55 research outputs found

    An FPTAS for optimizing a class of low-rank functions over a polytope

    Get PDF
    We present a fully polynomial time approximation scheme (FPTAS) for optimizing a very general class of non-linear functions of low rank over a polytope. Our approximation scheme relies on constructing an approximate Pareto-optimal front of the linear functions which constitute the given low-rank function. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity on the objective function. For the special case of quasi-concave function minimization, we give an alternative FPTAS, which always returns a solution which is an extreme point of the polytope. Our technique can also be used to obtain an FPTAS for combinatorial optimization problems with non-linear objective functions, for example when the objective is a product of a fixed number of linear functions. We also show that it is not possible to approximate the minimum of a general concave function over the unit hypercube to within any factor, unless P = NP. We prove this by showing a similar hardness of approximation result for supermodular function minimization, a result that may be of independent interest

    Algorithms for discrete, non-linear and robust optimization problems with applications in scheduling and service operations

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 101-107).This thesis presents efficient algorithms that give optimal or near-optimal solutions for problems with non-linear objective functions that arise in discrete, continuous and robust optimization. First, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two or more linear functions, parallel machine scheduling problems with the makespan objective, robust versions of weighted multi-objective optimization problems, and assortment optimization problems with logit choice models. For many of these problems, we give the first fully polynomial time approximation scheme using our framework. Next, we present approximation schemes for optimizing a rather general class of non-linear functions of low rank over a polytope. In contrast to existing results in the literature, our approximation scheme does not require the assumption of quasi-concavity of the objective function. For the special case of minimizing a quasi-concave function of low-rank, we give an alternative algorithm which always returns a solution which is an extreme point of the polytope. This algorithm can also be used for combinatorial optimization problems where the objective is to minimize a quasi-concave function of low rank. We also give complexity-theoretic results with regards to the inapproximability of minimizing a concave function over a polytope. Finally, we consider the problem of appointment scheduling in a robust optimization framework. The appointment scheduling problem arises in many service operations, for example health care. For each job, we are given its minimum and maximum possible execution times. The objective is to find an appointment schedule for which the cost in the worst case scenario of the realization of the processing times of the jobs is minimized. We present a global balancing heuristic, which gives an easy to compute closed form optimal schedule when the underage costs of the jobs are non-decreasing. In addition, for the case where we have the flexibility of changing the order of execution of the jobs, we give simple heuristics to find a near-optimal sequence of the jobs.by Shashi Mittal.Ph.D

    Approximation Algorithms for Route Planning with Nonlinear Objectives

    Full text link
    We consider optimal route planning when the objective function is a general nonlinear and non-monotonic function. Such an objective models user behavior more accurately, for example, when a user is risk-averse, or the utility function needs to capture a penalty for early arrival. It is known that as nonlinearity arises, the problem becomes NP-hard and little is known about computing optimal solutions when in addition there is no monotonicity guarantee. We show that an approximately optimal non-simple path can be efficiently computed under some natural constraints. In particular, we provide a fully polynomial approximation scheme under hop constraints. Our approximation algorithm can extend to run in pseudo-polynomial time under a more general linear constraint that sometimes is useful. As a by-product, we show that our algorithm can be applied to the problem of finding a path that is most likely to be on time for a given deadline.Comment: 9 pages, 2 figures, main part of this paper is to be appear in AAAI'1

    Strategic algorithms

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 193-201).Classical algorithms from theoretical computer science arise time and again in practice. However,a practical situations typically do not fit precisely into the traditional theoretical models. Additional necessary components are, for example, uncertainty and economic incentives. Therefore, modem algorithm design is calling for more interdisciplinary approaches, as well as for deeper theoretical understanding, so that the algorithms can apply to more realistic settings and complex systems. Consider, for instance, the classical shortest path algorithm, which, given a graph with specified edge weights, seeks the path minimizing the total weight from a source to a destination. In practice, the edge weights are often uncertain and it is not even clear what we mean by shortest path anymore: is it the path that minimizes the expected weight? Or its variance, or some another metric? With a risk-averse objective function that takes into account both mean and standard deviation, we run into nonconvex optimization challenges that require new theory beyond classical shortest path algorithm design. Yet another shortest path application, routing of packets in the Internet, needs to further incorporate economic incentives to reflect the various business relationships among the Internet Service Providers that affect the choice of packet routes. Strategic Algorithms are algorithms that integrate optimization, uncertainty and economic modeling into algorithm design, with the goal of bringing about new theoretical developments and solving practical applications arising in complex computational-economic systems.(cont.) In short, this thesis contributes new algorithms and their underlying theory at the interface of optimization, uncertainty and economics. Although the interplay of these disciplines is present in various forms in our work, for the sake of presentation we have divided the material into three categories: 1. In Part I we investigate algorithms at the intersection of Optimization and Uncertainty. The key conceptual contribution in this part is discovering a novel connection between stochastic and nonconvex optimization. Traditional algorithm design has not taken into account the risk inherent in stochastic optimization problems. We consider natural objectives that incorporate risk, which tum out equivalent to certain nonconvex problems from the realm of continuous optimization. As a result, our work advances the state of art in both stochastic and in nonconvex optimization, presenting new complexity results and proposing general purpose efficient approximation algorithms, some of which have shown promising practical performance and have been implemented in a real traffic prediction and navigation system. 2. Part II proposes new algorithm and mechanism design at the intersection of Uncertainty and Economics. In Part I we postulate that the random variables in our models come from given distributions. However, determining those distributions or their parameters is a challenging and fundamental problem in itself. A tool from Economics that has recently gained momentum for measuring the probability distribution of a random variable is an information or prediction market. Such markets, most popularly known for predicting the outcomes of political elections or other events of interest, have shown remarkable accuracy in practice, though at the same time have left open the theoretical and strategic analysis of current implementations, as well as the need for new and improved designs which handle more complex outcome spaces (probability distribution functions) as opposed to binary or n-ary valued distributions. The contributions of this part include a unified strategic analysis of different prediction market designs that have been implemented in practice.(cont.) We also offer new market designs for handling exponentially large outcome spaces stemming from ranking or permutation-type outcomes, together with algorithmic and complexity analysis. 3. In Part III we consider the interplay of optimization and economics in the context of network routing. This part is motivated by the network of autonomous systems in the Internet where each portion of the network is controlled by an Internet service provider, namely by a self-interested economic agent. The business incentives do not exist merely in addition to the computer protocols governing the network. Although they are not currently integrated in those protocols and are decided largely via private contracting and negotiations, these economic considerations are a principal factor that determines how packets are routed. And vice versa, the demand and flow of network traffic fundamentally affect provider contracts and prices. The contributions of this part are the design and analysis of economic mechanisms for network routing. The mechanisms are based on first- and second-price auctions (the so-called Vickrey-Clarke-Groves, or VCG mechanisms). We first analyze the equilibria and prices resulting from these mechanisms. We then investigate the compatibility of the better understood VCG-mechanisms with the current inter-domain routing protocols, and we demonstrate the critical importance of correct modeling and how it affects the complexity and algorithms necessary to implement the economic mechanisms.by Evdokia Velinova Nikolova.Ph.D
    • …
    corecore