hosted as a web service [26], collects code examples from GitHub code repositories using

that search query and GitHub code search API, and develops a dynamic corpus (Fig. 6.1-(c)). The corpus

generally contains about 60-70 code examples from hundreds of repositories, which are analyzed, �ltered,

and then ranked against the context code using the proposed metrics (Section 6.3.2) and ranking algorithms

(Section 6.3.3). Once the ranked examples are returned from the computation module, the client module

recommends the top 15 of them in the IDE (Fig. 6.1-(d, e)). The developer then can check the code examples

and leverage for exception handling in her own programming context.

6.3.2 Proposed Metrics

This section discusses our proposed metrics which are used to determine the structural and lexical relevance

of a candidate code example in the corpus with the context code in the IDE. It also discusses our proposed

metrics that estimate the quality of the exception handlers in the code example.

Structural Relevance (Rstr)

Barbosa et al. [33] apply heuristic strategies on three structural facts�(1) the hierarchy level of the handled

exception, (2) list of methods called, and (3) types of the variables used, of an exception handling code

example for structural relevance estimation. Holmes and Murphy [55] also adopt a similar approach to

capture the structural information from the code. They develop six heuristic strategies associated with class

inheritance, method call and variable usage. Thus, existing two studies [33, 55] basically consider number

of matched method calls and number of matched variables as the core components of structural relevance

between two code segments.
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In our research, we propose a graph-based approach (adapted from the approach of Nguyen et al. [67] for

API usage pattern extraction) to capture the structural features from the code. We consider a code example

as a network or graph of API objects interacting with each other through method or constructor invocations

and �eld accesses in order to solve a programming problem. We consider each of the API objects, the static

relationships between an API object and its �elds or methods, and the data dependencies of the object upon

other API objects in the code as the structural features, and we exploit them to estimate the structural

relevance (i.e., structural similarity) between two code segments. Thus the structural relevance is based on

four structural aspects� matched API objects, matched �eld accesses, matched method calls, and matched

data dependencies.

API Object Match (AOM): In the code, di�erent API objects are initialized, and their �elds and

methods are accessed in order to accomplish a programming task. We use JavaParser [14], an Eclipse AST-

based parser, to extract the API objects from the context code and the candidate code examples collected

from GitHub. API Object Match metric determines the number of matched API objects between the context

code and a candidate example. Given that each API object has a prede�ned set of �elds and methods, the

metric can be considered as a rough estimate of the functional similarity between the two code fragments.

Field Access Match (FAM): The metric determines the matching between �eld accesses of an API

object in the context code and that of the target object in the candidate code. While existing approaches

[33, 55] ignore the feature, we use it as a structural component of the code. In practice, the metric accumulates

�eld matching in the candidate code for all API objects in the context code, and indicates the extent to which

both code fragments access the common attributes.

Method Invocation Match (MIM): We consider method invocations as an important structural com-

ponent of the code as the API objects generally interact with each other through them. Existing approaches

[33, 55] do not consider the scope (i.e., API class instances) of the invoked methods during matching, and

thus their method invocation matching might be erroneous (i.e., same method names are available in di�erent

API objects). In our research, we treat each API object as a working unit. We consider the invoked methods

from an API object in the context code, and then determine the method invocation match by comparing with

the invocation list from the same object in the candidate code example. In practice, the metric considers

each API object in the context code and accumulates the invocation match measures.

Data Dependency Match (DDM): The API objects in the code depend on each other for object

initialization, method parameters and so on, and we call it data dependency among the objects [67]. We

consider the data dependency as a structural component of the code, and we use API usage graph in order

to determine the dependency matching. For example, in Fig. 2.2, the dependencies among the API objects

are represented as dashed edges among the vertices. Given that API libraries are designed with certain

dependencies among di�erent API classes, we capture and exploit such dependencies in order to determine

the structural relevance between the context code in the IDE and a candidate code example. We sum up the
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above four structural components in order to determine the structural relevance score (Rstr) as follows:

Rstr = α×N + β ×
N∑
i=1

FAMi

FAQi
+ γ ×

N∑
i=1

MIMi

MIQi
+ δ ×

M∑
i=1

DMTi (6.1)

Here, N and M refer to number of matched API objects and number of matched dependencies respectively.

α, β, γ and δ are the weights of API Object Match (AOM), Field Access Match (FAM), Method Invocation

Match (MIM), and Data Dependency Match (DDM) metrics respectively. The weight estimation technique is

discussed in Section 6.3.4. FAQi and MIQi are number of �eld accesses and number of method invocations

of an API object from the context code, and DMT refers to the matching weight of each data dependency.

For example, if an API object in the candidate code depends on another object through a di�erent access

point (e.g., method, constructor) than that in the context code (i.e., code under development), we call it

partial matching (i.e., weight 0.5). On the other hand, a complete matching (i.e., weight 1.0) should match

both the access points and the target end objects.

Lexical Relevance (Rlex)

While structural relevance exploits certain API object-based structural features in the code, lexical relevance

captures even �ner level granularity�token. In order to capture token-level relevance between two code

fragments and to add more value to relevance estimation, we use two lexical similarity measures� cosine

similarity [3] and code clone measure. They also help to overcome the limitations with non-compilable

code (i.e., structural relevance estimation requires the code to be compilable). Cosine similarity focuses on

occurrence and frequency of a particular token in the code irrespective of its order, and thus determines

the content similarity between two code segments. On the other hand, the code clone measure depends on

the clone detection algorithms. In the case of cosine similarity calculation, we consider a code fragment as

a vector of tokens, and discard insigni�cant tokens (e.g., punctuations). We then determine the cosine of

the angular distance (i.e., cosine similarity) between the two such vectors corresponding to the context code

and a candidate code example. In case of code clone measure (Sccm), we use a state-of-the-art code clone

detection technique, NiCAD [75], where we determine the longest common subsequence of tokens between

the context code and the candidate code, and then normalize it as follows:

Sccm =
|Slcs|
|Stotal|

(6.2)

Here, Slcs denotes the longest common subsequence of tokens, and Stotal denotes the set of tokens extracted

from the context code. The measure values between zero to one, and it provides an estimate of the extent

to which the candidate code matches with the context code lexically. Thus, the two measures compute the

lexical similarity between code from two di�erent viewpoints, and we use them in order to determine the

lexical relevance score (Rlex) as follows:

Rlex = λ× Scos + σ × Sccm (6.3)

Here λ and σ are the weights of the corresponding measures, and they are calculated using a machine learning

technique involving logistic regression (Section 6.3.4).
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Quality of Exception Handler (Qehc)

The metrics discussed earlier focus on the relevance of an exception handling code example for recommen-

dation; however, relevance alone is not su�cient enough for e�ective recommendation (i.e., a limitation of

existing studies). The quality of the exception handlers in the code is also an important concern. In addition

to the above metrics and measures, we thus also consider the quality of the exception handlers in the code

as follows:

Readability (RA): Readability of software code refers to a human judgement of how easy the code

is to understand [37]. In our research, we consider readability as one of most important quality metrics

for an exception handler in the code example. The baseline idea is� the more readable and understandable

the handler code is, the easier it is to leverage in exception handling. Buse and Weimer [37] propose a code

readability model trained on human perception of readability and understandability. The model uses di�erent

textual features (e.g., length of identi�ers, number of comments, line length) of the code that are likely to

a�ect the human perception of readability. It then predicts a readability score on the scale from zero to one,

inclusive, with one describing that the code is highly readable. We use the readily available library [28] by

Buse and Weimer to calculate the readability metric of the exception handling code examples.

Average Handler Actions (AHA): The metric calculates the average number of statements (i.e.,

actions) in each of the catch clauses in the code example. During calculation, we discard the insigni�cant

statements such as the statements printing stack traces or error messages. We consider the measure as

an important indicator of how extensively (i.e., meaningfully) data from the caught exceptions are used for

handling. The lower the measure, the poorer the design of the exception handlers.

Handler to Code Ratio (HCR): The metric refers to the fraction of the code in the example that

is intended for exception handling, and we use SLOC (Source Lines of Code) for the calculation. While

the metric indicates the richness of the code example in handling exceptions, it also helps to �lter out the

examples with poorly designed exception handlers (e.g., generic handler with empty catch block) or long

methods. These examples would necessarily contain a large number of program statements compared to the

handler statements in the catch clauses, and we use Handler to Code Ratio metric to penalize such code

examples.

We use the above three quality estimates focusing on distinct aspects, and determine an overall quality

estimate for the exception handlers in the code example as follows:

Qehc = µ×R+ ε×AHA+ κ×HCR (6.4)

Here, µ, ε and κ are the weights of the corresponding quality metrics, which are calculated using a machine

learning technique involving logistic regression (Section 6.3.4). While HCR metric is likely to encourage

examples with excessive handling code, AHAmetric ensures that the handlers contain meaningful statements,

and RA metric penalizes code with too many parentheses [37] (i.e., code with too many handlers).
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6.3.3 Result Scores and Ranking

In our research, we consider three important aspects� structural relevance, lexical relevance and quality of

exception handler for ranking and recommendation of code examples. The structural relevance helps to

recommend a code example that uses a set of API objects similar to that of the context code in the IDE.

Moreover, it ensures that each API object in that set matches with that in the context code in terms of

�eld access, method invocation and data dependency upon other objects. The lexical relevance refers to the

lexical similarity of a code example against the context code, and it helps to recommend similar type of

code examples for possible reuse. The last aspect focuses on the overall quality of the handlers in the code

example. It helps to recommend code examples that are highly understandable, and contain good quality

handlers for the exceptions of interest. Thus, the total relevance (Rtotal), for each candidate code example is

calculated using the component scores associated with those three aspects in Equation (6.5). The component

scores belong to di�erent ranges due to heterogeneous feature values, and each score is normalized between

zero to one.

