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ABSTRACT

Domain adaptation of natural language processing systems is challenging because it

requires human expertise. While manual effort is effective in creating a high quality

knowledge base, it is expensive and time consuming. Clinical text adds another layer

of complexity to the task due to privacy and confidentiality restrictions that hinder the

ability to share training corpora among different research groups. Semantic ambiguity is a

major barrier for effective and accurate concept recognition by natural language processing

systems.

In my research I propose an automated domain adaptation method that utilizes sub-

language semantic schema for all-word word sense disambiguation of clinical narrative.

According to the sublanguage theory developed by Zellig Harris, domain-specific language

is characterized by a relatively small set of semantic classes that combine into a small

number of sentence types. Previous research relied on manual analysis to create language

models that could be used for more effective natural language processing. Building on

previous semantic type disambiguation research, I propose a method of resolving semantic

ambiguity utilizing automatically acquired semantic type disambiguation rules applied on

clinical text ambiguously mapped to a standard set of concepts.

This research aims to provide an automatic method to acquire Sublanguage Semantic

Schema (S3) and apply this model to disambiguate terms that map to more than one concept

with different semantic types. The research is conducted using unmodified MetaMap version

2009, a concept recognition system provided by the National Library of Medicine, applied

on a large set of clinical text. The project includes creating and comparing models, which

are based on unambiguous concept mappings found in seventeen clinical note types. The

effectiveness of the final application was validated through a manual review of a subset of

processed clinical notes using recall, precision and F-score metrics.
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CHAPTER 1

INTRODUCTION

Imagine a clinical world in which clinicians dictate all patient information using natural

speech into an Electronic Medical Record (EMR) system; the speech is automatically parsed

into a structured form and the meaningful data is stored as database entries. Unfortunately,

such a world is still in the realm of science fiction. The main reason such a world has not

materialized despite decades of research is that phonetic, lexical, syntactic, and semantic

ambiguity is characteristic of natural speech. Advances have been made to resolve each

of these types of ambiguities, and simpler subproblems have been solved at a satisfactory

level [1,2]. However, an accurate, general-purpose, adaptable concept recognition system is

still a hope for the future.

This dissertation project tackles the problem of semantic ambiguity of the natural text

found in clinical notes. Building on previous research on semantic type disambiguation,

I propose a method called the Sublanguage Semantic Schema (S3) to resolve semantic

ambiguity utilizing automatically acquired semantic type disambiguation rules applied to

clinical text, which was ambiguously mapped to concepts from a standard terminology.

MetaMap, a powerful system designed to map terms from text to UMLS Metathesaurus, is

used to illustrate the feasibility of a practical implementation of my proposed method.

1.1 Problem Statement

Clinical language is complex. It is inconsistent at first look. It is unstructured and often

ungrammatical. Individual clinicians have their personal opinions on what should and

should not be noted about the patient in the medical record. The content and structure of

the narrative depends on the type of service provided, kind of document, clinical setting,

author’s role, and subject matter domain [3]. In the current research, I am focusing on

the document type clinical note. Regardless of the purpose of a clinical note, it potentially

contains clinically relevant information in the free text that is created in the process of

patient care [4]. Most EMR systems have structured forms and checklists that physicians use
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to record patient data. However, the healthcare environment is broad, often unpredictable,

and nuanced. As of today, there are no “off-the-shelf” systems that are able to provide

a user-friendly way to report all potentially important information about all patients, or

the care that they received [5]. Such lack of essential functionality is the reason why free

text persists as a method of keeping clinical records complete. Forcing clinicians to use

structured forms that enable computer-friendly data entry has not been successful and

usually causes strong user resistance [6].

Since the early years following the introduction of electronic medical record systems

in clinical practice in the 1960s, information technology researchers have approached the

clinical narrative as gold ore ready to be processed. Similar to gold mining, extracting

meaningful information from clinical narratives has been a labor intensive process. Previous

research efforts have identified “golden nuggets” using manually created rules for specific

research questions [2]. As the technology and algorithms improve, developing new, more

general, more precise, and more accurate methods is becoming more difficult. The latest

wave of NLP research is directed to finding new ways of learning new information utilizing

existing knowledge sources and technologies. Since the EMR systems have been introduced,

large repositories of clinical text have been accumulated. These repositories can be used

for information extraction through Natural Language Processing (NLP). Such language

processing methods often rely on human annotated text.

In the general language processing world, several sets of annotated texts have been

created and available to researchers for shared use [7, 8]. However, in the clinical world

this approach is complicated by the sensitive nature of the texts. Clinical texts often

contain identifiable data about a patient that are covered by security and confidentiality

requirements such as the Health Insurance Portability and Accountability Act (HIPAA) of

1996. In this environment, only a small number of people can have access to the texts.

Such access restrictions make obtaining manual annotations difficult, because the process

cannot be outsourced to a third party. Each organization that attempts annotation projects

is challenged with finding trusted human resources within the organization. When an NLP

system is developed, it is optimized for the text that was used to create its knowledge base.

Therefore, when a system is transferred into a new clinical environment, the knowledge base

has to be adjusted in order to achieve the highest level of performance. Since the knowledge

base acquisition is labor intensive, system adaptation is a costly and time consuming

task. The knowledge-acquisition bottleneck is the major barrier for clinical NLP system
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implementation [9]. Unable to adapt an existing system, large organizations develop their

own in-house systems that are not shared across organizations; whereas, smaller medical

facilities are forced to use off-the-shelf systems that have limited applicability and are not

optimized for the organization’s specific setting. Therefore, there is a clear need to develop

methods of automatic knowledge base acquisition in order to enable system portability into

a new clinical setting.

1.2 Main Objectives

Information retrieval, information extraction, question answering, machine translation,

and most other natural language processing tasks rely on accurate concept recognition.

However, clinical text is highly ambiguous; it challenges existing concept recognition sys-

tems. There is a clear need for a concept recognition system that serves a general purpose

and is highly accurate. Enabling a fast, accurate and economical method of domain

adaptation of a concept recognition system is the main vision of the current research.

Clinical NLP experts have always assumed that clinical language is not homogenous but

varies depending on the clinical setting. However, this assumption has never been tested

on a wide range of clinical text. As the first step in this project, I show that even within

the same organization, the clinical language varies.

1.2.1 Aim I

Demonstrate language variability across various clinical settings within the same orga-

nization.

Research question 1.1 Is there a clear sublanguage variation among various clinical

sublanguages?

Research question 1.2 Does the language variation depend on the clinical setting or a

specific clinical subdomain?

When addressing Aim I, I identified the natural grouping of clinical text that resulted

from unsupervised clustering of documents of different types, as described in Chapter 3.

1.2.2 Aim II

Design and validate a tool that automatically acquires and uses sublanguage characteris-

tics for word sense disambiguation through semantic type disambiguation of terms mapped

to multiple concepts with different semantic types.
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Research question 2.1 Does the developed system work well for clinical term disam-

biguation in a range of clinical note types as compared to a manually annotated test set?

Research question 2.2 Does the system perform better than a baseline method such as

MetaMap?

When addressing Aim II, I designed a system prototype and evaluated its performance

on a set of manually annotated sentences extracted from clinical notes of four note types,

as described in Chapter 4.

1.2.3 Aim III

Identify performance-improving steps on a range of clinical notes.

Research question 3.1 Can the feature space be substantially decreased without a sig-

nificant loss of accuracy of the classification model?

Research question 3.2 : Does the sublanguage feature space derived for those terms that

were unambiguously mapped differ from the feature space of ambiguous terms?

When addressing Aim III, I define preprocessing and postprocessing steps that could

potentially lead to improved system performance, as described in Chapter 5.

1.3 Relevance to Biomedical Informatics

According to Bernstam and colleagues, one of the main goals of biomedical informatics

is to bridge the gap between the human information needs and the capabilities of the

current technology [10]. Clinical informatics is a major part of a larger field of biomedical

informatics. At this time, most of the information entered into a patient record in free

text format is unreachable for computerized processing. Accurate, robust, and fast natural

language processing would enable a vast range of possible uses of data from decision support

at the point of care to reporting, surveillance, and research. My research advances the

current language processing technology by enabling automatic domain adaptation of a

computerized concept identification system. Improving portability of existing systems would

promote collaboration between facilities and research groups.
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BACKGROUND

2.1 Natural Language Processing

NLP has a long history as research projects and practical implementations. It is

traditionally defined as computerized processing of text. NLP is a very broad field that

incorporates a large variety of tasks that differ in their complexity and specificity [2]. The

term “natural language processing” is often equated to computational linguistics; however,

these terms are not interchangeable [11]. Unlike computational linguistics, NLP approaches

text as a source of data about the state of the world. It is characterized by developing and

applying computational methods for a particular task and to achieve a practical purpose.

The possibility of fully automatic language processing was first suggested in Weaver’s

memorandum that introduced the idea of machine translation [12]. Since then the field of

NLP has grown to include a variety of methods and tasks of different levels of computational

complexity and scope.

The list of NLP tasks ranges from low level general tasks, such as tokenization and

sentence segmentation, to problem-specific tasks such as information extraction and ques-

tion answering. High-level tasks rely on accurate performance of lower level tasks. For

example, the accuracy of information extraction depends on correct parsing (which in turn

depends on morphological segmentation, tokenization, sentence segmentation, and part

of speech tagging), named entity recognition, concept recognition (which relies on word

sense disambiguation), co-reference resolution, and relationship extraction. The current

state-of-the-art systems that solve low level tasks achieve high accuracy; and, when used in

a limited domain, are comparable to performance of a human annotator [13]. Word sense

disambiguation as one of the components of an accurate concept recognition is the focus of

the current project.

2.1.1 Word Sense Disambiguation

Concept recognition (or term identification) is regarded as a single most important factor

in accurate information extraction [14]. Traditional linguistic theory studies the language
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form and meaning as two separate though related elements of language. It recognizes

that the same meaning can be expressed in various physical forms. It also posits that

the same physical form can express a number of meanings. Therefore, determining correct

semantic interpretation that is implied by a specific textual representation (the physical

form) in specific context is an intermediary step in the process of concept recognition. The

computational approach to this task is called Word Sense Disambiguation (WSD). The

WSD process involves selecting one meaning out of a discrete number of known possible

senses for a specific term [9,15,16]. The need for WSD arises as a consequence of semantic

ambiguity that is characteristic to human language.

The difficulty of the WSD task varies depending on the availability of an electronic

dictionary that is used to create the sense inventory for each term, as well as on the

similarity of the possible senses. If the available dictionary does not have the true meaning

of the term as one of the possible definitions, it is impossible for any WSD algorithm to

identify the correct sense because it will be missing from the sense inventory. Similar to

humans, a computerized algorithm has a hard time differentiating between similar concepts,

therefore, the subtler the difference between meanings is, the more errors will result from

disambiguation [15]. The most common steps to perform WSD are as follows:

1. Identify a list of specific target words for the system;

2. Create a sense inventory for each target word;

3. Extract (or create) examples that use the target word in one of the identified senses;

4. Label each instance of the target words with one of the senses from the sense inventory

using manual annotation;

5. Employ machine learning or statistical approach to learn WSD rules using sample

sentences;

6. Measure the system performance by applying it to another manually annotated set of

examples [17].

The approaches to WSD can be grouped depending on several factors:

1. Based on the method of disambiguation model acquisition, a WSD algorithm can be:

a) rule-based, b) example-based [18], or c) statistical [19, 20].

2. Based on the scope of disambiguation, a WSD algorithm targets: a) a restricted target

word set, or b) all words.

3. Based on the extent of manual annotation performed to create the disambiguation

model: a) supervised, b) unsupervised, c) knowledge-based, or d) hybrid.
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Rule based systems derive their knowledge base from the manually created rules for

disambiguation. Example based systems use example databases that contain example of

sentences that use a target word in one of the identified senses. Disambiguation is performed

by finding the most similar sentence example. A variety of methods can be employed to

select the most informative examples [18]. Statistical WSD systems rely on computational

algorithms to build disambiguation models using lexical features of the target word context.

Supervised WSD is one of the widely used approaches for development of WSD systems.

It is based on supervised machine learning applied to a manually sense-annotated text and

then uses the resulting model to perform word sense disambiguation on new text. The main

disadvantage of such an approach is a high cost of manual annotation [21]. This approach is

especially problematic in “all-words” WSD, where the system analyses all ambiguous words

in text and not just a specific limited subset. Unsupervised methods are often called word

sense discrimination [22] or sense discovery [23] because they aim to distinguish the word

senses by clustering them in groups based on the context in which the word appears. The

main disadvantage of such approaches is that after word sense discrimination is performed,

human review is required to label the word sense clusters with the correct sense.

Semi-supervised or minimally supervised WSD methods use a small, manually-annotated

text in combination with a large untagged corpus. Two variations of semisupervised

approaches are bootstrapping and active learning methods. Bootstrapping uses a small

corpus that was manually selected and tagged to learn the initial model and then utilizes

the large untagged corpus to improve this model [9, 24]. The bootstrapping method as

implemented by Yarowsky is a minimally supervised method that relies on one sense per

collocation and one sense per discourse principles [25]. Active learning methods identify the

most informative examples from the large untagged corpus and present them to a human

expert for disambiguation [26, 27]. Supervised and unsupervised WSD methods are also

called corpus-based methods because they use language models learned from a training text

dataset [28].

Knowledge based WSD methods identify the word senses using external knowledge

resources such as dictionaries, thesauri, or ontologies; or manually created disambiguation

rules [29,30]. These methods include identifying the most likely meaning of the word using

a) selectional preferences that restrict the semantic type of the word sense based on the

context [31]; b) information formats with slots for specific type of information [32]; c) the

context using unambiguous meanings of the neighboring terms [33]; d) semantic similarity
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calculated using an ontology of semantic network [34]; or e) unambiguous meanings of the

word in a different language using a parallel corpus [35].

Hybrid methods use variations of the approaches described above. Some examples of

hybrid systems include Durham and SenseLearner. The Durham system utilizes word sense

frequencies calculated using a manually annotated text and applies word collocations as

well as WordNet contextual scores [36]. The SenseLearner system uses word collocations

learned from a small manually-annotated corpus enhanced by the WordNet taxonomy [37].

A wide availability of large general English lexical databases, such as WordNet, and

specialized ontologies, such as GeneOntology (GO) and the Unified Medical Language

System (UMLS), makes it possible to develop a hybrid approach that combines knowledge

based methods and supervised learning algorithms. For example, the A-CUI algorithm

created by McInnes calculates similarity of the target word feature vector based on the

word’s surrounding context and the concept feature vector for each candidate concept

extracted from the UMLS [38]. As the size and quality of the existing knowledge repositories

increase, such hybrid approaches have a great potential for solving the problem of word sense

disambiguation. The approach presented in this dissertation is a hybrid method because

it takes advantage the UMLS Metathesaurus as a knowledge repository for the purposes of

identifying training examples for the language modeling as well as a controlled vocabulary

to determine the sense inventory for terms to be disambiguated.

2.2 Sublanguage Theory

Human language is very flexible to accommodate a wide range of communication pur-

poses, including fairy tales and entertaining riddles. Many words can take a large num-

ber of meanings, making computerized language processing challenging. Zellig Harris,

an American linguist, observed that the restricted use of language in the discourse of

specialized domains placed strict limitations on the distribution of word classes and their

co-occurrences. Harris determined that knowing these distributions can aid in determining

the most appropriate meaning of terms within the boundaries of a specific domain.

