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ABSTRACT
The MNL-Bandit Problem: Theory and Applications

Vashist Avadhanula

One fundamental problem in revenue management that arises in many settings
including retail and display-based advertising is assortment planning. Here, the
focus is on understanding how consumers select from a large number of substitutable
items and identifying the optimal offer set to maximize revenues. Typically, for
tractability, we assume a model that captures consumer preferences and focus on
computing the optimal offer set. A significant challenge here is the lack of knowledge
on consumer preferences. In this thesis, we consider the multinomial logit choice
model, the most popular model for this application domain and develop tractable
robust algorithms for assortment planning under uncertainty. We also quantify the
fundamental performance limits from both computational and information theoretic
perspectives for such problems.

The existing methods for the dynamic problem follow “estimate, then optimize”
paradigm, which require knowledge of certain parameters that are not readily available,
thereby limiting their applicability in practice. We address this gap between theory
and practice by developing new theoretical tools which will aid in designing algorithms
that judiciously combine exploration and exploitation to maximize revenues. We first
present an algorithm based on the principle of “optimism under uncertainty” that
is simultaneously robust and adaptive to instance complexity. We then leverage
this theory to develop a Thompson Sampling (TS) based framework with theoretical
guarantees for the dynamic problem. This is primarily motivated by the growing
popularity of TS approaches in practice due to their attractive empirical properties.
We also indicate how to generalize the TS framework to design scalable dynamic
learning algorithms for high-dimensional data and discuss empirical gains of such

approaches from preliminary implementations on Flipkart, e-commerce firm in India.
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Introduction

The explosive growth of e-commerce firms has brought renewed attention to the field
of revenue management. Many e-commerce firms including Amazon and Flipkart
operate in a low margin and high volume environment, where even small percentage
increase in revenues can translate to substantial profits. Consequently, a central
focus of many business applications is the development of predictive models that
capture consumer behavior to maximize revenue growth. A significant challenge
here is the lack of knowledge on consumer preferences which is further exacerbated
by short selling seasons and evolving demand trends. This necessitates a balanced
exploration-exploitation approach, where we not only have to learn demand trends,
but also simultaneously exploit the information gain. The unprecedented flexibility in
operational decisions associated with modern e-commerce systems not only provides
the possibility but also makes it essential to optimize decision making with evolving
and uncertain consumer tastes. My dissertation expands the scope of revenue
management systems by designing tractable robust algorithms to optimize sequential
decision making under uncertainty for assortment planning, which is a key component
in many revenue management applications.

The first chapter of this dissertation provides an overview of assortment planning
and the multinomial logit model (MNL), which is the most popular predictive model
for this application domain. In this chapter, we also present an overview of existing
approaches for assortment planning under uncertainty and highlight shortcomings

that limit their applicability in practice, thereby motivating a need for more adaptive



approaches. In Chapter 2, we address this gap between theory and practice by
developing new theoretical tools to design an algorithm based on the principle that
is simultaneously robust and adaptive to instance complexity. In Chapter 3, we
leverage the theory developed in Chapter 2 to design a Thompson Sampling (TS)
based framework with theoretical guarantees for the dynamic problem. This is
primarily motivated by the growing popularity of T'S approaches in practice due to
their attractive empirical properties. In Chapter 4, we indicate how to generalize the
TS framework to design scalable dynamic learning algorithms for high-dimensional
data and discuss empirical gains of such approaches from preliminary implementations
on Flipkart, a large e-commerce firm in India. In Chapter 5, we present tractable
algorithms for static assortment planning with constraints under the MNL and more
general Nested Logit choice models. This is studied as a first step to developing

dynamic assortment planning approaches for more general predictive models.

MNL-Bandit Problem. One fundamental problem in revenue management that
arises in many settings including retail and display-based advertising is assortment
planning. Here, the focus is on understanding how consumers select from a large
number of substitutable items and identifying the optimal offer set to maximize
revenues. Typically, for tractability, we assume a model that captures consumer
preferences and focus on computing the optimal offer set. However, model selection
and estimating the parameters is a challenging problem. In many e-commerce settings
such as fast fashion retail, products have short selling seasons. Therefore, the data
on consumer choices is either limited or non existent. The retailer needs to learn
consumer preferences by offering different assortments and observing purchase decisions,
but short selling seasons limit the extent of experimentation. There is a natural trade-
off in these settings, where the retailer need to learn consumer preferences and also
maximize cumulative revenues simultaneously. Finding the right balance between

exploration and exploitation is a challenge.



In Chapter 1, we consider the MNL model which is the most popular model for this
application domain and formulate the dynamic learning problem in the framework of
multi-armed bandits (MAB). More specifically, we formulate the dynamic problem
as a parametric bandit problem, which we will refer to as the MNL-Bandit problem.
Though it is common practice to study dynamic problems under the MAB framework,
the combinatorial complexity involved with identifying the ideal subset (assortment)
presents many theoretical and computational challenges. We discuss these challenges
in detail along with a review of the existing methods for the MNL-Bandit problem
which typically make restrictive assumptions, severely limiting their applicability in

practice.

UCB Approach for the MNL-Bandit. Motivated by the apparent need for a
tractable policy, in Chapter 2, we develop an efficient algorithm that judiciously
combines exploration of the combinatorial option space and exploitation of that
information to maximize revenues. The key idea in our work is a novel estimation
technique using sampling, where the samples directly give us unbiased estimates of
the model parameters. We use these estimates to leverage the structure of the MNL
model, and to adapt the upper confidence bounds (UCB) policy, a popular bandit
technique, to our problem. Our sampling technique plays an essential role in avoiding
the shortcomings of standard estimation approaches like maximum likelihood, where
the estimates are obtained by optimizing a loss function. The convergence bounds for
estimates resulting from such approaches typically depend on true parameters, which
becomes an impediment in real time implementation. In contrast, our approach which
obtains estimates through sampling is completely independent of model parameters.
Furthermore, we show that our algorithm’s performance is near-optimal as well as

adaptive to the complexity of the instance.

Thompson Sampling for the MNL-Bandit. The UCB based approach developed

in Chapter 2, focuses on robustness and tends to experiment more than necessary.



To that end, several stream of recent papers observed that Thompson Sampling
(TS) significantly outperform more traditional approaches such as UCB policies. For
standard MAB problems, despite being easy to implement, T'S-based algorithms are
hard to analyze and theoretical work on TS is limited. Furthermore, the selection
of prior, efficient posterior computation and theoretical analysis remains particularly
challenging for parametric bandit settings, where arms are related through a small
number of parameters. Motivated by the growing popularity of TS in practice, In
Chapter 3, we leverage the sampling technique to present an approach to adapt
Thompson Sampling to this problem and show that it achieves near-optimal regret
as well as attractive numerical performance. A key ingredient in our approach is a
two moment approximation of the posterior and the ability to judicially correlate

samples, which is done by embedding this approximation in a normal family.

Thompson Sampling in Practice: Evidence from Flipkart.com. In Chapter 4,
we present evidence of empirical gains from employing dynamic assortment planning
in optimizing product recommendations on Flipkart, an Indian ecommerce firm. First,
we show that choice models like MNL which capture consumer preferences over an
assortment have higher predictive power than traditional models which consider each
item independently. We will then present empirical evidence to show that firms
stand to gain by implementing dynamic learning algorithms instead of the traditional
“estimate, then optimize” approaches. In settings like Flipkart, we have a large
number of alternatives that are effectively described by a small number of attributes;
via what is often referred to as a factor model. The possibility of different items
being related to each other only through their attributes raises the possibility that
one can design algorithms whose performance is independent of the number of items,
which is a major source of complexity. Using the analysis developed in Chapter 3 as a
foundation, we present a framework that indicates how to extend our aforementioned

TS-based policy to the problem of learning in the attribute space. Specifically, how



to leverage the relation between different items through attributes and achieves a
regret bound which is independent of the number of items, and only depends on the

number of attributes, thereby accelerating the learning.

Static Assortment Planning. Noting that an important ingredient for dynamic
learning is a computationally efficient policy for static optimization, i.e., computing
the optimal set of items to offer when the model parameters are known. In Chapter
5, we consider the MNL model and it’s generalized version, the nested logit model
(NL) and present polynomial time algorithms for computing the optimal assortment

under a large class of constraints.



Chapter 1

The MNL-Bandit Problem

1.1 Assortment Optimization

In many settings, a decision maker is faced with the problem of identifying the optimal
mix of items, often from a large feasible set to offer to users. For example, a retailer
needs to select a subset (assortment) of products and due to substitution effects,
the demand for an individual product is influenced by the assortment of products
presented to the consumer. In display-based online advertising, a publisher needs to
select a set of advertisements to display to users and due to competition between ads,
the click rates for an individual ad depends on the overall subset of ads displayed.
A recommender system like the one used by Netflix or Amazon, must determine a
subset of items to suggest to users from a large pool of similar alternatives. In all these
settings, items may be valued differently from the decision maker’s perspective and
therefore the assortment of items offered to users have significant impact on revenues.
To identify the ideal offer set, the decision maker must understand the substitution
patterns of users.

Choice models capture these substitution effects among items by specifying the
probability that a user selects an item given the offered set. More specifically, let
N = {1,--- N} be the set of available items for the decision maker to offer for
consumers. For any subset S C N and any item ¢ € S, a choice model describes the

probability of a random consumer preferring item ¢ in the set S as,

7(i, S) = Pr(customer selects item i from offer set .S).



We refer to 7(i, S) as choice probabilities. Using these choice probabilities, one can
compute the expected revenue associated with an offer set as the weighted sum of
revenues of items in the offer set and the choice probabilities. More specifically, if
value (revenue) corresponding to every item i € N is r;, then the expected revenue
R(S) of any assortment S C N can be written as
R(S) =Y ri-n(i,59).
ics
Then the decision maker can identify the optimal set by computing the set with
highest revenues, an optimization problem commonly referred to as assortment

optimization problem and formulated as

glg%(R(S). (1.1)

Assortment optimization problems also allow for constraints that arise in practice,
e.g. budget for inventory, product purchasing, display capacity, etc.

Traditionally, assortment decisions are made at the start of the selling period based
on a choice model that has been estimated from historical data; see [27] for a detailed
review. In this dissertation, we focus on the dynamic version of the problem where the
retailer needs to simultaneously learn consumer preferences and maximize revenue.
In many business applications such as fast fashion and online retail, new products
can be introduced or removed from the offered assortments in a fairly frictionless
manner and the selling horizon for a particular product can be short. Therefore,
the traditional approach of first estimating the choice model and then using a static
assortment based on the estimates, is not practical in such settings. Rather, it is
essential to experiment with different assortments to learn consumer preferences,
while simultaneously attempting to maximize immediate revenues. Suitable balancing

of this exploration-exploitation tradeoff is the focal point of this thesis.



1.1.1 Multinomial Logit Choice Model (MNL)

A fundamental problem in assortment planning is model selection. There is a trade-off
between working with models that have greater predictive power and simple models
that allow greater tractability. Estimating choice probabilities involving large number
of alternatives from transactional data is a highly non-trivial task. Furthermore, note
that the assortment optimization problem is a combinatorial optimization problem for
which trying all 2" possible assortment is not a scalable solution. Though theoretically
choice models with higher predictive power could result in better assortment solutions,
lack of tractable optimization approaches for these problems could make them less
interesting for decision makers. The trade-offs between the predictability and the
tractability of a choice model is an important consideration for the decision maker
in its deployment, particularly in settings where one needs to constantly estimate
and optimize the model. In this dissertation, we consider the multinomial logit
choice model (MNL) for which the tractability is well understood and develop efficient
approaches that learns consumer preferences while simultaneously maximizing revenues.
The dynamic learning algorithms developed in this thesis for the MNL model should
be viewed as a first step towards efficient algorithms for more general choice models.
MNL was introduced independently by Luce [31] and Plackett [38]. In his seminal
work, McFadden [33] showed that the multinomial logit model is part of a larger
class of models that can be modeled within the random utility frame work. In the
random utility framework, it is assumed that consumers have inherent (random)
utility associated with every item and upon presenting an offer set consumers select
the item with the highest utility. In the MNL model, the consumer’s random utilities
are modeled as independent Gumbel random variables. In particular, the utility of

item 7 is given by:

Ui = pi + &,



where p; € R denotes the mean utility that a consumer assigns to product . &y, - -+, &
are independent and identically distributed random variables having a Gumbel
distribution with location parameter 0 and scale parameter 1 and represent the

idiosyncrasies in consumer population. The choice probabilities for the MNL can

et
2jes ets”

In assortment planning problems, consumers always have the option of not choosing

be computed in closed form as mun(4,.5) =

any item from the offered set. Such scenarios are modeled by augmenting the available
set of items with a further index, 0 that indicates an “outside” option. Consumers
purchase some thing from the offered set if the random utility of one of the offered
items is more than the random utility corresponding to the outside option. Therefore,

Y where we denote et

the choice probabilities can be written as myn (7, .5) = P S
jes Vi

by v; denotes for notational brevity. We can also without loss of generality assume
that vy = 1 by scaling every other parameter. Hence, the choice probabilities for the

MNL model can be reformulated as:

(%
mNL(E, S) = s, (1.2)
and the expected revenue for any assortment S is given by
R(S,v) =Y ri——s (1.3)

pr 2 jes Vi
From the choice probabilities we can see that the ratio of choice probabilities of two
items, munL(7,.5) and mynL(j,S) is independent of the offer set S. This property
is known as the independent of irrelevant attributes (IIA) property [8] and is a
limitation of the MNL model. Other random utility based choice models like Nested
Logit (NL) [47] and Mixed Logit model (mMNL) [34] generalize the MNL model
and are not restricted by the ITA property. However, estimation of these models
and the corresponding assortment planning problems involved are often intractable
highlighting the challenges involved in model selection. See [20] for further discussion

on tractability of choice models. The closed form expression of the choice probabilities



make this model extremely tractable from estimation and optimization point of view
(see [44].) The tractability of the model in decision making is the primary reason

MNL has been extensively used in practice ([25, 8, 46]).

1.2 Dynamic Learning in Assortment Selection

As alluded to above, many instances of assortment optimization problems commence
with very limited or even no a priori information about consumer preferences.
Traditionally, due to production considerations, retailers used to forecast the uncertain
demand before the selling season starts and decide on an optimal assortment to be
held throughout. There are a growing number of industries like fast fashion and
online display advertising where demand trends change constantly and new products
(or advertisements) can be introduced (or removed) from offered assortments in a
fairly frictionless manner. In such situations, it is possible to experiment by offering
different assortments and observing resulting purchases. Of course, gathering more
information on consumer choice in this manner reduces the time remaining to exploit
said information.

Motivated by aforementioned applications, we consider a stylized dynamic
optimization problem that captures some salient features of this application domain,
where our goal is to develop an exploration-exploitation policy that simultaneously
learns from current observations and exploits this information gain for future decisions.
In particular, we consider a constrained assortment selection problem under the
Multinomial logit (MNL) model with N substitutable products and a “no purchase”
option. The objective is to design a policy that selects a sequence of history dependent
assortments (S, Ss,...,S7) so as to maximize the cumulative expected revenue,

E, (ET: R(S., v)) , (1.4)

t=1

10



where R(S,v) is the revenue corresponding to assortment S as defined as in (1.3).
Direct analysis of (1.4) is not tractable given that the parameters {v;,i =1,..., N}
are not known to the seller a priori. Instead we propose to measure the performance
of a policy via its regret. The objective then is to design a policy that approximately
minimizes the regret defined as
Reg(T,v) =Y R(S",v) — E-[R(S,, V)], (MNL-Bandit)
t=1
where S* = argn‘lgax R(S,v). This exploration-exploitation problem, which we refer
to as MNL—Ba;dit, is the focus of this thesis.

We consider several naturally arising constraints over the assortments that the
retailer can offer. These include cardinality constraints (where there is an upper
bound on the number of products that can be offered in the assortment), partition
matroid constraints (where the products are partitioned into segments and the retailer
can select at most a specified number of products from each segment) and joint display
and assortment constraints (where the retailer needs to decide both the assortment
as well as the display segment of each product in the assortment and there is an
upper bound on the number of products in each display segment). More generally,
we consider the set of totally unimodular (TU) constraints on the assortments. Let
x(S) € {0,1}¥ be the incidence vector for assortment S C {1,..., N}, ie., 2;(S) =1

if product < € S and 0 otherwise. We consider constraints of the form
S={5Cc{l,.... N} |Ax(5) <b, 0 <x <1}, (1.5)

where A is a totally unimodular matrix and b is integral (i.e., each component of
the vector b is an integer). The totally unimodular constraints model a rich class of
practical assortment planning problems including the examples discussed above. We
refer the reader to [17] for a detailed discussion on assortment and pricing optimization

problems that can be formulated under the TU constraints.
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1.2.1 Existing Approaches for the MNL-Bandit

The problem of dynamic learning under the MNL choice model has been studied in
the literature. [40] and [43] consider the problem of minimizing regret under the MNL
choice model and present an “explore first and exploit later” approach. In particular,
a selected set of assortments are explored until parameters can be estimated to a
desired accuracy and then the optimal assortment corresponding to the estimated
parameters is offered for the remaining selling horizon. The exploration period
depends on certain a priori knowledge about instance parameters. Assuming that
the optimal and next-best assortment are “well separated,” [43] show an asymptotic
O(NlogT) regret bound, while [40] establish a O(N?1log?T) regret bound; recall N
is the number of products and 7" is the time horizon. However, their algorithm relies
crucially on a priori knowledge of system parameters which is not readily available
in practice. As will be illustrated later, absence of this knowledge, these algorithms
can perform quite poorly. In this work, we focus on approaches that simultaneously
explore and exploit demand information, do not require any a priori knowledge or
assumptions, and whose performance is in some sense best possible; thereby, making

our approach more universal in its scope.

1.3 Summary of contributions of Chapters 2, 3, 4
and 5

We summarize the main contributions of Chapters 2, 3, 4 and 5. The primary
contribution of this dissertation is to develop a systematic approach, and supporting
theory, for the MNL-Bandit problem. In Chapter 2, we present an efficient learning
algorithm that does not require any parameter information and has near-optimal
performance. The algorithm is predicated on the upper bound (UCB) type logic,

originally developed to balance the aforementioned trade-off in the multi armed bandit

12



(MAB) problem (c.f. [28]). The UCB based algorithm is easy to analyze theoretically
and helps in developing theoretical tools that will aid in designing more efficient
learning based algorithms for the MNL-Bandit problem. In Chapter 3, we leverage the
theory developed in Chapter 2 to design a Thompson Sampling (TS) based framework
with theoretical guarantees for the dynamic problem. This is primarily motivated by
the growing popularity of TS approaches in practice due to their attractive empirical
properties.