Rtotal = wstr ×Rstr + wlex ×Rlex + wehc ×Qehc (6.5)

Here, Rstr, Rlex and Qehc are structural relevance, lexical relevance and quality of exception handler esti-

mates respectively of a candidate code example. wstr, wlex and wehc are the heuristic weights (i.e., relative

importance) of the corresponding metrics, which are calculated using the machine learning approach dis-

cussed in Section 6.3.4. Once we calculate the total scores, we sort the code examples based on their scores,

and recommend the top 15 examples to the developer. For instance, the code example in Listing 6.2 shows

these values for the proposed nine individual metrics� AOM=2, FAM=0, MIM=1, DDM=0, Scos=0.67,

Sccm=0.58, RA=0.09, AHA=1.67, HCR=0.52 during ranking. Given the limited (i.e., a few statements)

context code (i.e., code under development) in Listing 6.1, the example in Listing 6.2 matches with it the

best both structurally and lexically among all other examples. More importantly, exceptions in the example

are handled carefully with at least two actions (i.e., statements) in each handler and the code is moderately

readable, and thus the example gets a normalized handler quality score of 0.68. While other approaches either

analyzes manually or depends on the reputation of the code repository for good quality handlers of exceptions,

we not only choose reputed repositories and but also propose and use several metrics to ensure quality of the

exception handlers (i.e., e�ectiveness shown in Fig. 6.2). Based on the three aspects (structual, lexical and

handler quality) considered, the example scores the highest, and ranks the top in the recommended example

list for the programming context in Listing 6.1.

6.3.4 Metric Weight Estimation

In order to determine the weight of nine of the individual metrics associated with structural relevance, lexical

relevance and handler quality of a code example, we choose 650 code examples handling 65 exceptions from

experiment dataset. For each exception, we collect ten random candidate examples from the corpus, analyze
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their content, and manually tag them either as relevant or irrelevant for recommendation. We also collect the

values of all nine proposed metrics for each tagged code example. We then feed the feature (i.e., metric) values

and class labels (i.e., tag of example) toWeka tool [29] that returns a logistic regression based classi�er model

[17] which is validated with ten-fold cross validation. In the classi�er model, each of the features is associated

with certain coe�cients, which the tool tunes in order to classify a sample (i.e., code example) with maximum

accuracy. We believe that these coe�cients are an estimate of the importance of the features used in the

classi�cation, and we consider them as the weights of the corresponding nine relevance and quality metrics

[61]. However, the coe�cients are either positive (i.e., supporting for a particular class) or negative (i.e.,

discouraging for a particular class), and one may �nd them counter-intuitive for weight estimates. Therefore,

we use Odd Ratio of each feature, a logarithmic transformation of the coe�cient, as the weight estimate for

the corresponding relevance and quality metrics [61]. Among the nine weight estimates, weights of lexical

measures dominate others; that means lexical metrics play a decisive role in the classi�cation of the code

examples. Weight estimates, and associated data can be found online [26].

Once we calculate the subtotal scores using the individual metrics and their corresponding weights, they

represent certain aspects such as structural relevance, lexical relevance and exception handler quality of a

code example. We then adopt the same machine-learning technique (as in case of individual metrics above)

in order to estimate the relative weights (i.e., importance) of those three aspects. We consider a heuristic

relative weight of 1.0152 for lexical relevance, 1.2787 for structural relevance, and 1.1588 for exception handler

quality estimate based on the Odd Ratios of the corresponding metrics in classi�er model.

6.4 Experimental Design, Results and Validation

6.4.1 Dataset Preparation

We collect 65 exception handling cases (i.e., scenarios) for the experiments, where each case comprises of a

context code segment and an exception to be handled. Most of the cases are collected from di�erent online

sources such as Pastebin [20] and StackOver�ow Q & A site, and a few of them are developed by us. For each

of the cases, the context code is analyzed to prepare a suitable search query (Section 6.4.2), which is then

used to develop a corpus of candidate code examples containing handlers of the corresponding exception.

In order to collect examples, we choose four popular software organizations�Apache, Eclipse, Facebook and

Twitter, and they host about 738 open source Java projects (visited on January, 2014) at GitHub. The code

bases of the target organizations are considerably rich and matured, and some of the organizations even

developed exception handling frameworks (e.g., ExceptionUtils and Camel by Apache). Thus we believe that

their code bases are more likely to contain code examples with e�cient handlers for exceptions. We use

GitHub Code Search and the prepared search queries to collect the code examples. For each of the cases, we

collect 60-70 candidate code examples containing exception handlers, and the whole corpus contains about

4,400 code examples in total.
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6.4.2 Search Query Formulation

During corpus development, we prepare a search query for each of the exception handling cases, and collect

the candidate code examples from GitHub code search using that query. Each of those queries generally

contains two types of information�exception name and dominant API class name. We analyze the context

code to extract such information, where we experience two exception handling scenarios. In the �rst scenario,

the context code speci�es which exception to be handled, and we use that exception name in the search query.

In the second scenario, the context code either does not specify the exception or contains a generic exception

handler (e.g., Listing 6.1), and we adopt a careful approach to choose an exception (to be handled) for

this scenario. Given that exceptions are associated with di�erent API methods (according to API design

speci�cations), we consider all the checked exceptions those might be thrown from within the context code,

and choose the one that is the most frequent with the API methods in the code. In case of dominant API

class name token in the search query, we analyze the API objects used in the context code. The idea is to

identify the most active API objects in the code, and we consider an object with the most frequent method

invocation and �eld access as the most active API object. Thus the search query for the context code in

Listing 6.1 is� IOException URL.

6.4.3 Exception Oracle Development

We develop an oracle that returns a list of the most relevant code examples for each of the exception handling

cases. For oracle development, we analyze code examples in the corpus collected for each case, and check for

their relevance against the corresponding context code and the exception of interest. Given that checking

relevance of a code example against an exception and its context code is a subjective approach, and a number

of examples are associated with each case, we use tool support in our analysis. First, we rank the examples

based on their lexical similarity against the context code, and then manually check them from the top for

relevance. We consult the best accepted practices [11] for exception handling, look for meaningful actions

(e.g., cleanup, rethrow, status noti�cation) other than logging in the exception handlers of a code example,

and use our best judgement to choose the relevant examples. Once the examples are chosen for the oracle,

they are cross-validated by the peers (e.g., two graduate research students with at least �ve years of Java

programming experience), and we �nalize the example list through discussion. We choose 176 code examples

as the most relevant ones for 65 exception handling cases. It took about 50-60 working hours. The code

examples are hosted online [26], and we use them as the benchmark examples to determine the performance

of the proposed and existing approaches.

6.4.4 Performance Metrics

Our approach profoundly aligns with the research areas of information retrieval and recommendation systems.

In order to evaluate our approach, we thus use a list of performance metrics from those areas [21] as follows:
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Table 6.1: Experimental Results

Metric Top 5 Top 10 Top 15

MP 31.07% 18.62% 13.85%

MAPK 41.92% 39.92% 38.64%

TEH1(65) 48(101) 53(121) 56(135)

PEH2 73.85% 81.54% 86.15%

R3 57.39% 68.75% 76.70%

1No. of exceptions handled, 2% of all excep-

tions handled, 3% of relevant examples recom-

mended

Mean Average Precision at K (MAPK): Precision at K calculates precision at the occurrence of

every relevant result in the ranked list. Average Precision at K (APK) averages the precision at K for all

relevant results in the list for a query. Mean Average Precision is the mean of average precision at K for all

queries.

APK =

∑D
k=1 Pk × relk
|RR|

(6.6)

MAPK =

∑
qεQAPK(q)

|Q|
(6.7)

Here, relk denotes the relevance function of kth result in the ranked list, Pk denotes the precision at kth

result, and D refers to number of total results. RR is the set of relevant results for a query, and Q is the set

of all queries.

Mean Precision (MP): Precision determines the percentage of the relevant results in the result list for

a query. Mean Precision averages that percentage for all queries in the dataset.

Recall (R): Recall denotes the fraction of all the relevant results that are retrieved.

6.4.5 Experimental Results

We conduct experiments with 65 exceptions (related to standard Java development) along with their context

code segments, and collect the top 15 recommended code examples for each of the exceptions for evaluation.

We analyze the results and determine the performance using necessary metrics (Section 6.4.4). This section

discusses the experimental results and the recommendation performance of our approach.

82



Figure 6.2: Result Distribution over Di�erent Metrics

Table 6.2: Experimental Results on Di�erent Aspects of Code

Score combination Metric Top 5 Top 10 Top 15

Structure (Rstr)

MP 27.07% 16.76% 12.51%

MAPK 38.07% 33.84% 32.64%

TEH(65) 45(88) 49(109) 53(122)

PEH 69.23% 75.38% 81.54%

R 50.00% 61.93% 69.32%

Content (Rlex)

MP 24.62% 17.23% 12.72%

MAPK 35.00% 33.85% 33.08%

TEH(65) 43(80) 49(112) 53(124)

PEH 66.15% 75.38% 81.54%

R 45.45% 63.63% 70.45%

{Structure (Rstr), Content (Rlex)}

MP 27.99% 17.99% 13.44%

MAPK 43.08% 38.69% 37.33%

TEH(65) 45(91) 49(117) 53(131)

PEH 69.23% 75.38% 81.54%

R 51.70% 66.48% 74.43%

{Structure (Rstr), Content (Rlex),

MP 31.07% 18.62% 13.85%

MAPK 41.92% 39.92% 38.64%

TEH(65) 48(101) 53(121) 56(135)

and Quality (Qehc)} PEH 73.85% 81.54% 86.15%

R 57.39% 68.75% 76.70%

1Metrics for the top 5 results, 2Metrics for the top 10 results, 3Metrics for the top

15 results, 4Percentage of correct examples recommended
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Table 6.1 shows the results of the experiments conducted on the proposed approach, where we apply

di�erent performance metrics such as Mean Precision (MP), Mean Average Precision at K (MAPK), Total

Exceptions Handled (TEH), Percentage of all Exceptions Handled (PEH) and overall Recall (R). We collect

the top 5, top 10 and top 15 code examples from the recommendation list for evaluation. From Table 6.1, we

note that the approach provides results with 31.07% mean precision. That means, on average the technique

recommends 31.07% relevant code examples for each of the exception handling cases, and it recommends

correctly for 86.15% of the exceptions. It also successfully recommends 135 out of 176 benchmark relevant

examples, which gives an over all recall of 76.70%. More interestingly, our approach recommends relevant

code examples for 48 (73.85%) out of 65 exceptions with 41.92% mean average precision even when only

top 5 results are considered. These results are also found promising according to relevant existing studies

[59, 72, 81] from the literature.