Previous research has established that semantic and syntactic rules differ for narratives

that come from different specialized domains. Such closed-matter subjects are characterized

by a limited vocabulary, a relatively small set of word classes, and word-class sequences

integrated as a sublanguage [39]. Although the specific word-recurrences in the successive

sentences of a discourse are unique to that discourse, various types of co-occurrence patterns
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seem to characterize various types of discourses. The various types of word co-occurrence

are worth studying as the inherent carriers of various information types. And the particular

pattern of word co-occurrence in a given discourse or section is useful as a framework of the

particular information and information processing in that discourse [40]. Since sublanguage

theory was first introduced, there have been multiple attempts to implement sublanguage

principles in computer applications. The distinguishing characteristics of such an approach

are performing WSD through semantic type disambiguation, which involves identifying a

word class (or semantic type) for each ambiguous term and then selecting a concept that

belongs to that word class out of a list of potential concepts [41]. This approach is based

on selectional preferences or restrictions [9, 31,42,43].

A number of domains have been analyzed via sublanguage models, such as trouble

tickets [44], technical maintenance manuals [45], stock market reports [46], and weather

reports [47]. The work to produce the first computerized application based on sublanguage

theory started in 1965 and resulted in the Linguistic String Project (LSP) [48]. That project

is based on the information formats for the content of text in a given domain. It started as

an attempt at computerized processing of scientific text, based on the algorithm developed

by Sager (N. Sager, Procedure for left-to-right recognition of sentence structure, T.D.A.P.

No. 27, University of Pennsylvania, 1960) and theoretically grounded in Linguistic String

Theory suggested by Zellig Harris [49]. This theory states that any sentence can be built

from the center string by adjunction, conjunction, and replacement. The center string is a

sequence of noun+tensed verb or noun+tensed verb+noun. However, not all combinations

of word categories result in a valid sentence due to a number of restrictions. The earliest

full-text accessible article about LSP is by Grishman [50]. He states that in 1973, LSP

was under development for 8 years and the current version at the time was version 3. The

grammar used by the parser consisted of:

1. a Backus-Naur Form context-free language grammar implemented as a set of elemen-

tary strings together with rules for combining them to form sentence strings,

2. a set of restrictions on those strings; and

3. a word dictionary, listing the categories and subcategories for each word.

Another early publication is by Sager in 1975 [51], where she discussed the hypothesis

that the literature of science domains has certain restrictions on language usage. These

restrictions were formalized as information formats, which are repeating patterns of the

word classes (also called semantic types, term classes, or word categories) and word class
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relations in sentences of the text. Word classes were obtained by grouping words or phrases

that occur within similar grammatical relations. The information formats contained slots

for particular types of information. Sentences of the text of specific domain were identified

as instances of the corresponding format. The set of formats was considered to be a

sublanguage grammar. Each slot had a fixed informational content and the sentences of

certain format carried specific types of information. The slots were based on the hierarchy

of grammatical operators and operands; they were not determined solely on the linear

sequence of words in sentences.

The main premise of sublanguage grammar is that narrow domain grammar rules are

more restrictive than English grammar rules. A sentence may be well formed in general

English but not well formed as a sentence in the specific domain. In the beginning of LSP,

the researchers established that the semantic classes of words do not have to be specified a

priori but can be extracted through the process of grouping terms that appear in the same

co-occurrence patterns.

2.3 NLP in Clinical and Biomedical Domains

Since the early years of research in the natural language processing of English, newspaper

and scientific literature have been the primary target languages. As a result of multiple

research projects, a large number of disambiguation methods have been proposed and a

large body of language samples have been annotated and made available for shared use.

Availability of shared annotated corpora enabled new system evaluation and algorithm

comparison. Despite such advances in main-stream NLP technology, its penetration into

the clinical domain has been limited to a few research projects and a handful of commercial

systems. The reason for this situation is the difference among lexical, syntactic, and

semantic characteristics of clinical text and general language.

Clinical language shares some of the features of other telegraphic sublanguages, such

as ill-formed and reduced sentences, lack of internal consistency, abundance of overloaded

abbreviations and acronyms, misspellings, and extra linguistically-meaningless tokens re-

sulting from local and individual practices [1, 52]. The language of biomedical literature

shares some characteristics of clinical language, such as a large vocabulary of terms that are

virtually exclusive to the medical domain, but it also resembles general language, because

of the use of proper grammar and wide availability of shared corpora. Because of these

differences, clinical language and the language used in biomedical literature are distinct
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sublanguages [53]. A number of systems have been created to process narrative stored in

electric format. Some of them are general and some of them are project-specific, created

either as a research project or implemented in a single organization.

2.3.1 Systems Based on Sublanguage Principles

Over the last 50 years the sublanguage theory has been used as the theoretical framework

for a number of different systems that have been developed and implemented for a clinical

and biomedical domain.

The Medical Language Processing (MLP) system is the first attempt to apply the LSP

parser to medical text, initially reported in 1976 [32]. This effort was conducted by a research

team that included Naomi Sager, Ralph Grishman, Ngo Nhan, and Carol Friedman. The

target corpus included x-ray reports on patients with breast cancer. For that system,

word classes and information formats were derived through a distributional analysis on

the parsed sentences to obtain word classes and on the word classes to define formats.

The distributional analysis starts with identifying words frequently occurring in the same

syntactically defined environments. These words become the core of the new class. Then

the environments of these words are enumerated and new words for the class are identified.

Only one format was initially determined. The final version of the system had additional 11

formats. During the first attempt for MLP, 176 out of 188 sentences (94%) were successfully

formatted. The MLP system is designed to perform linguistic string analysis to determine

the sentence structure, regularization of the sentence structures though general English

transformations, and mapping of transformed parsed sentences into format slots.

Another major concept-mapping system based on the sublanguage theory is Medical

Language Extraction and Encoding system (MedLEE) developed by a team led by Carol

Friedman. [54]. The grammar rules employed by MedLEE were developed manually, based

on the distributional analysis of clinical notes of a specific note type - chest x-ray reports.

Modifying the knowledge base to accommodate new domains required a substantial human

effort. So resolving the knowledge base acquisition bottleneck by making the process

automatic would simplify domain adaptation natural language processing systems that

use sublanguage restriction rules for semantic disambiguation. Friedman first described

the conceptual model for the MedLEE project in 1994 [55]. The model was designed by

analyzing chest x-ray reports generated at Columbia Presbyterian Medical Center (CPMC).

The model included four conceptual levels: a) the structure of the report; b) the findings
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in the report; c) the structure of the medical concepts that make up the findings; d) the

lexical information associated with individual words and multi-word phrases.

The clinical terms and their semantic types were defined in the Medical Entities Dic-

tionary developed at CPMC. The initial analysis included 8000 chest x-ray reports. Once

the conceptual levels have been defined, the prototype was implemented [55]. Initially,

the semantic lexicon contained 3120 terms with associated semantic types. The semantic

grammar contained 350 grammar rules. A first proof-of-concept study used 230 reports.

Two person years were required to create the first semantic grammar. Later the semantic

grammar was extended to cover mammography, discharge summaries, all of radiology, elec-

trocardiography, and pathology [56]. During the system adaptation project, the MedLEE

developers concluded that creating a system that can be equally effective on text of different

domains required obtaining additional rules that would enable and disable other grammar

rules based on the target clinical subdomain. As the number of covered subdomains grows,

maintaining the rules might become cost prohibitive.

2.3.2 Biomedical Language Processing Systems

Domain specific vocabulary and a limited set of word categories as main characteristics of

sublanguages have been successfully applied for word sense disambiguation in the biomedical

domain. UMLS has been the knowledge base of choice for most NLP systems. The UMLS

Metathesaurus provides a large vocabulary of medically relevant concepts and the UMLS

Semantic Network provides a relatively small list of word classes (or semantic types) that are

applicable to the biomedical domain. Similar to UMLS Metathesaurus, another commonly

used controlled vocabulary is Medical Subject Headings (MeSH). To aid the development of

new medical NLP systems, the National Library of Medicine (NLM) sponsored development

of a manually-annotated text collection for the purposes of training and testing word sense

disambiguation [57].

A number of projects focused on processing biomedical text. Rindflesch and Aronson

developed a set of rules that determined the semantic type of the term depending on the

patterns of neighboring words and semantic types within the sentence. This set of rules

was applied to a small set of instances and achieved 78% disambiguation accuracy [58].

Expanding on Rindflesch and Aronson’s idea, Krauthammer and Nenadic suggested per-

forming word sense disambiguation as a two step process - term classification and term

mapping. The goal of term classification is to label the term of interest with one of a small



13

number of semantic categories using a machine learning model, which was acquired using

annotated text. Once the semantic category is identified, the term mapping step arrives

to the final match between the term and a concept from a controlled vocabulary such as

UMLS Metathesaurus [14]. Similarly to Krauthammer and Nenadic’s approach [14], Fan

and Friedman successfully exploited UMLS resources to perform word sense disambiguation

through semantic type classification [41].

The idea of semantic type labeling as a step to concept recognition is further developed by

Humphrey and colleagues [59]. They used Journal Descriptor Indexing (JDI) as a straight-

forward way to identify sublanguages within biomedical domains. The main assumption is

that publications with the same JDI belong to the same sublanguage. Semantic type labeling

is implemented by adjusting the likelihood of occurrence of a concept with a specific semantic

type depending on the set of journal descriptors that are associated with the neighboring

words. The average disambiguation precision was reported at around 78%.

Stevenson and Guo developed a hybrid WSD system that combined lexical features (such

as lemmas of ambiguous words), syntactic features (such as part of speech), collocation

features (such as combination of other features in ngrams), and knowledge-based features

(such as UMLS identifiers and MeSH terms). Using those features, the Naive Bayes

and Support Vector Machine models were tested on the NLM test collection and term

disambiguation accuracy of 89.7% was achieved [60]. Similarly, a system developed by Liu

et al. [61] creates a disambiguation model by learning a Naive Bayes classifier using a feature

space consisting of stemmed words that appear in each evaluated abstract. The method

used a one meaning per discourse assumption to aid disambiguation.

2.3.3 Clinical Language Processing Systems

Sublanguage approach is not the only method used for NLP of clinical text. Several

commercial, open access and research applications have been developed. One of the earliest

systems was the special purpose radiology understanding system (SPRUS) designed to

encode salient features from chest X-ray reports and implemented as a module in the

Health Evaluation through Logical Processing Hospital Information (HELP) medical expert

system at the LDS Hospital in Salt Lake City, UT [62]. Another NLP tool developed within

the same organization is SymText, which uses Bayesian networks to model the context of

radiological reports in order to automate coding tasks [63]. Chest radiology reports were

also the initial target domain of another HELP module, a probabilistic medical language
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understanding system called MPLUS [64]. It uses Bayesian networks to represent the basic

semantic types and relations in order to infer the most probable concepts consistent with

the words found in a sentence. Using MPLUS as the starting point, the Automated Problem

List (APL) system was designed to extract medical problems from electronic free-text

documents [65].

Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES) is a pipeline

system designed by Savova for the purpose of phenotype extraction from clinical notes [66].

It was built on publicly available technologies, such as UIMA framework, OpenNLP and the

SPECIALIST Lexical Tools. The system annotates text with several clinical named entities,

such as drugs, diseases/disorders, signs/symptoms, anatomical sites, and procedures. Each

named entity has attributes for the text span, the ontology mapping code, whether the

named entity is negated, and the context (family history of, history of, probable). The

system has been submitted to the Open Health Natural Language Processing Consortium

(OHNLP) and can be freely downloaded.

Medical Knowledge Analysis Tool (MedKAT/P) is another freely available tool donated

to the OHNLP by IBM [67]. This modular and flexible system based on UIMA framework

is designed to extract structured information from narrative text in the clinical pathology

domain such as pathology reports, clinical notes, discharge summaries and medical litera-

ture. The system labels text with concepts such as primary tumor or lymph node status

and a number of cancer-specific characteristics such as histology, anatomical site, nodes

dimensions and sizes, number of positive and excised nodes. MedKAT/P incorporates

NegEx algorithm developed by Chapman to identify negation status of the concepts [68].

Health Information Text Extraction (HITEx) was initially specific to a research study

on airway diseases such as asthma and chronic obstructive pulmonary disease. Now it is

used as a general purpose NLP “cell” module in the i2b2 “hive” architecture. The main

functionality of the system is to extract principal diagnoses, co-morbidities, and smoking

status. The knowledge base for the system includes a set of manually designed regular

expressions, as well as machine learning models trained on a corpus consisting of discharge

summaries of the patients that had one or more related admission diagnoses defined by

ICD9 codes [69].

Most of these systems have been developed within a single organization. Informatics for

Integrating Biology and the Bedside (i2b2), an NIH-funded National Center for Biomedical

Computing (NCBC) based at Partners HealthCare System in Boston, has promoted collab-
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oration by organizing a series of NLP challenges and shared tasks. These challenges tackled

the problems of de-identification [70], obesity and co-morbidities extraction [71], smoking

status [72], and clinical concept extraction from clinical text [73,74].

2.4 Project Statement

Using semantic type information has been successful in aiding the word sense disam-

biguation process as applied to both biomedical literature and clinical text. Similarly,

limiting the scope of the NLP system also has been shown to boost the system’s performance

by limiting language variability. In combination, the limited system scope and semantic

grammar rules have a potential to enable language processing of even the most irregular

and idiosyncratic language. However, the knowledge base acquisition for such a system

would be challenging due to the lack of training data. A successful WSD tool, once created,

produces satisfactory results on text that is similar in syntactic and semantic characteristics

to the text that was used to build it. However, performance of even the best WSD tool will

inevitably decrease if the tool is applied to a text with syntactic and semantic characteristics

that are different from the source text. Improving tool performance on a new text often

involves either adding new semantic rules or retraining the statistical model on a new set

of annotated texts. The process of new domain adaptation of a WSD tool is expensive

and time consuming because it involves human experts [75]. Making the process of WSD

domain adaptation automatic would increase the tool’s portability across domains. The

current project demonstrates the variability of clinical language and suggests a model of

dealing with this variability automatically using available knowledge resources.

2.5 Resources

2.5.1 Computational Resources

This project involves analysis of a large number of original clinical notes that have

not been de-identified. Due to the amount of processing that was required, as well as in

order to comply with privacy and security regulations, a powerful and secure environment

was needed. I utilized a new secure, HIPAA-compliant, high-performance compute cluster

located at the Center of High Performance Computing.

2.5.2 Corpus

The complete set of all clinical narrative types at our medical center (a large tertiary

care teaching hospital) in use during the period January 2007-December 2008 was analyzed
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by a clinical expert to determine a study subset that was diverse across domains. Note types

that consisted mostly of templated information, scanned hand-written documentation, or

nonclinical documents were excluded. As a result, a set of 17 representative note types were

selected for this study. These note types represented a cross-section of clinical narratives

created by clinical personnel that varied by clinical role (physicians, nurses), specialty

(cardiology, dermatology, ob/gyn, oncology, etc.), and clinical environment (ED, inpatient,

outpatient). A set of 683,061 notes was extracted from the University Hospital Electronic

Data Warehouse. Files that were less than 100 bytes in length were excluded because most

of them did not contain clinically relevant information. The remaining 559,029 files were

processed by the MetaMap. Only 557,571 of those files were successfully processed. In

addition to the clinical narratives, a random set of 35,000 MEDLINE abstracts published

between 2000-2008 was selected. To ensure a valid comparison to the clinical texts, abstracts

less than 100 bytes and those that failed to be processed were excluded. The full list of

note types and their file counts is presented in Table 2.1.

Table 2.1: The note types and the corresponding file counts used in this project.