In Chapter 4, we indicate how to generalize the TS framework to design scalable
dynamic learning algorithms for high-dimensional data and discuss empirical gains of
such approaches from preliminary implementations on Flipkart, a large e-commerce
firm in India. In Chapter 5, we present tractable algorithms for static assortment
planning with constraints under the MNL and more general Nested Logit choice
models. This is studied as a first step to develop dynamic assortment planning

approaches for more general predictive models.

1.3.1 UCB Approach for the MNL-Bandit

In this chapter we present an efficient online algorithm that judiciously balances the
exploration and exploitation trade-off intrinsic to our problem and achieves a worst-
case regret bound of O(v/NTlog NT) under a mild assumption, namely that the
no-purchase is the most “frequent” outcome. The assumption regarding no-purchase
is quite natural and a norm in online retailing for example. To the best of our
knowledge, this is the first such policy with provable regret bounds that does not
require prior knowledge of instance parameters of the MNL choice model. Moreover,
the regret bound we present for this algorithm is non-asymptotic.

We also show that for “well separated” instances, the regret of our policy is
bounded by O (min (N?log NT/A,+/NTlog NT)) where A is the “separability”

parameter.  This is comparable to the regret bounds, O (NlogT/A) and
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O (N?log?T/A), established in [43] and [40] respectively, even though we do not
require any prior information on A unlike the aforementioned work. It is also
interesting to note that the regret bounds hold true for a large class of constraints, e.g.,
we can handle matroid constraints such as assignment, partition and more general
totally unimodular constraints (see [17]). Our algorithm is predicated on upper
confidence bound (UCB) type logic, originally developed to balance the aforementioned
exploration-exploitation trade-off in the context of the multi-armed bandit (MAB)
problem (cf. [28]).

We also establish a non-asymptotic lower bound for the online assortment
optimization problem under the MNL model. In particular, we show that for the
cardinality constrained problem under the MNL model, any algorithm must incur a
regret of Q(y/NT/K), where K is the bound on the number of products that can be
offered in an assortment. This result establishes that our online algorithm is nearly
optimal, the upper bound being within a factor of V'K of the lower bound. A recent
work by [15] demonstrates a lower bound of Q(v/NT) for the MNL-Bandit problem,
thus suggesting that our algorithm’s performance is optimal even with respect to its

dependence on K.

1.3.2 Thompson Sampling for the MNL-Bandit

In this chapter, relying on structural properties of the MNL model and theoretical
tools developed in Chapter 2, we design a TS approach that is computationally
efficient and yet achieves parameter independent (optimal in order) regret bounds.
Specifically, we present a computationally efficient TS algorithm for the MNL-Bandit
which uses a prior distribution on the parameters of the MNL model such that the
posterior update under the MNL-bandit feedback is tractable. A key ingredient in our
approach is a two moment approximation of the posterior and the ability to judicially

correlate samples, which is done by embedding the two-moment approximation in a
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normal family. We show that our algorithm achieves a worst-case (prior-free) regret
bound of O(v/NT log TK) under a mild assumption that vy > v; for all i (more on
the practicality of this assumption later in the text); the bound is non-asymptotic,
the “big oh” notation is used for brevity. This regret bound is independent of the
parameters of the MNL choice model and hence holds uniformly over all problem
instances. The regret is comparable to the existing upper bound of O(W ) achieved
by the UCB approach in Chapter 2, yet the numerical results demonstrate that
our Thompson Sampling based approach significantly outperforms the UCB-based
approach. The methods developed in this paper highlight some of the key challenges
involved in adapting the TS approach to the MNL-Bandit, and present a blueprint
to address these issues that we hope will be more broadly applicable, and form the
basis for further work in the intersection of combinatorial optimization and machine

learning.

1.3.3 Empirical Evaluation of Thompson Sampling

In Chapter 4, we present evidence of empirical gains from employing dynamic
assortment planning in optimizing product recommendations on Flipkart, an Indian
ecommerce firm. First, we show that choice models like MNL which capture consumer
preferences over an assortment have higher predictive power than traditional models
which consider each item independently. In particular, we consider a structured MNL
model, where every item is described by a set of attributes and the mean utility of a
product is linear in the values of attributes and show that the fit of this stylized MNL
model is better than a simple logistic regression with the same set of attributes, which
is the current model used at Flipkart. We will then present empirical evidence to show
that firms stand to gain by implementing dynamic learning algorithms instead of the

traditional “estimate, then optimize” approaches.
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1.3.4 Static Assortment Optimization

In Chapter 5, we consider settings when the model parameters are known and focus on
developing tractable optimization algorithms for the MNL and the NL model under
totally unimodular constraint structures. The totally unimodular constraints model a
rich class of practical assortment planning problems including cardinality constraints,
partition matroid constraints and joint display and assortment constraints. We refer
the reader to [17] for a detailed discussion on assortment and pricing optimization
problems that can be formulated under the TU constraints.

First we consider the assortment planning problem under the MNL model and
show that a natural linear programming (LP) relaxation is tight. The LP based
approach provides robustness to handle capacity constraints in addition to the existing
TU constraints. In particular, we consider an arbitrary additional constraint to the
set of TU constraints such that the resulting set of constraints are not TU. We present
a Polynomial Time Approximation Scheme (PTAS) for the assortment optimization
problem under this more general set of constraints where for any 0 < € < 1, we
obtain a solution with objective value at least (1 — €) times the optimal in running
time polynomial in the input size for a fixed €. As a consequence of this problem,
we obtain PTAS for joint display and assortment optimization problem with an
additional capacity constraint.

We then consider the assortment optimization problem under NL model with TU
constraints and provide a Fully Polynomial Time Approximation Scheme (FPTAS)
for this problem, where for any 0 < € < 1, we obtain a solution with objective
value at least (1 — €) times the optimal in running time polynomial in the input
size and 1/e. We also show that the exact assortment optimization under NL model
with TU constraints is NP-hard. For the joint display and assortment optimization
problem, we show that under special settings the problem allows for an exact solution

in polynomial time.
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Summary. In Chapters 2, 3 and 4, we focus on designing efficient algorithms for
assortment planning under the most popular choice model. In the final chapter,
we work on developing tractable optimization approaches for general choice models
with the hope that these approaches are a first step in designing dynamic learning

approaches for these choice models in the future.
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Chapter 2

A UCB Approach for the MNL-Bandit

In this Chapter, we describe our proposed policy for the MNL-Bandit problem. Our
algorithm is predicated on upper confidence bound (UCB) type logic, originally
developed to balance the aforementioned exploration-exploitation trade-off in the
context of the multi-armed bandit (MAB) problem (cf. [28]). A key idea in our
algorithm is a novel estimation technique using sampling, where the samples directly
give us unbiased estimates of the model parameters. We use these estimates to
leverage the structure of the MNL model, and to adapt the UCB policy to our
problem. The estimation technique also plays a key role in designing a tractable
Thompson Sampling algorithm in Chapter 3.

We first present in Section 2.1, an efficient online algorithm that judiciously
balances the exploration and exploitation trade-off intrinsic to our problem.
Subsequently, in Section 2.2 show that this algorithm achieves a worst-case regret
bound of O(v/NTlog NT) under a mild assumption, namely that the no-purchase
is the most “frequent” outcome. The assumption regarding no-purchase is quite
natural and a norm in online retailing for example. To the best of our knowledge,
this is the first such policy with provable regret bounds that does not require prior
knowledge of instance parameters of the MNL choice model. In Section 2.5, we relax
the assumption on “no-purchase” and give a learning algorithm that is independent
of problem parameters and bound its regret.

4

In Section 2.3, we show that for “well separated” instances, the regret of our

policy is bounded by We also show that for “well separated” instances, the regret
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of our policy is bounded by O (min (N2 log NT/A, \/WgNT)) where A is the
“separability” parameter. This is comparable to the regret bounds, O (NlogT/A)
and O (N?log?T/A), established in [43] and [40] respectively, even though we do not
require any prior information on A unlike the aforementioned work.

In Section 2.4, we establish a non-asymptotic lower bound for the online assortment
optimization problem under the MNL model. In particular, we show that for the
cardinality constrained problem under the MNL model, any algorithm must incur a
regret of Q(\/m ), where K is the bound on the number of products that can be
offered in an assortment. This result establishes that our online algorithm is nearly
optimal, the upper bound being within a factor of V'K of the lower bound. A recent
work by [15] demonstrates a lower bound of Q(v/NT) for the MNL-Bandit problem,
thus suggesting that our algorithm’s performance is optimal even with respect to its
dependence on K.

Finally in Section 2.6, we present a computational study that highlights several
salient features of our algorithm. In particular, we test the performance of our
algorithm over instances with varying degrees of separability between optimal and
sub-optimal solutions and observe that the performance is bounded irrespective of
the “separability parameter.” In contrast, the approach of [43] “breaks down” and
results in linear regret for some values of the “separability parameter.” We also
present results of a simulated study on a real world data set, where we compare
the performance of our algorithm to that of [43]. We observe that the performance
of our algorithm is sub-linear, while the performance of [43] is linear, which further
emphasizes the limitations of “explore first and exploit later” approaches and highlights

the universal applicability of our approach.
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2.1 UCB Algorithm

In this section, we describe our proposed policy for the MNL-Bandit problem. The
policy is designed using the characteristics of the MNL model based on the principle
of optimism under uncertainty. Before introducing our algorithm, we present a quick
background of the UCB family of algorithms [6] for the classic multi-armed bandit
(MAB) problem.

2.1.1 Revisiting UCB for MAB

In the classical MAB problem, there are n arms and a finite time horizon 7. The
reward obtained upon playing arm 7 at time ¢ is 7, generated i.i.d (across time) from
a distribution F; with fixed but unknown mean, p;. The objective here is to play
arms in an online fashion in order to maximize the cumulative reward or equivalently

minimize the regret which is defined as

T

Regmas (1) = Z(Hz —Tt),

t=1

where 7, = arg max; p; and 7, is the reward corresponding to the arm played at time ¢.
Maximizing cumulative rewards, as with any bandit problems involves experimenting
with various arms to learn these unknown means while simultaneously trying to play
the “best arm” as many times as possible. UCB algorithm provide a structured
framework to judiciously balance the friction between exploration and exploitation
for the MAB problems. As the name suggests, the basic idea of the UCB framework
is to use the observations from the past plays of each arm to construct estimates
UCB,, that are “upper confidence bounds” of the true rewards. In particular, the

estimates UCB,; satisfy the following two key properties.

1. UCBy; for every arm is larger than its mean reward with high probability,
UCBtﬂ‘ 2 i, V.t
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2. As the arm ¢ is played more and more, the estimate UCB;; converges to the

true mean with high probability,

where T;(t) is the number of times arm ¢ is played till time ¢. The UCB algorithm
plays the best arm according to the estimates UCB,; and by virtue of first property,
we always have the estimate of the current arm higher than the optimal mean, i.e.

UCB,,;, > ., where 7, is the arm played at time ¢. Therefore, we have

T T
> g, =1 <> UCB;, —
t=1 t=1

-
(=
o
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1

1
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We have >, >°" | Wiz0) < 3 VT, where T; is the total number of times arm 4
is played. Noting that Y., T; = T, by Cauchy Schwartz we have Y, +/T; < v/nT.

In our UCB based algorithm, we use this same basic idea for algorithm design

and regret analysis. However, the combinatorial nature of the problem brings in new

challenges which we elaborate in the following section.

2.1.2 Challenges and overview

A key difficulty in applying standard multi-armed bandit techniques to the MNL-
Bandit problem is that the response observed on offering an item 7 is not independent
of other items in assortment S. Therefore, the N items cannot be directly treated
as N independent arms. As mentioned before, a naive extension of MAB algorithms
for this problem would treat each of the feasible assortments as an arm, leading to a
computationally inefficient algorithm with exponential regret. Our policy utilizes the
specific properties of the dependence structure in MNL model to obtain an efficient

algorithm with order v/ NT regret.
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Our policy is based on a non-trivial extension of the UCB algorithm [6]. It uses
the past observations to maintain increasingly accurate upper confidence bounds for
the MNL parameters {v;,7 = 1,..., N}, and uses these to (implicitly) maintain an
estimate of expected revenue R(S) for every feasible assortment S. In every round,
our policy picks the assortment S with the highest optimistic revenue. There are
two main challenges in implementing this scheme. First, the user response to being
offered an assortment S depends on the entire set S, and does not directly provide
an unbiased sample of demand for an item ¢ € S. In order to obtain unbiased
estimates of v; for all 7+ € S, we offer a set S multiple times: specifically, it is offered
repeatedly until a no-purchase occurs. We show that proceeding in this manner, the
average number of times an item i is selected provides an unbiased estimate of the
parameter v;. The second difficulty is the computational complexity of maintaining
and optimizing revenue estimates for each of the exponentially many assortments. To
this end, we use the structure of the MNL model and define our revenue estimates
such that the assortment with maximum estimated revenue can be efficiently found
by solving a simple optimization problem. This optimization problem turns out to
be a static assortment optimization problem with upper confidence bounds for v;’s

as the MNL parameters, for which efficient solution methods are available.

Remark 2.1. (Related UCB Approaches) Popular extensions of UCB for large
scale problems include the linear bandit (e.g., 5, 39) and generalized linear bandit
(22) problems. However, these do not apply directly to our problem, since the revenue
corresponding to an assortment is nonlinear in problem parameters. Other works (see
14) have considered versions of MAB where one can play a subset of arms in each
round and the expected reward is a function of rewards for the arms played. However,
this approach assumes that the reward for each arm is generated independently of
the other arms in the subset. This is not the case typically in retail settings, and in

particular, in the MNL choice model where user choices depend on the assortment of
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items offered in a time step.

2.1.3 Details of the policy

We divide the time horizon into epochs, where in each epoch we offer an assortment
repeatedly until a no purchase outcome occurs. Specifically, in each epoch ¢, we
offer an assortment S, repeatedly. Let & denote the set of consecutive time steps in
epoch ¢. &, contains all time steps after the end of epoch ¢ — 1, until a no-purchase
happens in response to offering Sy, including the time step at which no-purchase
happens. The length of an epoch |&| conditioned on Sy is a geometric random
variable with success probability defined as the probability of no-purchase in S,. The
total number of epochs L in time T is implicitly defined as the minimum number for
which S0 [&| > T.

At the end of every epoch ¢, we update our estimates for the parameters of MNL,
which are used in epoch ¢ + 1 to choose assortment Sy, ;. For any time step t € &,
let ¢; denote the consumer’s response to Sy, i.e., ¢; = i if the consumer purchased
product ¢ € Sy, and 0 if no-purchase happened. We define 9; o as the number of times
a product 7 is purchased in epoch ¢, For every product ¢ and epoch ¢ < L, we keep
track of the set of epochs before ¢ that offered an assortment containing product i,
and the number of such epochs. We denote the set of epochs by 7;(¢) and the number
of epochs by T;(¢). That is,

Till) ={r < tlie S}, T(0) =[Ti(0)]. (2.1)

We compute v; ¢ as the number of times product ¢ was purchased per epoch,

1
@i,K: 'LA)Z”T. 2.2
0 2 22

T€T;(0)
We show that for all < € Sy, 0; 0 and v; , are unbiased estimators of the MNL parameter

v; (see Corollary 2.1 ) Using these estimates, we compute the upper confidence
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bounds, UUCB for v; as,

we \/M481og(¢m+1) 481og (VNE+1) 23

Vig o = Ui AU T.(0) T.(0)

We establish that UUCB is an upper confidence bound on the true parameter v;, i.e.,
VP8 > v, for all i, ¢ with high probability (see Lemma 2.2). The role of the upper
confidence bounds is akin to their role in hypothesis testing; they ensure that the
likelihood of identifying the parameter value is sufficiently large. We then offer the
optimistic assortment in the next epoch, based on the previous updates as follows,

Sy1 := argmax max {R(S, V)0 < UUCB , (2.4)
Ses

where R(S,V) is as defined in (1.3). We later show that the above optimization
problem is equivalent to the following optimization problem (see Lemma 2.3).

Sepq = argmax Ry 1(9), (2.5)
Ses

where Ry 1(S) is defined as,

Z ripICB
Re1(S) =5 i’ (2.6)
T ;

We summarize the steps in our policy in Algorithm 1. Finally, we may remark on the
computational complexity of implementing (2.4). The optimization problem (2.4) is
formulated as a static assortment optimization problem under the MNL model with
TU constraints, with model parameters being v;®,i = 1,..., N (see (2.5)). There
are efficient polynomial time algorithms to solve the static assortment optimization
problem under MNL model with known parameters (see [17, 40]). We will now
briefly comment on how Algorithm 1 is different from the existing approaches of [43]

and [40] and also why other standard “bandit techniques” are not applicable to the
MNL-Bandit problem.
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Algorithm 1 Exploration-Exploitation algorithm for MNL-Bandit
1: Initialization: UEOCB =1lforalli=1,...,N
.t =1; /¢ =1 keeps track of the time steps and total number of epochs respectively

3: while t < T do
> v

()

4: Compute Sy = argmax Ry(S) = €5 T
SeS 1+ Z /U‘7 /—1
jES
5: Offer assortment Sy, observe the purchasing decision, ¢; of the consumer
6: if ¢, =0 then
7: compute 9;¢ = ¢, 1(c; = i), no. of consumers who preferred i in epoch

¢, for all i € S,

8: update T;(¢) = {r < |i € Si},T;(¢) = |T;(¢)|, no. of epochs until ¢ that
offered product ¢
1
9: update v,y = Ti0) Z ;. -, sample mean of the estimates
TeTi(6)
) _ 48log (VN(+1) 48log (VNI +1)
10: dat UCB — i i 0=/ 1
update v; v7g—|—\/v,g T(0) Ti(0) ; +
11: else
12: & = &y Ut, time indices corresponding to epoch ¢
13: end if

14: t=t+1
15: end while

Remark 2.2. (Universality) Note that Algorithm 1 does not require any prior
knowledge/information about the problem parameters v (other than the assumption
v; < vg, which is subsequently relaxed in Algorithm 3). This is in contrast with the
approaches of [43] and [40], which require the knowledge of the “separation gap,”
namely, the difference between the expected revenues of the optimal assortment and
the second-best assortment. Assuming knowledge of this “separation gap,” both
these existing approaches explore a pre-determined set of assortments to estimate
the MNL parameters within a desired accuracy, such that the optimal assortment
corresponding to the estimated parameters is the (true) optimal assortment with
high probability. This forced exploration of pre-determined assortments is avoided
in Algorithm 1, which offers assortments adaptively, based on the current observed

choices. The confidence regions derived for the parameters v and the subsequent
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assortment selection, ensure that Algorithm 1 judiciously maintains the balance

between exploration and exploitation that is central to the MNL-Bandit problem.