Fig. 6.2 shows the distribution of the handled (i.e., code examples correctly recommended) exceptions

over di�erent metrics�structural relevance (S), lexical relevance (L) and exception handler quality (Q). The

distribution over a metric means that a certain fraction of the exceptions are handled (i.e., relevant code

examples recommended) considering that metric in isolation. We note that the handled exceptions are

largely distributed over structural and lexical relevance metrics compared to exception handler quality, and

all three metrics share about 34.55% of the exceptions. More interestingly, we note that about 18% (from

Fig. 6.2, 3.64% + 9.09% + 5.45%) exception handling cases are unique to the three metrics, which indicates

that those exceptions cannot be handled or relevant code examples cannot be retrieved without considering

those metrics in combination.

Table 6.2 further motivates the idea of combined relevance and quality measures with statistical evidences.

It shows the results of the experiments, where we contrast among the three aspects of relevance and exception

handler quality of the code examples. From Table 6.2, we note that the di�erent relevance aspects such as

lexical relevance and structural relevance are not satisfactorily e�ective especially in terms of mean average

precision and recall, when they are considered in isolation. For example, the approach can recommend at

most 70.45% of the relevant code examples with 35.00% mean average precision when we consider only

lexical relevance for ranking. On the other hand, when we consider both structural and lexical relevance,

the approach can recommend with 74.43% recall and 37.33% precision. One can argue that performance

improvement is not signi�cant, which actually motivates the inclusion of another dimension in code example

ranking. We consider quality of exception handler as the third aspect in the relevance ranking of the code

examples, and we also �nd it promising in our experiments. When we add handler quality to the rest two

aspects of ranking, we get a maximum recall of 76.70% and mean average precision of 41.92% by the proposed

approach, and it also handles a maximum of 86.15% of the exceptions in dataset. While the improvement is

not still too high, the combination of three aspects interestingly performs the best in terms of all performance

metrics, and the results are promising. Similar �ndings can also be reported from Fig. 6.2.
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Table 6.3: Comparison with Existing Approaches

Recommender Metric Top 5 Top 10 Top 15

Barbosa et al. [33]

MP 8.92% 6.92% 5.64%

MAPK 16.15% 14.69% 13.72%

TEH(65) 18(29) 25(45) 29(55)

PEH 27.69% 38.46% 44.62%

R 16.47% 25.57% 31.25%

Holmes and Murphy [55]

MP 6.15% 5.85% 5.03%

MAPK 4.62% 2.31% 2.31%

TEH(65) 16(20) 25(38) 31(49)

PEH 24.62% 38.46% 47.69%

R 11.36% 21.59% 27.84%

Takuya and Masuhara [80]

MP 8.31% 7.38% 5.54%

MAPK 21.54% 20.51% 19.74%

TEH(65) 22(27) 31(48) 31(54)

PEH 33.85% 47.69% 47.69%

R 15.34% 27.27% 30.68%

Bajracharya et al. [32]

MP 5.85% 4.31% 3.49%

MAPK 8.46% 7.95% 6.41%

TEH(65) 12(19) 18(28) 20(34)

PEH 18.46% 27.69% 30.77%

R 10.80% 15.91% 19.32%

Proposed Approach (local repo.)

MP 13.54% 8.77% 7.18%

MAPK 21.80% 19.87% 18.85%

Structure(Rstr) only
TEH(65) 30(44) 33(57) 37(70)

PEH 46.15% 50.77% 56.92%

R 25.00% 32.38% 39.77%

Proposed Approach (local repo.)

MP 13.85% 9.23% 7.90%

MAPK 30.64% 27.44% 25.90%

Structure(Rstr), Content(Rlex), TEH(65) 31(45) 34(60) 40(77)

and Quality(Qehc) PEH 47.69% 52.31% 61.54%

R 25.56% 34.09% 43.75%

Proposed Approach (GitHub search)

MP 27.99% 17.99% 13.44%

MAPK 43.07% 38.69% 37.33%

Structure(Rstr) and Content(Rlex)
TEH(65) 45(91) 49(117) 53(131)

PEH 69.23% 75.38% 81.54%

R 51.70% 66.48% 74.43%

Proposed Approach (GitHub search)

MP 31.07% 18.62% 13.85%

MAPK 41.92% 39.92% 38.64%

Structure(Rstr), Content(Rlex), TEH(65) 48(101) 53(121) 56(135)

and Quality(Qehc) PEH 73.85% 81.54% 86.15%

R 57.39% 68.75% 76.70%
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6.4.6 Comparison with Existing Approaches

Even though our proposed approach shows promise in the controlled experiments above, we further wanted to

see how good the approach is in terms of the literature. Thus, we compare our approach with four well known

existing approaches� Barbosa et al. [33], Holmes and Murphy [55], Takuya and Masuhara [80] and Bajracharya

et al. [32]. We implemented the approaches in our working environment based on the methodologies described

in the paper and our prior development experience, tested with our dataset, and analyzed their performance

with the same set of metrics. This section discusses the comparative study between our proposed approach

and the existing approaches.

Barbosa et al. [33] developed their corpus by collecting code examples from the repositories hosted at

Eclipse Foundation Open Source Community. They apply di�erent preprocessing on the examples such as

discarding ine�cient handlers and long methods and so on, and they then apply three heuristics related

to exception type, method call and variable usage for the relevance ranking. In our implementation of the

approach, although we could not replicate their preprocessing steps properly, we used our example corpus

as the dataset, and implemented their heuristics according to the guidelines described in the paper. We

thus basically compare our proposed metrics with their proposed heuristics in terms of di�erent experiments.

Table 6.3 shows the �ndings of the comparative study, where we observe that their heuristic-based approach

performs relatively poor in recommendation. The approach by Barbosa et al. recommends relevant code

examples at most for 44.62% of the exceptions with 31.25% recall and 16.15% mean average precision,

whereas our approach can recommend for 86.15% of the exceptions with 76.70% recall and 41.92% mean

average precision. This clearly shows that our approach outperforms their approach. One can rationalize the

lack of preprocessing for the low performance of their approach, we argue that the same limitation is also

acknowledged by Barbosa et al., and this actually validates that our proposed metrics are more e�ective than

their heuristics for the recommendation from the same corpus.

Although the rest three are not especially designed for recommending exception handling code examples,

they are well known code example recommendation techniques and are closely related to our work. They also

analyze either structural or lexical features from the code for recommendation, and we compare our approach

against them. We implemented the existing approaches with required adjustments for the comparative study

as the implementations by the authors are either unavailable or not directly applicable. The approach by

Holmes and Murphy [55] uses six heuristics for code recommendation, and we �nd three of them are relevant

for exception handling code recommendation. We thus use the three heuristics dealing with method calls and

variable usages in the code. Takuya and Masuhara [80] use cosine similarity in order to determine relevance

between two code examples. Bajracharya et al. [32] adopt an information retrieval-based approach for code

example recommendation. They extract the tokens containing di�erent structural information from the code,

and develop a lucene index for all the examples in the corpus. They then use a structured query containing

a set of prede�ned parameters to collect recommendable code examples. In our implementation, we adopt a

similar approach in index development involving lucene indexer ; however, we follow a di�erent approach for
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query formulation. Their query parameters [32] are not su�cient enough to request for exception handling

code examples, and we use the queries (Section 6.4.2) by our proposed approach. However, as the experiment

results suggest, none of the three existing approaches perform considerably well in recommending exception

handling code examples. From Table 6.3, we note that the approach by Takuya and Masuhara handles a

maximum of 31 (47.69%) of exceptions and recommends examples with 21.54% mean average precision and

30.68% recall, and others recommend less than 30% of all the relevant examples (i.e., recall), which are

signi�cantly poor compared to our results. One can argue that the comparison might not be fair due to

the handler quality metrics in our approach. However, as shown in Table 6.2, our approach also performs

signi�cantly better than those approaches without using the handler quality metrics. Thus we conjecture

that those approaches were not actually designed for exceptional handling code recommendation; but to the

best of our knowledge they are worthy of comparison as there are no others available.

Figure 6.3: Mean Precision vs. Recall Curves

Figure 6.4: Mean Average Precision vs. Recall Curves

As shown in the schematic diagram in Fig. 6.1-(c), our approach leverages GitHub code search in dynamic

corpus development. The approach thus applies ranking algorithms on a narrowed-down dataset for each

exception handling case, whereas other approaches deal with a large local or remote corpus for the same. We

also investigate if this additional search (i.e., GitHub search) is the sole factor behind the promising results

of our approach, and conduct experiments with 4,400 code examples as the corpus for each of the exception

handling cases. From Table 6.3, we note that our approach also performs signi�cantly well compared to

the existing approaches in this case. It recommends relevant code examples for a maximum of 40 (61.54%
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compared to 47.69% of existing approaches) out of 65 exception handling cases with 43.75% recall. The mean

precision-recall curve in Fig. 6.3 and mean average precision-recall curve in Fig. 6.4 also show that the

proposed approach is more promising than the existing approaches in exception handling code recommen-

dation. Given that the area under the curve denotes the performance of a system, the proposed approach

outperforms all other approaches in the experiments.

6.5 Threats to Validity

In our proposed approach, we note several issues worthy of discussion. First, one might argue about the

reliability of the judges for the oracle, especially because relevance checking of a code example against an

exception (and its context code) is a subjective approach. In order to overcome this threat, we carefully

chose the examples by consulting the best accepted practices of exception handling as well as based on our

best judgment, and the �rst author has professional development experience (details in Section 6.4.3).

Second, we exploit GitHub code search API to develop the corpus for our experiments, and our approach

is subjected to strengths and weaknesses of the search feature. One might argue about the relatively smaller

size of the corpus developed dynamically for each of the exception handling cases. However, we argue that

those examples are actually collected from hundreds of open source repositories (about 750), and then �ltered

and even ranked before returning. Thus the developed corpus was not only su�cient for our experiments but

also an e�ective one, which is also shown by the experimental results.