Note Type Abbr. File Attempted Processed
count to process successfully

Admission HP AHP 51,721 43,142 42,911
Ambulatory Nursing Note ANN 77,542 73,196 73,167
Burn Clinic Note BCN 13,430 13,428 13,428
Cardiology Clinic Note CCN 24,366 24,306 24,302
Case Mgmt Dschg Plan Note CMD 30,213 30,141 30,046
Dermatology Clinic Note DCN 6,251 6,250 6,249
Discharge Summary DIS 65,256 65,220 64,530
Emergency Dept Report EDR 106,250 685 685
Family Practice Clinic Note FPC 11,626 11,270 11,233
Hematology Oncology Clinic Note HOC 36,785 36,769 36,760
Neurology Clinic Note NCN 24,137 23,944 23,634
Obstetrics Gynecology Clinic Note OGC 9,355 9,289 9,277
Operative Report OPR 76,593 76,556 76,552
Orthopaedic Clinic Note OCN 119,094 115,655 115,654
Plastic Surgery Clinic Note PSC 4,375 4,371 4,371
Rheumatology Clinic Note RCN 22,647 21,393 21,358
Social Service Note IP SSN 3,420 3,414 3,414

Total number of files: 683,061 559,029 557,571
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2.5.3 MetaMap

MetaMap is a powerful concept recognition system developed by a team led by Aronson

at the National Library of Medicine. Its primary aim is to map terms found in abstracts

of MEDLINE citations, as well as user queries to concepts in the UMLS Metathesaurus. A

recent comprehensive overview of MetaMap system is presented elsewhere [76].

Its comprehensiveness, robustness, free availability, and regular updates with the latest

version of the UMLS make MetaMap very attractive for potential NLP users. However, in

spite of the good coverage of the clinical domain by the UMLS Metathesaurus, MetaMap

has not been applied widely to the clinical domain beyond a few research projects. The

main deterrent to broad application of MetaMap on clinical narratives is its failure to

perform accurate word sense disambiguation. When a term from free text matches multiple

UMLS concepts, MetaMap returns a list of all mappings, making information extraction

ineffective. If MetaMap’s WSD algorithm is used on clinical narratives, it often selects the

wrong concept because it was trained on biomedical text. The result of MetaMap processing

is an XML output file that specifies sentence, phrase, syntax unit, and token boundaries,

the part of speech and syntax type of each syntax unit, as well as a combination of concepts

from UMLS Metahesaurus. Along with the UMLS concept identifier, the XML file has

UMLS preferred concept name, and one or more corresponding Semantic Types (STs) for

each concept. For my project I used the version that was the latest at the time when I

started processing the data - MetaMap binary 2009 V.2 [77].



CHAPTER 3

SUBLANGUAGE

Natural Language Processing systems employed in the clinical domain operate under

one of two main assumptions about clinical language: 1) the narrative of patient notes con-

stitutes one sublanguage, or 2) each clinical subdomain imposes its special set of selectional

restrictions that aid concept recognition. The examples of the systems built with the first

assumption are cTAKES and HITEx. The design of cTAKES is based on the reference

standard that included 273 manually annotated clinical notes of a range of note types -

consult notes, discharge summary, educational visit, general medical examination, limited

exam, multisystem evaluation, reports, specialty evaluation, dismissal summary, subsequent

visit, therapy, and notes of general category - miscellaneous. The goal of creating such a

mixture of text samples was to ensure that all areas of the clinical domain were covered by

the disambiguation model [66].

As opposed to cTAKES, the HITEx system uses a reference standard corpus of 150

discharge summaries because the language and topic variability is believed to be an accurate

representation of the variability across all subdomains [69]. A commercially available

system, LifeCode, targets a large variety of notes but manages its performance by limiting

the tasks that it can perform [78]. Another system, called KnowledgeMap, incorporates a

range of clinical notes and medical textbook text in an attempt to create a general purpose

knowledge base [79]. The main benefit of treating clinical language as a unified sublanguage

is the relative speed of system development.

A very different approach to clinical language system development is designing systems

for a specific clinical subdomain or note type. The Medical Language Extraction and

Encoding System (MedLEE) is a successful and widely used general purpose system built

with the assumption of language variability by note type. The initial system design was

based on chest x-ray reports. When the system’s use was expanded to include other types

of clinical notes, the system’s knowledge base was modified. However, instead of simply

expanding the knowledge base to include additional semantic categories and terminology, a



19

set of context-dependent switches was developed that would turn on or off certain grammar

rules determined by the clinical subdomain where the system is used [53]. This setup

made the system highly accurate for concept recognition in some clinical subdomains, but

increased the financial and time cost of system adaptation to a new target subdomain.

Similar to MedLEE an array of research projects and system development efforts were

conducted under an assumption of language variability. The most common way to deal

with the idiosyncrasies of the narrative across domains is to specify the exact task or

the clinical subdomain that the system targets and avoid making assumptions of possible

system performance outside of those boundaries. The developers of Medical Information

Extraction System (MedEx) describe the purpose of the system to be mapping of medication

information into a structured representation. Even though the system was trained using

only Discharge Summaries, the authors claim wide applicability of the system due to the

narrow scope of the task [80]. Both of these assumptions are largely untested. Therefore, as

the first step in my research project, I am attempting to identify the boundaries of clinical

sublanguages. The purpose of such analysis is to inform future system developers when they

are making a decision about their system’s scope and coverage. For example, if precision in

the system’s performance is the top priority, then the developers will be compelled to limit

the coverage of their system to only one specific note type. Without additional knowledge

about the sublanguage boundaries, it would be impossible to predict the potential system

performance degradation when it is applied in a different setting.

3.1 Methods

According to the traditional definition of sublanguage grammar outlined by Harris, the

languages of different narrow domains differ in their lexical component - vocabulary, and

in their semantic component - semantic types and semantic type patterns distributions

[40]. Therefore, I approach the sublanguage boundary definition at two levels - lexical

and semantic. To show that clinical language is not homogeneous at a lexical level, I use

unsupervised document clustering analysis (reported in [81]). The semantic level variability

is demonstrated through semantic type pattern distribution analysis (reported in [82]).

3.1.1 Document Clustering

Document clustering is a common unsupervised machine learning method of binning

analyzed documents into groups treating each document as a single entity. Other approaches



20

that I considered for the task of identifying sublanguage boundaries were document classi-

fication, topic discovery, and latent semantic analysis.

Document classification is a supervised method of organizing documents by assigning one

of several predefined categories to each document. The steps for such analysis would include

manual annotation of a set of representative documents that would then be used for training

of a machine learning classifier. Once a classifier is acquired, it can be used to label a test set

of documents with a category. The output of this analysis would indicate whether all notes of

the same note type fall into the same category or not [83]. This method assumes that human

experts can correctly discern language variations to inform the classifier. However, due to

natural capacity limitations, humans are not able to perceive hidden patterns from large

amounts of data, and therefore, besides the obvious cost associated with human annotations,

the supervised approach is inferior to computational methods of pattern discovery in data.

Similar to document clustering, topic discovery methods identify documents that share a

similar content using unsupervised techniques. However, topic discovery labels documents

with a set of possible topics, whereas, document clustering labels each document with a

single label, thus simplifying the grouping structure [84].

Like document clustering, Latent Semantic Analysis uses term frequency weights for

words used in each analyzed document. Also, as with document clustering, LSA evaluates

word usage patterns for all words across all analyzed documents. However, unlike document

clustering, LSA focuses on individual words and their meaning, thus the LSA hierarchical

model is directed at learning the relationships between words, rather than documents.

Hierarchical LSA methods allow visualizing word relatedness, rather than document relat-

edness, which is beneficial for word sense disambiguation but not as a sublanguage similarity

measure [85].

After considering other options, I chose document clustering as a method of grouping

related documents because it does not require human annotation to inform the algorithm,

and because hierarchical document clustering methods allow not only identifying what types

of sublanguages are present in the corpus, but also the strength of sublanguage similarity.

Document clustering is a commonly used unsupervised text mining technique that has been

used for a range of natural language processing tasks such as information retrieval, question

answering and others. The goal of document clustering is to find a set of “natural” patterns

within a large amount of unlabeled data inside the documents and then to organize similar

documents into groups using some measure of similarity [86]. Cluster analysis typically
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consists of a) feature selection and extraction; b) selection or design of a clustering algorithm;

and c) cluster quality evaluation [87].

The most popular data set format for document clustering is a bag-of-words vector-space

model. This method represents the entire set of documents as a T ×D matrix, where T is

the size of the vocabulary used in the document set; and D is the total number of documents

in the data set [88]. Each document is represented as a vector of length T , and since most

terms do not appear in any given document, these vectors are sparse. Typically, each

value in these vectors represents the importance of the particular term (t) in the particular

document (d). In order to minimize the effect of the document size and extremes in the

frequency of a specific term, the well known “term-frequency inverse-document-frequency

(tf-idf)” measure is often used as the weight of each term in a document vector [89, 90].

This measure takes into account how frequent a specific term is within a specific document

as well as the term distribution across all documents in the analyzed corpus. Thus, terms

that appear only in a few documents have higher weights, but terms that appear in most

documents will have lower weights.

The goal of cluster analysis is to place each document into one of K disjoint or overlap-

ping clusters. Each cluster usually is defined by its centroid, which is the most representative

vector in the cluster. Depending on the clustering algorithm used, the centroid can be

either the average point for each dimension of the feature vector, or an actual point in the

data set that is the closest to the average point. Most clustering algorithms have three

main components: a) similarity measure, used to measure vector relatedness; b) clustering

method, the computational approach taken during the clustering process; and c) clustering

criterion function, which is used for the optimization of the final clustering solution [91].

Similarity between two vectors can be measured by calculating a Euclidean distance, a

cosine distance, or a correlation coefficient. The general clustering method can be either

partitional, agglomerative, density-based, or grid-based. Depending on the final specific

solution desired, the clustering methods can be either hierarchical or nonhierarchical [92].

The simplest and most widely used clustering method is K-means. Prior research concluded

that a bisecting, K-means algorithm performs quite well despite its simplicity and lower

computational complexity [93]. This hierarchical algorithm iteratively splits the data set

until the predefined number of clusters is reached. Selection of a clustering criterion

function influences the final clustering solution by putting more emphasis on cohesion or on

separation of the resulting clusters.
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The measure of cluster quality can be classified as either internal or external. Internal

measures of cluster quality aim to assess how closely the elements in each cluster are related

to each other, evaluating “cohesion” and “separation” of the clustering results. Cohesion

can be measured as the average similarity of the members of the cluster to each other or

to the cluster centroid. Separation evaluates the average dissimilarity of the members of a

particular cluster to all other elements in the data set.

The external measures rely on knowing a true label of each of the documents. Clustering

output can be measured externally in terms of purity and F-score. Purity is the proportion of

each cluster that consists of the majority class. F-score evaluates precision and recall of each

document type with respect to its cluster assignment. In evaluation of document clustering

output, precision for each document type compares the largest number of documents that

are assigned to a specific cluster to the total number of documents assigned to that cluster.

Recall for each document type compares the fraction of the largest group assigned to

the same cluster to the total number of documents of that type. The F-score is a harmonic

mean of precision and recall. An optimal clustering solution will have 100% purity, which

means that each cluster contains elements that belong to a single class [91]. Such purity

can be achieved trivially when the number of clusters is equal to the number of elements in

the data set. On the other hand, the perfect F-score will be achieved only if all documents

of each type are grouped into a single cluster (100% recall) and no document types share a

cluster label (100% precision). Using the note type as the true class labels, I exploit purity

and F-score measures in our analysis below.

A feature vector file was created where each note was represented by the tf-idf value

for each term that MetaMap matched to at least one UMLS concept. To decrease the

feature space, multiword phrases were split into individual tokens and the base form of all

tokens was obtained from SPECIALIST lexicon using the Norm tool [94]. In addition to

the lexical attributes, semantic types of those terms that were unambiguously mapped to a

UMLS concept by MetaMap were also used as attributes. The derivation of what constitutes

an unambiguously mapped term is more complex than simply choosing those terms with

only one MetaMap semantic mapping. Those terms can be enriched with an algorithm that

exploits the mapping scores provided by MetaMap as described in Section 4.2.1.1. Using

only those terms that MetaMap successfully mapped to at least one concept minimizes the

size of the feature vector and focuses on only those tokens that are potentially relevant in

the clinical setting, thus excluding misspellings, unrecognized locally specific abbreviations,
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and other language characteristics, which are artifacts of the local practices rather than

being typical of the clinical subdomain.

To perform clustering I chose bisecting k-means clustering using a cosine similarity

measure with the “internal criterion function,” which maximizes similarity between each

document and the centroid of the cluster that it is assigned to. The clustering tool I chose

was the CLUTO clustering toolkit [91]. This software package offers a set of clustering

algorithms that approach clustering as an optimization process aiming to minimize or

maximize the selected clustering criterion function. It is written in C, and thus is quite

fast. It also manages memory well. The Java-based Weka cluster toolset was unable to

process the full feature space, and was too slow to be practical for even small subsets.

The selected clustering algorithm requires the number for clusters to be specified a priori.

In the current study, each clustering experiment used the same number of clusters as the

number of the analyzed note types. The full available corpus contained a variable number

of documents for each note type. Since the selected algorithm is the most accurate when the

number of documents in each class is the same, the corpus was reduced to 3000 randomly

selected documents of each note type, except Emergency Department Reports that had only

685 documents available.

My initial experiment using a subset of 685 documents of each type (i.e., the size of the

smallest note type, Emergency Department Reports) clustered into 18 clusters resulted in

74.8% average cluster purity. Analysis of the most descriptive and discriminating features

(produced optionally by CLUTO) showed that several provider names in one type produced

an unwarranted impact on clustering. After these names were identified, the feature vectors

were recalculated and new clusters were analyzed.

Review of the most important features showed that clinically irrelevant words, such

as “phone” and “fax” were responsible for inflated cluster purity for Case Management

Discharge Plan, thus skewing the clustering results. The results of these two experiments

led me to a conclusion that in order to acquire the most reasonable clusters, I had to exclude

the lexical noise that resulted from the artifacts of the local practices and templates. So I

manually designed a short stopword list that consisted of the most frequent person names

and also the words “phone” and “fax.” This stopword list also included five semantic types

that were identified as the most common for all note types [82]. These semantic type are:

Findings, Temporal Concept, Qualitative Concept, Quantitative Concept, and Functional

Concept.
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After those stopwords were excluded, the new data set was analyzed and the average

cluster purity of the resulting solution dropped to 73.3%. This confirmed that the artifact

terms were artificially improving the clustering for some note types, for example, terms

that occurred frequently in section headers. To eliminate noisy terms more systematically,

I calculated an additional set of stopwords that aimed to reduce the lexical artifacts for all

the note types. The new stopword list excluded any term in a specific note type if that term

appeared in more than 95% of all documents of this note type. These terms were eliminated

from the feature set for that particular note type but not for the other note types.

Processing the new data set resulted in an even lower average purity of 70.0%. Even

though eliminating artifacts of the local practices resulted in lower cluster purity, I believe

that by doing so I achieved clustering that more faithfully reflects the lexical patterns of

the analyzed clinical subdomains rather than lexical noise due to local practice. Purity is

calculated in terms of the majority class for each cluster and reflects how well each cluster

is represented by one of the document classes. Lower purity indicates that the cluster

contains notes of different classes, thus showing that those document classes have some

documents that are lexically related among each other. For example, Table 3.1 shows that

cluster 13 mostly has documents from three note types - Ambulatory Nursing Notes, Case

Management Discharge Plan, and Emergency Department Reports. On the other hand,

cluster 6 is mostly represented by documents of a single note type - Rheumatology Clinic

notes. When comparing the cluster assignment for Discharge Summaries and Admission

History and Physical, it is notable that out of 18, clusters 8 have similar counts of these

note types. This is indicative of the large overlap in the lexical and semantic patterns

appearing in the documents of these note types. The next set of experiments evaluated

the effect of larger sample size on clustering. Emergency Department Reports had only

685 notes available to us, so they were excluded from further processing. The feature

vectors representing the remaining sixteen note types and MEDLINE abstracts with 3,000

documents in each set were clustered into seventeen groups. As Table 3.2 illustrates, most

document types were grouped each in its own cluster.