Remark 2.3. (Estimation Approach) Because the MNL-Bandit problem is
parameterized with parameter vector (v), a natural approach is to build on standard
estimation approaches like maximum likelihood (MLE), where the estimates are
obtained by optimizing a loss function. However, the confidence regions for estimates

resulting from such approaches are either:

1. asymptotic and are not necessarily valid for finite time with high probability,

or

2. typically depend on true parameters, which are not known a priori. For example,
finite time confidence regions associated with maximum likelihood estimates

require the knowledge of sup I(v) (see [11]), where [ is the Fisher information
vey

of the MNL choice model and V is the set of feasible parameters (that is not

MLE) instead of sup I(v) for constructing

vey
confidence intervals would only lead to asymptotic guarantees and not finite

known apriori). Note that using (v

sample guarantees.

In contrast, in Algorithm 1, we solve the estimation problem by a sampling method
designed to give us unbiased estimates of the model parameters. The confidence
bounds of these estimates and the algorithm do not depend on the underlying model
parameters. Moreover, our sampling method allows us to compute the confidence
regions by simple and efficient “book keeping” and avoids computational issues that
are typically associated with standard estimation schemes such as MLE. Furthermore,
the confidence regions associated with the unbiased estimates also facilitate a tractable
way to compute the optimistic assortment (see (2.4), (2.5) and Step-4 of Algorithm

1), which is less accessible for the MLE estimate.
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2.2 Worst Case Regret Bounds

In what follows, we make the following assumptions.

Assumption 2.1.
1. The MNL parameter corresponding to any product i € {1,..., N} satisfies v; <

’U[):]_.

2. The family of assortments S is such that S € S and Q) C S implies that Q) € S.

The first assumption is equivalent to the ‘no purchase option’ being the most
likely outcome. We note that this holds in many realistic settings, in particular, in
online retailing and online display-based advertising. The second assumption implies
that removing a product from a feasible assortment preserves feasibility. This holds
for most constraints arising in practice including cardinality, and matroid constraints
more generally. We would like to note that the first assumption is made for ease of
presentation of the key results and is not central to deriving bounds on the regret.
In section 2.5, we relax this assumption and derive regret bounds that hold for any
parameter instance.

Our main result is the following upper bound on the regret of the policy stated

in Algorithm 1.

Theorem 1 (Performance Bounds for Algorithm 1). For any instance v = (vy, ..., vn)
of the MNL-Bandit problem with N products, r; € [0, 1] and Assumption 4.1, the regret

of the policy given by Algorithm 1 at any time T is bounded as,

Reg(T,v) < C1y/NTlog NT + CoNlog® NT,

where Cy and Cy are absolute constants (independent of problem parameters).

2.2.1 Proof Outline

In this section, we provide an outline of different steps involved in proving Theorem 1.
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Confidence intervals. The first step in our regret analysis is to prove the following

two properties of the estimates ngCB computed as in (2.3) for each product i.

Specifically, that v; is bounded by UEZCB with high probability, and that as a product

is offered an increasing number of times, the estimates v S converge to the true

value with high probability. Intuitively, these properties establish ngCB as upper
confidence bounds converging to actual parameters v;, akin to the upper confidence
bounds used in the UCB algorithm for MAB in [6]. We provide the precise statements
for the above mentioned properties in Lemma 2.2. These properties follow from an
observation that is conceptually equivalent to the ITA (Independence of Irrelevant
Alternatives) property of MNL, and shows that in each epoch 7, 9; ; (the number of
purchases of product 7) provides an independent unbiased estimates of v;. Intuitively,
0; » is the ratio of probabilities of purchasing product i to preferring product 0 (no-
purchase), which is independent of S;. This also explains why we choose to offer
S, repeatedly until no-purchase occurs. Given these unbiased i.i.d. estimates from
every epoch 7 before ¢, we apply a multiplicative Chernoff-Hoeffding bound to prove

concentration of ;.

Validity of the optimistic assortment. The product demand estimates vgfc_Bl

were used in (2.6) to define expected revenue estimates R,(S) for every set S. In
the beginning of every epoch ¢, Algorithm 1 computes the optimistic assortment
as Sy = argmaxg Rg(S), and then offers S, repeatedly until no-purchase happens.
The next step in the regret analysis is to leverage the fact that UZ-LfZCB is an upper
confidence bound on v; to prove similar, though slightly weaker, properties for the
estimates Rg(S ). First, we show that estimated revenue is an upper confidence bound
on the optimal revenue, i.e., R(S*,v) is bounded by R,(S,) with high probability.
The proof for these properties involves careful use of the structure of MNL model to

show that the value of Rg(Sg) is equal to the highest expected revenue achievable by

any feasible assortment, among all instances of the problem with parameters in the
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range [0,v°°B],i = 1,...,n. Since the actual parameters lie in this range with high
probability, we have Ry(S,) is at least R(S*,v) with high probability. Lemma 2.4
provides the precise statement. Lemma 2.4 is akin to the first property in Section

2.1.1.

Bounding the regret. The final part of our analysis is to bound the regret in
each epoch. First, we use the fact that R,(S,) is an upper bound on R(S*,V) to
bound the loss due to offering the assortment S,. In particular, we show that the
loss is bounded by the difference between the “optimistic” revenue estimate, R@(Sg),
and the actual expected revenue, R(Sy). We then prove a Lipschitz property of the
expected revenue function to bound the difference between these estimates in terms of
errors in individual product estimates ]v}”fB — v;|. Finally, we leverage the structure
of the MNL model and the properties of vF" to bound the regret in each epoch.
Lemma 2.5 provides the precise statements of above properties.

In the rest of this section, we make the above notions precise. Note that Lemma
2.4 and Lemma 2.5 are similar in spirit to first and second properties of the UCB
estimates UCB, ; discussed in Section 2.1.1. Therefore, the proof of Theorem 1 follows
a similar analysis. However, the combinatorial aspects of the assortment optimization

problem brings in additional challenges in completing the proof. In the interest of

continuity, we defer the proof of Theorem 1 to Appendix B.1.

2.2.2 Unbiased estimates

Here, we prove that 9; , and v; are unbiased estimates of the MNL parameter v;. We

show that from the moment generating function of the estimate ;¢

Lemma 2.1 (Moment Generating Function). The moment generating function of

estimate conditioned on Sy, U;, is given by,

1 ].‘i‘UZ
=— o<l
SE) 1 —uv(e? — 1) for all 6 < log v;

E <eem

, forall i=1,--- N.
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Proof. From (1.2), we have that probability of no purchase event when assortment
Sy is offered is given by

0,5)=——1—.
7T( ) Z) 1+Zj€5'l v

Let ny be the total number of offerings in epoch ¢ before a no purchased occurred,
i.e., ng = |&| — 1. Therefore, ny is a geometric random variable with probability of
success (0, S¢). And, given any fixed value of ny, 0;, is a binomial random variable
with n, trials and probability of success given by

Uy
ZjESz 'Uj .

In the calculations below, for brevity we use py and ¢; respectively to denote 7(0,.Sy)

%(Se) =

and ¢;(S;). Hence, we have
E (e”t) = E,, {E (" | ny) } . (2.7)
Since the moment generating function for a binomial random variable with parameters
n,pis (pe’ +1—p)", we have
E ("¢ | ng) = En, {(gi¢ +1—q:)"}. (2.8)

For any «, such that a(1—p) < 1, if n is a geometric random variable with parameter

p, then we have

p

E(a™) = m.

Since ny is a geometric random variable with parameter py and by definition of ¢; and

Po, we have, ¢;(1 — pg) = v;po, it follows that for any 6 < log 1;”1', we have,
1
En, {(q:€’ +1—q:)"} = Fo = . (29
Al 1= = o  Tae oy Y
The result follows from (2.7), (2.8) and (2.9). O

From the moment generating function, we can establish that ©0;, is a geometric

random variable with parameter ﬁ Thereby also establishing that ©; , and v; , are
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unbiased estimators of v;. More specifically, from Lemma 2.1, we have the following

result.

Corollary 2.1 (Unbiased Estimates). We have the following results.

1. V¢, £ < L are i.i.d geometrical random variables with parameter ﬁ, i .e. for
any £,1
Pr (0 ) i NN v 012
r Ul =m) = m = sy 2y
! 1+ v; 1+ v,

2. Uig, £ < L are unbiased i.i.d estimates of v;, 1 .e. E(0;) =v; V £, 1.

2.2.3 Upper confidence bounds

In this section, we will show that the upper confidence bounds UEZCB converge to the

true parameters v; from above. Specifically, we have the following result.
Lemma 2.2. For every ¢ =1,--- | L, we have:
1. UgecB > v; with probability at least 1 — % foralli=1,...,N.

2. There exists constants C; and Cy such that

;log (VNI +1) log (VN{+1)
UCB _ Ui 108

with probability at least 1 — ﬁ

We first establish that the estimates 0;,, ¢ < L are unbiased i.i.d estimates of the
true parameter v; for all products. It is not immediately clear a priori if the estimates
0; 0, £ < L are independent. In our setting, it is possible that the distribution of the
estimate ©0;, depends on the offered assortment Sy, which in turn depends on the
history and therefore, previous estimates, {0;,, 7 = 1,...,¢ — 1}. In Lemma 2.1,
we show that the moment generating function of ¢;, conditioned on Sy only depends
on the parameter v; and not on the offered assortment Sy, there by establishing that
estimates are independent and identically distributed. Using the moment generating

function, we show that 0; ; is a geometric random variable with mean v;, i.e., E(0; ) =
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v;. We will use this observation and extend the classical multiplicative Chernoff-
Hoeffding bounds (see [36] and [7]) to geometric random variables. The proof is

provided in Appendix A.2

2.2.4 Optimistic estimate and convergence rates

In this section, we show that the estimated revenue converges to the optimal expected
revenue from above and akin to the upper confidence bounds described in Section
2.1.1. First we leverage the structural properties of the MNL model to establish two
key properties of the optimal expected revenue. In the first property, which we refer
to as restricted monotonicity, we note that the optimal expected revenue is monotone
in the MNL parameters. In the second property, we present a Lipschitz property of

the expected revenue function. In particular, we have the following result.

Lemma 2.3 (Properties of the Optimal Revenue). Fizv € R, let S* be an optimal

assortment when the MNL are parameters are given by v, i.e. S* = arg maz R(S,v).
S:|S|I<K

For any w € R, we have:

1. (Restricted Monotonicity) If v; < w; for alli=1,--- ,N. Then,

R(S*,w) > R(S*,v).

2. (Lipschitz) |R(S*,v) — R(S*,w)| < ==€ .
142 jes ¥

Proof. We will first prove the restricted monotonicity property and extend the analysis

to prove the Lipschitz property.

Restricted Monotonicity. We prove the result by first showing that for any 57 € S*,
we have R(S*, w?) > R(S*,v), where w/ is vector v with the j* component increased
to wj, i.e. wg = v; for all 7 # j and wj = w;. We can use this result iteratively to
argue that increasing each parameter of MNL to the highest possible value increases

the value of R(S,w) to complete the proof.
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If there exists j € S such that r; < R(S), then removing the product j from
assortment S yields higher expected revenue contradicting the optimality of S.
Therefore, we have

r; > R(S). Vj € S.
Multiplying by (v; — w;)(3_,cs/; wi + 1) on both sides of the above inequality and
re-arranging terms, we can show that R(S*, w’) > R(S*,v).
Lipschitz. Following the above analysis, we define sets Z(S*) and D(S*) as
Z(S*) ={ili € " and v; > w;}
D(S*) = {ili € S* and v; < w;},
and vector u as,

U; =
v; otherwise.

By construction of u, we have u; > v; and u; > w; for all . Therefore from the

restricted monotonicity property, we have
R(S*,v) — R(S*,w) < R(S*,u) — R(S",w)

E riu; E riw;

< _i€s” o ies
jes* jes*
5™ (- w)
< 1€5*
N 1 + Z Uj
jes*
Lipschitz property in Lemma 2.3 follows from the definition of ;. O]

It is important to note that we do not claim that the expected revenue is in general
a monotone function, but only the value of the expected revenue corresponding to
the optimal assortment increases with increase in the MNL parameters.

Now, we show that the estimated revenue is an upper confidence bound on the

optimal revenue. In particular, we have the following result.
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Lemma 2.4. Suppose S* € S is the assortment with highest expected revenue, and

Algorithm 1 offers S; € S in each epoch €. Then, for every epoch {, we have
Ry(Se) > Ry(S™) > R(S™,v) with probability at least 1 — 7

Proof. From Lemma 2.2 and union bound, we have with at least 1 —% probability that
viL’JZCB > v; for all ¢ € §*. In Lemma 2.3, we show that the optimal expected revenue
is monotone in the MNL parameters. Therefore, the probability that the estimated

revenue is greater than the optimal revenue is at least as large as the probability of

vps® > v; for all i € S*. O

The following result provides the convergence rates of the estimate Ry(S;) to the

optimal expected revenue.

Lemma 2.5. If r; € [0,1], there exists constants Cy and Cy such that for every

{=1,---,L, we have

N v; log (VN {41 log (VIN{¢+1
(1+ 3 es, v) (Re(Se) — R(Sp,v)) < Oy 2R8WEED 4 ¢ e (OREED

with probability at least 1 — %.

Proof. Using a union bound, we can argue that the second statement of Lemma 2.2
holds true for all products in the optimal set with at least a probability of 1 — % The

result then follows from the Lipschitz property established in Lemma 2.3. O

2.3 Improved Regret Bounds for “well
separated” Instances

In this section, we consider the problem instances that are “well separated” and
present an improved logarithmic regret bound. More specifically, we derive an O(log T')

regret bound for Algorithm 1 for instances that are “well separated.” In Section 2.2,
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we established worst case regret bounds for Algorithm 1 that hold for all problem
instances satisfying Assumption 4.1. Although our algorithm ensures that the
exploration-exploitation tradeoff is balanced at all times, for problem instances that
are “well separated,” our algorithm quickly converges to the optimal solution leading
to better regret bounds. More specifically, we consider problem instances where
the optimal assortment and “second best” assortment are sufficiently “separated”
and derive a O(logT") regret bound that depends on the parameters of the instance.
Note that, unlike the regret bound derived in Section 2.2 that holds for all problem
instances satisfying Assumption 4.1, the bound we derive here only holds for instances
having certain separation between the revenues corresponding to optimal and second

best assortments. In particular, let A(v) denote the difference between the expected

revenues of the optimal and second-best assortment, i.e.,

Alv) = ! R(S*,v) — R(9)}. 2.10
(V) = seoin@il e wy M V) = BIS)} (2.10)

We have the following result.

Theorem 2 (Performance Bounds for Algorithm 1 in “well separated” case). For any
instance v = (vg, ...,vn) of the MNL-Bandit problem with N products, r; € [0, 1] and
Assumption 4.1, the regret of the policy given by Algorithm 1 at any time T is bounded

as,

N?logT
Reg(T, V) S B1 (T\i) + BQ,

where By and By are absolute constants.

Proof outline. In this setting, we analyze the regret by separately considering the
epochs that satisfy certain desirable properties and the ones that do not. Specifically,

we denote epoch ¢ as a “good” epoch if the parameters v%B satisfy the following

property,

;log (VNE+1) log (VN{+1)
< UCB . < Y
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and we call it a “bad” epoch otherwise, where C; and (5 are constants as defined in

Lemma 2.2. Note that every epoch ¢ is a good epoch with high probability (1 — %)
and we show that regret due to “bad” epochs is bounded by a constant (see Appendix
B.3). Therefore, we focus on “good” epochs and show that there exists a constant 7,
such that after each product has been offered in at least 7 “good” epochs, Algorithm
1 finds the optimal assortment. Based on this result, we can then bound the total

number of “good” epochs in which a sub-optimal assortment can be offered by our

algorithm. Specifically, let
_ 4NC'log NT

Y C (2.11)

where C' = max{C%, Cy}. Then we have the following result.

Lemma 2.6. Let ¢ be a “good” epoch and S, be the assortment offered by Algorithm
1in epoch 0. If every product in assortment Sy is offered in at least T “good epochs,”

i.e. T;(€) > 7 for all i, then we have R(Sy,v) = R(S*,v) .

Proof. Let V(S;) = > _,cs, vi- From Lemma 2.5, and definition of 7 (see (2.11)), we

have,

1 v;log (VNE+ 1) log (VN(+1)
V<sg>+1i§ Cl\/ To T T ’

SA(V)( G 2 V0 +C2>.

R(S*,v) — R(S,v) <

2VNC (V(Sy) +1) 4C
(2.12)

From Cauchy-Schwartz inequality, we have

S Vo< 180D v <V/NV(S) < VN (V(S) +1).

i€ESy €Sy

Substituting the above inequality in (2.12) and using the fact that C' = max{C?%, C,},

we obtain R(S*,v) — R(Sp,v) < 3A4(V). The result follows from the definition of

A(v). O
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The next step in the analysis is to show that Algorithm 1 will offer a small number
of sub-optimal assortments in “good” epochs. We make this precise in the following

observation whose proof amounts to a simple counting exercise using Lemma 2.6.

Lemma 2.7. Algorithm 1 cannot offer sub-optimal assortments in more than Nt

“good” epochs.

Proof. We complete the proof using an inductive argument on N.

Lemma 2.7 trivially holds for N = 1, since when there is only one product, every
epoch offers the optimal product and the number of epochs offering sub-optimal
assortment is 0, which is less than 7. Now assume that for any N < M, we have that
the number of “good epochs” offering sub-optimal products is bounded by N7, where
7 is as defined in (2.11). Now consider the setting, N = M + 1. We will now show
that the number of “good epochs” offering sub-optimal products cannot be more than
(M + 1)7 to complete the induction argument. We introduce some notation, let N
be the number of products that are offered in more than 7 epochs by Algorithm 1,

&g denote the set of “good epochs”, i.e.,

v;log (VNE+ 1) log (VN(+ 1)

Eg =1/ U,::JECB > p; or Ugecs < +Cl\/

C. Vi
I ORI
(2.13)
and €§”b’°pt be the set of “good epochs” that offer sub-optimal assortments,
EFPP = {0 € & | R(Sy) < R(S™)}. (2.14)

Case 1: N = N: Let L be the total number of epochs and Si,---,5 be the
assortments offered by Algorithm 1 in epochs 1,---, L respectively. Let ¢; be the

epoch that offers product 7 for the 7t time, specifically,

¢ 2 min {¢ | T;(¢) =7} .
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Without loss of generality, assume that, £; <l < --- < {y. Let é’g“b’o"t be the set of

“good epochs” that offered sub-optimal assortments before epoch ¢ _1,

Gsub_opt sub_opt
g ={reg

€§€N—1},

where """ is as defined as in (2.14). Finally, let é;”b’OPt(N) be the set of “good

epochs” that offered sub-optimal assortments not containing product N before epoch

€N—17
é;ub,opt(N) _ {e c g-éub,opt N ¢ Sg } )
Every assortment S; offered in epoch ¢ € é’é“b")pt(N) can contain at most N —1 = M

products, therefore by the inductive hypothesis, we have |é;”b’°pt(N)| < MT7. We can

partition éfé”b"’pt as,
géub,opt _ g.;ub,opt(N) U { /e géub,opt N €S, }7
and hence it follows that,
g < atr s |{re o | N e s ).