Third, one might argue about the number of exceptions for the experiments. We used 65 exception

handling cases for the experiments and this might not be su�cient enough to draw a generalized conclusion.

However, collecting suitable cases and developing reliable oracle for them requires lots of time and e�orts,

and we covered most of the well known standard Java exceptions [26] in di�erent cases. The corpus is also

developed using examples from hundreds of code repositories hosted online. Thus we believe that the sample

size is su�cient enough for a controlled experiment and to draw such a conclusion.

6.6 Related Work

Exception handling is not a new topic, and there exists a good number of studies [33, 38, 41, 47, 49, 74].

Barbosa et al. [33] propose an approach to recommend exception handling code by exploiting three heuristics

about structural facts in the code. The approaches by Holmes and Murphy [55], Takuya and Masuhara

[80] and Bajracharya et al. [32] are well known as code recommendation techniques although they are not

specialized for exception handling code. We compared our approach to all four of them and found that ours

one performs signi�cantly better than all of them. For a detailed comparison the readers are referred to

Section 6.4.6.

The other existing studies on exception handling are not directly related to code example recommendation,

and thus, they were not applicable for the comparison experiments. Chang et al. [41] propose a static analysis
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technique that considers the exceptional control �ows, and helps to discard unnecessary try-catch and throw

statements. However, discarding unnecessary elements from the code may not always meet the needs of

the developer in exception handling. Robillard and Murphy [74] propose another static analysis approach

that identi�es di�erent possible exceptional �ows in the application program and helps the developer to

understand and improve the exception handling structures of the system. However, it returns thousands of

possible control �ow paths for an exception, and that information is not easy to use in practical sense [33].

Thus, in general, the static analysis-based techniques provide limited support for instant exception handling

from the �rst place, and they often assume that handling is already done somehow and the handler code

is there [33]. Garcia et al. [47] conduct an empirical study on the exception handling mechanisms available

in di�erent object-oriented programming languages, and propose a new exception handling structure that

considers 10 important aspects related to handling. Shah et al. [77] propose a visualization approach that

visualizes the exception handling structures in the large software systems for better understanding of how

the system works. Thus while other studies provide useful insights into the control �ows, handling structures

through static analysis, �eld studies, empirical studies and visualization, our proposed approach provides

readily available and relevant working code examples by exploiting context code in the IDE, which can be

easily leveraged for exception handling.

6.7 Summary

To summarize, we propose a context-aware code recommender that recommends exception handling code

examples against the code under development (i.e., context code) in the IDE. We consider three aspects�

structure, content and handler quality of the candidate code examples for relevance ranking, and conduct

experiments with 65 exceptions (and their context code) and 4,400 code examples. Our approach can rec-

ommend relevant examples for 86.15% of the exceptions with a maximum of 41.92% mean average precision

and 76.70% recall. We also compare with four existing approaches, where our approach outperforms them

in all performance metrics. While our experiments show that the general-purpose code recommendation ap-

proaches are not satisfactorily applicable for the recommendation of exception handling code, in this study,

our technical contribution lies in proposing a graph-based approach for structural relevance estimation, in-

troducing handler quality dimension in relevance ranking, and developing an Eclipse plugin. While each of

the proposed approaches in the four studies (Chapter 3, Chapter 4, Chapter 5 and Chapter 6) is extensively

evaluated and validated in isolation, we were interested to study whether the developers would �nd them

useful for problem solving when they are integrated. We thus integrate all four approaches into an Eclipse

plugin, and conduct a user study on the integrated approach in Chapter 7. Furthermore, the primary purpose

of this user study was to explore the usability of the integrated approach and not an absolute evaluation. We

extensively evaluated each of the individual contributions in the corresponding chapters of the thesis.
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Chapter 7

A Comparison between Proposed Methods and

Traditional Ones: A Task-Based User Study

Each of the proposed approaches in the four studies�(a) context-aware meta search engine (Chapter 3), (b)

context-aware search query recommendation (Chapter 4), (c) context-aware page content suggestion (Chapter

5), and (d) context-aware code example recommender for exception handling (Chapter 6), is extensively eval-

uated using experimental data. Their performance is also extensively validated against relevant approaches

from the literature, and using several mini user studies, and they demonstrate promising results. However,

in addition, we are interested to investigate the usability and the e�ectiveness of an approach that integrates

all four of them using a task-oriented user study. This chapter discusses detailed design and �ndings of our

conducted user study on the integrated approach that supports di�erent search-related activities in dealing

with programming errors and exceptions.

The rest of the chapter is structured as follows� Section 7.1 focuses on our developed prototype for the

integrated approach�ExcClipse, and Section 7.2 discusses tasks, participants, data collection techniques and

other details of the study design. Section 7.3 discusses the study execution, Section 7.4 analyzes the results

and reports the �ndings from the study, Section 7.5 identi�es the potential threats to validity of the study,

and �nally Section 7.6 summarizes the chapter.

7.1 ExcClipse

Each of our proposed approaches is implemented as an Eclipse IDE plugin prototype, and we develop four such

prototypes�SurfClipse, QueryClipse, ContentSuggest and SurfExample. However, each prototype focuses on

a particular recommendation service (e.g., search query recommendation), and we are interested to investigate

the potential of a plugin prototype that combines all four recommendation services using a user study. We

integrate all four prototypes into one, called ExcClipse, and this section provides an overview of the integrated

prototype. ExcClipse provides two types of service�web page search and code example search as follows:
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Figure 7.1: ExcClipse Web Search

7.1.1 ExcClipse Web Search

Fig. 7.1 shows the user interface of ExcClipse, where we contribute in (a) setup and con�guration panel, (d)

web search panel, (e) search result panel, and (g) relevant content panel. This subsection discusses di�erent

technical features and supports provided by the plugin prototype.

(1) Working Modes: ExcClipse web search works in two modes�interactive and proactive. In case

of interactive mode, a user (e.g., a developer) generally initiates the web search by selecting an exception

from Console View in the IDE or using a search query (representing the exception and its context) from the

recommendation list, whereas the plugin prototype itself initiates the search process in case of proactive mode.

Once the prototype is properly installed, it provides several main menu (e.g., Fig. 7.1-(a)) and context-menu

(e.g., Fig. 7.3) based command options, which can be used to initiate the plugin environment and to change

the working modes.

(2) Automated Supports with Search Queries: Both the context code (e.g., Fig. 7.1-(b)) that

triggers an exception, and the stack trace (e.g., Fig. 7.1-(c)) reported by the IDE contain overwhelming

information, and developers often face di�culties in choosing a suitable search query from such information.

ExcClipse provides an automated support in this regard, and helps them choose queries from a list of

recommended queries. It analyzes both stack trace and context code of the exception, and recommends

a ranked list of �ve suitable search queries for the exception (Fig. 7.2). One then can either select a query

or develop a customized query by leveraging the tokens in the selected query for web search.

(3) Context-Aware Web Search: ExcClipse provides three options to conduct web search within the

IDE�proactive search, context-menu based search (interactive mode) and keyword search (interactive mode).
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Figure 7.2: Web Search Query Recommendation (Interactive Mode)

Each of these options requires the developer to interact di�erently with the IDE although they follow the

same working principles in the background for collecting search results.

Proactive Search: When ExcClipse is set to proactive mode, it automatically detects an encountered

exception in the IDE. In this mode, the prototype constantly monitors the Console View (e.g., Fig. 7.1-(c))

for a stack trace using regular expressions. Upon detection, it collects other details� an auto-generated search

query and the context code (e.g., Fig. 7.1-(b)) of the exception, and initiates the search.

Context-Menu Based Search: The prototype provides a context-menu based web search option, and

a developer can literally select any phrase in the IDE (from Editor View and Console View), and perform

web search. More importantly, she can select the exception in the Console View, and conduct the search

(e.g., Fig. 7.3). Once initiated, the plugin captures necessary details from the IDE, performs the search, and

collects the results.

Keyword Search: Given that a user might be interested in re�ning the auto-generated search query or in

a more traditional way of search, the plugin provides a keyword-based search feature (e.g., Fig. 7.1-(d)). The

search is complemented with search query suggestion through auto-completion. The user can also con�gure

whether the search should be a keyword matching only (i.e., does not re�ne the results against the exception

context) or a context-aware one through Associate context option (e.g., Fig. 7.1-(d)).

(4) Search Results & Browsing: Once a search request is made for an exception, the plugin collects

results in a non-intrusive way (i.e., without freezing the IDE), and displays them within the IDE (e.g., Fig.

7.1-(e)). It visualizes the relative relevance of each result page through visualization (e.g., Fig. 7.1-(f)), which

helps one to choose the right (most relevant) page for browsing. It also facilitates browsing of the result page

in the following two ways:

Relevant Section(s) Browsing: Once a developer chooses to check only the relevant content of a result

page (e.g., Fig. 7.1-(f)), the plugin analyzes all the sections in the page, discards noisy sections and also

some noisy elements, determines relevance of each section against the exception and its context in the IDE,

and then returns the most relevant section(s) from the page ((e.g., Fig. 7.1-(g))). The idea is to help the

developer not only in determining the relevance of a result page (before actually browsing the page) but also
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Figure 7.3: Context-Menu Based Search (Interactive Mode)

Figure 7.4: Web Page Browser

in �nding solutions for the exception through consulting less information and putting less cognitive e�ort.

Actual Page Browsing: Once a developer is convinced of the relevance of a result page through the

checking of relevant section(s), she can consult the actual page for further analysis. The plugin prototype

facilitates the browsing using a customized browser widget (e.g., Fig. 7.4).

7.1.2 ExcClipse Code Example Search

Fig. 7.5 shows the user interface of ExcClipse for code example search, where we contribute in (b) search

panel, (c) search result panel and (d) code preview panel. This subsection discusses di�erent technical features

of the plugin associated with code example search.