Several note types are shown to be more general than others, such as, Admission

History and Physical, Ambulatory Nursing Notes, Discharge Summary, Family Practice

Clinic Notes and, not surprisingly, MEDLINE abstracts. Case Management Discharge

Plan, Dermatology Clinic, and Plastic Surgery Notes exhibited a dichotomy in the lexical

patterns. As the cluster hierarchy shows, despite such a split, each pair of the clusters are
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closely related, indicating similarity between the clusters. Increased sample size and removal

of a more general document set (Emergency Department Reports) resulted in increase of

the average purity to 76%.

The general note types, which are not specific to any clinical subdomain, span different

topics and were excluded for the next experiment. I processed the new data set consisting

of the documents of those 12 note types, which are more focused on a specific clinical

subdomain. The resulting 12 clusters had an impressive level of purity, 95.5%. Average

F-score was also 95.5% (Table 3.3). This indicates that the overwhelming majority of the

notes of each note type exhibit lexical patterns that are characteristic of that note type.

Analysis of a slightly lower F-score for Orthopedic (OCN) and Plastic Surgery Clinic Notes

(PSC) and Operative Report (OPR) indicated a topic overlap for a portion of these notes

as pointed out by the descriptive features for cluster 12 (Table 3.3), which are {fracture,

orthopedics, motion, knee, splint, radiographic}.

3.1.2 Semantic Pattern Distribution

A domain specific set of sentence types is one of the main characteristics of sublanguage

grammar definition outlined by Harris [95]. According to Harris, the more specialized a

domain, the smaller the set of semantic type structures that are common in the narrative

of that domain and that are designed to carry a specific type of information. Harris’s

sublanguage definition of semantic sentence structure links the semantic role relationships

between words in sentences, such as predicate-argument relationships, with the semantic

types of the words. For example, in a statement “Patient reported pain” the word “patient”

has semantic type “Patient group” and the word “pain” is of the “Sign or Symptom”

semantic type. In terms of semantic roles, the predicate is the verb “reported”, “patient”

is the subject, and “pain” is the object of the sentence. Thus, the semantic structure

that can be derived from this statement for verb “reported” is that the object is “Patient

group” and the subject is “Sign or Symptom.” All semantic structures have a set of

paraphrastic patterns, because the same information can be carried out in various physical

forms. Therefore, the same semantic sentence structure can be expressed by different linear

word sequences. (Such as “Patient reported pain” and “Pain was reported by patient”). The

full set of form and content relations in sentences of a specific domain can be expressed as a

distribution of linear sequences of semantic types (or semantic type patterns) in sentences

within that domain. For the purposes of such analysis, I created a set of semantic pattern
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distributions for each note type, according to the method described below, and compared

the patterns across note types.

The semantic type patterns consist of linear sequences of semantic types within the

predefined window. Since the patterns are not defined in terms of simply co-occurrence

in a sentence, the relative position of the terms participating in a pattern is meaningful.

Therefore, the list of potential patterns is a cross-product of the semantic type set and

positions relative to the term of interest. Initial measurement of semantic type frequency

revealed that almost all note types had an average of between two and three mappings per

sentence. I concluded that due to sparsity evaluating patterns of more than three mappings

would fail to produce useful patterns. Therefore, in order to minimize the number of

patterns, each pattern consists of the term of interest and two other terms within the

predefined window.

Each position within the window was numbered according to the relative position from

the term of interest, such that the term of interest was numbered (0); the term after the

term of interest was numbered (1); the term before the term of interest was numbered (-1),

and so on. The different combinations of positions of mappings within the window were

grouped into fifteen formats as outlined in Table 3.4. Thus, a semantic type co-occurrence

format is an abstract sequence of mapping positions relative to the center that corresponds

to the position of the term of interest. Table 3.4 gives examples of patterns derived from

a sentence “The patient reported severe upper quadrant abdominal pain” with the term

“upper” as the term of interest, assuming the following semantic types for each of the

mappings (with their four-letter abbreviations, which are also described in Appendix A):

• patient - Patient or Disabled Group - podg

• reported - Health Care Activity - acty

• severe - Qualitative Concept - qlco

• upper - Spatial Concept - spco

• quadrant -Spatial Concept - spco

• abdominal - Body Location or Region - blor

• pain - Sign or Symptom - sosy

Relative frequency of observed sequences of mappings that fell within the evaluation

window were calculated. Those patterns that occurred only once were treated as outliers and

were excluded from the analysis. Ambiguously mapped terms were counted as unmapped.

Only unambiguously mapped terms were used in the patterns. Therefore, patterns of only
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Table 3.4: The formats of the patterns found within the window of size 3. The example
evaluates sentence “The patient[podg ] reported[acty ] severe[qlco] upper[spco] quadrant[spco]
abdominal[blor ] pain[sosy ]” with the term “upper” as the term of interest.

Format
number

Format
structure

Examples of
patterns

Corresponding terms

Format 1 (-3) (-2) ( 0) podg acty spco patient reported upper
Format 2 (-3) (-1) ( 0) podg qlco spco patient severe upper
Format 3 (-3) ( 0) ( 1) podg spco spco patient upper quadrant
Format 4 (-3) ( 0) ( 2) podg spco blor patient upper abdominal
Format 5 (-3) ( 0) ( 3) podg spco sosy patient upper pain
Format 6 (-2) (-1) ( 0) acty qlco spco reported severe upper
Format 7 (-2) ( 0) ( 1) acty spco spco reported upper quadrant
Format 8 (-2) ( 0) ( 2) acty spco blor reported upper abdominal
Format 9 (-2) ( 0) ( 3) acty spco sosy reported upper pain
Format 10 (-1) ( 0) ( 1) qlco spco spco severe upper quadrant
Format 11 (-1) ( 0) ( 2) qlco spco blor severe upper abdominal
Format 12 (-1) ( 0) ( 3) qlco spco sosy severe upper pain
Format 13 ( 0) ( 1) ( 2) spco spco blor upper quadrant abdominal
Format 14 ( 0) ( 1) ( 3) spco spco sosy upper quadrant pain
Format 15 ( 0) ( 2) ( 3) spco blor sosy upper abdominal pain

some of the fifteen formats can be extracted from any given sentence. The evaluated co-

occurrence patterns represented linear sequences of mappings and other terms found within

the text of each clinical note type. The most common format was Format 8 where a mapping

alternated with another term in a sequence. Second most common format types where those

where a mapping was followed by another term and then two adjacent mappings such as

Formats 2, 7 and 15. Formats that represented mappings separated by two other terms,

such as Format 3 and 12 were not as common across all analyzed note types.

The sublanguage theory states that a specialized domain puts restrictions on the number

of semantic types and semantic type patterns that are used in the sublanguage. So to

evaluate whether languages of different clinical note types exhibit sublanguage character-

istics, I compared the relative frequency of the collected patterns across all available note

types. When pattern frequencies are sorted in reverse order and ranked starting with the

most frequent pattern, cumulative frequency can be visualized as illustrated in Figure 3.1

and Figure 3.2. These curves show how restricted are sublanguages used in each of the

note types. The steeper the curve is, the more constrained is the language. Comparing

the cumulative relative frequency of the top most frequent semantic types for MEDLINE
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Figure 3.1: Cumulative relative frequency of the different semantic types used in Case
Management Discharge Plan (CMD), Family Practice Clinic notes (FPC), and MEDLINE
abstracts (MLN). The curves of other clinical note types fell between CMD and FPC lines
and were excluded from the figure for visual clarity.

abstracts and clinical note types indicates that the language of the clinical notes is more

restricted. As Figure 3.1 shows, a much larger number of semantic types is required to

cover 90% of the unambiguously mapped concepts found in MEDLINE abstracts then in

the analyzed clinical notes. For clinical notes, that number fell between 25 and 35 semantic

types, whereas biomedical literature actively employed 57 semantic types. Semantic type

patterns also indicate that clinical notes exhibit sublanguage characteristics. According to

the sublanguage theory, semantic type patterns indicate the type of information structures

that are used in the text. Thus, the smaller number of semantic type patterns is, the more

restricted is the sublanguage they describe. Figure 3.2 presents a further evidence that the

language used in the biomedical literature is more general than the language of clinical notes

because the cumulative relative frequency curve has a gradual incline that does not go much

flatter until it reaches full coverage. The shape of MEDLINE abstracts’ cumulative relative

frequency curve suggests that increasing the analyzed sample size would lead to discovery of

more patterns. On the other hand, Ambulatory Nursing Notes are exhibiting characteristics

of a very constrained sublanguage because the curve rises quickly and plateaus at almost
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Figure 3.2: Cumulative relative frequency of patterns of format 8 for Ambulatory Nursing
Notes (ANN), Operative Report (OPR), and MEDLINE abstracts(MLN). The curves of
other clinical note types fell between ANN and OPR lines and were excluded from the
figure for visual clarity

100%. Thus, the curve indicates that a smaller number of sentences is needed to illustrate

all possible types of information that are used in the text of those clinical notes.

3.2 Discussion

The original aims for this step of my research focused on identifying the sublanguage

boundaries among the notes that originated in various clinical subdomains and settings.

Applying document clustering to a large set of clinical narratives allowed me to expose the

differences in the lexical and semantic patterns used within different clinical environments

as well as among different author types. This broad, systematic survey formally establishes

what many clinical NLP researchers have suspected for a long time, namely that clinicians

in different subdomains use language in a highly idiosyncratic way. Clustering also showed

that contrary to the commonly held belief, the clinical setting does not carry as much

weight in determining a clinical sublanguage boundary. The semantic pattern distribution

curves indicate how restricted sentence semantic structures are, which is a clear evidence

that the language of different note types meets the requirements to be regarded as proper
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sublanguages. Together with the document clustering results, semantic pattern distributions

indicate that the clinical language is not homogeneous, but rather is a collection of separate,

though related, sublanguages. It is reasonable to expect that NLP systems that rely on

statistical measures will perform differently on narratives that come from different clinical

subdomains.



CHAPTER 4

SUBLANGUAGE SEMANTIC SCHEMA

SYSTEM

The sublanguage theory proposed and developed by Zellig Harris became the theoretical

basis for my project [39]. In order to implement sublanguage principles for word sense

disambiguation, I defined Sublanguage Semantic Schema (S3) and implemented it as the

Sublanguage Semantic Schema System (S3 System). For clarity, the following definitions

will be used in the remainder of this text:

token - the smallest lexical unit analyzed by MetaMap. Includes words, numbers, and

punctuation.

supporting tokens - tokens marked by MetaMap with one of the following parts of speech:

auxiliary verb, complement, conjunction, determiner, modal verb, preposition, pronoun, and

punctuation. These tokens are skipped by MetaMap algorithm during mapping.

term - one or more semantically linked tokens identified by MetaMap.

concept - a UMLS concept identified by MetaMap.

candidate - one of the concepts that represent the sense inventory of the mapped term.

MetaMap identifies multiple candidates that are combined into a candidate set for each

phrase. Disambiguation of the candidates is a task required for accurate mapping.

mapped term - a term that was mapped by MetaMap to at least one candidate.

mapping - a term that was unambiguously mapped to a UMLS concept using the rules

of unambiguity I developed. The mapping has a UMLS concept identifier and a semantic

type associated with it.

ambiguous term - a term that was mapped to multiple candidates.

ST - the semantic type of the UMLS concept associated with the mapping.

These definitions are also listed in the Appendix B for reference.

4.1 Sublanguage Semantic Schema

Previous research operationalized the sublanguage grammar as Domain Information

Schema (DIS) [96]. DIS consisted of a set of semantic classes, the words and phrases that
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belong to these classes, and the predicate-argument relationships among the members of

these classes specific to the domain. I analyzed the applicability of this approach to the

clinical domain and realized that this definition of the sublanguage structure is not feasible

due to the difficulty of obtaining the most integral part of such schema - the predicate and

argument labeling of terms. An accurate parser adapted to clinical text is rarely available in

practice. Therefore, to make the approach more generalizable, I redefined the sublanguage

structure and I propose a slightly different interpretation of a sublanguage. Instead of

patterns based on predication, I decided to use linear sequence of semantic types as a

manifestation of semantic type patterns. For the purposes of this research, the Sublanguage

Semantic Schema (S3) is defined as a semantic grammar that describes a sublanguage. S3

consists of:

• A set of semantic types and corresponding conditional probabilities of these semantic

types in a sentence;

• A set of semantic type patterns and corresponding conditional probabilities of these

patterns in a sentence;

• A semantic type classification model resulted from a machine learning algorithm.

4.2 System Design

To demonstrate the feasibility of a sublanguage based approach to word sense disam-

biguation, I created a system prototype and called it Sublanguage Semantic Schema System

(S3 System). The system requirements included the following specifications:

1. General purpose - The system has to be able to learn the disambiguation model for

all clinically relevant words in the text.

2. Unsupervised learning - System adaptation to a new clinical subdomain should not

require clinical expertise and manual annotations.

3. Real time disambiguation - The system has to be able to provide real time processing

during disambiguation. This requirement arises as a result of the ultimate vision of

creating a real time language processing system for clinical domain. It is acceptable

for the training phase to be computationally intensive.

4. Easy component upgrade and replacement - Since UMLS, the selected knowledge base,

and MetaMap, the concept mapping engine, undergo yearly updates, it is essential

that the S3 System provides a simple way to replace these components with newer

versions without requiring extensive system modifications.
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The first two requirements are the two main distinguishing features of the current

project. WSD systems that satisfy these two requirements usually struggle to achieve high

accuracy. The system has two main parts - training module and application module. The

complete prototype consists of the code that I developed to perform data manipulation, as

well as the MetaMap engine to perform text mapping to UMLS Metathesaurus, and the

MegaM algorithm to learn and apply logistic regression model. I used Groovy language

for all programming, which I chose because it is a powerful, agile, and dynamic language

that is based on Java virtual machine and incorporates Java code and libraries. Thus, an

application written in Groovy can be used with any operating system.

4.2.1 Training Module

Similar to most supervised statistical corpus-based disambiguation methods, the S3

System relies on a sample of text as a training data for deriving a statistical model.

Unlike supervised methods, the S3 System acquires annotated text automatically by taking

advantage of the existing manually curated knowledge repository. The training module

consists of the following parts:

1. Text parsing and concept mapping - The raw text is sent through MetaMap engine

to arrive to an automatically annotated text as described in Section 2.5.2.

2. Feature vector extraction - The XML files resulted from MetaMap processing of the

training corpus are processed and a set of feature vector is extracted as described in

Section 4.2.1.1.

3. Pattern extraction - For each note type a set of linear sequences of semantic types is

extracted as described in Sections 3.1.2 and corresponding probabilities are calculated

as described in Section 4.2.2.

4. Machine learning model training - A logistic regression model is obtained using MegaM

package as described in Section 4.2.3.

The general data flow for the training module is presented in Figure 4.1. A set of clinical

notes of a specific note type are fed into the S3 System. The notes are then sent to MetaMap

for processing. Once MetaMap completes mapping, the system modifies the MetaMap

output into feature vectors and applies a machine learning algorithm to acquire semantic

type classifier. MetaMap output is also processed to identify semantic type patterns for this

dataset. As the final output of the training module, the patterns and classifier are stored

for future use.
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The S3 method is not limited to MetaMap. Any method of querying a large vocabulary

can be used as long as it is powerful enough to perform mapping quickly. Similarly, logistic

regression is not the only machine learning algorithm that can be used for obtaining an

accurate classifier as long as it can handle multiclass data and is able to incorporate discrete

or binary features.