Note that T (fy—1) is the number of epochs until epoch ¢y_1, in which product N
has been offered. Hence, it is higher than the number of “good epochs” before epoch

{n_1 that offered a sub-optimal assortment containing product N and it follows that,
|ES | < M7+ Ty (fn-1). (2.15)

Note that from Lemma 2.6, we have that any “good epoch” offering sub-optimal
assortment must offer product NV, since all the the other products have been offered
in at least 7 epochs. Therefore, we have, for any ¢ € 8§”b’°pt\é§”b’°pt, N € S, and
thereby;,

TN(gN) — TN(EN—l) Z |g§ub,opt| . |(cjéub,opt|'

From definition of ¢y, we have that Ty(¢5) = 7 and substituting (2.15) in the above
inequality, we obtain

|E3PY < (M + 1)
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Case 2: N < N: The proof for the case when N < N is similar along the lines of

the previous case (we will make the same arguments using N — 1 instead of N — 1.)

and is skipped in the interest of avoiding redundancy. O

The proof for Theorem 2 follows from the above result. In particular, noting that
the number of epochs in which sub-optimal assortment is offered is small, we re-use
the regret analysis of Section 2.2 to bound the regret by O(N?logT). We provide a
rigorous proof in Appendix B.3 for the sake of completeness. Note that for the special
case of cardinality constraints, we have |S;| < K for every epoch ¢. By modifying the
definition of 7 in (2.11) to 7 = 4K C'log NT'/A%(v) and following the above analysis,
we can improve the regret bound to O(N K logT) for this case. Specifically, we have

the following.

Corollary 2.2 (Bounds in well separated case under cardinality constraints). For any
instance v = (vg, .. .,vy) of the MNL-Bandit problem with N products and cardinality
constraint K, r; € [0,1] and vy > v; for all i, the regret of the policy given by

Algorithm 1 at any time T is bounded as,

NKlog NT

Reg(T',v) < B, AV

+B27

where, By and By are absolute constants and A(v) is defined in (2.10).

It should be noted that the bound obtained in Corollary 2.2 is similar in magnitude
to the regret bounds obtained by [43], when K is assumed to be fixed, and is
strictly better than the regret bound O(N?log®T) established by [40]. Moreover,
our algorithm does not require the knowledge of A(v), unlike the aforementioned
papers which build on a conservative estimate of A(v) to implement their proposed

policies.
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2.4 Lower Bound for the MNL-Bandit

In this section, we consider the special case of TU constraints, namely, a cardinality
constrained assortment optimization problem, and establish that any policy must

incur a regret of 2(y/NT/K). More precisely, we prove the following result.

Theorem 3 (Lower bound on achievable performance). There ezists a (randomized)
instance of the MNL-Bandit problem with vg > v; ,i = 1,..., N, such that for any N
and K, and any policy w that offers assortment ST, |SF| < K at time t, we have for

all T"> N that,

Reg(T,v) := E, (Z R(S*,v) — R(Sf,v)) >y %

where S* is (at-most) K -cardinality assortment with maximum expected revenue, and

C is an absolute constant.

Remark 2.4. (Optimality) Theorem 3 establishes that Algorithm 1 is optimal if
we assume K to be fixed. We note that the assumption that K is fixed holds in many
realistic settings, in particular, in online retailing, where there are a large number of
products, but only fixed number of slots to show these products. Algorithm 1 is nearly
optimal if K is also considered to be a problem parameter, with the upper bound being
within a factor of v/K of the lower bound. In recent work, [15] established a lower
bound of €2 <\/W) for the MNL-Bandit problem, when K < N/4, thus suggesting
that Algorithm 1 is optimal even with respect to its dependence on K. For the special
case of the unconstrained MNL-Bandit problem (i.e., K = N), the regret bound of
Algorithm 1 can be improved to O(y/[S*|T), where |S*| is the size of the optimal

assortment (see Appendix B.2) and the optimality gap for the unconstrained setting

is y/]5™.
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2.4.1 Proof overview

For ease of exposition, we focus here on the case where K < N, and present the
proof for lower bound when K = N in Appendix B.5.1. To that end, we will assume
that K < N for the rest of this section. We prove Theorem 2.4 by a reduction to a

parametric multi-armed bandit (MAB) problem, for which a lower bound is known.

Definition 2.1 (MAB instance Iyag). Define Iyag as a (randomized) instance of
MAB problem with N > 2 Bernoulli arms (reward is either 0 or 1) and the probability

of the reward being 1 for arm i is given by,

@, if i # J,
i = forallt=1,... N,
ate ifi=j,
where j is set uniformly at random from {1,... N}, a <1 and e = 100 %

Throughout this section we will use the terms algorithm and policy interchangeably.
An algorithm A is referred to as online if it adaptively selects a history dependent

A, € {1,...,n} at each time t for the MAB problem.

Lemma 2.8. For any N > 2, a < 1, T and any online algorithm A that plays arm

€
A, at time t, the expected regret on instance Iyag s at least 5 That 1s,

T

Z /’LAt

eT

Reg.ATy’ 6 )

where, the expectation is both over the randomization in generating the instance (value

of ), as well as the random outcomes that result from pulled arms.

The proof of Lemma 2.8 is a simple extension of the proof of the Q(v/NT) lower
bound for the Bernoulli instance with parameters % and % + € (for example, see 13),
and has been provided in Appendix B.5 for the sake of completeness. We use the
above lower bound for the MAB problem to prove that any algorithm must incur at

least Q(y/NT/K) regret on the following instance of the MNL-Bandit problem.
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Definition 2.2 (MNL-Bandit instance Iyy). Define IynL as the following (randomized)

instance of MNL-Bandit problem with K -cardinality constraint, N = NK products,

A

parameters vo = K and fori=1,..., N,
I if [%1# 73,
a+e if [%1 =7,
where j is set uniformly at random from {1,... N}, a < 1, and € = 1—(1)0 % and
r, = 1.

We will show that any MNL-Bandit algorithm has to incur a regret of 2 (@)
on instance Iyy.. The main idea in our reduction is to show that if there exists an
algorithm Ay, for MNL-Bandit that achieves o %) regret on instance Iy,
then we can use Ayn. as a subroutine to construct an algorithm Amag for the

MAB problem that achieves strictly less than % regret on instance Iyag in time
T, thus contradicting the lower bound of Lemma 2.8. This will prove Theorem 2.4

by contradiction.

2.4.2 Construction of the MAB algorithm using the MNL

algorithm

Algorithm 2 provides the exact construction of Amag, which simulates the Amne
algorithm as a “black-box.” Note that Apmag pulls arms at time steps t = 1,...,T.
These arm pulls are interleaved by simulations of Ay steps (Call Ayn. , Feedback
to Amne ). When step £ of Ay, is simulated, it uses the feedback from 1,...,¢—1 to
suggest an assortment Sy; and recalls a feedback from Amag on which product (or no
product) was purchased out of those offered in Sy, where the probability of purchase
of product i € Sy is v; / (vo + Zie s, v;). Before showing that the Auag indeed provides

the right feedback to Aune in the £ step for each ¢, we introduce some notation.
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Algorithm 2 Algorithm Amag
Initialization: t =0,/ =0
while ¢t < T do
Update f =/¢+1
Call Ay, receive assortment S, C [N ]
Repeat until ‘exit loop’
With probability %, send Feedback to Ayn. ‘no product was purchased’,
exit loop
Updatet =t+1
8: With probability -1 2K, pull arm A; = (%W, where 7 € .S,
9: With probability 3 f;’(', continue the loop (go to Step-5)
10: If reward is 1, send Feedback to Ayn. ‘¢ was purchased’ and exit loop
11: end loop
12: end while

=1

Let M, denote the length of the loop at step ¢, more specifically, the cumulative
number of times, Aun. Was executing steps 6, 8 or 9 in the ¢ step before exiting the
loop. For every ¢ € S, U0, let Cé denote the event that the feedback to Amn. from

Amag after step £ of Ayne is “product 4 is purchased”. We have,

m—1
S| .
P(My=m N () = 2K (ZK > —|— Ve for each i € S, U {0}.
1€Sy

Hence, the probability that Auag s feedback to Ayny is “product ¢ is purchased” is,

(%

ps, ( P(My=m N Q) -
‘ mzzl Vo + Zqés@ Yq

This establish that Amag provides the appropriate feedback to Amne -

2.4.3 Proof of Theorem 2.4

We prove the result by establishing three key results. First, we upper bound the
regret for the MAB algorithm, Amag . Then, we prove a lower bound on the regret
for the MNL algorithm, Ayne . Finally, we relate the regret of Ayag and Apne and

use the established lower and upper bounds to show a contradiction.
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For the rest of this proof, assume that L is the total number of calls to Awmn. in
Amag - Let S* be the optimal assortment for Iyn,. For any instantiation of Iy,
it is easy to see that the optimal assortment contains K items, all with parameter
o+ €, i.e., it contains all ¢ such that [+] = j. Therefore, V(S*) = K(a + €) = Kp;.
Note that if an algorithm offers an assortment, Sy, such that |S,| < K, then we can
improve the regret incurred by this algorithm for the MNL-Bandit instance Iyny by
offering an assortment gg = Sy U {i} for some i ¢ S;. Since our focus is on lower
bounding the regret, we will assume, without loss of generality, that |S,| = K for the

rest of this section.

Upper bound for the regret of the MAB algorithm. The first step in our
analysis is to prove an upper bound on the regret of the MAB algorithm, Ayag on
the instance Iyag. Let us label the loop following the fth call to Ayne in Algorithm
2 as (th loop. Note that the probability of exiting the loop is p = E[% + %MAJ =
+ + 5V (Se), where V(S)) 2 Y ies, Vi- In every step of the loop until exited, an arm
is pulled with probability 1/2. The optimal strategy would pull the best arm so that

r—11

the total expected optimal reward in the loopis > 2 (1 —p)"'5pu; = 5 = =V (S%).

Hi

2p 2Kp
Algorithm Apag pulls a random arm from Sy, so total expected algorithm’s reward in
the loop is > oo (1 —p)" '35V (S:) = %KIJV(S@). Subtracting the algorithm’s reward

from the optimal reward, and substituting p, we obtain that the total expected regret

of Auap over the arm pulls in loop £ is

V(S™) = V(S)
(K +V(Sy))

Noting that V(Sy) > Ka, we have the following upper bound on the regret for the
MAB algorithm.

L

Reg.AMAB (T7 ”’) < ﬁ]}z (; %(V<S*> - V(SZ))) ) (216)

where the expectation in equation (2.16) is over the random variables L and Sp.
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Lower bound for the regret of the MINL algorithm. Here, we derive a lower

bound on the regret of the MNL algorithm, Apn. on the instance Iyyy. Specifically,

. [i V(s) V(S

R Lv) — B
g (L2V) w+ V(S ot V(S

> (2L -ve)|

/=1

v

1
—F
K1+ «)

Therefore, it follows that,

Regay (V) > B | 37 L(V(S) ~ V(S) — oy

> ﬁ [ TR Y
/=1

where v* = a + € and the expectation in equation (2.17) is over the random variables

L and S,.

Relating the regret of the MINL algorithm and the M AB algorithm. Finally,
we relate the regret of the MNL algorithm Ayn. and MAB algorithm Amag to derive
a contradiction. The first step in relating the regret involves relating the length of
the horizons of Ayne and Amag, L and T respectively. Note that, after every call to
Aune (“Call AyyL” in Algorithm 2), many iterations of the following loop may be
executed; in roughly 1/2 of those iterations, an arm is pulled and ¢ is advanced (with
probability 1/2, the loop is exited without advancing t). Therefore, T should be at

least a constant fraction of L. The following result makes this precise.

Lemma 2.9. Let L be the total number of calls to Aune when Auag is executed for
T time steps. Then,
E(L) < 3T.

Proof. Let 1y be the random variable that denote the duration, assortment S, has
been considered by Ay ap, i.e. np = 0, if we no arm is pulled when A,y suggested

assortment Sy and 7, > 1, otherwise. We have



Therefore, we have E (Ze ) m) < T. Note that E(n,) > 3. Hence, we have E(L) <

2T +1 < 3T. O

Now we are ready to prove Theorem 3. From (2.16) and (2.17), we have

ev*L
RegAMAB (T, l,t) S E (RegAMNL (L, V) + m) .

For the sake of contradiction, suppose that the regret of the Aunc , Reg4,,,, (L, V) <
c % for a constant ¢ to be prescribed below. Then, from Jensen’s inequality, it

follows that,

NE(L) ev*E(L)
K (1+a)?

Reg.AMAB (T7 l‘l’) S c

From lemma B.4, we have that E(L) < 3T. Therefore, we have, C\/ c/NE(L) <
= ceT\/» < E on setting ¢ < ﬁ\/g Also, using v* = a + € < 2a, and
setting a to be a small enough constant, we can get that the second term above is

also strictly less than % L Combining these observations, we have

Reg-AMAB (T’”‘) < % + % = %7

thus arriving at a contradiction.

2.5 Relaxing the “no-purchase” assumption

In this section, we extend our approach (Algorithm 1) to the setting where the
assumption that v; < vy for all 7 is relaxed. The essential ideas in the extension
remain the same as our earlier approach, specifically optimism under uncertainty,
and our policy is structurally similar to Algorithm 1. The modified policy requires
a small but mandatory initial exploration period. However, unlike the works of [40]
and [43], the exploratory period does not depend on the specific instance parameters
and is constant for all problem instances. Therefore, our algorithm is parameter

independent and remains relevant for practical applications. Moreover, our approach
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continues to simultaneously explore and exploit after the initial exploratory phase.
In particular, the initial exploratory phase is to ensure that the estimates converge to
the true parameters from above particularly in cases when the attraction parameter
v; (frequency of purchase), is large for certain products. We describe our approach

in Algorithm 3.

Algorithm 3 Exploration-Exploitation algorithm for MNL-Bandit general
parameters

1: Initialization: v{§® =1 foralli=1,...,N

2: t =1; ¢ =1 keeps track of the time steps and total number of epochs respectively
3: Ty(1)=0foralli=1,...,N
4: while t < T do

UCB
§ iU, £—1

» ies

5 Compute Sy = ar%glgax Ry(5) = " Z’UJUgCBl
jES
6: if T;(¢) < 481og (v N + 1) for some i € S; then
7: Consider S ={i|T;(f) < 481og (VN( +1)}
8: Choose S, € S such that .S, C S
9: end if
10: Offer assortment Sy, observe the purchasing decision, ¢; of the consumer
11: if ¢, = 0 then
12: compute 0y = Ztege 1(¢; = i), no. of consumers who preferred i in epoch
{, for all 1 € S,

13: update T;(0) = {7 < {|i € Si},Ti(¢) = |Ti({)|, no. of epochs until ¢ that

offered product
1

14: update v;, = Z ;. r, sample mean of the estimates

i(0) rETi(0)

15: update UUCB2 =0 +max{\/m, Uzé} /4810g \F£+1) | 48log( :ﬁ£+1)

16: C=10+1

17: else

18: & = &, Ut, time indices corresponding to epoch ¢
19: end if

20: t=t+1

21: end while

We can extend the analysis in Section 2.2 to bound the regret of Algorithm 3 as

follows.
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Theorem 4 (Performance Bounds for Algorithm 3). For any instance v = (vy, ..., vn),
of the MNL-Bandit problem with N products, r; € [0,1] for alli =1,..., N, the regret

of the policy corresponding to Algorithm 8 at any time T is bounded as,
Reg(T,v) < C1v/BNTlog NT + CyN log®> NT 4+ C3NBlog NT,

where Cy, Cy and Cy are absolute constants and B = max{max; Z—é, 1}.

Proof outline. Note that Algorithm 3 is very similar to Algorithm 1 except for
the initial exploratory phase. Hence, to bound the regret we first prove that the
initial exploratory phase is indeed bounded and then follow the approach discussed
in Section 2.2 to establish the correctness of the confidence intervals, the optimistic
assortment, and finally deriving the convergence rates and regret bounds. We will

now make the above notions precise.

Bounding Exploratory Epochs. We would denote an epoch ¢ as an “exploratory
epoch” if the assortment offered in the epoch contains a product that has been offered
in less than 48 log (\/N ¢+ 1) epochs. Tt is easy to see that the number of exploratory
epochs is bounded by 48N log NT', where T' is the selling horizon under consideration.
We then use the observation that the length of any epoch is a geometric random
variable to bound the total expected duration of the exploration phase. Hence, we

bound the expected regret due to explorations.

Lemma 2.10. Let L be the total number of epochs in Algorithm 3 and let £, denote

the set of “exploratory epochs,” i.e.
E, = {E ‘ Jie Sy such that Ti(f) < 481log (VNI +1) },

where T;({) is the number of epochs product i has been offered before epoch (. If &
denote the time indices corresponding to epoch ¢ and v; < Buvy for alli=1,..., N,

for some B > 1, then we have that,

E (Z |54|) < 49NBlog NT,

leEET
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where the expectation is over all possible outcomes of Algorithm 3.

Proof. Consider an ¢ € Ep, note that |&]| is a geometric random variable with
parameter 1/V(Sy) + 1. Since v; < By, for all i and we can assume without loss
of generality vy = 1, we have || as a geometric random variable with parameter p,
where p > 1/(B|S;| 4+ 1). Therefore, we have the conditional expectation of |£| given

that assortment Sy is offered is bounded as,
E (|&] | Se) < B|Se| + 1. (2.18)

Note that after every product has been offered in at least 48log N'T" epochs, then we
do not have any exploratory epochs. Therefore, we have that

> " [Si] < 48Nlog NT.