(1) Context-Aware Code Search: ExcClipse provides two options to conduct code example search

within the IDE�context-menu based search and keyword search. Both options require a developer to perform

such interactions with the IDE which are similar to that of ExcClipse web search.

Context-Menu Based Code Search: The prototype provides a context-menu based code search option,

and a developer can select any exception class in the IDE (from Editor View) and perform code search. More
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Figure 7.5: ExcClipse Code Example Search

importantly, she can select a class method under development in the IDE (i.e., context code) and conduct

the search (e.g., Fig. 7.6). Once initiated, the plugin captures necessary details� an auto-generated search

query and the context code (e.g., Fig. 7.5-(a)), and returns a list of code examples that are relevant to the

context code and handle an exception of interest.

Keyword Based Code Search: The plugin prototype provides a keyword-based code search feature

(e.g., Fig. 7.5-(b)), and a developer can search with a customized query by choosing suitable keywords

from the context code. The search is also complemented with search query recommendation (e.g., Fig. 7.7)

through auto-completion, and the queries are recommended by analyzing both the context code (e.g., Fig.

7.5-(a)) and the exceptions that might trigger from such code. Thus one can just select a query from the

recommendation list and perform code example search for exception handling.

(2) Code Search Results & Browsing: Once a code search request is made for the context code in

the IDE, the plugin collects relevant code examples and displays them within the IDE (e.g., Fig. 7.5-(c)).

It highlights the matched query keywords and visualizes the relative relevance of each resultant example,

which help one to choose the right (most relevant) example for browsing. Once an example is selected, the

code preview panel (e.g., Fig. 7.5-(d)) helps one not only to analyze the relevance of the example against the

context code (e.g., 7.5-(a)) in close proximity but also to check the quality of the handlers for the exception

of interest (e.g., IOException in case of the context code in Fig. 7.5-(a)).
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Figure 7.6: Context-Menu Based Code Search

Figure 7.7: Code Search Query Recommendation

7.2 Design of User Study

In order to capture user feedback on ExcClipse and to contrast with traditional alternatives, we conduct a

task-oriented user study. The study requires a list of tasks, a group of participants and a list of data collection

as well as evaluation tools and techniques. This section discusses the detailed design of our conducted study.

7.2.1 Tasks Design

In the user study, we contrast between the search related supports of ExcClipse and those of traditional

approaches (e.g., keyword-based web search engines, code search engines), where we choose a list of four

tasks associated with web search and code example search. The tasks are not necessarily of equal granularity

and di�culty; however, we ensure that they are speci�c enough for easier evaluation or comparative analysis

and important enough to re�ect the potential of an approach.
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T1: Prepare a search query for an encountered exception by analyzing its stack trace and the code that

triggers the exception.

Target Usage: search query recommendation

T2: Perform web search using the query and collect one or more relevant web pages that most probably

contain solutions for a given exception.

Target Usage: context-aware meta search

T3: Analyze if the recommended section (by ExcClipse) of a web page is actually the most relevant part

of the page for the exception at hand.

Target Usage: relevant page section recommendation

T4: Prepare a search query for the code under development in the IDE, and collect a list of relevant code

examples that can help in improving the exception handlers in the target code.

Target Usage: relevant code example search for exception handling

7.2.2 Exception Test Cases

We consider four exception test cases�EC1, EC2, EC3 and EC4 for the study, where each case contains an

exception, a stack trace and a context code segment. The exceptions are generally associated with �le (e.g.,

EOFException) or image (e.g., IIOException) manipulation, Java re�ection (e.g., IllegalAccessException) and

network connections (e.g., UnknownServiceException), and all the cases can be found in Appendix A. In order

to solve and handle each case, a participant performs the above four tasks (Section 7.2.1) using two di�erent

environments�traditional (i.e., web search engines, code search engines) and ExcClipse, and we capture the

participant's experiences and feedback details for comparative analysis.

7.2.3 Study Participants

We choose six graduate research students from Software Research Lab, University of Saskatchewan, as the

participants for the study. Each of the participants has at least three years of Java programming and a

substantial amount of problem solving experiences that involve both web search and code search. Three of

the participants also have prior professional software development experience.

7.2.4 Study Data Collection

We apply two techniques�simple observation and questionnaire in order to capture the problem solving

experience as well as the feedback from the participants respectively. While in the �rst case, we observe

how a participant interacts with a search provider (i.e., both traditional search engines and ExcClipse) for

problem solving, in the second case, we collect direct feedback on the system from the participant. The

observation checklist and the questionnaire for the study can be found in Appendix B.
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7.3 Running the Study Session

Each study session generally takes about 1�1.5 hour, and it consists of three phases�training phase, execution

phase and evaluation phase. This section discusses brie�y about each of those phases as follows:

7.3.1 Training Phase

We develop a video tutorial1 of ExcClipse that introduces the prototype to the participants. It also shows

how each of the study tasks (Section 7.2.1) can be accomplished using ExcClipse. Each study session involves

one participant, and we use the video to train the participant during training session. We also occasionally

let the participants to play around for a few minutes to get themselves introduced with the prototype. The

phase lasts for about 15-20 minutes.

7.3.2 Execution Phase

In this phase, a participant performs the four tasks for each of the exception test cases using ExcClipse and

traditional search providers (e.g., Google, Bing and Yahoo) in two limited sessions� Session I and Session

II. In order to avoid bias in �ndings from the study, we categorize the test cases, the participants and even

the execution sessions into multiple groups. Table 7.1 shows the detailed plan of the conducted study. For

example, the participants are divided into two groups� Group A (P1, P4, P5) (i.e., blue coloured) and Group B

(P2, P3, P6). Participants from Group A solve and handle two exception cases�EC1 and EC2 using traditional

means and the other two cases�EC3 and EC4 using ExcClipse, which is vice versa for the participants from

Group B. We also organize the execution sessions such a way so that three participants (i.e., Group I) use the

traditional means for the study in session I, whereas the rest three (i.e., Group II) use ExcClipse for the same

purpose in session I. Table 7.2 shows the organization of sessions and corresponding participants. During

execution phase, we observe the problem solving practices of the participants and occasionally ask di�erent

clari�cation questions in order to capture their experience in the form of observation checklists (Section B.1.1

and Section B.1.2). This phase lasts about 40-50 minutes.

7.3.3 Evaluation Phase

In this phase, each participant �lls in the questionnaire (Section B.2) that contains 15 questions related to

usability, e�ectiveness, e�ciency, look and feel and other details of the two search providers � ExcClipse and

traditional search engines. While recording responses, the participants contrast between the two alternatives

based on their experiences from the execution phase, and we also collect their qualitative comments and

suggestions. This phase lasts for about 10-15 minutes.

1https://www.youtube.com/watch?v=-FBON-2qhfA
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Table 7.1: Study Session Plan

Participants

P1 P2 P3 P4 P5 P6

E
x
c
e
p
ti
o
n
T
e
st
C
a
se
s

EC1/T
⊙ ⊕ ⊙

EC1/E
⊕ ⊙ ⊙

EC2/T
⊙ ⊕ ⊙

EC2/E
⊕ ⊙ ⊙

EC3/T
⊙ ⊕ ⊕

EC3/E
⊕ ⊙ ⊕

EC4/T
⊙ ⊕ ⊕

EC4/E
⊕ ⊙ ⊕

ECi/T=Solved using traditional approach

ECi/E=Solved using ExcClipse⊙
=Done in session I,

⊕
=Done in session II

Table 7.2: Study Execution Sessions

Session I Session II Participants

Traditional approach ExcClipse Group I (P1, P2, P5)

ExcClipse Traditional approach Group II (P3, P4, P6)

7.4 Result Analysis and Discussions

We analyze both the observation data collected during execution phase and the feedback from the participants

collected during evaluation phase, and contrast ExcClipse with traditional means for di�erent search based

activities associated with programming errors and exceptions. This section reports the �ndings from our

comparative analysis.

7.4.1 Evaluation Metrics

We contrast ExcClipse with traditional search engines for di�erent features associated with search-related

activities, and we apply two widely used metrics for evaluation� Average Rating and Mann-Whitney U-Test

[63, 64, 83]. While using the �rst metric, it can be shown whether two lists of ratings are di�erent in terms

of their central values which might not be enough for e�ective comparison all the time, the second metric

determines whether the lists are signi�cantly di�erent from each other. We de�ne the both metrics as follows:

Average Rating: It averages a list of ratings, where each rating is restricted by a certain interval.

For example, in our study, while a rating "1" refers to the lowest rating, "10" refers to the highest rating.

We calculate average rating for every single feature separately as well as the entire system for comparative

analysis.
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Table 7.3: Severity, Frequency and Relevance Scales

Di�culty Level Scale Inconvenience Level Scale Quality Level Scale Relevance Level Scale

Very hard 5 Very problematic 5 Excellent 5 Highly relevant 5

Hard 4 Problematic 4 Good 4 Relevant 4

Neither hard nor easy 3 Does not matter 3 Somewhat good 3 Somewhat relevant 3

Easy 2 Helpful 2 Neither good nor bad 2 Hardly relevant 2

Very easy 1 Very helpful 1 Not good 1 Not relevant at all 1

Table 7.4: Participants' Ratings for Motivating Factors behind ExcClipse

Motivating Factor P1 P2 P3 P4 P5 P6 Avg. Comment

Context-switching between IDE and browser (Inconvenience) 4 3 5 5 5 3 4.17 Problematic

Manual search query formulation (Di�culty) 3 4 3 4 3 5 3.67 Hard

Merit or prospect of a meta search based approach (Quality) 5 4 5 4 4 5 4.50 Excellent

Traditional search query (Relevance) 3 3 4 3 3 3 3.17 Moderate

Checking web page relevance (Di�culty) 4 3 4 4 5 3 3.83 Hard

Pi=Ratings by i
th participant

Mann-Whitney U-Test2: It is a non-parametric statistical test that compares between two independent

sets of ordinal measures. We use the test to understand whether the ratings of the participants for ExcClipse

signi�cantly di�er from that of traditional alternative as a whole or for di�erent search related individual

features. The test outputs two measures� U and p-values, and we consider a widely used signi�cance level of

0.0500 as suggested by relevant existing studies [63, 64, 83]. Thus if p-value <0.0500, we consider the rating

di�erence is signi�cant and vice versa.

