2,517 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Comparing SVM and Naive Bayes classifiers for text categorization with Wikitology as knowledge enrichment

    Full text link
    The activity of labeling of documents according to their content is known as text categorization. Many experiments have been carried out to enhance text categorization by adding background knowledge to the document using knowledge repositories like Word Net, Open Project Directory (OPD), Wikipedia and Wikitology. In our previous work, we have carried out intensive experiments by extracting knowledge from Wikitology and evaluating the experiment on Support Vector Machine with 10- fold cross-validations. The results clearly indicate Wikitology is far better than other knowledge bases. In this paper we are comparing Support Vector Machine (SVM) and Na\"ive Bayes (NB) classifiers under text enrichment through Wikitology. We validated results with 10-fold cross validation and shown that NB gives an improvement of +28.78%, on the other hand SVM gives an improvement of +6.36% when compared with baseline results. Na\"ive Bayes classifier is better choice when external enriching is used through any external knowledge base.Comment: 5 page

    A Unified multilingual semantic representation of concepts

    Get PDF
    Semantic representation lies at the core of several applications in Natural Language Processing. However, most existing semantic representation techniques cannot be used effectively for the representation of individual word senses. We put forward a novel multilingual concept representation, called MUFFIN , which not only enables accurate representation of word senses in different languages, but also provides multiple advantages over existing approaches. MUFFIN represents a given concept in a unified semantic space irrespective of the language of interest, enabling cross-lingual comparison of different concepts. We evaluate our approach in two different evaluation benchmarks, semantic similarity and Word Sense Disambiguation, reporting state-of-the-art performance on several standard datasets

    Doctor of Philosophy

    Get PDF
    dissertationDomain adaptation of natural language processing systems is challenging because it requires human expertise. While manual e ort is e ective in creating a high quality knowledge base, it is expensive and time consuming. Clinical text adds another layer of complexity to the task due to privacy and con dentiality restrictions that hinder the ability to share training corpora among di erent research groups. Semantic ambiguity is a major barrier for e ective and accurate concept recognition by natural language processing systems. In my research I propose an automated domain adaptation method that utilizes sublanguage semantic schema for all-word word sense disambiguation of clinical narrative. According to the sublanguage theory developed by Zellig Harris, domain-speci c language is characterized by a relatively small set of semantic classes that combine into a small number of sentence types. Previous research relied on manual analysis to create language models that could be used for more e ective natural language processing. Building on previous semantic type disambiguation research, I propose a method of resolving semantic ambiguity utilizing automatically acquired semantic type disambiguation rules applied on clinical text ambiguously mapped to a standard set of concepts. This research aims to provide an automatic method to acquire Sublanguage Semantic Schema (S3) and apply this model to disambiguate terms that map to more than one concept with di erent semantic types. The research is conducted using unmodi ed MetaMap version 2009, a concept recognition system provided by the National Library of Medicine, applied on a large set of clinical text. The project includes creating and comparing models, which are based on unambiguous concept mappings found in seventeen clinical note types. The e ectiveness of the nal application was validated through a manual review of a subset of processed clinical notes using recall, precision and F-score metrics

    ShotgunWSD: An unsupervised algorithm for global word sense disambiguation inspired by DNA sequencing

    Full text link
    In this paper, we present a novel unsupervised algorithm for word sense disambiguation (WSD) at the document level. Our algorithm is inspired by a widely-used approach in the field of genetics for whole genome sequencing, known as the Shotgun sequencing technique. The proposed WSD algorithm is based on three main steps. First, a brute-force WSD algorithm is applied to short context windows (up to 10 words) selected from the document in order to generate a short list of likely sense configurations for each window. In the second step, these local sense configurations are assembled into longer composite configurations based on suffix and prefix matching. The resulted configurations are ranked by their length, and the sense of each word is chosen based on a voting scheme that considers only the top k configurations in which the word appears. We compare our algorithm with other state-of-the-art unsupervised WSD algorithms and demonstrate better performance, sometimes by a very large margin. We also show that our algorithm can yield better performance than the Most Common Sense (MCS) baseline on one data set. Moreover, our algorithm has a very small number of parameters, is robust to parameter tuning, and, unlike other bio-inspired methods, it gives a deterministic solution (it does not involve random choices).Comment: In Proceedings of EACL 201

    Unsupervised does not mean uninterpretable : the case for word sense induction and disambiguation

    Get PDF
    This dataset contains the models for interpretable Word Sense Disambiguation (WSD) that were employed in Panchenko et al. (2017; the paper can be accessed at https://www.lt.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_LangTech/publications/EACL_Interpretability___FINAL__1_.pdf). The files were computed on a 2015 dump from the English Wikipedia. Their contents: Induced Sense Inventories: wp_stanford_sense_inventories.tar.gz This file contains 3 inventories (coarse, medium fine) Language Model (3-gram): wiki_text.3.arpa.gz This file contains all n-grams up to n=3 and can be loaded into an index Weighted Dependency Features: wp_stanford_lemma_LMI_s0.0_w2_f2_wf2_wpfmax1000_wpfmin2_p1000.gz This file contains weighted word--context-feature combinations and includes their count and an LMI significance score Distributional Thesaurus (DT) of Dependency Features: wp_stanford_lemma_BIM_LMI_s0.0_w2_f2_wf2_wpfmax1000_wpfmin2_p1000_simsortlimit200_feature expansion.gz This file contains a DT of context features. The context feature similarities can be used for context expansion For further information, consult the paper and the companion page: http://jobimtext.org/wsd/ Panchenko A., Ruppert E., Faralli S., Ponzetto S. P., and Biemann C. (2017): Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction and Disambiguation. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL'2017). Valencia, Spain. Association for Computational Linguistics

    Automatic Bilingual Lexicon Extraction for a Minority Target Language

    Get PDF
    PACLIC / The University of the Philippines Visayas Cebu College Cebu City, Philippines / November 20-22, 200

    Improving Statistical Language Model Performance with Automatically Generated Word Hierarchies

    Full text link
    An automatic word classification system has been designed which processes word unigram and bigram frequency statistics extracted from a corpus of natural language utterances. The system implements a binary top-down form of word clustering which employs an average class mutual information metric. Resulting classifications are hierarchical, allowing variable class granularity. Words are represented as structural tags --- unique nn-bit numbers the most significant bit-patterns of which incorporate class information. Access to a structural tag immediately provides access to all classification levels for the corresponding word. The classification system has successfully revealed some of the structure of English, from the phonemic to the semantic level. The system has been compared --- directly and indirectly --- with other recent word classification systems. Class based interpolated language models have been constructed to exploit the extra information supplied by the classifications and some experiments have shown that the new models improve model performance.Comment: 17 Page Paper. Self-extracting PostScript Fil
    • …
    corecore