4.2.1.1 Feature Vector Extraction

In the current implementation, the feature vector was created for each unambiguously

mapped term, so the first step in the feature extraction process is to identify what a term is

and which terms are unambiguous. The MetaMap output was delivered in XML format. A

parsing module was written to parse the XML files and identify potential terms. Previous

research with biomedical texts has used a simple definition of unambiguous mappings: those

phrases that mapped to a single concept [41].

My initial calculation of the proportion of phrases mapped to a single concept in the

clinical documents compared to MedLINE abstracts showed that that proportion is two to

three times higher in biomedical text than clinical text. Therefore, I concluded that the

single-candidate definition is not appropriate for clinical text because of its high level of

ambiguity, which results in extremely limited mappings. After reviewing a large number of

clinical text mappings produced by MetaMap, I derived additional rules of term boundaries

and term unambiguity. These rules rely on the evaluation metric generated by MetaMap

Figure 4.1: S3 System training data flow
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to measure the quality of the match between the term in the analyzed phrase and a

Metathesaurus concept [97]. Manual disambiguation of a number of sentences resulted

in the development of the following text processing heuristics:

• Candidates that cover multiple tokens separated by one or more tokens other than

supporting tokens, are excluded from further analysis, because in most reviewed cases

the correct meaning was represented by contiguous tokens (as opposed to disjoint

tokens).

• The phrase chunking into terms is done starting from the last token of each phrase and

determining the longest contiguous term right-to-left, because in English, the head of

a phrase is generally the last word of the phrase [98].

• If one or more numeric tokens belong to the same phrase and if the phrase does

not have any candidates, such sequence of tokens is treated as a single token. This

heuristic came from the fact that MetaMap does not have a mechanism to recognize

dates and phone numbers as a single lexical unit.

• For the purposes of this research, punctuation tokens are ignored and are not con-

sidered in pattern and feature vectors. This heuristic resulted from observation that

clinical text is full of implicit tables and other formatting done by authors to improve

human readability of the documents, and the fact that inconsistent use of various

punctuation marks is widespread.

These heuristics help to define which chunks of text represent terms and what candidates

are included in the sense inventory for each term. Once each term is matched to a set of

candidates, the following conditions are used to identify unambiguous term:

1. MetaMap produced only one candidate for the term even if variant generation was

required to find this match (variants reduce the MetaMap mapping score, but here

the mapping is still considered to be unambiguous).

2. MetaMap produced a single identical match except for spelling variation, capitaliza-

tion, NOS suffixes and inversions such as Cancer, Lung vs. Lung Cancer.

3. MetaMap produced multiple matches, but all of the candidates have the same semantic

type.

4. MetaMap produced a single match for the term such that the match evaluation score

is either over 900 or, if no mappings over 900 are found, over 800.

Once an unambiguous term is identified, a set of features is collected from the MetaMap

output. The exact feature set depends on the availability of information. The necessary
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component is the semantic type of the analyzed terms. Other than that, any additional

information about the term is potentially useful. In the current research, MetaMap func-

tionality determined what can be potentially used as the context information for word sense

disambiguation.

As I contemplated what features would be more important and what features could

be ignored, I made a decision to incorporate all available information into the language

model and to evaluate the importance of each feature as a subsequent system optimization

analysis. MetaMap provides the following information about each sentence: a) utterance

boundaries; b) phrase boundaries; c) syntax units; d) tokens; e) lexical category part of

speech; f) syntax type; g) UMLS concept identifier (UMLS CUI); h) UMLS preferred name;

i) sources vocabularies and terminologies that were the original sources of the concept.

Previous research based on a similar method identified that a feature set extracted using

a larger window size does not consistently yield better accuracy than a set based on window

size 3. [41] Additionally, a full corpus analysis showed that the average number of phrases

within sentences identified by MetaMap ranged between 5 and 8 depending on the note

type. Therefore, for the full feature list, a window size of 3 within the sentence boundaries

is selected. Thus, the full feature set has features for the term of interest as well as for the

three terms prior and after the term of interest. Seven terms are included in each feature

vector.

The feature subset that directly describes the term of interest includes the part of speech

and the syntax type as the features. For all other terms within the window, the feature

subsets include the normalized tokens, part of speech, and syntax type. If the term was

unambiguously mapped, the feature subset for that term also includes the semantic type,

the UMLS preferred term, and a set of binary attributes that indicate whether the term

is included in a specific terminology. UMLS Metathesaurus combines concepts from more

than a hundred different source vocabularies.

In addition to the described features, the initially extracted vectors also have several

metadata that are potentially beneficial for cross-checking the extractor accuracy. These

additional data items include the file name, the sentence number and the term number of

the term of interest within the sentence.

4.2.2 Patterns

At the time of model training, conditional probabilities for each semantic type are defined

based on the presence of other semantic types in the predefined positions for each format. In
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addition to the formats described in section 3.1.2, conditional probabilities were calculated

for each semantic type separately, and for formats that contain only one other mapping

within the predefined window. So based on the number of participating mappings in the

pattern, the formats have the following three levels:

Level 0 - the patterns of this format represent only the term of interest that is at position

0. There is only one Level 0 Format, because it represents the conditional probability of

occurrence of a specific semantic type in notes of a specific note type regardless of the

surrounding mappings.

Level 1 - the patterns of the Level 1 Formats include the term of interest and one other

mapping within the predefined window. There are a total of 6 formats of Level 1.

Level 2 - the patterns of the Level 2 Formats include the term of interest and two other

mappings within the predefined window. Note that the analysis in Section 3.1.2 is based

on patterns of this format level.

The Bayes’ rule was used for the calculations of conditional probability. For example,

for the pattern of Level 2 Format 1 from the example in Table 3.4, conditional probability

is calculated using this formula:

P (spco(0)|podg(−3)acty(−2)) =
P (podg(−3) acty(−2) spco(0))

P (podg(−3)acty(−2))

In this example, the output is the probability to see a “spco” semantic type in position 0, if

the term in position -3 is unambiguously mapped to a concept with a semantic type “podg”

and the term in position -2 has a mapping to a concept with semantic type “acty”. These

conditional probabilities are calculated for all linear sequences of unambiguously mapped

terms in the training corpus. 1

4.2.3 Semantic Type Classification Model

4.2.3.1 Sparse File Format

The full set of feature vectors extracted for each analyzed note types included a large

number of feature vectors with a large number of features, some of which are binary and

some of which are categorical. In order to acquire a classification model, I needed to find an

1My initial system design included creating and populating a MySQL database designed for the purposes
of easy feature frequency calculation and feature analysis. After working with this database for some time I
realized that in order to make querying and other processing fast, I needed to flatten the relational database
into a single table, which would have made the table extremely large (over 100 million rows and over 1000
columns). Therefore, I abandoned that idea and wrote all data into a series of smaller text files processed
by a set of Groovy modules specifically designed for each type of processing.
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existing software or classification algorithm implementation that could handle such a large

dataset. I considered several software packages including a widely used Weka data mining

package [99]. Some algorithms are able to handle sparse data formats, so the S3 System

module that deals with semantic type classification model acquisition includes converting

full feature vectors (so called dense vectors) into sparse vectors.

The output of sparse conversion is a file in the sparse format where each discrete feature

of the dense file is converted in a set of binary features. The sparse conversion module

also outputs a full dictionary that links the sparse feature name to the feature in the dense

dataset and its specific value. The sparse file format decreases the size of the file containing

the dataset because only those features that are present in the feature vector are included.

The Figures 4.2a and 4.2b present examples of a dense and sparse vector.

4.2.3.2 Machine Learning Algorithm

When selecting a machine learning algorithm to perform semantic type classification, I

used the following guidelines:

• The algorithm has to be able to provide multiclass classification;

• The algorithm has be be able to handle categorical or binary features;

• The algorithm hast to be scalable and be able to process large data sets;

• The output of the algorithm should include not only the final prediction, but also a

set of probabilities for other classes;

• The specific implementation of the algorithm has to be robust and relatively fast.

filename.txt, 1, 4, idcn, continue, verb, verb,
5, null, to, adv, adv, null,
3, null, will, modal, modal, null,
6, inpr, follow, verb, verb, NCI SNOMEDCT,
2, ocdi, social work, head, noun, AOD MSH MTH SNOMEDCT,
7, null, this, det, det, null,
1, zzzz, plan, verb, verb, null

(a) Dense feature vector.

114 MM142 MM143 MM1095 MM1096 MM1103 MM1135 MM1166
MM1167 MM1218 MM1219 MM1432 MM1485 MM2141 MM2670
MM11341 MM11342

(b) Sparse feature vector in MegaM format.

Figure 4.2: Examples of feature vectors.
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After considering a number of different algorithms, I decided to use logistic regression as

implemented by Hal Daume III, called MegaM [100]. MegaM satisfies all these requirements.

This tool is based on maximum likelihood and maximum a posterior optimization of the

maximum entropy models. By performing multiple iterations and weights adjustments,

MegaM arrives to the optimal set of regression coefficients. MegaM accepts a sparse data

file where each row represents as a set of features that describe an unambiguous term. The

output of MegaM processing is a logistical regression model that gives a weight to each

feature.

Even though MegaM is quite robust, it runs out of memory when the dataset size exceeds

the system capacity. So I had to decrease the data file to make it manageable by MegaM.

After some experimentation I found that a sample size of 50,000 was small enough for

MegaM to process but large enough to produce a stable model. Therefore, the semantic

type classification model was created using a reduced data set. Logistic regression models

are prone to overfitting [101]. In order to mitigate this issue the training records were

selected randomly from the full data set.

4.3 System Application

After the sublanguage semantic schema is obtained, it can be automatically applied for

run-time disambiguation. In order to disambiguate all terms in a specific text segment, a

set of steps is performed (see Figure 4.3). First, MetaMap processes the text and produces

an XML file that contains the full set of concepts mapped to the terms found in the text

Figure 4.3: S3 System word sense disambiguation flow.
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passage. The S3 system then analyzes the XML output and for each ambiguous term in the

file it creates three components: 1) a feature vector according to the description presented

in Section 4.2.1.1; 2) a set of semantic type sequences (patterns) taking into account the

neighboring unambiguous mappings; and 3) a list of the corresponding UMLS concepts and

semantic types. The latter serves as the sense inventory for the term.

Once sparse feature vectors and patterns are extracted, the S3 system uses classification

and pattern matching to arrive to two semantic type predictions. Applying the previously

acquired classification model to each feature vector, the S3 System classifies the terms with

the most likely semantic types. Along with the most likely semantic type, the classification

model also provides a list of probabilities of each semantic type in the sense inventory. It

is possible that the most likely semantic type is actually not in the sense inventory.

The next step analyzes the patterns extracted for the term of interest and matches them

with the patterns in the sublanguage semantic schema. This pattern matching step assigns

probabilities to the semantic types from the sense inventories. The semantic type with the

highest probability is selected as the pattern matching prediction. If none of the potential

patterns matched any of those contained in the patterns set, then the term is marked as

failed disambiguation.

After the previous steps are performed, each term has a sense inventory consisting of

the semantic types, classifier-predicted semantic type, and pattern matched semantic type.

If the semantic type prediction produced by the logistic regression classifier differs from

the one produced by the pattern matching, the classifier and pattern predictions have to

be reconciled. There are several possible outcomes. If the pattern matching did not fail

disambiguation, the most likely semantic type is chosen as the final prediction. If the

pattern matching failed to find a probable semantic type, the classification semantic type

is determined to be the final semantic type.

The final step is word sense disambiguation. The semantic type disambiguation results

in the most probable semantic type. The sense inventory is reviewed and the UMLS concept

that has the most probable semantic type is selected. If more than one concept has the

same semantic type, the concept with the highest mapping score is selected. If all concepts

with the specified semantic type have the same mapping score, they are assumed to be

synonymous and all of the concepts are returned as the final concept selection.

Figure 4.4 presents the overview of the data flow during the application phase. The

system accepts a raw clinical text, either as a single sentence or a full clinical note. The



44

Figure 4.4: S3 System application data flow

current prototype does not have a functionality to determine which sublanguage semantic

schema is applicable to the input text, so the operator has to specify that for the purposes

of disambiguation. The S3 System then performs the processing steps outlined above and

the final output is the clinical note, where each meaningful term is annotated with semantic

type and UMLS concept.

The pattern set for the sublanguage contains patterns of three format levels. Calculating

the most probable semantic type starts with patterns of the most restrictive format level

- Level 2. If no patterns of that format level match the patterns found for the term of

interest, patterns of less restrictive format levels are applied. One of the parameters of the

application phase is the lowest pattern format level to be applied. If the level parameter is

set to 0, then the S3 System will disambiguate all terms. If the level parameter is set to 3,

then the S3 System will not perform pattern matching because 3 is larger than the lowest

available format level.

Another parameter that can be manipulated during disambiguation is the lowest ac-

ceptable probability predicted by MetaM. If the most likely semantic type is not one of

the semantic types from the sense inventory, the semantic types in the sense inventory are

sorted by their probability. If the probability of the most likely semantic type is below the

probability threshold, then the prediction is rejected and disambiguation is deemed to have

failed. If the probability threshold is set to 1.0 or higher, then classification prediction will

not be considered for disambiguation, because it is higher than possible probability. If the
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probability threshold is set to 0.0, then S3 System will disambiguate all terms simply based

on the most likely semantic type.

Varying these two parameters, the S3 System operator can balance the number of

false positives with the number of terms that the system fails to disambiguate. Thus,

manipulation of the parameters changes precision and recall of the system.

4.4 Validation

The S3 System is an implementation of the Sublanguage Semantic Schema approach to

word sense disambiguation. Once the system prototype is completed, validation is needed.

The validation provides answers to Aim II research questions:

Research question 2.1 – Does the developed system work well for clinical term disam-

biguation in a range of clinical note types as compared to a manually annotated test set?

Research question 2.2 – Does the system perform better than a baseline method such

as MetaMap and the majority sense method?

To answer these research questions, I created a manually annotated corpus that can

serve as a reference standard for the S3 System performance evaluation. In order to evaluate

performance, the following definitions of the metrics are used in the analysis:

Reference Standard Positive – Total number of terms that were mapped by MetaMap to

at least one UMLS concept that reflected their true meaning. These terms will be referred

to as properly mapped terms.

Reference Standard Negative – Total number of terms that were mapped by MetaMap

to at least one UMLS concept, but none of the concepts reflected the true meaning of the

terms. These terms will be referred to as mismapped terms.

Total Positive – The number of terms that the S3 System was able to process and

produce a semantic type prediction. These terms will be referred to as disambiguated

terms.

Total Negative – The number of terms that the S3 System failed to disambiguate.

True Positive – The number of disambiguated terms that were disambiguated correctly.

The correctly disambiguated term is the one what has the semantic type assigned by the

system, which is the same as the one assigned by human annotator.

True Negative – The number of mismapped terms that the S3 System was not able to

disambiguate.

Accuracy is the proportion of the terms in the reference standard that were disam-

biguated correctly.
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Recall is the proportion of the properly mapped terms in the reference standard that

were correctly disambiguated by the S3 System.

Precision – The proportion of the disambiguated terms that were disambiguated cor-

rectly.

4.4.1 Annotations

The most common way to conduct a rigorous system performance testing is to compare

the system output against a reference standard [15]. The final accuracy of the S3 System

depends on the performance of its components: MedPost tagger, which performs sentence

segmentation and part of speech tagging; and MetaMap concept recognition engine, which

performs mapping of terms to the concepts in UMLS Metathesaurus. The S3 System

performs word sense disambiguation on the sense inventories resulted from MetaMap pro-

cessing. To ensure that the evaluation targets the component that I developed, the reference

standard had to be created accounting for the limitations of other components. The

annotators task was limited to manual word sense disambiguation. The annotators were

not asked to determine the sentence or phrase boundaries, or the intended meaning of the

text beyond the sense inventory identified by MetaMap.