7.4.2 Motivating Factors for ExcClipse

We identify �ve important motivating factors behind di�erent approaches proposed in our thesis, and we were

interested to check the perceptions of the participants about them. We set up appropriate scales for di�culty

(i.e., how di�cult a task is?), inconvenience (i.e., how inconvenient a situation or scenario is?), quality (i.e.,

how good an approach or an idea is?) and relevance (i.e., how much relevant a page is?) in Table 7.3, and

collect responses from the participants during evaluation phase by applying those scales. We basically use the

�rst �ve questions in the questionnaire (Section B.2) to capture such responses from the participants. Table

7.4 shows the responses from the six participants, and we average the numerically transformed responses

for analysis. From Table 7.4, we note that context-switching between IDE and browser during web search

is found distracting and inconvenient for most of the participants, and formulation of an e�ective search

query about a programming error or an exception is also a non-trivial task for them. The participants also

�nd checking relevance of a web page against an exception and its context generally hard. According to the

2http://www.socscistatistics.com/tests/mannwhitney
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Table 7.5: Tool Features for Evaluation

Feature Functionality Notation

Support for query formulation Web search F1

Accuracy & e�ectiveness of results Web search F2

Post-search content analysis Web search F3

Support for query formulation Code search F4

Relevance and accuracy of results Code search F5

Usability Overall F6

E�ciency Overall F7

Visualization support Web search F8

Visualization Support Code search F9

recorded responses, they �nd the recommended queries by the search engines relevant sometimes, and they

highly appreciate the idea of a meta search based approach that collects top-ranked results from multiple

popular search engines (e.g., Google, Bing and Yahoo), and then ranks them with a reliable (e.g., context-

aware) ranking. Our previous experiments (Section 3.3.7, Table 3.5) in the �rst study also show that the

approach has the potential indeed.

7.4.3 Comparison of ExcClipse with Traditional Search Providers

Tool Feature Speci�c Comparison

We choose nine individual features which are distinct for each of the search providers� ExcClipse and tra-

ditional search engines. During evaluation phase, these features are evaluated by the participants for both

search providers, and they are also used to contrast ExcClipse with traditional search engines for di�erent

search-related activities. Table 7.5 shows those features as well as their shorthand notations that are used

to refer to the features in the rest of the chapter. We also categorize the features into three� web search

features, code search features and non-functional features as follows:

Web Search Features: In web search, a user generally chooses a few keywords as a search query, and

collects a list of relevant web pages. We compare the support by ExcClipse for web search with that of

traditional search engines (e.g., Google) using three features� query formulation (F1), e�ectiveness of search

(F2) and post-search content analysis (F3). Fig. 7.8 shows average ratings from the participants for both

counterparts, and we note that ExcClipse is relatively rated higher for each of the features. We also perform

Mann-Whitney U- test (Table 7.6) and experience that the ratings for ExcClipse are signi�cantly higher than

that of the traditional search engines.

Code Search Features: In code search, a user chooses a few program tokens (e.g., class name, method

name) as a search query, and collects a list of relevant code examples. We consider the next two features

in Table 7.5� code search query formulation (F4) and relevance and accuracy of code examples (F5) for
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Figure 7.8: Ratings of Web Search Features

Figure 7.9: Ratings of Code Search Features

contrasting ExcClipse with traditional means for the support with code example search. Fig. 7.9 shows the

average ratings for both approaches, and we get �ndings similar to that with web search features.

Non-functional Features: While the above features mostly focus on functional aspects of the search

providers, the features from the third category are related with non-functional aspects such as usability,

look and feel and so on. We also contrast ExcClipse with traditional search engines on those non-functional

features (F6, F7, F8 and F9), and experience that our prototype is preferred over traditional means by the

participants. From Table 7.6, we also note that the ratings for ExcClipse are signi�cantly higher than that

of its counterpart.

Tool level Comparison

We also consider the ratings from participants for nine individual features of each search provider all at once,

and compare ExcClipse with traditional search engine. We average all the ratings of each search provider
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Table 7.6: Rating of Tool Features by Participants

Feature Approach P1 P2 P3 P4 P5 P6 U-value p-value RD

F1

Traditional 7 5 5 5 7 4
1 0.0083 S

ExcClipse 8 9 9 8 8 7

F2

Traditional 7 6 8 5 6 4
1.5 0.0105 S

ExcClipse 8 9 9 9 8 8

F3

Traditional 5 5 8 4 5 6
1.5 0.0105 S

ExcClipse 9 10 9 9 7 8

F4

Traditional 7 4 6 6 6 7
0 0.0051 S

ExcClipse 9 10 9 8 7.5 8

F5

Traditional 7 6 5 5 5 6
0.5 0.0065 S

ExcClipse 9 9 9 8 8 7

F6

Traditional 6 6 5 6 6 6
0 0.0051 S

ExcClipse 9 10 10 8 7 7

F7

Traditional 5 6 6 7 5 6
0.5 0.0065 S

ExcClipse 9 9 8 9 8 7

F8

Traditional 6 5 8 6 6 7
3.5 0.0251 S

ExcClipse 7 10 9 10 7 8

F9

Traditional 5 5 7 6 7 7
0 0.0051 S

ExcClipse 8 10 9 8 8 9

All Features

U-value 2 0 1.5 0 3 6

p-value 0.0007 0.0004 0.0006 0.0004 0.0010 0.0027 - - -

RD1 S S S S S S

Traditional=Google (i.e., web search engine) and GitHub (i.e., code search engine)

Signi�cance level=0.0500, S=Signi�cant, I=Insigni�cant, RD=Rating Di�erence, 1Di�erence between all rat-

ings for traditional approach and ExcClipse respectively by a participant
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Figure 7.10: Ratings of Non-functional Features

from each participant and contrast the average ratings. The bar chart in Fig. 7.11 clearly shows that

ExcClipse is highly rated compared to the traditional search engine by each of the participants. While the

search engine receives a maximum average rating of 6.44 on the scale from one (i.e., lowest rating) to ten

where ten being the highest, ExcClipse enjoys a maximum rating of 9.56 on the same scale. In order to check

whether the ratings for ExcClipse are signi�cantly higher than that of traditional search engine, we conduct

Mann-Whitney U-test on both sets of ratings from the same participant. According to the last row of Table

7.6, the ratings for our prototype are signi�cantly higher for each of the participants.

In order to check whether the participants do indeed agree on using ExcClipse, we compare their ratings

using Mann-Whitney U-test as well. Table 7.7 reports the �ndings of that comparative analysis. Among

6C2=15 participant pairs (i.e., total pairs generated from six participants), we �nd six pairs whose ratings are

not signi�cantly di�erent. Thus the participants in those pairs provide almost similar ratings. We investigate

the possible correlation between these matched ratings and the participant grouping in Table 7.1 and Table

7.2. For example, Fig. 7.12 visualizes the rating agreements among di�erent participants (using connecting

edges) of di�erent groups� Group A and Group B, Group I and Group II. From Fig. 7.12, we do not

notice much regular patterns among the agreements such as intra-group agreement or inter-group agreement

except one instance. We experience a strong rating agreement between participant one (P1) and two other

participants (P3 and P6) in both groupings. Each of the participants took part in the study alone and rated

independently, and the inter-group matchings (e.g., P1 − P3, P3 − P4, P5 − P6) re�ect the con�dence on the

rating scale as well as our prototype. On the other hand, the lack of intra-group agreement indicates that

the rating agreements are not biased by grouping patterns or any other relevant factors. It also should be
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Figure 7.11: Overall Ratings from Participants (Di�erence is Signi�cant, U=0, p=0.0051)

Figure 7.12: Agreement among Ratings from Participants (i.e., Edges refer to Agreements)

noted that the ratings from each of the remaining nine participant-pairs di�er signi�cantly. While we can

speculate that the di�erent factors such as programming experience of the participants, display settings (e.g.,

monitor), study environment (e.g., lab, resident) are contributing factors to such �nding, the study should

be conducted in a more controlled environment to explain the �nding properly.

Comparison using Observed Responses

During execution phase, we observe how each participant searches for relevant web pages or code examples

using both traditional search engines and ExcClipse, and record certain observations. We also occasionally

ask the participants certain clari�cation questions at the end of the phase in order to con�rm our obser-

vations. Table 7.8 shows 15 such of our recorded observations (i.e., questions), where we use numbers for

numerical observations and scales for dichotomous observations. In case of numerical observations, we note

that ExcClipse requires a participant to put relatively less e�orts for search query formulation and retrieval
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Table 7.7: Overall Rating Di�erence among Participants

PA PB U-value p-value RD PA PB U-value p-value RD

P1 P2 10 0.0080 S P1 P3 24 0.1584 I

P1 P4 40 1.0000 I P1 P5 15 0.0271 S

P1 P6 18.5 0.0574 I P2 P3 20.5 0.0854 I

P2 P4 12.5 0.0151 S P2 P5 0 0.0004 S

P2 P6 2 0.0007 S P3 P4 24.5 0.1706 I

P3 P5 2.5 0.0009 S P3 P6 6.5 0.0030 S

P4 P5 12.5 0.0151 S P4 P6 16.5 0.0375 S

P5 P6 0 1.0000 I

PA,PB=Participants of each pair

Signi�cance level=0.0500, RD=Overall Rating Di�erence for ExcClipse,

S=Signi�cant, I=Insigni�cant

Table 7.8: Observed Responses and Feedback from Participants

Question P1 P2 P3 P4 P5 P6

Prefer recommended query to error message from stack trace - -

Query formulation frequency (Traditional) 3.5 3 - 1.5 1 2

Query formulation frequency (ExcClipse) 1 1 2.5 1 1 1

Pages browsed for a solution (Traditional) 2.5 1 - 3.5 3 2.5

Pages browsed for a solution (ExcClipse) 2.5 1 1.5 1.5 2.5 2.5

Rank of a solution page (Traditional) 0-5 0-5 - 0-8 5-10 0-5

Rank of a solution page (ExcClipse) 0-5 0-5 0-5 0-5 0-8 0-5

Context-switching between IDE and browser is problematic

Prefer relevant section to whole page for relevance checking

Comfortable with custom look and feel or layout

Searching within IDE is comfortable

Use web search engine for code example search -

Relevant code example found (Traditional) -

Code examples browsed to get a relevant one (ExcClipse) 1.5 2 2 1.5 3 2

Pi=Observations for i
th participant

=Totally agreed, =Almost agreed, =Partially agreed, =Not agreed
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of a solution for the programming problem, and retrieval of relevant code examples for exception handling.