(EE]

Substituting the above inequality in (2.18), we obtain

E (Z |5g|> < 48BN log NT + 48N log NT'.

lEE]

Confidence Intervals. We will now show a result analogous to Lemma 2.2, that

UCB2

establish the updates in Algorithm 3, v;;7, as upper confidence bounds converging

to actual parameters v;. Specifically, we have the following result.

Lemma 2.11. For every epoch ¢, if T;(¢) > 48log (V' N{ + 1) for all i € Sy, then we

have,
1. Ungz > v; with probability at least 1 — % forallt=1,--- N.

2. There exists constants C1 and Cs such that

puce2 _ <C’1max{\/v_z,vz}\/10g \/_€—|- )+Cglog(¥(ﬁgl;+1)7

with probability at least 1 — le
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The proof is very similar to the proof of Lemma 2.2, where we first establish the
following concentration inequality for the estimates @; ¢, when T(¢) > 48log (v N/ + 1)
from which the above result follows. The proof of Lemma 2.11 along with the proof

of Lemma 2.2 is deferred to Appendix A.2.

Convergence Rates of the Revenue Estimate: Using a union bound, we can
argue that the second statement of Lemma 2.11 holds true for all products in the
optimal set with at least a probability of 1 — % The following result which specifies
the convergence rate of the revenue estimate follows from the Lipschitz property

established in Lemma 2.3.

Lemma 2.12. For every epoch €, if r; € [0,1] and T;(¢) > 48log (v N +1) for all

1 € Sy, then there exists constants C7 and Cy such that for every ¢, we have

(1+ 3 es, v) (Re(Se) — B(Sp,v)) < Crmax { /57, v}/ SBURED 4 €y e (D

with probability at least 1 — %

Note that Lemma 2.4 and Lemma 2.12 are similar in spirit to first and second
properties of the UCB estimates UCB;; discussed in Section 2.1.1. Therefore, the
proof of Theorem 4 follows a similar analysis. However, the combinatorial aspects
of the assortment optimization problem brings in additional challenges in completing
the proof. In the interest of continuity, we defer the proof of Theorem 1 to Appendix
B.4.

2.6 Computational Study

In this section, we present insights from numerical experiments that test the empirical
performance of our policy and highlight some of its salient features. We study
the performance of Algorithm 1 from the perspective of robustness with respect to

the “separability parameter” of the underlying instance. In particular, we consider
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varying levels of separation between the revenues corresponding to the optimal
assortment and the second best assortment and perform a regret analysis numerically.
We contrast the performance of Algorithm 1 with the approach in [43] for different
levels of separation. We observe that when the separation between the revenues
corresponding to optimal assortment and second best assortment is sufficiently small,
the approach in [43] breaks down, i.e., incurs linear regret, while the regret of Algorithm
1 only grows sub-linearly with respect to the selling horizon. We also present results

from a simulated study on a real world data set.

2.6.1 Robustness of Algorithm 1

Here, we present a study that examines the robustness of Algorithm 1 with respect to
the instance separability. We consider a parametric instance (see (2.19)), where the
separation between the revenues of the optimal assortment and next best assortment
is specified by the parameter ¢ and compare the performance of Algorithm 1 for

different values of e.

Experimental setup. We consider the parametric MNL setting with N = 10,

K =4, r; =1 for all i and utility parameters vg =1 and forv=1,..., N,

0.25+¢, ifie{1,2,9,10}

0.25, else ,

where 0 < € < 0.25, specifies the difference between revenues corresponding to the
optimal assortment and the next best assortment. Note that this problem has a
unique optimal assortment, {1,2,9,10} with an expected revenue of 1+ 4e/2 + 4¢
and next best assortment has revenue of 1+ 3¢/2 + 3e. We consider four different
values for €, e = {0.05,0.1,0.15,0.25}, where higher value of e corresponds to larger

separation, and hence an “easier” problem instance.
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Figure 2.1: Performance of Algorithm 1 measured as the regret on the parametric
instance (2.19). The graphs illustrate the dependence of the regret on 7' for
“separation gaps” € = 0.05,0.1,0.15 and 0.25 respectively.

Results. Figure 2.1 summarizes the performance of Algorithm 1 for different values
of €. The results are based on running 100 independent simulations, the standard
errors are within 2%. Note that the performance of Algorithm 1 is consistent across
different values of €; with a regret that exhibits sub linear growth. Observe that as
the value of € increases the regret of Algorithm 1 decreases. While not immediately
obvious from Figure 2.1, the regret behavior is fundamentally different in the case
of “small” € and “large” e. To see this, in Figure 2.2 we focus on the regret for
€ = 0.05 and € = 0.25 and fit to log 7" and /T respectively. (The parameters of these
functions are obtained via simple linear regression of the regret vs logT and /T
respectively). It can be observed that the regret is roughly logarithmic when € = 0.25,
and in contrast roughly behaves like /T when € = 0.05. This illustrates the theory
developed in Section 2.3, where we showed that the regret grows logarithmically with
time, if the optimal assortment and next best assortment are “well separated,” while

the worst-case regret scales as /7.
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Figure 2.2: Best fit for the regret of Algorithm 1 on the parametric instance (2.19).
The graphs (a), (b) illustrate the dependence of the regret on T for “separation gaps”
¢ = 0.05, and 0.25 respectively. The best y = £, log T+ 3, fit and best y = £1vVT + o
fit are superimposed on the regret curve.

2.6.2 Comparison with existing approaches

In this section, we present a computational study comparing the performance of
our algorithm to that of [43]. (To the best of our knowledge, [43] is currently the
best existing approach for our problem setting.) To be implemented, their approach
requires certain a priori information of a “separability parameter”; roughly speaking,
measuring the degree to which the optimal and next-best assortments are distinct
from a revenue standpoint. More specifically, their algorithm follows an ezplore-then-
exploit approach, where every product is offered for a minimum duration of time that
is determined by an estimate of said “separability parameter.” After this mandatory
exploration phase, the parameters of the choice model are estimated based on the past
observations and the optimal assortment corresponding to the estimated parameters
is offered for the subsequent consumers. If the optimal assortment and the next best
assortment are “well separated,” then the offered assortment is optimal with high
probability, otherwise, the algorithm could potentially incur linear regret. Therefore,
the knowledge of this “separability parameter” is crucial. For our comparison, we

consider the exploration period suggested by [43] and compare it with the performance
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of Algorithm 1 for different values of separation (¢). We will see that for any given
exploration period, there is an instance where the approach in [43] “breaks down” or
in other words incurs linear regret, while the regret of Algorithm 1 grows sub-linearly

(O(\/T), more precisely) for all values of € as asserted in Theorem 1.

Experimental setup and results. We consider the parametric MNL setting
as described in (2.19) and for each value of ¢ € {0.05,0.1,0.15,0.25}. Since the
implementation of the policy in [43] requires knowledge of the selling horizon and
minimum exploration period a priori, we take the exploration period to be 20logT
as suggested in [43] and the selling horizon T' = 10°. Figure 2.3 compares the regret
of Algorithm 1 with that of [43]. The results are based on running 100 independent
simulations with standard error of 2%. We observe that the regret for [43] is better
than the regret of Algorithm 1 when e = 0.25 but is worse for other values of €. This
can be attributed to the fact that for the assumed exploration period, their algorithm
fails to identify the optimal assortment within the exploration phase with sufficient
probability and hence incurs a linear regret for ¢ = 0.05,0.1 and 0.15. Specifically,
among the 100 simulations we tested, the algorithm of [43] identified the optimal
assortment for only 7%, 40%, 61% and 97% cases, when ¢ = 0.05,0.1,0.15, and 0.25,
respectively. This highlights the sensitivity to the “separability parameter” and the
importance of having a reasonable estimate for the exploration period. Needless
to say, such information is typically not available in practice. In contrast, the
performance of Algorithm 1 is consistent across different values of ¢, insofar as the

regret grows in a sub-linear fashion in all cases.
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Figure 2.3: Comparison with the algorithm of [43]. The graphs (a), (b), (c¢) and (d)
compares the performance of Algorithm 1 to that of [43] on problem instance (2.19),
for € = 0.05,0.1,0.15 and 0.25 respectively.

2.6.3 Performance of Algorithm 1 on a simulation of real

data

Here, we present the results of a simulated study on a real data set and compare the

performance of Algorithm 1 to that of [43].

Data description. We consider the “UCI Car Evaluation Database” (see [29])

which contains attributes for N = 1728 cars and consumer ratings for each car. The

exact details of the attributes are provided in Table 2.1. Rating for each car is also

available. In particular, every car is associated with one of the following four ratings,

unacceptable, acceptable, good and very good.
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Attribute ‘ Attribute Values

price Very-high, high, medium, low
maintenance costs | Very-high, high, medium, low
# doors 2, 3, 4, 5 or more
passenger capacity 2, 4, more than 4
luggage capacity small, medium and big
safety perception low, medium, high

Table 2.1: Attribute information of cars in the database

Assortment optimization framework. We assume that the consumer choice is
modeled by the MNL model, where the mean utility of a product is linear in the values
of attributes. More specifically, we convert the categorical attributes described in
Table 2.1 to attributes with binary values by adding dummy attributes (for example
“price very high”, “price low” are considered as two different attributes that can take
values 1 or 0). Now every car is associated with an attribute vector m; € {0,1}?%,

which is known a priori and the mean utility of product i is given by the inner product
,quemz izl,...,N,

where § € R?? is some fixed but initially unknown attribute weight vector. Under
this model, the probability that a consumer purchases product ¢ when offered an

assortment S C {1,..., N} is assumed to be,

0-m;
e 1
ifi e SU{0}
0-m;’
pi(S) = { 1 H 2ges ™ (2.20)
0, otherwise,
Let m = (my,...,my). Our goal is to offer assortments Sy, ..., S at times 1,...,T

respectively such that the cumulative sales are maximized or alternatively, minimize

the regret defined as

Reg(T,m) = (Z pi(S) — Zpl(st)) , (2.21)

t=1 iES* 1€S;
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where

Note that regret defined in (2.21) is a special case formulation of the regret defined

in (MNL-Bandit) with 7; = 1 and v; = ¢’™ foralli = 1,..., N.

Experimental setup and results. We first estimate a ground truth MNL model
as follows. Using the available attribute level data and consumer rating for each
car, we estimate a logistic model assuming every car’s rating is independent of the
ratings of other cars to estimate the attribute weight vector 6. Specifically, under the
logistic model, the probability that a consumer will purchase a car whose attributes
are defined by the vector m € {0,1}?? and the attribute weight vector 6 is given by

€0~m

A
Pouy (0, m) = P (buyl|d) = T3 o

For the purpose of training the logistic model on the available data, we consider the

YW

consumer ratings of “acceptable,” “good,” and “very good” as success or intention
to buy and the consumer rating of “unacceptable” as a failure or no intention to
buy. We then use the maximum likelihood estimate Oy g for 6 to run simulations

and study the performance of Algorithm 1 for the realized Oy g. In particular, we

compute Ay g that maximizes the following regularized log-likelihood

N
Omie = arg;nax Zlogpbuy(gami) = [16]]2-

=1

The objective function in the preceding optimization problem is convex and therefore
we can use any of the standard convex optimization techniques to obtain the estimate,
OuvLe. It is important to note that the logistic model is only employed to obtain an
estimate for 6, Oy e. The estimate Oy g is assumed to be the ground truth MNL
model and is used to simulate the feedback of consumer choices for our learning

Algorithm 1 and the learning algorithm proposed by [43].
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Figure 2.4: Comparison with the algorithm of [43] on real data. The graph compares
the performance of Algorithm 1 to that of [43] on the “UCI Car Evaluation Databse’
for T = 107.

We compare the performance of Algorithm 1 with that of [43], in terms of regret
as defined in (2.21) with 6 = Oy e and at each time index, the retailer can only show
at most k = 100 cars. We implement [43]’s approach with their suggested mandotary
exploration period, which explores every product for at least 20logT" periods. Figure
2.4 plots the regret of Algorithm 1 and the [43] policy, when the selling horizon is
T = 107. The results are based on running 100 independent simulations and have a
standard error of 2%. We can observe that while the initial regret of [43] is smaller, the
regret grows linearly with time, suggesting that the exploration period was too small.
This further illustrates the shortcomings of an explore-then-exploit approach which
requires knowledge of underlying parameters. In contrast, the regret of Algorithm 1
grows in a sublinear fashion with respect to the selling horizon and does not require
any a priori knowledge on the parameters, making a case for the universal applicability

of our approach.

Summary and main insights. In this Chapter, we have studied the dynamic
assortment selection problem under the widely used multinomial logit choice model.

Formulating the problem as a parametric multi-arm bandit problem, we present a
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policy that learns the parameters of the choice model while simultaneously maximizing
the cumulative revenue. Focusing on a policy that would be universally applicable, we
highlight the limitations of existing approaches and present a novel computationally
efficient algorithm, whose performance (as measured by the regret) is nearly-optimal.
Furthermore, our policy is adaptive to the complexity of the problem instance, as
measured by “separability” of items. The adaptive nature of the algorithm is manifest
in its “rate of learning” the unknown instance parameters, which is more rapid if the

problem instance is “less complex.”
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Chapter 3

Thompson Sampling for the MNL-Bandit

It is widely recognized that UCB-type algorithms that optimize the worst case regret
typically tend to spend “too much time” in the exploration phase, resulting in
poor performance in practice (regret-optimality bounds notwithstanding). To that
end, several studies (see [37], [24], [32]) have demonstrated that TS significantly
outperforms the state of the art methods in practice. Motivated by the attractive
empirical properties, in this chapter, we focus on a Thompson Sampling (TS) approach
to the MNL-Bandit problem.

In Section 3.1 we give an overview of T'S approach for the classical multi-armed
bandit problem and highlight challenges associated with designing TS policies. In
Section 3.2, we present our adaptations of the Thompson Sampling algorithm for
the MNL-Bandit. In particular, we describe how to leverage the sampling technique
introduced in Chapter 2 and design a prior distribution on the parameters of the MNL
model such that the posterior update under the MNL-bandit feedback is tractable.

In Section 2.2, we prove our main result that our algorithm achieves a regret
bounded as O(v/NTlogTK). Here, we also highlight the key ingredient of our
approach, a two moment approximation of the posterior and the ability to judicially
correlate samples, which is done by embedding the two-moment approximation in a
normal family. In Section 3.4 demonstrates the empirical efficiency of our algorithm

design.
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3.1 Overview of Thompson Sampling

Thompson Sampling, introduced by Thompson [45] in 1933 is one of the oldest
algorithms for bandit problems. For the classical MAB problem, where there are n
arms with unknown means, {f;}i=1,.. », a TS based policy proceeds in the following

manner

Algorithm 4 Basic Structure of TS policy for the classical MAB Problem

1: Assume a prior distribution Pro(x) on the parameters {u};—1 .. ».

2: fort=1,2,... do

3: Sample parameters ji from the prior/posterior distribution Pr,_;(u)
4 Play the arm with highest sampled parameters, i.e. 7; = arg max; fi;
5 Observe reward r; which is generated from the distribution Pr(r|u)
6: Update the posterior Pry(u) = Pr(u|r:) oc Pr(ru)Pr(w)

7: end for

For ease of exposition we will consider the special case of two-armed bandits to
highlight the intuition for why T'S works in practice. In the TS algorithm, we generate
samples fi;; and fio; and play the arm with the larger sample. In the worst case that
the sub-optimal arm has been played large number of times, the posterior distribution
of the sub-optimal arm (say arm 2) will be concentrated around its true mean, ps,
(2 < pp). If the optimal arm is not played often, then the posterior distribution of
the optimal arm will have larger variance, which will frequently result in the sampled
values being larger than the true mean, ji; > py, which further ensures that the
optimal arm is played more often. Typically, a worst case regret analysis of TS
proceeds by showing that the best arm is optimistic (in the sense that the sampled
parameter is larger than the true parameter) at least once every few steps.

Despite being intuitive, there are a number of challenges involved in designing a
TS based approach. The primary concern is the the choice of prior, which not only
has to ensure the posterior update is tractable but also guarantee that the posterior
distribution has sufficient variance to explore the optimal arm. The tractability of the

posterior update also impede the analysis of such an algorithm. For example, in all
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existing work ([3], [2]) on worst-case regret analysis for T'S, the prior is chosen to allow
a conjugate posterior, which permits theoretical analysis. For general posteriors, only
Bayesian regret bounds (see [41]) have been proven, which are much weaker than the
worst case regret notion we consider in this dissertation. There are also a number
of heuristics or posterior approximation (see [42, 37]) algorithm that indicate how
to approximate the TS algorithm. However, it is not immediately clear if these

approximate T'S based approaches facilitate theoretical analysis.

3.2 Algorithm.

In this section, we describe our posterior sampling (aka Thompson Sampling) based
algorithm for the MNL-Bandit problem. The basic structure of Thompson Sampling
involves maintaining a posterior on the unknown problem parameters, which is updated
every time new feedback is obtained. In the beginning of every round, a sample set
of parameters is generated from the current posterior distribution, and the algorithm
chooses the best option according to these sample parameters. In the MNL-Bandit
problem, there is one unknown parameter v; associated with each item. To adapt
the TS algorithm for this problem, we would need to maintain a joint posterior
for (v1,...,vy). However, updating such a joint posterior is non-trivial since the
feedback observed in every round is a sample from multinomial choice probability,
vi/ (14 3_;c5v;), which clearly depends on the subset S offered in that round. In
particular, even if we initialize with an independent prior from a popular analytical
family such as multivariate Gaussian, the posterior distribution after observing the
MNL choice feedback can have a complex description. As a first step in addressing this
challenge, we attempt to design a Thompson Sampling algorithm with independent
priors. In particular, we leverage a sampling technique introduced in in Chapter

2 that allows us to decouple individual parameters from the MNL choice feedback
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and provides unbiased estimates of these parameters. We can utilize these unbiased
estimates to efficiently maintain independent conjugate Beta priors for the parameters

v; for each i. We present the details in Algorithm 1 below.

3.2.1 A TS algorithm with independent conjugate Beta
priors

Here, we present the first version of our Thompson sampling algorithm, which will
serve as an important building block for our main algorithm in Section 3.2.3. In
this version, we maintain a Beta posterior distribution for each item i = 1,..., NV,
which is updated as we observe users’ choice of items from the offered subsets. A key
challenge here is to choose priors that can be efficiently updated on observing user
choice feedback, in order to obtain increasingly accurate estimates of parameters {v;}.
To address this, we use the sampling technique introduced in Chapter 2 to decouple
estimates of individual parameters from the complex MNL feedback. The idea is to
offer a set S multiple times; in particular, a chosen set S is offered repeatedly until
the “outside option” is repeatedly picked (in the motivating application discussed
earlier, this corresponds displaying the same subset of ads until we observe a user
who does not click on any of the displayed ads). Proceeding in this manner, due to
the structure of the MNL model, the average number of times an item i is selected
provides an unbiased estimate of parameter v;. Moreover, the number of times an
item 17 is selected is independent of the displayed set and is a geometric distribution
with success probability 1/(1 + v;) and mean v; (see Lemma 2.1 in Chapter 2). This
observation is used as the basis for our epoch based algorithmic structure and our

choice of prior/posterior, as a conjugate to this geometric distribution.