4.4.1.1 Sample Selection

Notes of seventeen note types are available to me; however, evaluating the S3 System

performance on all note types is not feasible due to financial and time constraints. Therefore,

four note types were selected for evaluation purposes: 1) Admissions History and Physical

Notes; 2) Discharge Summaries; 3) Cardiology Clinic Notes; and 4) Social Service Notes.

The model employed by the S3 System performs disambiguation relying on the context

information at a sentence level and disregards the larger context. Therefore, the annotators

were presented with individual sentences for annotations. Each term in the corpus identified

by MetaMap as a potentially relevant concept is an opportunity to fail. Therefore, the size

is defined as a number of terms in the sample. Sample size is generally determined using

Cochran’s sample size formula.

Sample Size =
(Z2p(1− p))

c2

where Z is the Z value corresponding to a specific confidence level (for 95% confidence level

Z=1.96); p is the proportion of units in relation to the true proportion that one could expect

(this value is assumed to be 0.5); and c is the degree of precision or confidence interval.
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The sample size calculations assuming confidence level of 95% and confidence interval of

3%, the sample size is determined to be 1067 terms for each note type. The method employed

by the S3 System relies on the sentence context for disambiguation and is optimal if at least 3

or more terms are present in the sentence. Therefore, the sample for annotation was created

by extracting a random set of sentences that contain at least three terms. Prior analysis

estimated that such sentences have on average 6.7 terms per sentence. Simple calculation

1067
6.7 results in a sample size of 160 sentences per note type or 640 total sentences. The

sample size calculations for comparison of two proportions with a confidence interval of

3% and a power of 90% for proportions 75% and 80% results in sample size of 1193, or

approximately 1200 terms. Calculating the number of sentences that would be needed to

get at least 1200 terms is approximately 180. Based on these calculations, I decided that the

sample size of 200 sentences for each note type would provide enough power to accurately

analyze the S3 System performance across all note types.

4.4.1.2 Annotation Process

Due to the strict privacy and security requirements directed by HIPAA, the notes are

stored on a cluster specifically designed to store and process clinical data. The annotators

were required to access the data remotely passing through two levels of authentication.

They were not allowed to copy the clinical text to their personal computers. To access the

data, the annotators had to first login into the CHPC via Virtual Private Network client.

Then they had to use a remote access application such as X Window System. A Windows

server was set up with Samba access to the data and an annotation application.

The extensible Human Oracle Suite of Tools (eHOST) application is an annotation tool

developed by Brett South and a research team of the Office of Information & Technology

(OI&T) at the Veterans Affairs [102]. It can be used to annotate text by creating an

annotation object represented by a span of text, the associated concept according to an

annotation schema. The distinguishing feature of eHost is its ability to accept annotations

created outside of the application, called preannotations.

Since the goal of the annotation step is to create a reference standard to test performance

of the S3 System, the annotation task is quite limited. For each term identified by MetaMap,

the annotators had to choose one of the candidates that resulted from the MetaMap

processing, or to specify that none of the candidates reflected the intended meaning of

the term. For that purpose, each term had an associated sense inventory of UMLS concepts
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and corresponding semantic type. The preannotations were loaded to eHost and presented

to the annotators for disambiguation. The UMLS semantic network contains 135 semantic

types, which a large number. To simplify the annotation scheme, only two markables were

used: Concept and None. The markable type Concept was designed to contain information

about the UMLS concept that MetaMap mapped to the term. The markable type None

was designed to handle the case when none of the candidates represent the meaning of

the corresponding term correctly. Each annotation object specified the span of each term,

which was derived from the MetaMap output, and the concept description, which was

a combination of the following MetaMap output elements that identify a specific UMLS

concept: CandidateCUI, CandidateMatched, CandidatePreferred, and SemType. Two

annotators were recruited to perform annotations of this project. They both have had

previous experience with annotations and have used eHost. Both of them are affiliated

with the University of Utah as current and former employees. Both of the annotators

completed Human Research training through CITI. The annotators’ task was to review the

sense inventory for each term and select that concept that reflected the meaning of the

term most accurately. Some of the terms were mislabeled by MetaMap, resulting in a set

of annotations for a term, none of which reflect the meaning of the term. In those cases the

annotators are asked to mark the term as markable type None. A total of 5430 terms were

disambiguated by the annotators. 374 of those terms were marked as “None of the above”,

indicating that MetaMap failed to produce at least one concept for the term that reflects

the intended meaning of the work in text (see Table 4.1).

In addition, the annotators disagreed on whether one or none of the candidates represent

the actual meaning for 653 terms, and 451 annotations were concepts with different semantic

types, which indicates that a large portion of the concepts are so vague that their actual

meaning might be interpreted in multiple ways. If two conflicting annotations had the

same semantic type, these annotations were deemed as equal and one of the annotations

Table 4.1: Annotated corpus description.

Note Type AHP CCN DIS SSN Total

Properly mapped terms 1252 1231 1329 1244 5056

Mismapped terms 54 113 70 137 374

Total term count 1306 1344 1399 1381 5430

Pair-wise agreement 82.5% 84.5% 84.3% 80.0%
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was selected randomly as the reference standard. For those terms that were marked with

concepts that had different semantic types, another clinically trained person performed

adjudication. The average annotator pair-wise agreement was 82.8%.

4.5 Measuring Performance

To evaluate whether the S3 System performs well on clinical text, I compared the

semantic types assigned to terms in the reference standard by the S3 System to those

assigned by the human annotators. Following the steps outlined in Section 4.2.1, I trained

models for the four note types using the full set of notes available to me. The full description

of the training corpus for validation is presented in Table 4.2. After the models were

acquired, I applied them to the manually annotated corpus and received the results are

reflected in Table 4.3.

4.5.1 Model Comparison

Previous analysis suggested that notes of different types belong to similar or dissimilar

sublanguages. As an example, the hierarchical clustering tree in Table 3.2 showed that

Table 4.2: Full data description for the four note types that were used in validation.

Note Type AHP CCN DIS SSN

Number of processed files 42,911 24,302 64,530 3,414

Total number of unambiguous terms 10,973,008 3,861,766 13,372,050 262,102

Number of unique patterns extracted
from the training corpus

105,455 57,693 106,908 24,529

Table 4.3: Accuracy of S3 System as tested on a manually annotated set of sentences with
format level threshold of 2 and classification probability threshold of 0.1.

Note Type AHP CCN DIS SSN Average

Match 900 903 959 854

Mis-match 186 186 203 199

WSD Failed 166 142 167 191

Total Terms 1252 1231 1329 1244

Recall 0.719 0.734 0.722 0.686 0.715

Precision 0.829 0.829 0.825 0.811 0.824

F-score 0.770 0.778 0.770 0.744 0.765
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Discharge Summaries and Admission History and Physical notes are relatively similar and

can be assumed to be of the related sublanguages. On the other hand, Cardiology Clinic

Notes and Social Service Notes have a distant relationship and can be assumed to be of

different sublanguages. To illustrate the benefit of rapid sublanguage modeling with the

S3 System, I compared disambiguation accuracy of sublanguage semantic schemata trained

using one note type and applied to a different note type. Comparing the performance of the

model that was trained on Discharge Summaries and applied to the same note type to the

performance of such a model when it is applied to Admission History and Physical notes

indicates the relative performance of S3 approach trained and applied to test of similar

sublanguages. As Table 4.4 indicates, the models, trained on either Admission History and

Physical or Discharge Summaries and applied to notes of either of these types, perform

similarly. Neither recall nor precision proportions were determined to be significantly

different when models are cross-applied. This finding confirms the assumption that the

language used in these two note types can be considered the same sublanguage. On the

other hand, comparing the performance of the Semantic Sublanguage Schema trained on

one note type and applied to the same note type to the performance when it is applied

to notes of a different note type, indicates the change in the model performance when

source and target corpus come from a distantly related subdomain. Two-sample tests of

Table 4.4: Comparison of accuracy of S3 System on Admission History and Physical and
Discharge Summaries. Disambiguation was performed with pattern format Level 2 and
classification probability threshold of 0.1.

Tested on
Trained on AHP DIS

True Positive 900 966
Mismatch 186 209

AHP Failed Disambiguation 166 154
Total Terms 1252 1329
Recall 0.719 (±0.025) 0.727 (±0.024)
Precision 0.829 (±0.022 ) 0.822 (±0.022)

True Positive 862 959
Mismatch 183 203

DIS Failed Disambiguation 270 167
Total Terms 1252 1329
Recall 0.688(±0.026) 0.722(±0.024)
Precision 0.825(±0.023) 0.825(±0.022)
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recall proportions achieved by a model trained on Cardiology Clinic Notes and tested on

the same compared to such a model tested on Social Service notes resulted in p < 0.001.

Table 4.5 illustrates that the average recall of models trained on Cardiology Clinic Notes

and applied to Social Service Notes differs significantly because 95% confidence intervals

do not intersect. Table 4.6 outlines the results of applying MetaMap on the validation test

with the assumption that terms with the same semantic type are synonymous. Comparing

the S3 system performance to the unambiguous mappings presented by MetaMap outlined

in Table 4.3, we can see that while applying the S3 system to disambiguate terms did not

improve the F-score, the recall of disambiguation is higher when the S3 System is applied.

4.6 Discussion

The aims for this step of the research focused on the design and prototype implemen-

tation of a system based on sublanguage semantic schema. For that purpose, I designed

an application that illustrates how such a system can be implemented as a stand-alone

package. This proof-of-concept prototype achieved a level of recall and precision of concept

identification that is comparable to other approaches that involve all-word word sense

disambiguation. Further optimization can potentially bring the accuracy to the level that

Table 4.5: Comparison of accuracy of the S3 System on Cardiology Clinic Notes (CCN)
and Social Service Notes (SSN). Disambiguation was performed with pattern format Level
2 and classification probability threshold of 0.1. The value in parentheses represent the 95%
confidence interval.

Tested on
Trained on CCN SSN

True Positive 903 826
Mismatch 186 188

CCN Failed Disambiguation 142 230
Total Terms 1231 1244
Recall 0.734 (±0.025) 0.664 (±0.026)
Precision 0.829 (±0.021 ) 0.815 (±0.022)

True Positive 840 854
Mismatch 148 199

SSN Failed Disambiguation 243 191
Total Terms 1231 1244
Recall 0.682(±0.026) 0.686(±0.026)
Precision 0.850(±0.020) 0.811(±0.022)
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Table 4.6: MetaMap performance as applied to the manually annotated set.

Note Type AHP CCN DIS SSN Average

Match 776 806 847 805

Mis-match 30 53 46 72

WSD Failed 446 372 436 367

Total Terms 1252 1231 1329 1244

Recall 0.620 0.655 0.637 0.647 0.640

Precision 0.963 0.938 0.948 0.938 0.941

F-score 0.754 0.771 0.762 0.759 0.762

would be acceptable for practical clinical purposes. The current prototype meets the basic

system requirements specified in Section 4.2. First of all, this system is general purpose

because it does not limit a set of words that it is able to disambiguate. Second, it is

able to acquire a language model using an unsupervised method. Third, the speed of

disambiguating clinically relevant concepts in a short narrative is close to real-time, and

can be further improved by providing more powerful computational resources. And the last

requirement of easy component upgrade and replacement is satisfied by the pipe-line system

architecture that is easily adjustable to accept data in a different format.



CHAPTER 5

SYSTEM IMPROVEMENT

5.1 Error Analysis

The preliminary S3 System validation demonstrated that automatic domain adaptation

of a concept recognition system is feasible in terms of time and human expert involvement.

However, the initial accuracy level achieved by the current design required improvement. In

order to identify the system elements that can be improved, I performed an error analysis

comparing the human annotated corpus to the S3 System output.

When performing an error analysis, I had to consider the possibility that the feature

space of unambiguous terms differs from the feature space of ambiguous terms. If this were

the case, the classification model obtained on the unambiguous terms would be inadequate

for ambiguous terms. To test this possibility, I used a bisecting K-means clustering al-

gorithm to compare the feature space of ambiguous and unambiguous terms. Applied to

the terms found in the validation data set, clustering to various cluster numbers arrived at

similar results. The clustering results for 10 clusters are presented in Table 5.1.

Clustering purity that is not significantly different from the proportion of the majority

class (in this case, unambiguous mappings were the majority) indicates that the clustering

split does not depend on whether the record represents ambiguous or unambiguous term.

Therefore, I concluded that the feature space of unambiguous terms effectively represents

the feature space of ambiguous terms.

Table 5.1: Clustering purity for all terms in the reference standard corpus when grouping
into 10 clusters.

Note Type AHP DIS CCN SSN

Term Count 1306 1399 1344 1381

Unambiguous Mappings 761 851 825 867

Ambiguous Mappings 545 548 519 514

Proportion of Unambiguous Mappings 0.583 0.608 0.614 0.628

Clustering Purity 0.583 0.628 0.614 0.628
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After the overall approach was determined to be adequate, I compared the mappings

selected by human annotators to those concepts selected by the S3 System. Table 5.2

shows the overall accuracy of the S3 System. For this error analysis, I used the output

from the S3 System processing of the validation corpus, using a format level threshold of 2

and a classification probability threshold of 0.1. These thresholds are rather conservative,

emphasizing precision over recall. The unambiguous mappings were determined using the

heuristics outlined in Section 4.2.1.1.

As indicated in the beginning of Section 4.4, accuracy depends on the number of the

correctly disambiguated terms and the number of mismapped terms that the S3 System

failed to disambiguate. This definition of accuracy is premised on the assumption that

those terms that are mismapped by MetaMap are linked to concepts whose semantic types

do not conform to the semantic grammar of the sublanguage, and therefore, all of the

candidates would be rejected by the S3 System as being of low probability. Thus, those

cases where the S3 System fails to disambiguate a term should be understood as being

outside of the sublanguage semantic grammar extracted from the training examples. As

expected, the proportion of mismapped terms among those terms that the S3 System

Table 5.2: Accuracy of S3 System as tested on a manually annotated set of sentences with
format level threshold of 2 and classification probability threshold of 0.1.

Note Type AHP CCN DIS SSN

Total Terms 1306 1344 1399 1381

Reference Standard Positive 1252 1231 1329 1244

Reference Standard Negative 54( 4.1%) 113( 8.4%) 70( 5.0%) 137( 9.9%)

Unambiguous mappings total 761 825 851 867

matched 702(92.2%) 728(88.2%) 780(91.7%) 732(84.4%)

mismapped 36( 4.7%) 57( 6.9%) 39( 4.6%) 80( 9.2%)

mismatched 23( 3.0%) 40( 4.9%) 32( 3.8%) 55( 6.4%)

Disambiguated total 1129 1163 1219 1143

matched 900(79.7%) 903(77.6%) 957(78.7%) 852(74.5%)

mismapped 43( 3.9%) 74( 6.4%) 57( 4.7%) 90( 7.9%)

mismatched 186(16.5%) 186(16.0%) 205(16.7%) 201(17.6%)

WSD Failed Total 177 181 180 238

mapped 166(93.8%) 142(78.5%) 167(92.8%) 191(80.3%)

mismapped 11( 6.2%) 39(21.5%) 13( 7.2%) 47(19.7%)

Accuracy (average 68.6%) 69.8% 70.1% 69.5% 65.2%
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failed to disambiguate is significantly higher for Cardiology Clinic and Social Service Notes

(p < 0.0001 for both) and marginally higher for Admissions History and Physical and

Discharge Summaries (p = 0.068 and p = 0.076 respectively) as compared to the proportion

of mismapped terms that were disambiguated.