In case of dichotomous ones, the recorded data reveal several interesting facts that show the potential of

our proposed prototype. For example, (1) each of the participants consider that search within the IDE is

convenient and helpful for problem solving, and (2) they especially prefer the supports of ExcClipse for query

formulation and post-search content analysis to traditional means. Although the participants have a few

minor concerns about the way the relevant section of a page is displayed, they looked pretty convinced by

the overall look and feel of ExcClipse.

7.4.4 Qualitative Suggestions from Participants

We collect qualitative suggestions from the participants about ExcClipse during study sessions. This section

enlists some of them as follows:

Post-search Content Analysis

• The relevant section should be hyper-linked to the corresponding section in the original web page, and

the section should be highlighted for easier identi�cation and manual analysis.

• At present, once a user requests for relevant content, ExcClipse instantly downloads the content of a

page and processes the request. One participant suggests that this pulling of relevant section should

be faster and that can be achieved through parallel processing (e.g., Java threading).

Code Search and Preview

• The result panel of code search should be more similar to that of web search in order to preserve the

consistency in the look and feel.

• Code search query tokens should be highlighted in the code preview panel so that one can manually

check the relevance of a selected example by putting less e�ort.

7.5 Threats to Validity

We identify a few issues with our user study worthy of discussion. First, the number of participants involved

in the study is not enough, and it is a signi�cant threat to the study. Given the length of each study session

(i.e., about 1-1.5 hour) and the breadth of the study (i.e., task involved), we choose to restrict the study

with six participants. More importantly, those participants (i.e., graduate students) are the potential users

for our system, and three of them also have prior software development experiences in the industry. Thus

we believe that although the participant size is small, they might be enough to contrast our prototype to

traditional means and to explore the potential of the prototype.
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Second, the participants are chosen from among the peers for our user study, and some of them are also

familiar to some extent with the conducted studies in this thesis. Thus one can argue about the potential bias

in the ratings by the participants for our system. While we cannot rule out the possibility of such bias, we

adopted a careful technique in order to mitigate such bias in the evaluation. The study sessions with each of

the participants were conducted in isolation and the evaluation was based on their instant working experience

with our system as well as their best judgement. More importantly, we also analyze the problem solving

experience (i.e., observation checklist) of the participants in order to determine the consistency between their

experience and their ratings, and we found them quite consistent.

Third, observing problem solving practices of the participants and recording them simultaneously during

execution phase are both time-consuming and error-prone. One can reduce errors in recording and analyzing

observed data through screen-recording. However, this technique is more time-consuming and intrusive in

nature, and participants may feel uncomfortable with recording during their work. The �ndings from the

observed data are based on our careful observation and in-depth analysis. In order to mitigate the threat,

we average the numerical observations for each of the test cases for each participant. In case of dichotomous

ones, we also carefully analyze the recorded data and occasionally consult the qualitative comments from the

participants to report the �ndings.

7.6 Summary

To summarize, in this chapter, we discussed the details and the �ndings of our conducted user study involv-

ing six participants. We �rst focus on our developed plugin prototype� ExcClipse (that integrates all the

approaches proposed in this thesis), and discuss its di�erent technical supports for problem solving. We then

discuss the detailed design of the user study including tasks, participants, and data collection techniques�

observation checklists and questionnaire. We also describe how each study session is organized and run. We

then apply a list of tools and techniques to analyze the study data and to contrast ExcClipse with traditional

counterpart from di�erent perspectives. According to the �ndings from the study, ExcClipse is found highly

promising by the participants, and it has great potential for the automated support with programming errors

and exceptions. We also collect valuable suggestions from the participants for future work, and report a few

threats to the validity of our study.
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Chapter 8

Conclusion

8.1 Concluding Remarks

Programming errors and exceptions are inherent during development, maintenance or evolution of any soft-

ware system. Software developers often look into web for working solutions or any relevant information in

order to solve the encountered programming errors and exceptions in the IDE. While collecting informa-

tion using traditional web search, they face several practical challenges. First, the search engines do not

consider detailed context of the programming problems during search unless the developers prepare queries

good enough by analyzing the context in the IDE, which is not an easy task. Thus the traditional search

engines return a list of result pages which might not be properly applicable or even may be irrelevant to the

problems. Second, neither stack trace nor context code of an encountered exception can be used directly as

a search query because of their length. Third, manual analysis of the whole web page for relevance with a

programming problem (and its context) is generally hard, and it requires a signi�cant amount of time and

e�ort. Another challenge that is faced by the developers is� neither traditional web search nor traditional

code search is helpful in collecting readily available code examples which can be used for exception handling.

A number of existing studies [32, 33, 43, 50, 51, 55, 68, 69, 79, 80] are conducted to address such challenges

above with traditional web search and code search. However, most of the approaches ignore the technical

details of a programming problem (e.g., an error or an exception) and the context code (i.e., a segment in

the code that triggers the exception) in the IDE, and a few of them use such information either in a limited

fashion or use them in ine�ective ways. Thus those approaches are either not properly applicable or not much

e�ective for our research problems. In this thesis, we attempt to address the above four challenges using

context-aware and IDE-based approaches. The approaches use technical details and context of a programming

problem (e.g., an exception) e�ectively and in diversi�ed ways, and provide meaningful supports with di�erent

search related activities (e.g., web search, code search). We conduct four separate studies (Chapter 3, Chapter

4, Chapter 5 and Chapter 6) followed by a user study (Chapter 7), and we have the following outcomes:

(a) The �rst study (Chapter 3) proposes and evaluates a context-aware meta search engine for programming

errors and exceptions in the IDE. The study shows that a context-aware (i.e., considers detailed context

of a programming problem) search is more e�ective than any other search approaches based on keyword

matching. It also shows that our proposed meta search engine is more likely to return solution pages

108



for an exception than any of the relevant existing approaches in the literature or traditional search

engines.

(b) The second study (Chapter 4) proposes and evaluates a novel search query recommender that analyzes

technical details and context of an encountered error or exception, and recommends a list of suitable

queries for web search. Extensive experiments and validations show that the recommended queries

are relatively more e�ective than the traditional ones or the ones generated by relevant existing ap-

proaches from the literature. The study also shows that the queries from the proposed recommender

are comparable to the expert queries collected from a user study.

(c) The third study (Chapter 5) proposes and evaluates a novel content recommendation approach that

analyzes technical details and context of an encountered exception in the IDE and returns not only a

noise-free version but also the most relevant section(s) of a web page. Extensive experiments followed

by a limited user study show that the approach has enough potential to help one in post-search content

analysis and in solving the exception with reduced cognitive e�orts.

(d) The fourth study (Chapter 6) proposes and evaluates a code search recommender that analyzes the

code under development in the IDE and recommends a list of relevant code examples from GitHub

repositories for exception handling. The study shows that the existing code search approaches are

either non-applicable or not much e�ective for such recommendation, and our recommender performs

signi�cantly better than a closely related existing approach.

(e) Finally, the user study (Chapter 7) involving six participants explores the potential of our proposed

approaches, and contrasts our developed plugin prototype� ExcClipse to traditional search engines.

The study reports that ExcClipse is signi�cantly preferred to traditional means by the participants for

di�erent web search and code search related activities in the IDE.

As the �ndings above suggest, context-aware approaches are more e�ective for various recommendations

(e.g., search query, web page, relevant page section and code example) than the ones that do not take

context of a programming problem into consideration. We also learn that the context-aware approaches are

signi�cantly preferred by the participants in the user study than the traditional means for di�erent search

related activities. Thus we believe that our proposed context-aware approaches in all four studies have the

potential to support developers in programming problem solving that involves web search and/or code search.

8.2 Future Work

While in this thesis, we deal with di�erent conventional items such as stack trace and context code for various

recommendations, in future, we plan for more granular and customized analysis for recommendation. This

section discusses our future plans with the research work in the thesis.
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Context-Aware Search: In this thesis, we adopt a few heuristic-based techniques in order to extract

context of a programming problem discussed in a web page. The techniques are mostly e�ective except in the

case of poorly designed web pages (i.e., pages that do not follow the well-known conventions in embedding

code related items). In future, we plan to apply a more systematic approach such as DOM tree based

analysis for such web pages for context extraction. We also plan to perform more in-depth analysis such

as topic modeling1 or other semantic analysis in order to determine the relevance of a page against a target

programming problem.

Search Query Recommendation: In this thesis, we analyze technical details and context of a pro-

gramming exception and recommend a list of suitable queries for web search. In future, we plan to extend

this support to the search for other programming problems. While the current work analyzes context code

and stack trace for query recommendation, in future, we plan to analyze more granular items such as code

comments, identi�er names in order to recommend more customized and semantically relevant queries for

di�erent programming problems.

Post-search Content Analysis: In this thesis, we extract and recommend the relevant section from a

web page that is most likely to contain a solution for a programming exception at hand. However, sometimes,

a relevant section could also be large itself. In future, we plan to pinpoint the possible solution location in the

relevant section by highlighting di�erent items of interest such as target error or exception message or search

query terms (i.e., as suggested by the participants from the user study) and by natural language processing

involving semantic analysis.

Context-Aware Code Search for Exception Handling: At present, our proposed approach recom-

mends a list of relevant code examples containing high quality handlers for an exception of interest. However,

exception handling is a frequently misunderstood concept by the developers and is greatly subjected to the

context (i.e., abstraction, layer) of an application. In future, we plan to provide more directed support such

as (1) whether a recommended handler code is actually applicable to the current context in the IDE or not,

and (2) whether a caught exception should be handled or thrown in the current context of coding.