Epoch based offerings: Our algorithm proceeds in epochs ¢ = 1,2,... similar to

Algorithm 1 in Chapter 2. An epoch is a group of consecutive time steps, where a set
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Sy is offered repeatedly until the outside option is picked in response to offering .S;.
The set Sy to be offered in an epoch ¢ is picked in the beginning of the epoch based
on the sampled parameters from the current posterior distribution; the construction
of these posteriors and choice of Sy is described in the next paragraph. We denote
the group of time steps in an epoch as &, which includes the time step at which an
outside option was preferred.

The following lemma which establishes the existence of a conjugate prior to our

estimates play a key role in algorithmic construction.

Lemma 3.1 (Conjugate Priors). For any a > 3,8 > 0, let X, 5 = -1

1
Beta(a,)
and fo 3 be a probability distribution of the random variable X, 5. If v; is distributed

as fap and U;g is a geometric random variable with success probability ﬁ, then we

P <UZ'

Proof. The proof of the lemma follows from the following result on the probability

have,

Vg = m) = fa+1,ﬁ+m(Ui)-

density function of the random variable X, g. Specifically, we have for any z > 0

Jas@) = B(;,B) (erx)““ (xfEH)Bl’ (8:1)

where B(a,b) = Fr(gig;) and I'(a) is the gamma function. Since we assume that the

parameter v;’s prior distribution is same as that of X, 3, we have from (3.1) and

1 a+2 v B+m—1
P(vi}vwzm)oc (1—1-%') (vi—i—l) )

Lemma 2.1,

]

Construction of conjugate prior/posterior: From Lemma 2.1, we have that for
any epoch ¢ and for any item ¢ € Sy, the estimate v; o, the number of picks of item i

in epoch ¢ is geometrically distributed with success probability 1/(1 + v;). Suppose
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that the prior distribution for parameter v; in the beginning of an epoch /¢ is same as

that of
1
Xj=
Beta(n;, V;)

—1,
where Beta(n;, V;) is the Beta random variable with parameters n; and V;. In Lemma
3.1, we show that after observing the geometric variable v;, = m, the posterior
distribution of v; is same as that of,

1
X/ = _
‘" Beta(n; +1,V; +m)

Therefore, we use the distribution of m — 1 as the starting prior for v;, and then,

in the beginning of epoch ¢, the posterior is distributed as m — 1, with
n;(¢) being the number of epochs the item 7 has been offered before epoch ¢ (as part

of an assortment), and V;(¢) being the number of times it was picked by the user.

Selection of subset to be offered: To choose the subset to be offered in epoch ¢,
the algorithm samples a set of parameters pi(¢),. .., uy(¢) independently from the
current posteriors and finds the set that maximizes the expected revenue as per the

sampled parameters. In particular, the set Sy, to be offered in epoch ¢ is chosen as:

Sy := arg maxR (S, u(?)) (3.2)
ISISK

There are efficient polynomial time algorithms available to solve this optimization
problem (e.g., refer to [17] and [40]).

The details of our procedure are provided in Algorithm 5.

3.2.2 Challenges and key ideas.

Posterior approximation and Correlated sampling. Algorithm 5 presents some
unique challenges in theoretical analysis. A worst case regret analysis of Thompson
Sampling based algorithms for MAB typically relies on showing that the best arm

is optimistic at least once every few steps, in the sense that the parameter sampled
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Algorithm 5 A TS algorithm for MNL-Bandit with Independent Beta priors

Initialization: For each item¢:=1,--- ,N, V,; =1, n; = 1.
t = 1, keeps track of the time steps

¢ =1, keeps count of total number of epochs

while ¢t < T do

(a) (Posterior Sampling) For each item ¢ = 1,---, N, sample 6;({) from the

Beta(n;, Vi) and compute p;(f) = m —1

. o _ > ies Titi(£)
(b) (Subset Selection) Compute S, = aﬁgg(ax R(S,u(l)) = —H‘f:jes 00

(c¢) (Epoch-based offering)
repeat
Offer the set Sy, and observe the user choice ¢;;
Update & = &, U t, time indices corresponding to epoch ¢; t =t + 1
until ¢, =0
(d) (Posterior update)

For each item i € Sy, compute ¥y = ¢ I(c; = i), no. of picks of item
¢ in epoch /.

Update V; =V, + 0,0, n; =n; + 1, L =+ 1.

end while

from the posterior is better than the true parameter. Due to the combinatorial
nature of our problem, such a proof approach requires showing that every few steps,
all the K items in the optimal offer set have sampled parameters that are better than
their true counterparts. However, Algorithm 1 samples the posterior distribution for
each parameter independently in each round. This makes the probability of being
optimistic exponentially small in K.

We address this challenge by employing correlated sampling across items. To
implement correlated sampling, we find it useful to approximate the Beta posterior
distribution by a Gaussian distribution with approximately the same mean and
variance as the former; to obtain what was referred to in the introduction as a two-
moment approximation. This allows us to generate correlated samples from the N

Gaussian distributions as linear transforms of a single standard Gaussian random
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variable. Under such correlated sampling, the probability of all K optimal items
to be simultaneously optimistic is a constant, as opposed to being exponentially
small (in K) in the case of independent samples. However, such correlated sampling
reduces the overall variance of the maximum of N samples severely, thus reducing
exploration. We boost the variance by taking K samples instead of a single sample
of the standard Gaussian. The resulting variant of Thompson Sampling algorithm is
presented in Algorithm 6 in Section 3.2.3. We prove a near-optimal regret bound for

this algorithm in Section 3.3.

3.2.3 A TS algorithm with posterior approximation and

correlated sampling

Motivated by the challenges in theoretical analysis of Algorithm 5 described earlier,
in this section we design a variant, Algorithm 6. There are three main changes
in this version of the algorithm; posterior approximation by means of a Gaussian
distribution, correlated sampling, and taking multiple samples (for “variance boosting”).
We describe each of these changes below. First, we present the following result that

helps us in approximating the posterior.

Lemma 3.2 (Moments of the Posterior Distribution). If X is a random variable

distributed as Beta(a, ), then

E(x-1) = %, and Var (x —1) = —%(%“)_

(67

Proof. We prove the result by relating the mean of the posterior to the mean of the

Beta distribution. Let X = + — 1. From (3.1), we have

R 1 0o 1 a+1 T B—1
E(X):Bm,m/o x(lﬂ) (w+1> -

Substituting y = H%, we have
. 1 o Bla—1,8+1) B
E X = / a=2 1 - Ede = ’ = .
X =Bam ), VY B(a., B) a—1
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Similarly, we can derive the expression for the Var(X). ]

Posterior approximation: We approximate the posterior distributions used in
Algorithm 5 for the MNL parameters v;, by Gaussian distributions with approximately

the same mean and variance (refer to Lemma 3.2). In particular, let

; Ui 0(0; 1 logT K
B im ) (0) = [t D) | g VIO TR

where n;(¢) is the number of epochs the item i has been offered before epoch ¢ (as

(3.3)

part of an assortment), and V;(¢) being the number of times it was picked by the user.
We will use N (;4,62(¢)) as the posterior distribution for item 4 in the beginning of
epoch /. The Gaussian approximation of the posterior will facilitate efficient correlated
sampling from posteriors. The correlated sampling will play a key role in avoiding

some theoretical challenges in analyzing Algorithm 5.

Correlated sampling: Given the posterior approximation by Gaussian distributions,
we correlate the samples by using a common standard normal variable and constructing
our posterior samples as an appropriate transform of this common standard normal.
More specifically, in the beginning of an epoch ¢, we generate a sample from the
standard normal distribution, § ~ N (0,1) and the posterior sample for item i,
is generated as v;, + 00;(¢). This allows us to generate sample parameters for
t = 1,..., N that are either simultaneously high or simultaneously low, thereby,
boosting the probability that the sample parameters for all the K items in the best
assortment are optimistic (the sampled parameter values are higher than the true

parameter values).

Multiple (K) samples: The correlated sampling decreases the joint variance of the
sample set. More specifically, if 6; were sampled independently from the standard

normal distribution for every ¢, then for any epoch ¢, we have that

=1,

Var (_IE% {(6:(0) + 9&,-(5)}) < Var ( max_{0;(0) + e@(e)}) .

68



In order to boost this joint variance and ensure sufficient exploration, we modify
the procedure to generate multiple sets of samples. In particular, in the beginning
of an epoch ¢, we now generate K independent samples from the standard normal
distribution, %) ~ N(0,1),5 = 1,..., K. And then for each j, a sample parameter

set is generated as:
pI 0y = 0,(0) + 695,(0), i=1,...,N,

Then, we use the highest valued samples

to decide the assortment to offer in epoch ¢,

Sy = arg max R(S,u(?))

We summarize the steps in Algorithm 6. Here, we also have an “initial exploration
period,” where for every item i, we offer a set containing only ¢ until the user selects
the outside option.

Intuitively, the second moment approximation by Gaussian distribution and
multiple samples in Algorithm 6 may make posterior converge slower and increase
exploration. However, the correlated sampling may compensate for these effects by
reducing the variance of the maximum of N samples, and therefore reducing the
overall exploration. In Section 3.4, we illustrate some of these insights through some
preliminary numerical simulations. Here, correlated sampling is observed to provide
significant improvements when compared to independent sampling, and posterior

approximation by Gaussian distribution has little impact.

3.3 Regret Analysis

We prove an upper bound on the regret of Algorithm 6 for the MNL-Bandit problem,

under the following assumption.
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Algorithm 6 A TS algorithm with Gaussian approximation and correlated sampling
Input Parameters o = 50 and § = 75
Initialization: t =0,/ =0,n;, =0foralli=1,--- N.
for each item,7=1,---,N do

Display item ¢ to users until the user selects the “outside option”. Let v;; be
the number of times item ¢ was offered. Update: V; =0;; — 1, t =t + 0;1,
{=¢+1and n; =n; + 1.

end for

while ¢t < T do

(a) (Correlated Sampling) for j =1,--- | K
Sample 619 (¢) from the distribution A" (0,1); update v;, = %

For each item ¢ < N, compute uz(.j)(é) = Ty + 0090 -
< av; ¢(0; e +1) _i_,B\/logW)'

n

end

For each item i < N, compute p;(¢) = »I?aXKﬂgj)(g)
J=Ly

(b) (Subset selection) Same as step (b) of Algorithm 5.
(¢) (Epoch-based offering) Same as step (c) of Algorithm 5.
(d) (Posterior update) Same as step (d) of Algorithm 5.

end while

Assumption 3.1. For every item i € {1,..., N}, the MNL parameter v; satisfies

UiSU():l.

This assumption is equivalent to the outside option being more preferable to any
other item. This assumption holds for many applications like display advertising,
where users do not click on any of the displayed ads more often than not. Our main

theoretical result is the following upper bound on the regret of Algorithm 6.

Theorem 3.1. For any instance v = (v, -+ ,vy) of the MNL-Bandit problem with
N products, r; € [0,1], and satisfying Assumption 4.1, the regret of Algorithm 6 in

time T is bounded as,
Reg(T,v) < C1VNTlogTK + CyN log® TK,
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where Cy and Cy are absolute constants (independent of problem parameters).

3.3.1 Proof Sketch

We break down the expression for total regret

T

Z R(S;, )] ,

=1

Reg(T,v) :=E

into regret per epoch, and rewrite it as follows:

Reg(T,v) Z 1E| (R R(Sfau(g)))]
. REgl(Tv ) (34)
FE| S 16 (R(Ss () — RS, v))] ,
/=1
Reg;(,T,v)

where |&| is the number of time steps in epoch ¢, and Sy is the set repeatedly offered by
our algorithm in epoch ¢. Then, we bound the two terms: Reg,(T,v) and Reg, (7, V)
separately.

Since S, was chosen as optimal set for MNL instance with parameters p(¢), the
first term Reg, (7, v) is essentially the difference between the optimal revenue of the
true instance and the optimal revenue of the sampled instance. This term contributes
no regret if the revenues corresponding to the sampled instances are optimistic, i.e.
if R(Sy,pu(¢)) > R(S*,v). Unlike optimism under uncertainty approaches like UCB,
this property is not directly ensured by our Thompson Sampling based algorithm. To
bound this term, we utilize anti-concentration properties of the posterior, as well as
the dependence between samples for different items, in order to prove that at least
one of the K sampled instances is optimistic often enough.

The second term Reg,(T,v) captures the difference in the revenue of the offered
set Sy when evaluated on sampled parameters in comparison to the true parameters.

We bound this by utilizing the concentration properties of the posterior distributions.
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It involves showing that for the sets that are played often, the posterior will converge
quickly, so that revenue on the sampled parameters will be close to that on the true
parameters.

In what follows, we will first highlight three key results involved in proving
Theorem 1. In Section C.2 we will put together these properties and follow the

above outline to prove Theorem 1.

Structural properties of the optimal revenue.

The first step in our regret analysis is to leverage the structural properties of the MNL
revenue function established in Lemma 2.3. Re-collect that in the first property, which
we refer to as restricted monotonicity, we have that the optimal expected revenue is
monotone in the MNL parameters. In the second property, we have a Lipschitz
property for the expected revenue function. In particular, the difference between the
expected revenue corresponding to two different MNL parameters is bounded in terms
of the difference in individual parameters. These properties project the non-linear
reward function of the MNL choice into its parameter space and help us focus on

analyzing the posterior distribution of the parameters.

Concentration of the posterior distribution.

The next step in the regret analysis is to show that as more observations are made,
the posterior distributions concentrate around their means, which in turn concentrate

around the true parameters. More specifically, we have the following two results.

Lemma 3.3. Forany { <T andi€ {1,---,N}, we have for any r > 0,

P (1i(0) — :(0)] > 46,(0)\/log 7K ) < 741?

where 7;(¢) is as defined in (3.3).
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Lemma 3.4. Ifv; <1 foralli=1,--- N, then for any m,p >0, £ € {1,2,---}
andi € {1,---, N} we have,

. 0;(0)(0;(¢) + 1)mlog (p+1) 24mlog(p + 1) 5

4
pm

IN

5 (0) — 12v;mlog (p+1)  24mlog(p+ 1)
QWOW)AZJ oevrl) , Hme )

The above results indicate that for any item ¢ and at the beginning of any epoch
¢, the difference between the sample from the posterior distribution p;(¢) and the
true parameter v; is bounded and is decreasing over time. Lemma 3.3 follows from
the large deviation properties of Gaussian distribution and Lemma A.1 is similar to
Chernoff bounds. For the sake of continuity, we defer the proof of these concentration
results to Appendix C.1. Leveraging the Lipschitz property of the optimal revenue,
this concentration of sample parameter around its true value will help us prove that
the difference between the expected revenue of the offer set S, corresponding to the
sampled parameters, p(¢), and the true parameters, v also becomes smaller with time.

In particular, we have the following result.

Lemma 3.5 (v). For any epoch ¢, if Sy = arg maz R(S, pu(¢))

S:|S|I<KK
v;log TK logTK
< -2 -
%f;w &#>fwmﬂ B0t m |
14 1C0op

where Cy and Cy are absolute constants (independent of problem parameters).

The concentration property of the posterior distribution allows us to bound the
second term, Reg,(7,v) in (3.4). Therefore to bound the regret, it suffices to bound
the difference between the the optimal revenue R(S*,v) and the expected revenue of

the offer set corresponding to sampled parameters R(Sy, u({)).
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Anti-Concentration of the posterior distribution.

We refer to an epoch £ as optimistic if expected revenue of the optimal set corresponding
to the sampled parameters is higher than the expected revenue of the optimal set
corresponding to true parameters, i.e., R(S*,u(¢)) > R(S*,v). Any epoch that is
not optimistic is referred to as non-optimistic epoch. Since Sy is an optimal set for
the sampled parameters, we have R(Sy, u(¢)) > R(S*, u(¢)). Hence, for any optimistic
epoch ¢, the difference between the optimal revenue R(S*, v) and the expected revenue
of the offer set corresponding to sampled parameters R(Sy, p(¢)) is bounded by zero.
This suggests that as the number of optimistic epochs increases, the term Reg, (7', v)
decreases. The final and important technical component of our analysis is showing
that the regret over non-optimistic epochs is “small”. More specifically, we prove
that there are only a “small” number of non-optimistic epochs. From the restricted
monotonicity property of the optimal revenue (see Lemma 2.3), we have that an
epoch ¢ is optimistic if every sampled parameter, 1;(¢) is at least as high as the true
parameter v; for every item ¢ in the optimal set S*. Recall that each posterior sample
ugj )(6), is generated from a Gaussian distribution, whose mean concentrates around
the true parameter v;. We can use this observation to conclude that any sampled
parameter will be greater than the true parameter with constant probability, i.e.
ugj )(ﬁ) > v;. However, to show that an epoch is optimistic, we need to show that
sampled parameters for all the items in S* are larger than the true parameters. This
is where the correlated sampling feature of our algorithm plays a key role. We use
the dependence structure between samples for different items in the optimal set, and
variance boosting provided by the sampling of K independence sample sets to prove

an upper bound of roughly 1/K on the number of consecutive epochs between two

optimistic epochs. More specifically, we have the following result.

Lemma 3.6 (Spacing of optimistic epochs). Let EA"(T) denotes the group of consecutive

epochs between an optimistic epoch T and the mext optimistic epoch T'. For any
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p € [1,2], we have,
12
EV? [|gA(r) 7] < S + 30177,
e <& +
Proof. Note that for any non-negative discrete random variable, X, we have F(X) =
>, P(X > z). Hence, we will first establish a lower bound on the probability

P{’SA” (T)!p > q} and use the preceding fact to obtain a bound on the moments

of the number of non-optimistic epochs.

For the sake of brevity, let r = [¢'/?| and z = y/log (rK + 1). Hence, we have,
P{EM(N)]" = q} =P{lE(T)| =7}

By definition, £A"(7) less than r implies that one of the epochs 7+ 1,--- , 7 + 7

is optimistic. More specifically we have,

P{|EA(T)|>r}=1-P ({ {1i(€) > v; for alli € S*} for some ¢ € (7,7 —i—r]}) ,
<1-P <{ {pi(l) > 0;(€) + z6;(¢) > v; for all i € S*} for some ¢ € (7,7 + 7’]}) :

For the sake of brevity, let A, denote the event that the sampled parameter for every
item in the optimal set is larger than z standard deviations away from the mean of
the posterior distribution. Furthermore, B, denote the event that the true parameter
of every item in the optimal set is smaller than mean of the posterior distribution
plus z times the standard deviation of the posterior distribution. More specifically

we have,

B[ = {7}@(6) + z&z(ﬁ) > V; for all i € S*} .