As seen in Table 5.2, a relatively large proportion of terms that were unambiguously

mapped to a UMLS concept were mapped erroneously. In these cases, the concept suggested

by MetaMap did not represent the correct meaning of the term. This type of error

introduced noise into the training corpus and resulted in misleading semantic patterns and

a faulty classification model. Reviewing the mismapped terms revealed that those terms

mostly represent general English words that are not specific to clinical text (Table 5.3).

This illustrates the limitations of the underlying knowledge base - UMLS Metathesaurus

- that is not designed to be a comprehensive vocabulary of general English, but rather a

specialized biomedical terminology.

In addition to mismapped cases, other sources of errors are unambiguously mapped

terms that did not match the human annotator selections. These occurred when the correct

sense in the sense inventory was represented by a candidate with a lower mapping score. For

example, the validation corpus for Admissions History and Physical contains a sentence “She

is unable to walk without assistance.” The term “assistance” had the following concepts in

the sense inventory:

• C0018896 Helping Behavior (socb)

• C0557034 Patient assistance (hlca)

• C1269765 Assisted (fndg)

• C1515950 American Stop Smoking Intervention for Cancer Prevention (hcro)

The annotators selected “Patient assistance”, semantic type “Healthcare Activity,” as

the correct concept. However, the word patient is not specified in the sentence creating

partial concept match that leads to a lower mapping score. On the other hand, mapping

assistance to social behavior was performed through simple matching and it received the

highest score. Though these cases are relatively rare, resolving the problem of mismatched

unambiguous terms would lead to noise reduction in the training set, which in turn would

increase the sublanguage model accuracy.

Reviewing the cases in which a term is mapped and is ambiguous revealed that a large

proportion of mismatches involves terms that refer to an activity or healthcare activity such

as care, transfer, admit, discharge, document, report and others as represented by verbs. It
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Table 5.3: List of mismapped terms found in the validation corpus. Italicized terms were
mapped unambiguously.

Note Type Terms Total
Instance
Count

Admission
History and
Physical

number, arrangement, base, bear, calm, check, cocaine use,
demonstrate, dramatic, english, essentially, ext, f, five day,
follow, go, gravity, i, jp, last, mdi, mission, move, numb, o,
other, over, own, period, plt, receive, russell, sandy, sat, service,
show, study, su, support, switch, tip, v d, want, wish, x3
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Cardiology
Clinic Notes

number, address, back, bid, bpm, check, clear, couple, crisp,
crt, ddd, diagonal, dm, exhaust, fairly, fall, feel, fib, follow,
go, i, interrogate, joint, ken, kt, last, life, lv, mark, may, met,
nfm, note, other, otis, pace, particularly, qt, radiate, raise, rck,
reasonable, ride, right, rule, rv, s2, sander, saw, see, service,
shift, show, solution, spring, strange, switch, tee, tell, turn,
warner, wish, work

113

Discharge
Summary

number/number, back, birch, chem, corner, dc, dr, ely, face, feel,
fill, five day, follow, gaf, gbs, h, i, level, lim, line, love, mark,
mom, mra, o, other, p2, p4, pass, provide, radiate, remarkable,
right, robert, rule, russell, rvr, serial, set, settle, show, sing,
smith, solve, spencer, stand, tram, transition, trial, up to, wish,
work

70

Social
Service
Notes

number/number, accommodation, address, amy, angel, aspen,
back, bear, bradley, calm, carina, center, challenge, check,
closure, coordinate, couple, creek, crystal, ctp, cynthia, daniel,
deliver, experience, f, fall, far, feel, flow, follow, gloria, god,
h, hch, hear, i, impact, last, ld, live, logan, long, look, lpc,
manage, manner, mark, mary, melinda, mill, mojave, mom,
move, nelson, note, o, oa, other, own, pcmc, personal assistance,
prima, program, provide, psych, remarkable, rise, robert, round,
senior, shot, slat, spark, sunrise, talk, tell, tom, trail, transition,
turn, validation, washington, wish, y

137

is interesting to note that various forms of a term report were used four times in Admissions

History and Physical and 11 times in Social Service Notes validation corpus; the annotators

disagreed on the meaning of the term in three and nine cases respectively. This indicates

that in the UMLS Metathesaurus the concept definitions for different meanings of report

are not clear enough for humans to interpret. Thus, the computational approach also fails

to make that distinction easily.

Two other semantic types that contribute a relatively large proportion of erroneous

matches are “Sign or Symptom” and “Disease or Syndrome.” These semantic types,

if mismatched, are most often categorized by the S3 System as “Finding.” Since this
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distinction is often difficult for humans to resolve as well, this type of error will be challenging

to solve. Similarly, semantic types “Body Part, Organ, or Organ Component” and “Body

Location or Region” are often confused by the S3 System as well as by human annotators.

The semantic type “Finding” appears to be so general that terms of that semantic type

are often misclassified. The term negative is used five times in the AHP validation set and

in four of those cases the annotators disagreed on the meaning of the term. The S3 System

selection matched the majority vote for the term “negative” three times and only in two

cases was a wrong concept selected.

One common mistake made by the S3 System is classifying a gender in a common

word combination such as the patient is a n-year old female as a concept of “Population

group” semantic type, whereas the annotators consistently selected “Organism attribute”

as a semantic type for these terms.

In general, the reasons for errors made by the S3 System can be categorized as those

due to the limitations of the primary knowledge base, the UMLS Metathesaurus, and

those due to the limitations of the current S3 System design and implementation. The

UMLS Metathesaurus limitations led to an insufficient concept definition and inadequate

language coverage, which resulted in an incomplete sense inventory for terms. The UMLS

Metathesaurus is under active development, so it is likely that some of the issues will

be resolved over time. However, since even a highly restricted clinical sublanguage uses

elements of general English language, an additional lexical knowledge base such as WordNet

can be used to enhance language coverage [103].

Similarly to the UMLS Metathesaurus, WordNet categorizes concepts into semantic

groups called synsets. At a higher level of granularity, these synsets are called base types and

represent concept categorization similar to the UMLS Semantic Network. Thus, the lexical

information from WordNet can be integrated easily into the S3 System. The main concern

for such an expanded knowledge base would be reconciling the cases when the same meaning

is represented by concepts in the UMLS Metathesaurus and in WordNet. Since the UMLS

semantic types and WordNet base types do not have a one-to-one relationship, equating

two concepts might be challenging. An automatic method of mapping UMLS concepts

to WordNet concepts has been suggested and could potentially be integrated into the S3

System [104]. In addition to the issues with finding an appropriate meaning for a term, a

number of lower level problems have been uncovered. These problems were encountered in

the initial steps of text processing by MetaMap system. One of the assumptions of the S3
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method is that the employed concept recognition system is robust enough to process a large

majority of the files and is able to extract enough unambiguous concepts for training. The

analysis of files that failed MetaMap processing revealed that failures occur when:

• the incoming text contains special characters, which lead to system crashes;

• the incoming text is exceptionally ambiguous, which leads to such a large number of

mappings that the system is overwhelmed by endless processing.

One method to improve the concept recognition performance is to include a prepro-

cessing step that would remove special characters that might lead to the system crashes.

This preprocessing step also can replace certain tokens such as dates, patient and provider

names, geographic locations, and other similar data items with specialized tokens. Such a

token replacement can be implemented easily because those items are usually included in

the patient record, or are otherwise accessible from the electronic medical record system.

The main benefit of such a preprocessing step would be to remove those proper nouns

that are homonymous with clinically relevant terms and might be confused by the concept

recognition module.

5.2 Optimization

The limitations of the current S3 System design are due to shortcomings of the pattern

matching, due to limitations of the machine learning classification, or due to inadequate

integration of pattern and classification predictions.

5.2.1 Pattern Matching

The classical definition of sublanguage is based on semantic type co-occurrence pat-

terns that are linked to predicate-argument relationships within sentences. The current

implementation of the S3 System relies on a linear sequence of semantic types to acquire

semantic type pattern probabilities. This deviation from the classical definition is more

straightforward to implement. However, this approach results in diluted patterns because

even a slight difference in word order would result in a different pattern, thus decreasing

the conditional probability of certain semantic type patterns.

The main reason for using a modified semantic type pattern definition is a lack of an

easily accessible accurate parser and part of speech tagger. The S3 System relies on the

MedPost tagger to perform word and sentence segmentation and part of speech tagging

[105]. Since the knowledge base for the tagger is derived from analyzing biomedical text,

the tagger’s performance on the clinical text is insufficient. One of the most common causes
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of incorrect sentence segmentation is a period that is a part of an abbreviation token and

does not mark a sentence boundary. Faulty sentence and phrase segmentation contributes

to the number of mismappings because it decreases the number of correct phrases that

potentially have matches in the UMLS.

5.2.2 Classification Accuracy Improvement

The initially created dataset for machine learning classification contained all features

that could be extracted from MetaMap output. However, low initial accuracy of the

machine learning algorithm (which is not to be confused with the final S3 System accuracy)

necessitated feature space modification. One of the common ways to address machine

learning model accuracy is to increase the size of the training data set [106]. However,

when designing the initial S3 System prototype, I identified that due to the machine learning

algorithm’s computational limitations, the sample size had to be restricted to around 50,000

records to enable MegaM to complete processing successfully. Since the logistic regression

model builds a set of weights for each feature, the larger is the number of dimensions - the

larger is the computational complexity of the learning algorithm. Therefore, I concluded

that decreasing the number of features would make increasing the sample size possible.

To perform feature selection, I chose the information gain algorithm as implemented in

Weka v 3-6-1 [99]. This algorithm evaluates the information gain for each attribute with

respect to the class. The output from such processing includes a list of features and their

corresponding information gain in descending order. Using the full set of unambiguously

mapped terms for each note type, I randomly selected 200,000 records and applied infor-

mation gain with ranking feature selection algorithm. To find what features would provide

the best feature set, I created four feature sets that include features with information gain

above four different thresholds: 0.01, 0.001, 0.0001, and 0.00001. Table 5.4 lists the number

of features that were selected at different information gain thresholds.

For each feature set I randomly extracted datasets with a varying number of records.

Then I trained a MegaM model on each data set with a different feature set and record

number combination. I then applied those models to the same randomly selected dataset

of 50,000 records. The accuracy of the resulting models is presented in Figures 5.1, 5.2, 5.3,

and 5.4. All processing was performed on a powerful 12-core 92 GB compute node. The

time to perform training was calculated and is presented in Figures 5.5, 5.6, 5.7, and 5.8.

As expected, a larger datafile with more features and more records takes longer to process.
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Table 5.4: Feature counts based on different information gain thresholds.

Note Type AHP CCN DIS SSN

Threshold

0.01 971 288 191 146

0.001 1,630 1,745 1,586 1,697

0.0001 13,012 9,945 12,362 10,724

0.00001 60,666 40,358 58,126 39,187

Figure 5.1: Classification accuracy as a function of the number of features and number of
records for Admission History and Physical.

Similar results were obtained for all four note types. Looking at both graphs for each of

the four note types, I concluded that information gain threshold of 0.001 and sample size

of 100,000 is the right balance between performance speed and accuracy of the resulting

models.

5.2.3 Determining Final Predictions

The initial design of the S3 System gives preference to pattern matching predictions

when determining the most likely semantic type given the content of the term. This design

is based on the assumption that if a specific semantic type sequence appeared in the training
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Figure 5.2: Classification accuracy as a function of the number of features and number of
records for Cardiology Clinical Notes.

Figure 5.3: Classification accuracy as a function of the number of features and number of
records for Discharge Summaries.
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Figure 5.4: Classification accuracy as a function of the number of features and number of
records for Social Service Notes.

Figure 5.5: Training processing time as a function of the number of features and number
of records for Admission History and Physical.
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Figure 5.6: Training processing time as a function of the number of features and number
of records for Cardiology Clinical Notes.

Figure 5.7: Training processing time as a function of the number of features and number
of records for Discharge Summaries.
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Figure 5.8: Training processing time as a function of the number of features and number
of records for Social Service Notes.

corpus, it must be a legitimate semantic rule in the sublanguage grammar. If the system

finds at least one matching pattern, the logistic regression classification prediction is ignored.

To increase the probability that the pattern found for the term of interest is an appropriate

pattern, I set the pattern format level to 2, thus requiring at least two unambiguously

mapped terms to be included in the pattern. In this case, if the term of interest does

not have two unambiguous neighbors within the predefined window, the semantic type

predictions will be determined solely based on the classification predictions. This simple

heuristic is logical and practical for initial implementation. However, a more sophisticated

method of finding a balance between pattern matching output and classification predictions

is needed. In machine learning, methods of combining several classification models are

called “ensemble of classifiers” or “committee.” Such methods are based on obtaining

several models using different types of classification algorithms and then combining the

predictions of these algorithm into a single final prediction [107]. Combining predictions is

done by either averaging the output of all models, or selecting one of the model’s output.

Another method to improve accuracy of predictions is to implement the S3 approach

iteratively in order to acquire a more accurate sublanguage semantic schema. During the

training phase, such a design would first learn a sublanguage model using unambiguously
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mapped concepts. Then, the initially learned S3 model can be applied to disambiguate some

additional terms. After that application, the S3 can be recalculated using unambiguously

mapped terms as well as the disambiguated concepts, thus increasing the S3 coverage.

Similarly, at the run time, the final S3 model can be used iteratively to increasingly

disambiguate more terms.

5.3 Discussion

The third aim of this research focused on improving the initial S3 System performance.

Firstly, I established that the feature space of unambiguous and ambiguous terms do not

differ significantly. Therefore, the assumption that unambiguous examples provide sufficient

language coverage and enable comprehensive semantic grammar acquisition is empirically

supported.

Secondly, the error analysis revealed a number of possible system improvements that can

improve the overall accuracy of a system based on S3. Some of the errors can be resolved

through an improved and expanded knowledge repository and a more accurate parser and

part of speech tagger. Other issues can be resolved by optimizing performance of the S3

System itself. For example, the set of experiments that I conducted in the course of my

research indicated that a higher information gain threshold during the feature selection

process would decrease the number of selected features. A smaller number of features

produces a smaller dataset, which in turn enables the use of a larger number of training

examples in order to provide a more accurate machine learning model.

The error analysis also revealed that there is a subset of errors that would be especially

hard to resolve. These errors are the cases when the presented senses for a specific word

are too vague or too similar for humans to agree on consistently. Thus, they represent the

upper bound of a potential system performance [108, p. 267].

My work showed that while the current implementation of a system based on an auto-

matically acquired sublanguage model does not produce perfect word sense disambiguation,

a number of possible improvements can potentially make such a system highly accurate and

suitable for language processing in a real-world clinical environment.



CHAPTER 6

DISCUSSION

The main goal of the current project is to suggest an automatic method of obtaining a

domain specific knowledge base for word sense disambiguation and illustrate the feasibility

of such a method. I achieved this goal by describing the sublanguage semantic schema

method and demonstrating potential performance effectiveness of the proposed method as

exemplified by the S3 System prototype. Even though the prototype is not a system that is

ready to be implemented into a clinical setting, it serves as a proof-of-concept implementa-

tion that can be perfected with additional time and software development investment. The

main contributions of my research are as follows:

1. The S3 method enables automatic semantic type pattern acquisition for the purposes

of knowledge extraction and word sense disambiguation. This in turn makes domain

adaptation of existing concept recognition systems feasible to any interested clinical

organization due to significant reduction of human effort.

2. Comparison of the sublanguage semantic schemata of different clinical sublanguages

informs researchers and practitioners of the sublanguage similarities, which in turn

can inform terminology and ontology development.

3. Feature selection applied to all lexical features advances our knowledge on the salient

clinical language features, which in turn supports development of new classification

models for the purposes of information extraction and information retrieval from

clinical text.