1http://en.wikipedia.org/wiki/Topic_model
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Appendix A

User Study Test Cases

A.1 Exception Test Case 1 (EC1)

A.1.1 Stack Trace

java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(Unknown Source)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(Unknown Source)
at java.io.ObjectInputStream.readStreamHeader(Unknown Source)
at java.io.ObjectInputStream.<init>(Unknown Source)
at cores.TestCase1.main(TestCase1.java:15)

A.1.2 Context Code

12 try{
13 File file=new File("./data/recordlist.dat");
14 FileInputStream fis = new FileInputStream(file);
15 ObjectInputStream ois = new ObjectInputStream(fis);
16 ArrayList<Record> currentList = new ArrayList<Record>();
17 //restore the number of objects
18 int size = ois.readInt();
19 for (int i=0; i<size; i++) {
20 Record current = (Record) ois.readObject();
21 currentList.add(current);
22 }
23 }catch(Exception e){
24 e.printStackTrace();
25 }

A.2 Exception Test Case 2 (EC2)

A.2.1 Stack Trace

javax.imageio.IIOException: Not a JPEG file: starts with 0xff 0xd9
at com.sun.imageio.plugins.jpeg.JPEGImageReader.readImageHeader(Native Method)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.readNativeHeader(Unknown Source)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.checkTablesOnly(Unknown Source)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.gotoImage(Unknown Source)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.readHeader(Unknown Source)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.readInternal(Unknown Source)
at com.sun.imageio.plugins.jpeg.JPEGImageReader.read(Unknown Source)
at javax.imageio.ImageReader.read(Unknown Source)
at cores.TestCase2.main(TestCase2.java:19)

A.2.2 Context Code

13 try{
14 File imgFile=new File("./data/myimg.jpg");
15 Iterator readers = ImageIO.getImageReadersByFormatName("jpg");
16 ImageReader reader = (ImageReader) readers.next();
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17 ImageInputStream iis = ImageIO.createImageInputStream(imgFile);
18 reader.setInput(iis, true, true);
19 BufferedImage image = reader.read(0);
20 }catch(Exception exc){
21 exc.printStackTrace();
22 }

A.3 Exception Test Case 3 (EC3)

A.3.1 Stack Trace

java.lang.IllegalAccessException: Class cores.TestCase5 can not access a
member of class java.util.HashMap$HashIterator with modifiers "public final"

at sun.reflect.Reflection.ensureMemberAccess(Unknown Source)
at java.lang.reflect.AccessibleObject.slowCheckMemberAccess(Unknown Source)
at java.lang.reflect.AccessibleObject.checkAccess(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at cores.TestCase5.main(TestCase5.java:19)

A.3.2 Context Code

13 try{
14 Dummy dummy=new Dummy();
15 Set<String> myStr = new HashSet<String>();
16 myStr.add(dummy.toString());
17 Iterator itr = myStr.iterator();
18 Method mtd = itr.getClass().getMethod("hasNext");
19 System.out.println(mtd.invoke(itr, null));
20 }catch(Exception exc){
21 exc.printStackTrace();
22 }

A.4 Exception Test Case 4 (EC4)

A.4.1 Stack Trace

java.net.UnknownServiceException: protocol does not support output
at java.net.URLConnection.getOutputStream(Unknown Source)
at cores.TestCase6.main(TestCase6.java:14)

A.4.2 Context Code

10 try{
11 URL url = new File("./data/filedata.txt").toURL();
12 URLConnection connection = url.openConnection();
13 connection.setDoOutput(true);
14 OutputStream output = connection.getOutputStream();
15 System.out.println(output);
16 }catch(Exception exc){
17 exc.printStackTrace();
18 }
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Appendix B

User Study Data Collection Techniques

B.1 Observation Checklist

B.1.1 Observation Checklist for Traditional Search

We make the following observations when a participant performs the study tasks using a traditional search
engine (e.g., Google) or a traditional code search engine (e.g., GitHub):

Query Formulation

• Does the participant analyze the stack trace or the context code of the encountered exception? [Yes/No]

• Does he or she solve the exception without web search? [Yes/No]

• Does he or she use only the error message as a search query? [Yes/No]

• Does he or she use other tokens from the stack trace in the search query? [Yes/No]

• Does he or she use Google/Bing/Yahoo queries for search? [Yes/No]

Web Page Search

• Which search engine does he or she use? [Google, Bing, Yahoo]

• Does he or she try multiple search engines? [Yes/No]

• How many web pages does he or she browse to get a solution?

• Rank(s) of the solution(s) in the result list? [0-5, 5-10, 10-15]

• How many attempts (i.e., query reformulation) does he or she make for a single search task?

Post-search Content Analysis

• Does he or she check page title for browsing? [Yes/No]

• Does he or she check the page description (i.e., meta description by search engines) for browsing?
[Yes/No]

• Does he or she check an entire web page for relevant content sections? [Yes/No]

• Does he or she move back and forth between IDE and browser for relevance checking of a page? [Yes/No]

• Is the moving back and forth inconvenient for him or her? [Yes/No]

Code Example Search

• Does he or she use IDE provided features for exception handling? [Yes/No]

• Does he or she analyze the context code to prepare a search query for code search? [Yes/No]

• Is he or she able to formulate a search query including exception name and tokens? [Yes/No]

• Does he or she use a code search engine for code example search? [Yes/No]

• Does he or she get any query support from the traditional code search engine (GitHub or Krugle)?
[Yes/No]
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• How many results does he or she browse to get a relevant example for exception handling?

• How many attempts (i.e., query reformulation) does he or she make for a single task?

B.1.2 Observation Checklist for ExcClipse

Wemake the following observations when a participant performs the study tasks using our proposed prototype�
ExcClipse:

Query Formulation

• Does the participant use a search query from the recommended list? [Yes/No]

• Does he or she modify the query and develop a custom query for search? [Yes/No]

• Which ranked query does provide the solution mostly?

• Does he or she prefer a recommended search query over the error message from stack trace? [Yes/No]

Web Page Search

• How many web pages does he or she browse to get a solution?

• Rank(s) of the solution(s) in the result list? [0-5, 5-10, 10-15]

• How many attempts (i.e., query reformulation) does he or she make for a single search task?

• Does he or she feel comfortable with web search within the IDE? [Yes/No]

• Does he or she consider switching context between IDE and web browser problematic? [Yes/No]

Post-search Content Analysis

• Are page title and page description enough for relevance checking of a web page? [Yes/No]

• Is a relevant section from the page better option for relevance checking of the page? [Yes/No]

• Is it (i.e., consulting relevant section) more e�ective than consulting the entire web page? [Yes/No]

• He or she does not need to move back and forth for relevance checking, is it convenient? [Yes/No]

• Is he or she comfortable with the custom layout of relevant section panel? [Yes/No]

Code Example Search

• Does he or she use a recommended query for code search? [Yes/No]

• Does he or she need to reformulate the query for search? [Yes/No]

• How many results does he or she browse to get a relevant example for exception handling?

• How many attempts does he or she make for a single task?

• Is code example previewing a good choice before actually working with an example? [Yes/No]

• Does the code token highlighting feature help to select an appropriate example? [Yes/No]
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B.2 Questionnaire

We ask the following 15 questions in the form of questionnaire to each participant once they complete the
four search-related tasks:

• Is switching context between IDE and web browser inconvenient or distracting for your work?

Options: (a) Very problematic (b) Problematic (c) Does not matter (d) Helpful for work (e) Very
helpful for work

• Preparing a search query for a programming error or an exception is generally

Options: (a) Very hard (b) Hard (c) Neither hard nor easy (d) Easy (e) Very easy

• How would you evaluate an approach that fetches top-ranked results from multiple search engines such
as Google, Bing and Yahoo all at once for the same query and then merges the results with reliable
ranking?

Options: (a) Excellent (b) Good (c) Somewhat good (d) Neither good nor bad (e) Not good

• What do you think about the search queries recommended by Google/Bing/Yahoo search engines when
you start typing?

Options: (a) Very relevant for my exception (b) Relevant to my exception (c) Sometimes relevant
(d) Hardly relevant (e) Not relevant at all

• Checking relevance of a web page in the browser with the exception in the IDE is

Options: (a) Very hard (b) Hard (c) Neither hard nor easy (d) Easy (e) Very easy

• The code examples by ExcClipse for exception handling are

Options: (a) Very helpful (b) Helpful (c) Not sure (d) Less helpful (e) Least helpful

[ 1=least useful or least e�ective, 10=most useful or most e�ective ]

• Rate the Search query formulation support for programming errors and exceptions between 1-10 (least
to most). Options: (a) Traditional � (b) ExcClipse �

• Rate the accuracy and e�ectiveness (i.e., the returned results are actually useful) of search result ranking
between 1 to 10 (least to most). Options: (a) Traditional � (b) ExcClipse �

• Rate the support for post-search content analysis (e.g., how easily can you locate a relevant page or
relevant content from the page?) between 1 to 10 (least to most).

Options: (a) Traditional � (b) ExcClipse �

• Rate the query formulation support (i.e., quality and ranking of query) for code example search between
1 to 10 (least to most). Options: (a) Traditional � (b) ExcClipse �

• Rate the relevance and accuracy of code example search feature between 1 to 10 (least to most).
Options: (a) Traditional � (b) ExcClipse �

• Rate the usability (i.e., easy to use) between 1 and 10 (least to most).

Options: (a) Traditional � (b) ExcClipse �

• Rate the e�ciency (i.e., consumes less e�ort or time but provides more gain) of the search providers
for problem solving between 1 and 10 (least to most) Options: (a) Traditional � (b) ExcClipse �

• Rate the overall look and feel (e.g., result relevance visualization and relevant content visualization) of
the web search providers between 1 and 10 (least to most) Options: (a) Traditional � (b) ExcClipse
�

• Rate the overall look and feel (e.g., result relevance visualization and code example preview) of the
code search providers between 1 and 10 (least to most) Options: (a) Traditional � (b) ExcClipse �
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