T+

B, = ﬂ By.

l=74+1

I0)



Therefore we have,

T+7r
P{le*(m)|=r} <P () Agugg) ,

<P ﬁ Az) + i P(BY), (3.5)

where the last two inequalities follows from union bound. Note that from the
concentration property of the posterior distribution (see Lemma A.1), the probability
of every event in the above inequality is small. In particular, substituting m = 3.1
and p = rK in Lemma A.1 and using the fact that rK < TK we obtain,

1
(r K3

We will now use the tail bounds for Gaussian random variables to bound the probability
P(A9). For any Gaussian random variable, Z with mean p and standard deviation o,

we have,

1
Pr(Z > u+xo) > T et

= Vamatt+ 10
Note that by design of Algorithm 6, p;(¢) = 0;(¢) + 6;(¢) max 0U)(¢), where 6V (¢)
i<

are i.i.d standard normal random variables. Therefore, we have
T+ '
P ( N Ag) :]P’(G(J)(é) <z forallle(r,r+r]and forall j =1, ,K),

(=7+1
{1 (1 ViogrK 1 )}K
VorlogrK +1 rK ’

A=

(3.7)

2 r1/2 2\/logrK

exp [ —

= %P VordlogrK +1)°
. 12

< —(TK)2'2 for any r > e

where inequality (a) follows from the tail bounds for standard normal random variables,
inequality (b) follows from the fact that 1 — 2 < e™* for all x > 0 and inequality (c)

follows from the fact that exp (—\/x/27r log x) < 1/2*? for any = > e'?.
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Hence from (3.5), (3.6), and (3.7) we have ,

1 1 el?

P{|5An(7-)| > 7“} < e + (rK )22 for any r > e

The result follows from the above inequality, definition of r and the fact that

S | = is constant for any y > 1. O

x=1 gv

We will now briefly discuss how the above properties are put together to bound

Reg, (7T, v) and Reg,(T,v). A complete proof is provided in Appendix C.2.

Bounding the first term Reg,(7,v).
Firstly, by our assumption vy > v;, Vi, the outside option is picked at least as
often as any particular item i. Therefore, it is not difficult to see that the expected

value of epoch length |&| is bounded by K + 1, so that Reg, (T, v) is bounded as

(K +1)E (Z R(5*,v) — R(Sg,p(ﬁ))) .

Recall that for every optimistic epoch, we have that the set S* has at least as much
revenue on the sampled parameters as on the true parameters. Hence, optimistic
epochs don’t contribute to this term.

To bound the contribution of the remaining epochs, we bound the individual
contribution of any “non-optimistic” epoch ¢ by relating it to the closest optimistic
epoch 7 before it. By definition of an optimistic epoch and by the choice of S, as the

revenue maximizing set for the sampled parameters p(¢), we have

To bound the last term, R(S;, (7)) — R(S;, u(£)), the difference in the revenue of
the set S; corresponding to two different sample parameters: p(7) and p(¢), we will
utilize the concentration property of the posterior and the Lipschitz property of the

revenue function. From Lemma 3.5, the difference in the revenues can be bounded
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by the sum of sample variances &;(7) + ;(f) and since the variance at the beginning
of epoch 7 is larger than the variance at the beginning of epoch ¢, we have,

[R(S7, u(7)) = R(S- pu(0)| < O (Z @(T)) :

1€ST

From the above bound, we have that the regret in non-optimistic epoch is bounded
by the sample variance in the closest optimistic epoch before it. Utilizing the fact on
an average there are only 1/K non-optimistic epochs (see Lemma 3.6) between any

two consecutive optimistic epochs, we can bound the term Reg, (T, v) as:

> %Z&iw) )

Reg,(T,v) < (K +1)0 <E
/€optimistic 1€Sy
A bound of O(v/NT) on the sum of these deviations can be derived, which will also

be useful for bounding the second term, as discussed next.

Bounding the second term Reg, (T, v).

Noting that the expected epoch length when set Sy is offered is 1 + ZjeSg Vi,

Reg,(T,v) can be reformulated as

Reg, (7', v)

E > (1+V(Sy) (R(Se, p(0)) — R(SK’V»] )
/=1

Again, as discussed above, using Lipschitz property of revenue function and the
concentration properties of the posterior distribution, this can be bounded in terms

of posterior standard deviation (see (3.3))

Reg,(T,v) < O(

)

(=1 i1€Sy

Overall, the above analysis on Reg, and Reg, implies roughly the following bound

on regret
L N
O(Zz&i(f)) =0 ( 1/ —l——) logTK < O( ZlogTK\/v,-ni),
(=1 ieS, (=1 i€S, i=1

where n; is total number of times ¢ was offered in time T". Then, utilizing the bound
of T on the expected number of total picks, i.e., Zf\il vin; < T, and doing a worst

case scenario analysis, we obtain a bound of O(v/NT) on Reg(T,v).
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3.4 Empirical study

In this section, we analyze the various design components of our Thompson Sampling
approach through numerical simulations. The aim is to isolate and understand the
effect of individual features of our algorithm design like Beta posteriors vs. Gaussian
approximation, independent sampling vs. correlated sampling, and single sample vs.
multiple samples, on the practical performance.

We simulate an instance of MNL-Bandit problem with N = 1000, K = 10 and
T = 2x10°, and the MNL parameters {v; };=1,_n generated randomly from Unif[0, 1].
And, we compute the average regret based on 50 independent simulations over the
randomly generated instance. In Figure 3.1, we report performance of following

different variants of TS:

i) Algorithm 1: Thompson Sampling with independent Beta priors, as described

in Algorithm 1.

i) TSindpendent Gaussian Priors: Algorithm 1 with Gaussian posterior approximation and
independent sampling. More specifically, for each epoch ¢ and for each item 7, we
sample a Gaussian random variable independently with the mean and variance
equal to the mean and variance of the Beta prior in Algorithm 1 (see Lemma

3.3).

i17) TSGaussian Correlated Sampling: Algorithm 1 with Gaussian posterior approximation
and correlated sampling. In particular, for every epoch ¢, we sample a standard
normal random variable. Then for each item i, we obtain a corresponding
sample by multiplying and adding the preceding sample with the standard
deviation and mean of the Beta prior in Algorithm 1 (see Step (a) in Algorithm

6). We use the values o = 5 = 1 for this variant of Thompson Sampling.

iv) Algorithm 6: Algorithm 1 with Gaussian posterior approximation with correlated

sampling and boosting by using multiple (K) samples. This is essentially the
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Figure 3.1: Regret growth with 7" for various heuristics on a randomly generated
MNL-Bandit instance with N = 1000, K = 10.

version with all the features of Algorithm 6. We use the values a = § =1 for

this variant of Thompson Sampling.

For comparison, we also present the performance of UCB approach in Chapter 2.
We repeated this experiment on several randomly generated instances and a similar
performance was observed. The performance of all the variants of TS is observed to
be better than the UCB approach in our experiments, which is consistent with the
other empirical evidence in the literature.

Among the TS variants, the performance of Algorithm 1, i.e., Thompson Sampling
with independent Beta priors is similar to TSjndpendent Gaussian Priors; the version with
independent Gaussian (approximate) posteriors; indicating that the effect of posterior
approximation is minor. The performance of TSgaussian Correlated Sampling, Where we
generated correlated samples from the Gaussian distributions, is significantly better
than all the other variants of the algorithm. This is consistent with our remark earlier
that to adapt the Thompson sampling approach of the classical MAB problem to our
setting, ideally we would like to maintain a joint prior over the parameters {v; },—1__n

and update it to a joint posterior on observing the bandit feedback. However, since
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this can be quite challenging and intractable, we used independent priors over the
parameters. The superior performance of TSgaussian Correlated Sampling demonstrates the
potential benefits of considering a joint (correlated) prior/posterior in such settings
with combinatorial arms. Finally, we observe that the performance of Algorithm 6,
where an additional “variance boosting” is provided through K independent samples,
is worse than TSgaussian Correlated Sampling @S €xpected, but still significantly better than
the independent Beta posterior version Algorithm 1. Hence, significant improvements
in performance due to correlated sampling feature of Algorithm 6 compensate for the

slight deterioration caused by boosting.

3.5 Conclusion

In this Chapter, relying on structural properties of the MNL model, we develop a TS
approach that is computationally efficient and yet achieves parameter independent
(optimal in order) regret bounds. Specifically, we present a computationally efficient
TS algorithm for the MNL-Bandit which uses a prior distribution on the parameters
of the MNL model such that the posterior update under the MNL-bandit feedback is
tractable. A key ingredient in our approach is a two moment approximation of the
posterior and the ability to judicially correlate samples, which is done by embedding
the two-moment approximation in a normal family. We show that our algorithm
achieves a worst-case (prior-free) regret bound of O(v/NTlogTK) under a mild
assumption that vy > v; for all ¢ (more on the practicality of this assumption later
in the text); the bound is non-asymptotic, the “big oh” notation is used for brevity.
This regret bound is independent of the parameters of the MNL choice model and
hence holds uniformly over all problem instances. The regret is comparable to the
existing upper bound of O(\/W ) proved in Chapter 2, yet the numerical results

demonstrate that our Thompson Sampling based approach significantly outperforms
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the UCB-based approach. Furthermore, the regret bound is also comparable to the
lower bound of Q(v/NT) established by [15] under the same assumption, suggesting
the optimality of our algorithm. The methods developed in this paper highlight some
of the key challenges involved in adapting the TS approach to the MNL-Bandit,
and present a blueprint to address these issues that we hope will be more broadly
applicable, and form the basis for further work in the intersection of combinatorial

optimization and machine learning.

82



Chapter 4

Empirical Evaluation of Thompson Sampling: Evidence

from Flipkart

In this chapter, we present evidence of empirical gains from employing dynamic
assortment planning in optimizing product recommendations on Flipkart, an Indian
ecommerce firm. First, in Section 4.2 we show that choice models like MNL which
capture consumer preferences over an assortment have higher predictive power than
traditional models which consider each item independently. In particular, we consider
a structured MNL model, where every item is described by a set of attributes and the
mean utility of a product is linear in the values of attributes. We show that the fit
of this stylized MNL model is better than a simple logistic regression with the same
set of attributes, which is the current model used at Flipkart. In Section 4.3, we will
then present empirical evidence using click data from Flipkart to show that there is
much to gain by implementing dynamic learning algorithms instead of the traditional
“estimate, then optimize” approaches. In particular, we observe that an online
algorithm like Thompson Sampling performs better in comparison to traditional
approaches like estimating the model parameters based on initial observations and
optimizing the decisions based on these estimates for the rest of the time period.
An important technical contribution of this chapter is the generalization of the
learning algorithms from Chapters 2 and Chapters 3, which were designed to learn
the model parameters in the product space. The possibility of different items being
related to each other only through their attributes raises the possibility that one

can design algorithms whose performance is independent of the number of items,
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which is a major source of complexity. In Section 4.4, using the analysis developed
in Chapter 3 as a foundation, we discuss how to extend the TS policy of Chapter
3 to the problem of learning in the attribute space. Specifically, we study how to
leverage the relation between different items through attributes and obtain a regret
bound which is independent of the number of items, and only depends on the number
of attributes.

In this chapter, we describe our collaboration with Flipkart’s homepage
optimization team, where we consider the problem of improving product
recommendations on the homepage while accounting for substitution patterns and
adjusting the recommendations “on the fly.” We will now present a brief background

on the Flipkart’s homepage optimization problem.

4.1 Introduction

Flipkart is an Indian e-commerce firm that has been founded in 2007 and has grown
rapidly since to capture 39% of the total Indian e-commerce market [10]. It deals with
a diverse range of products, serving more than 15 million active monthly consumers
([30]) who have collectively generated a revenue of US § 7 billion in 2017 ([9]). Most
of Flipkart’s consumer base access Flipkart using a mobile app or a browser on the
mobile phone, providing the firm with an unprecedented access in tracking consumer
behavior on their site and using this information for future decision making.

One fundamental problem that concerns Flipkart is that of identifying the relevant
set of products to display to a user. However, the challenges involved in identifying the
optimal set of products to display are multi-fold. In settings like Flipkart, where the
inventory is regularly updated with new items and demand trends constantly change,
one has to constantly learn consumer preferences while concurrently attempting to

maximizing revenues. This problem is further compounded by the fact that we can
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Figure 4.1: (Left) Example of Flipkart’s Homepage. (Right) The enlarged widget,
containing group of products. articles. The widget on the top has products that
is being pushed by the sales team with discounts, while the widget below has
smartphones.

only show a small number of products from a large selection of product categories and
consumer preferences for a product depend on the overall set displayed (substitution
effect). Moreover, apart from selecting the set of items to display we also need
to decide how to bundle the items and where to display them. Motivated by this
apparent need for a structured framework to recommend relevant set of items to
consumers, in this dissertation, we consider the problem of identifying the optimal
configuration of products on the homepage while accounting for substitution patterns

and uncertainty in consumer preferences.

4.1.1 Background

On Flipkart, when a consumer visits their homepage they are displayed a wide range
of products (see Figure 4.1). The standard practice at Flipkart is to group a selected
set of products that follow a common theme or serve a common sales purpose as

a widget and display an assortment of widgets to the consumer. For example, in
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Figure 4.2: Example of homepage displaying widgets of similar theme

Figure 4.1, observe that there are 6 widgets (on the left image) and the products
in each widget follow a common theme. More specifically, the widget titled “Deals
of the Day” consists of products for which there’s an ongoing discount offer, while
the widget titled “Smartphones You Love” exclusively contains a pre-decided set of
smartphones.

To manage the large number of products that could be displayed on the homepage,
Flipkart follows the following mechanism in generating and selecting the widgets to
be displayed. There are several units/teams within Flipkart that generate content
(widgets) that serve their team’s business function. For example, a sales team creates
widgets consisting of products that are being offered with discounts. A merchandising
team generates widgets consisting of specific brands that they want to advertise
on the home page. Similarly, a recommendation team generates widgets consisting
of products that the team perceives are ideal fit for the consumer on whom they
have collected data before. Anytime a consumer visits the homepage, all the teams
(automatically /algorithmically) generate their content and sends the widget requests
to a centralized team, referred to as the homepage optimization team, which will then

identify the optimal combination of widgets to be displayed for the user.
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On an average, the homepage team receives around 30 — 40 widget requests from
various teams, after which it has to decide on the order in which the suggested widgets
should be displayed. Typically, consumers only interact with around 3 — 5 widgets
depending on the screen space and hence, it is essential for the homepage team to
optimize the rankings of the widgets to display so that the most relevant widgets
are displayed in the most visible segments. Moreover widgets generated by different
teams have an overlap in the theme of products and leads to substitution among
the widgets displayed. For example, in Figure 4.2 we can observe that widgets “Six

Y

Day Super Savers,” “Offers for You,” and “Discounts for You” that are similar in
spirit being displayed to a consumer. Consumers who are shopping around for a
good deal on items would be equally interested in all the three widgets in contrast
to the case where only one of the widget pertains to an offer. If one estimates the
popularity of the widgets individually without accounting for substitution patterns,
then the estimates will be significantly different in the above mentioned two scenarios.

Therefore, to ensure the optimal configuration of the widgets, it is essential to consider

a framework that accounts for substitution among the available alternatives.

4.2 Multinomial Logit and Logistic Regression

Here we present empirical evidence of the aforementioned discussion. More specifically,
we argue that the MNL model which accounts for presence of similar alternatives has
a better predictive power than Logistic model, which is the current model used for
estimating the popularity of individual widgets by the homepage optimization team
at Flipkart. Before going into the details of the logistic and MNL model, we first

briefly describe the data available for the study.

87



Attribute ‘ Description
Gender Binary: male/female
Single category customer | Binary: only interested in single category
Is Parent Binary: true/false
Is Student Binary: true/false
Monetary Categorical, indicating spending power: {1,2,3,4,5}
Categorical, indicating the status: {Platnum, Bronze,
RFM .
Gold, Silver}
Recency Categorical, indicating the activity: {1,2,3,4,5}

Table 4.1: Description of available user attributes

4.2.1 Data Description

User Attributes. Flipkart’s customer base predominantly interact with the firm
either via the mobile app or a mobile browser. This makes it easy for Flipkart to
track user attributes and personalize the widgets for that specific user. We provide
the details of user attributes available in Table 4.1. However, due to an actively
growing user base, there are still a considerable number of users for whom the personal
attributes are unknown. For these users, Flipkart typically displays widgets assuming
the average value for the unknown attributes.

Understandably, we have to account for heterogeneity in user preferences to develop
models with higher predictive power. In this Chapter, our focus is on developing a
better understanding of the impact of product recommendations that account for
substitutions. Therefore, for the purpose of this study to avoid accounting for user
heterogeneity, we focus only on a specific category of users for which all the observable
attributes are same. Table 4.2 provides the details of the attributes for our considered

segment.

Widget Attributes. As discussed earlier, every time a consumer interacts with
the Flipkart’s app or the homepage, different business units generate new widgets
and request the homepage team to display their content to the user. The homepage

optimization team, in order to predict which widgets will be more relevant for the user
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Attribute ‘ Value

Gender male
Single category customer false
Is Parent Binary: false
Is Student Binary: true
Monetary 5
RFM Platinum
Recency 5)

Table 4.2: User attributes for the segment under consideration

keeps track of certain widget attributes including the business unit that generated
the widget, the content in the widget, the theme of the widget, at what position
(rank) and with what layout has it been displayed. Table 4.3 provides the detailed
descriptions of the widget attributes.

We convert the categorical attributes described in Table 4.3 to attributes with
binary values by adding dummy attributes (for example each of the 13 widget types
is considered as different as a different attribute that can take values 1 or 0) resulting
in 1564 attributes. Now every widget is associated with an attribute vector z; €
{0,1}1%54, 'We focus on consumer click data on a single day, 16th of April in 2018.
There were approximately 250,000 unique user requests with the users having
attributes described in Table 4.2. The click rate for individual widgets was 10%,
while the click rate for the homepage (i.e., at least one of the widget is clicked) is
around 35%. Around 8% of the users have clicked on multiple widgets, since random
utility choice models do not allow for the possibility of clicking multiple items, we
assume that only one these widgets is clicked and randomly select a widget (out of
the clicked ones) to be the clicked widget. In what follows, we will discuss the fit of

the Logistic Regression and the MNL model on this data set.
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Attribute ‘ Description

Categorical (13 types)- indicating the type of widget,
Widget Type | for example if it is an advertisement/product card/deal
card

Categorical (14 types) - indicating the content and
Content Type | generator of the widget, for example personalized
recommendation card based on past purchases

If the widget is forced to be displayed by one of the

Is Pinned business unit
View type C..ategorlcal (12 types) Display configuration of the
widget.
Rank Position/Rank of the widget displayed. There were 40

unique rank /positions.