To argue the innovative nature of my S3 approach, I have to compare it to previous

research that is based on similar methods and targets a similar research problem. There

are several research efforts that are most closely related to the methods employed by the

S3 approach:

• Similar to the S3 approach, Magnini and colleagues utilize domain information to

facilitate word sense disambiguation [109]. In their research the discourse domain was

determined based on the surrounding unambiguous terms. This approach relies on
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both the “one domain per discourse“ and the “one sense per domain” assumptions.

When the possible senses of a term belong to disjointed domains, this approach

produces encouraging results. However, in the case of clinical notes, the difference

between clinical domains is often quite subtle, therefore, disambiguation using their

approach might not be as accurate. The “one sense per discourse” approach also fails

when a word is used in multiple senses within the same discourse, which is often the

case in clinical text.

• Similar to the S3 System, the selectional preference acquisition system proposed by

McCarthy and colleagues has two phases: the training phase and run-time disam-

biguation phase [110]. Their system identifies predicate-argument pairs and obtains

sense distributions using noun and verb senses from WordNet. The system employes

Bayes’ rule to estimate the probability of a specific verb occurring with a specific

noun. Unlike the S3 System, their system requires an accurate parser and part of

speech tagger, as well as anaphora resolution. The S3 System simply uses a linear

sequence relationship for co-occurrence patterns because of the lack of access to an

existing parser and part of speech tagger optimized for clinical text. Thus, the S3

System is more robust to the parser errors.

• Similar to my research, Sekine defined an automatic way to identify and describe a

new sublanguage [111]. Unlike my approach, Sekine employed a clustering approach

to group similar Wall Street Journal articles purely for the purposes of identifying

similar text. Sekine’s work did not result in a word sense disambiguation method.

• Similar to the S3 System, Schutze’s approach attempts to acquire the knowledge

base for word sense disambiguation automatically based on word co-occurrences [22].

Unlike S3 model, Schutze’s approach is directed to acquire disambiguation models for

each ambiguous word individually. Therefore, his approach is time consuming and is

limited to only those words for which disambiguation models have been acquired.

• Similar to the S3 System, the method developed by Humphrey and colleagues relies on

the UMLS semantic type of the possible senses in order to select the most appropriate

concept for the term [59]. Unlike their approach, the S3 System does not rely on

manually-selected sublanguage-specific keywords such as journal descriptors.

• Similar to the S3 System, CuiTools approach is unsupervised and is based on the

term co-occurrences for each ambiguous word [112]. Unlike CuiTools approach, the S3

method creates one disambiguation model for all ambiguous words, whereas CuiTools
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creates individual models for each word. So even though CuiTools employs an un-

supervised approach, the method requires identification of ambiguous words and the

creation of a set of disambiguation models, one for each ambiguous word.

• Similar to the S3, the vector approach developed by McInnes attempts to perform all-

words disambiguation in an unsupervised manner using the UMLS as the knowledge

base [113]. Her approach is based on comparing the text of the UMLS CUI and ST

definitions and the context of the ambiguous term. Unlike the S3 approach, McInnes’s

method relies on computationally expensive analysis during application phase. As

such, this approach is not feasible to implement as a real-time disambiguation module.

In contrast, the S3 approach performs most of computations during training time, thus

creating a static knowledge base that can provide near real-time concept recognition.

• Similar to the S3, a disambiguation model proposed by Stevenson and Guo employs

UMLS Metathesaurus to automatically generate training examples using unambiguous

terms [114]. Their approach, called monosemous relatives, identifies a set of lexical

substitutes for each sense of the ambiguous word of interest such that they can be

mapped unambiguously to their related sense. To generate the training dataset, the

unambiguous terms are substituted with their ambiguous relatives. This approach

is automatic and, therefore, different disambiguation models could be learned for

each clinical domain. However, it relies on availability of a large corpus that con-

tains instances of variable expression of similar ideas. Unlike monosemous relatives

approach, the S3 approach targets sublanguages that tend to express similar ideas

similarly, which is characteristic of narrow domains such as clinical domains. Also,

the S3 approach can be applied even if the available raw corpus is relatively small.

For example, the set of Emergency Department Reports that was extracted for this

project from the University of Utah Hospital data warehouse contained only 685 re-

ports. In addition, Stevenson and Guo’s approach uses 15 most common unambiguous

co-occurring concepts. The co-occurrence information used in their approach is found

in MRCOC table, which is a part of UMLS Metathesaurus and is specific to Medline

abstracts. Unlike their approach, the S3 method obtains co-occurrence information

for each clinical domain separately, thus optimizing that information for each domain.

• Similar to the S3, the disambiguation system developed by Stevenson and Guo aims

to perform word sense disambiguation applying several existing machine learning

algorithms in order to learn a sense classifier using lexical and semantic features
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extracted from the context of each ambiguous word [60]. Their approach focuses

on biomedical text and uses UMLS CUIs, as well as MESH terms, as features. Unlike

their system, the S3 approach does not rely on manually annotated text or long form

expansions, which often precede abbreviations in biomedical text and which are not

available in clinical narrative, for the purposes of obtaining the disambiguation model.

Also, as I stated before, the S3 approach is an “all-words” disambiguation method

and does not require manual identification of ambiguous words.

6.1 Limitations

The error analysis presented in Section 5.1 revealed that the S3 System performance

is affected by the limitations of the used knowledge base (UMLS) and concept-recognition

system (MetaMap), as well as the limitations of the implemented system design. A number

of steps can be developed to improve the S3 System design shortcomings. However, the

UMLS and MetaMap limitations are out of reach of the potential developers of a system

based on the S3 approach. Therefore, the Sublanguage Semantic Schema approach has sev-

eral limitations that are inherent to the approach rather than to a specific implementation.

First, the S3 method assumes that most unambiguously mapped concepts supply the

correct sense for the mapped term. However, an error analysis indicated that 4 to 10%

of all unambiguous mappings are incorrect, as seen in Table 5.2. This results in an error

that the S3 approach cannot overcome regardless of how well it is optimized for the domain

of interest. Such mismapping results from inadequacy of the vocabulary used in concept

mapping. Identifying those mismapped terms is an important step in domain adaptation of

clinical NLP systems. Automatically, these terms can be identified through the S3 System,

by comparing the list of semantic types in the term’s candidate set to the list of potential

semantic types suggested by the S3 System. If these two sets do not overlap, the term is

potentially mismapped. Adequacy of terminology can be reviewed manually by experts.

Second, the S3 method assumes that those unambiguous terms, which were missmapped,

are uniformly distributed and, therefore, will not lead to strong co-occurrence patterns.

This assumption can be evaluated using a manually annotated corpus. However, such a

corpus would have to be relatively large in order to identify a practically useful number of

mismapped terms to determine whether they would lead to strong patterns.

Third, the S3 method assumes that those terms, which are mapped to a set of concepts

with the same semantic types and receive the same mapping confidence score (such as
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MappingScore from MetaMap), are synonyms and, therefore, equal. As a result, the

S3 approach selects one of the concepts randomly and presents it as the corresponding

disambiguation. The impact of this assumption is not known at this time and can be

evaluated by human experts as a future project. There have been attempts to perform

disambiguation of terms with the same semantic type. A variation of one of those approaches

can potentially be implemented as a part of a system based on the S3 approach [113,115].

6.2 Opportunities for Future Work

My ultimate vision is to develop an electronic medical record system that would accept

clinical notes in a form of free text and extract patient clinical data into structured infor-

mation to be used for various decision making, recording, reporting, quality assurance, and

surveillance purposes. I plan to evaluate sublanguage grammar variations among sections

of clinical notes to identify similarities across sections of different note types. My future

work will involve a tight collaboration with clinical organizations that share my vision.

While in the current design of the S3 System prototype, MetaMap and UMLS Metathe-

saurus limitations are not addressed, one potential improvement to the S3 System is to

enrich the knowledge base with general English vocabulary. WordNet, a large, publicly

available lexical database can be queried to improve the sense inventory and increase the

probability that it includes the correct sense for each term. This combination of UMLS

Metathesaurus and WordNet would also have a negative side effect of decreasing the number

of unambiguously mapped terms.

Another major improvement of the system would be to include a sublanguage classi-

fication module that would determine what sublanguage a specific note belongs to. This

module can be implemented by first clustering a training set and determining sublanguage

boundaries, and then during run time, the system can analyze each incoming note and

identify the cluster (and, therefore, the sublanguage), to which this note is the most similar.

Another potential system improvement step involves changing the granularity of the

sublanguage definition. It has been noted that focusing on a specific section in a clinical note

improves performance of an information extraction tool [116]. Therefore, breaking notes

by sections and identifying sublanguage clusters using sections of documents rather than

full notes might result in more focused and restricted sublanguages. In conjunction with

the sublanguage classification module mentioned above, the lower granularity sublanguage

definition can greatly improve the overall system performance.
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CONCLUSION

Accurate information extraction from real-world clinical texts depends on effective word

sense disambiguation. Language in the clinical domain changes and expands with time.

The UMLS Metathesaurus is a valuable knowledge repository that is updated on a regular

basis. Any clinical language processing system that makes use of an evolving knowledge

source like UMLS has a long-term advantage (i.e., it is less likely to grow stale). This work

demonstrates the following:

• The language of the clinical domain is not uniform, but rather a collection of distinct

sublanguages. This work demonstrates for the first time that the clinical sublanguage

boundaries align with the clinical subdomains rather than clinical setting in which

the narrative originated.

• Modifying a WSD tool for each new clinical subdomain improves its accuracy.

• Automatic acquisition of domain information structure will save time and financial

resources as new clinical sublanguages are added or as old ones evolve.

• A hybrid disambiguation algorithm that utilizes a manually curated knowledge base

(UMLS) and one that requires little effort from the user to leverage, has a potential

to be highly accurate for word sense disambiguation in the long run.

Automatic domain adaptation of a concept recognition system saves time and money by

creating a knowledge base for word sense disambiguation that is optimized for a specific

type of narrative.



APPENDIX A

SEMANTIC TYPES

The following is a list of semantic types included in the UMLS Semantic Network.

acab — Acquired Abnormality

acty — Activity

aggp — Age Group

alga — Alga

amas — Amino Acid Sequence

aapp — Amino Acid, Peptide, or Protein

amph — Amphibian

anab — Anatomical Abnormality

anst — Anatomical Structure

anim — Animal

antb — Antibiotic

arch — Archaeon

bact — Bacterium

bhvr — Behavior

biof — Biologic Function

bacs — Biologically Active Substance

bmod — Biomedical Occupation or Discipline

bodm — Biomedical or Dental Material

bird — Bird

blor — Body Location or Region

bpoc — Body Part, Organ, or Organ Component

bsoj — Body Space or Junction

bdsu — Body Substance

bdsy — Body System

carb — Carbohydrate

crbs — Carbohydrate Sequence
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cell — Cell

celc — Cell Component

celf — Cell Function

comd — Cell or Molecular Dysfunction

chem — Chemical

chvf — Chemical Viewed Functionally

chvs — Chemical Viewed Structurally

clas — Classification

clna — Clinical Attribute

clnd — Clinical Drug

cnce — Conceptual Entity

cgab — Congenital Abnormality

dora — Daily or Recreational Activity

diap — Diagnostic Procedure

dsyn — Disease or Syndrome

drdd — Drug Delivery Device

edac — Educational Activity

eico — Eicosanoid

elii — Element, Ion, or Isotope

emst — Embryonic Structure

enty — Entity

eehu — Environmental Effect of Humans

enzy — Enzyme

evnt — Event

emod — Experimental Model of Disease

famg — Family Group

fndg — Finding

fish — Fish

food — Food

ffas — Fully Formed Anatomical Structure

ftcn — Functional Concept

fngs — Fungus

gngp — Gene or Gene Product (pseudo ST for gene terminology)

gngm — Gene or Genome
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genf — Genetic Function

geoa — Geographic Area

gora — Governmental or Regulatory Activity

grup — Group

grpa — Group Attribute

hops — Hazardous or Poisonous Substance

hlca — Health Care Activity

hcro — Health Care Related Organization

horm — Hormone

humn — Human

hcpp — Human-caused Phenomenon or Process

idcn — Idea or Concept

imft — Immunologic Factor

irda — Indicator, Reagent, or Diagnostic Aid

inbe — Individual Behavior

inpo — Injury or Poisoning

inch — Inorganic Chemical

inpr — Intellectual Product

invt — Invertebrate

lbpr — Laboratory Procedure

lbtr — Laboratory or Test Result

lang — Language

lipd — Lipid

mcha — Machine Activity

mamm — Mammal

mnob — Manufactured Object

medd — Medical Device

menp — Mental Process

mobd — Mental or Behavioral Dysfunction

mbrt — Molecular Biology Research Technique

moft — Molecular Function

mosq — Molecular Sequence

npop — Natural Phenomenon or Process

neop — Neoplastic Process
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nsba — Neuroreactive Substance or Biogenic Amine

nnon — Nucleic Acid, Nucleoside, or Nucleotide

nusq — Nucleotide Sequence

ocdi — Occupation or Discipline

ocac — Occupational Activity

ortf — Organ or Tissue Function

orch — Organic Chemical

orgm — Organism

orga — Organism Attribute

orgf — Organism Function

orgt — Organization

opco — Organophosphorus Compound

patf — Pathologic Function

podg — Patient or Disabled Group

phsu — Pharmacologic Substance

phpr — Phenomenon or Process

phob — Physical Object

phsf — Physiologic Function

plnt — Plant

popg — Population Group

pros — Professional Society

prog — Professional or Occupational Group

qlco — Qualitative Concept

qnco — Quantitative Concept

rcpt — Receptor

rnlw — Regulation or Law

rept — Reptile

resa — Research Activity

resd — Research Device

rich — Rickettsia or Chlamydia

shro — Self-help or Relief Organization

sosy — Sign or Symptom

socb — Social Behavior

spco — Spatial Concept
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strd — Steroid

sbst — Substance

tmco — Temporal Concept

topp — Therapeutic or Preventive Procedure

tisu — Tissue

vtbt — Vertebrate

virs — Virus

vita — Vitamin



APPENDIX B

INDEX

Glossary

ambiguous term a term that was mapped to multiple candidates. 33

candidate one of the concepts that represent a potential meaning of the mapped term.

MetaMap identifies multiple candidates that are combined into a candidate set for each

phrase. Disambiguation of the candidates is a task required for accurate mapping. 33

concept a UMLS concept identified by MetaMap. 33

mapped term a term that was mapped by MetaMap to at least one candidate. 33

mapping a term that was unambiguously mapped to a UMLS concept using the unam-

biguity heuristics. The mapping has a UMLS concept identifier and a semantic type

associated with it. 33

mismapped term a term that was mapped by MetaMap to at least one candidate but

none of the candidates represented the correct meaning of the term in a given context.

44, 53, 66

term One or more semantically linked tokens that MetaMap attempts to map. 33

token The smallest lexical unit analyzed by MetaMap. Includes words, numbers, and

punctuation. 33

Acronyms

cTAKES clinical Text Analysis and Knowledge Extraction System. 14, 18

DIS Domain Information Schema. 33

EMR Electronic Medical Record. 1, 2

HITEx Health Information Text Extraction. 14, 18

MedEx Medical Information Extraction System. 19

MedLEE Medical Language Extraction and Encoding System. 18, 19

MeSH Medical Subject Headings. 12, 13

NLM National Library of Medicine. 12, 13

NLP Natural Language Processing. 2, 3, 5, 10, 12, 13, 15, 17, 66
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S3 Sublanguage Semantic Schema. 1, 33, 34, 36, 62, 66

S3 System Sublanguage Semantic Schema System. 33–35, 40, 43–46, 48, 49

ST Semantic Type. 17, 33

UMLS Unified Medical Language System. 8, 12, 13, 17, 34

WSD Word Sense Disambiguation. 6, 7, 9, 15, 17, 35, 68
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