Product categories grouped in the widget. On an
Store Categories | average there are 2 product categories for every widget.
Over all there are 1483 unique product categories.

A dummy feature to indicate product -categories
information is not available.

Store Null

Table 4.3: Description of Widget Attributes

4.2.2 Logistic Regression

In the logistic model, every item’s demand is estimate independently of the offer set.
More specifically, under the logistic model, the probability that a consumer will click
on a widget whose attributes are defined by the vector z € {0, 1}!5%* and the attribute
weight vector -8R is given by

gloeReg

A .
Peiick (05", ) = P (Click|g-e <€) = 1 4 eftosResa’

We utilize the click information on each widget offered and then leverage the maximum

likelihood estimation 0,'\‘,|°f§ & for f-°8Ree to estimate the click through rate of the offered

90



widgets and study the fit of the logistic model for the estimated Oy e. In particular,

we compute Ay8 ¢ that maximizes the following regularized log-likelihood

T
LogR
Ouie = = argénax Zlogpcnck(@, xy) — ||0])2.
t=1
The objective function in the preceding optimization problem is convex and therefore
we can use any of the standard convex optimization techniques to obtain the estimate,
QLOgReg

wie © (see [12].) We obtain the estimates using the popular stochastic gradient

descent technique.

4.2.3 MNL model

In the MNL choice model, we assume that the mean utility of a product is linear in
the values of attributes. More specifically, the mean utility of widget ¢, with attribute

vector x; is given by the inner product
2% :QMNL'QTZ' Vi

where OMNL ¢ R4 is some fixed but initially unknown attribute weight vector.
Under this model, the probability that a consumer clicks on widget ¢ when offered an
assortment of widgets S C {1,..., N} is assumed to be,

eeMNL_xi

T ifi € SU{0}
pi(S) = LT e (4.1)

0, otherwise,

Here, again, we utilize the click information for each user request and then leverage
the maximum likelihood estimation Oy g for 6 to estimate the click through rate of
the offered widgets and study the fit of the logistic model for the estimated Oy e. In
particular, we compute Ay g that maximizes the following regularized log-likelihood

T
OMLE = arg max Z Z 1 (widget i is clicked) - log p; (0, z;) — ||0]|2- (4.2)
0 t=1 ie5,u{0}
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ROC Curve for MNL and Logistic Regression
T T

1 T T T T

Pt

-
"
-
-

—-==Logistic Regression

08 - - —MNL q

True Positive Rate
T
\
LY
|

| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Positive Rate

Figure 4.3: Fit of logistic and MNL regression on Flipkart’s consumer click data.

The objective function in the preceding optimization problem is also convex and
therefore we can use any of the standard convex optimization techniques to obtain
the estimate, OMNE (see [12].) We obtain the estimates using the popular stochastic

gradient descent technique.

4.2.4 Results: Fit of Logistic Regression vs Fit of the MINL

model

For both logistic regression and MNL regression, we perform a 10— fold cross validation
with 30-70 % train and test split. In particular, we randomly split the consumer click
data into training and testing with 30% of the data in training segment and the
remaining 70% of the data in the testing segment. We repeat this 10 times and
compute the average of the 10 results for a more robust comparison. In Figure 4.3,
we plot the roc curves of the fit on the test data. We can observe that the fit
corresponding to the MNL model is significantly larger than the fit corresponding to
the Logistic Regression with the corresponding area under the curve (AUC) being
77% and 64% respectively. This suggests that working with models that accounts for
substitution patterns will provide better handle on understanding consumer preferences

and thereby help in making optimal decisions.
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4.3 Thompson Sampling for Optimal
Configuration of Widgets

As discussed earlier, in settings like Flipkart, the inventory is regulary updated with
new items and the demand trends constantly change. For example, 61 new product
categories were introduced on the next day and 428 new product categories were
introduced over the period of next one week, for which we have no historical data.
The standard approach of estimating the widget preferences over a small amount of
historical data and then optimizing the decisions based on this estimates is no longer
optimal in such settings. Several studies (see [37], [24], [32]) in the literature have
demonstrated that TS significantly improves the decision making under uncertainty.
However, designing learning approaches in the attribute space are associated with new
challenges as the difficulty not only arises from the fact that there are combinatorial
number of assortments that can be offered, but also from the fact that a small number
of attributes can lead to significantly large number of products to consider, making
the number of possibilities to choose from extremely large.

In this Section, we will first present a common heuristic approach to implement
a TS policy for learning in the attribute space. Subsequently in the next section,
we will indicate how to generalize some of the theoretical ideas from Chapter 3 to
design a provable TS algorithm for the attribute space!. More specifically, using the
click data on Flipkart, we present empirical evidence of efficacy of our approximate
Thompson Sampling approach in identifying the optimal configuration of the widgets,
i.e. the optimal ranking of the widgets. Furthermore, we will also show that the TS

¢

approach perform better than the “ estimate, then optimize” methods, contributing

to the growing literature that advocates for moving beyond such standard practices.

L' In the data, we do not have information regarding what widgets were rejected from being
displayed. Therefore, we focus on optimizing the ranking of the widgets that were displayed to
study the performance of Thompson Sampling.
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Problem Description. Here we assume that the MNL choice model estimated in
Section 4.2 as the ground truth model and further assume that we do not know the
model parameters. Our objective is to learn these unknown attribute weights to
identify the optimal configuration of the widgets (i.e. ranking among widgets), while
simultaneously maximizing the over all click rates. With some abuse of notation,
whenever we refer an assortment by it’s attribute vector, we will assume that the
attribute vector z; does not include the display position/rank information of the
widget. We will now describe the rank optimization problem more formally.

Let S; = (x1¢,Xat, - -+ , Xgt) be the assortment of widgets that has been displayed
for the ¢ user request and r; denote the rank/display positions of the widget with
the attribute z;. Our goal is to offer the assortment of widgets S; = (x1¢, Xat, -+ + , Xgt)
at the optimal ranks 7}, such that the cumulative clicks are maximized according to
the assumed MNL choice model, i.e.

max ZPi(Su re) (4.3)

ry, - ,rT
t=1

where p;(S;,ry) is the choice probability (see (4.1)) of item i being clicked when
widgets with attributes {z;;}i—1,... , are displayed at positions 7, respectively. Note
that if OMNE is known a priori, then one can compute the optimal ranking for the
widgets in a straightforward manner. In particular, for any collection of widgets
Sy = (X4, X4, -+ ,Xge), we compute the inner product z; - QM',(IE and assign the
widgets to the ranks in the decreasing order of the magnitude of the inner product.
However, since OMKE is assumed to be unknown we have to focus on learning these
weights while trying to maximize the cumulative click rate as described in (4.3).

In what follows, we present a TS based learning approach to identify the optimal

configuration of the widgets while maximizing the click through rates.
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4.3.1 Laplacian Approximation

As discussed in Section 3.1, a fundamental challenge involved in pursing TS based
approaches is the prior selection in order to allow tractable posterior update. One
approach to address the challenge of tractable posterior update is approximating the
posterior distribution by a multi-variate Gaussian distribution, a technique introduced
by [37] and commonly referred to as Laplace Approximation. We refer the reader to
[42] for other approximations for posterior sampling.

The likelihood function corresponding to the MNL choice model when assortments

Si,---, 5, are offered, is as follows:

1(widget i is clicked)
t—1 9MNL'$i
Pr(Data observed until time t) = H H < D
r=lies,uo | 1+ Z e

JEST

Therefore, if we assume a prior fy(f) on the attribute weights, by Bayes rules, we

have that the posterior density at time ¢ — 1 for 6 satisfies

1(widget i is clicked)

GMNL ;..

@) < O T | —

gMNL
r=ties,uo0 | 1+ E e !
j€Ss

For notational brevity, let g(f) denote the right hand side of the above equation.
Note that if fy(f) is a concave function, then log g(6) is concave and furthermore,
g(0) is unimodal (say the mode is §.) In Laplacian approximation, we consider a
second-order Taylor approximation to the log-density around it’s mode and assume

that g(#) = €'°¢9) sharply peaks around 0. In particular,
1 - .
log g(6) =~ log g(¢) — 5 (6 = 6)" C(0 — 0),

where ¢ = —V2log g(f) is the Hessian of logg(6) at its mode. Therefore, if we
start with a uniform prior, in Laplace Approximation, we compute the mode as the

maximum likelihood estimate and approximate the posterior as Gaussian distribution
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with mean as the maximum likelihood estimate OMie and co-variance matrix as the
inverse of the hessian matrix at the MLE estimate. Algorithm 7 provides the details

of the approach.

Algorithm 7 TS with Laplacian Approximation for the Rank Optimization problem

Input: Tuning parameter o, warm up period Ty
while ¢t < 7T, do
Offer widgets in assortment S; at random positions, r;
Observe click information ¢; and track data Dy = D, U {(S, 14, ¢0)}
t=t+1
end while
while ¢t < T do
Compute OME as the MLE from observations D;_; (see (4.2))

Compute H; as the Hessian of the log-likelhood function at OM-E.

Sample 65 ~ N (0ME, o H; )
Offer widgets in the assortment S; at the optimal ranks assuming 6° as the
true parameter
Observe click information ¢; and track data Dy = D,y U {(St, 14, ¢0)}
t=t+1.
end while

Note that the Hessian H; in our problem setting is a matrix of dimension 1564,
computing H; ' at every time step is a computationally expensive process. Therefore,
to speed up the learning algorithm, we follow the approach in [37] and further
approximate the covariance matrix by a diagonal matrix. We also perform the updates
in a batch fashion to further enhance the computational speed of TS algorithm.

Algorithm 8 provide the details of our tractable TS algorithm.

4.3.2 Results

Performance Metric. A policy which does not learn attribute weights would
configure the widgets randomly. In contrast, an algorithm which has a priori knowledge
of the weights offers the widgets in the optimal order there by resulting in an increased
click through rates (CTR). Any policy m which does not know the attribute weights

but attempts to learn them will perform better than a random policy but worse than
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Algorithm 8 TS with Diagonal Approximation of Laplacian

Input: Tuning parameter «, batch size Tj.
0, =0,q =Nforalli=1,---,1564.
while ¢t < T do
Sample §7° ~ N (6;,¢; ")
Offer widgets in the assortment S; at the optimal ranks assuming 67> as the
true parameter. Observe click information ¢
t=t+1
if t is a multiple of T, then

Consider a batch of observations {(S;,r-, ¢;) Hr=t—1p, 1}

Compute OME as the regularized MLE from the new observations, i.e.

argmax of the following objective function.

——Zq, (6:=0,)>+ ) LZ 1 (widget i is clicked) 6 - z; — log (1 + ) exp (6 g;g))] .

T=t—Ty LjES~ LeS,

2
Update 6 = OMLE and q; = Z Zm& - pe(S. (Z xo - pe(S ) ,

T=t—Ty LEST leSs.
where p,(S;) is the choice probability as defined in (4.1).
end if
end while

the policy that knows these weights a priori. Therefore, we evaluate the performance
of the policy m by comparing the gain in CTR it obtains over a random policy and
the gain in CTR obtained by a policy which knows weights a priori over a random
policy. More specifically, let

Reg(T) = (Z pi(Ser) = ) pi(Si,xfenem) > , (4.4)

t=1 €St 1€St

be the gain in CTR obtained by the policy that knows the attribute weights over a
policy that configures widgets randomly and et

Reg, (T Z <Zpl Si,17) = Y pi( S, rfeneem) ) (4.5)

t=1 1€St 1€St

be the gain in CTR obtained by policy m over a random policy. We measure the
performance of policy 7 by the ration Reg_/Reg(T). Higher value of the ratio suggests

that the algorithm learns the weights quickly and is mimicking the policy which has
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knowledge of weights a priori. On the contrary, lower value of the ratio suggests that
the algorithm has not still figured out attribute weights and is behaving similar to a

random policy.

Performance of TS and “Estimate, then Optimize”
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Figure 4.4: Comparing the Performance of Thompson Sampling with “Estimate, then
Optimize” approach

We implement Algorithm 8 with 75 = 2000 and A = 1. We also implement the
common “estimate, then optimize” policy, where the weights are estimated based on
randomly selected 2% of the data and then the ranks are optimized for the remaining
100 — 2% of the data based on the aforementioned estimates. Figure 4.4 plots the
performance of Algorithm 8 and the performance of “estimate, then optimize” policy
for various values of = ranging from 0.02% to 81%. The results are based on running
50 independent simulations and have a standard error of 2%. We can observe that the
Thompson Sampling’s performance is around 93% of the policy that has knowledge
of the weights a priori, suggesting that TS based policy is almost comparable to the
policy that knows the weights. We also observe that the performance of the “estimate,
then optimize” approach depends on how much data is leveraged for estimation. One
can note that estimating over small amount of data leads to under exploration, while
estimating with large amounts of data leads to over exploration and poor performance,
highlighting the common challenge associated with these approaches. Furthermore,

we can observe that TS based policy outperforms the “estimate, then optimize”
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approach for all possible estimation data sizes. izon and does not require any a priori
knowledge on the parameters, making a case for the universal applicability of our

approach.

4.4 Theoretical Guarantees

In this Section, we indicate how to generalize the theory developed in Chapter 3 to
design an algorithm with provable guarantees. Here, we consider a variant of the
MNL-Bandit problem with cardinality constraints and product attributes. More
specifically, we assume that the choice probabilities are as described in 4.1, i.e.,
the probability that a consumer clicks on product ¢ when offered an assortment of
products S C {1,..., N} is assumed to be,

69*4:1-

Os-x;’
pz(S): 1+2j656

ifi e SU{0}
0, otherwise,

where 6, € R? is some fixed, but initially unknown parameter vector. Let R(S,6,)
denote the expected revenue when assortment S' is offered and the parameter vector
is given by 6,. Our goal is to offer assortments Sy, --- , Sy at times 1,--- , T such that

|S¢| < K to minimize regret defined as,

Reg(T’0,) = XT: R(S*,0.) —E[R(S,,0.)], (4.6)

t=1
and more specifically obtain regret bounds that depend on the dimension of attributes,
d and not on the number of products.

We will briefly describe how the techniques of TS algorithm for MNL-Bandit

developed in Chapter 3 can be used to design an algorithm for the above problem.

Challenges and overview. A key difficulty in our problem arises not only from

the fact that there are combinatorial number of assortments that can be offered, but
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also from the fact that a small number of attributes can lead to significantly large
number of products to consider, making the number of possibilities to choose from
extremely large. We adapt some fundamental ideas from Algorithm 5. Since our
primary objective is to obtain regret bounds that are not dependent on the number
of products, we focus on the attribute space rather than the product space, where it
can exploit the past purchase behavior to update the posterior distribution for the
attribute weight vector . However, there are two main challenges in implementing
this scheme.

First, unlike the MNL-Bandit scenario, it is not easy to obtain unbiased estimates
for the values of parameter vector 6. To overcome this issue, we use a maximum
likelihood estimate and use the Laplacian approximation described in Section 4.3.1
to update the posterior distribution. A key aspect in our analysis is establishing
the concentration bounds for the MLE estimate. We use the martingale argument
(see [22]) for the MLE estimates to derive such bounds. As discussed earlier in
Chapter 3, the worst case analysis of TS typically proceeds by showing that the
best arm is optimistic at least once every few steps, in the sense that its sampled
parameter is better than the true parameter. To avoid the challenges involved with
the combinatorial structure of the MNL Bandit problem, we correlated sampling and

variance boosting as in Chapter 3 to facilitate theoretical analysis.

4.4.1 Algorithm.

Algorithm 9 provides the details of our TS algorithm.

We make the following assumptions to facilitate analysis.

Assumption 4.1. The norm of attribute vectors m; is bounded for alli=1,--- ,N,

i.e. there exists ¢, < 0o such that for all i < N, we have ||z;||, < ¢,.
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Algorithm 9 Approximate TS for Assortment Planning in Attribute Space

Input: Tuning parameter a, warm up period ¢y

while t < 7T do
Compute OME as the MLE from observations D;_; (see (4.2))
Compute H; as the Hessian of the log-likelhood function at OM-E.

(a) (Correlated Sampling) for j =1,--- | K

Sample #Y)(t) from the distribution A (0, 1);
For each item i < N, compute ugj) (t) = OME 2y + afV)(2) - @il g
end

For each item i < N, compute p;(t) = max u(j)(t)

i

]:1,"' ’K

otti(t)
D ies i€

(b) (Subset selection) Compute S; = arg max R(S,u(t)) =

S1<K - 1+Zjeseuj(t)
Observe click information ¢; and track data Dy = D, 1 U {(S, 14, ¢0)}
t=t+ 1.
end while

Assumption 4.2. There exists a constant ¢, > 0 such that ¢, = infgeo <N pg_(0-7;),

where © is the set of all feasible attribute weights.
Assumption 4.3. supyce ;< exp(0'z;) < 1.

We first establish a concentration inequality for the MLE estimate using the
martingale argument of [22]. Observe that the correlated sampling in step (a) of
Algorithm 9 is similar to the correlated sampling step of Algorithm 6. Therefore,
we can follow the proof technique of Algorithm 6 to leverage the anti-concentration
properties of Gaussian distribution to argue that the best arm is optimistic often
enough. Noting that the optimistic arm is played often, we can then follow the UCB
analysis of [22] to derive the following result. We present a detailed proof in Appendix
D.

60+v/dlogd

Theorem 4.1. If « = ————_ then under Assumptions 4.1 and 4.2, the regret
Cu
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of Algorithm 9 is bounded as

log KTd 2T
Regret < O (dog—\/KTlog (Cx >> ,
Cp )\0

. . . A t
where \o is the minimum eigenvalue of My, = > %1 > icq Tzl

4.5 Conclusion.

In this Chapter, we have demonstrated empirical gains from employing dynamic
assortment planning in optimizing product recommendations on Flipkart, an Indian
ecommerce firm. We have also argued that choice models like MNL which capture
consumer preferences over an assortment have higher predictive power than traditional
models which consider each item independently. Using the analysis developed in
Chapter 3 as a foundation, we have presented a framework that indicates how to
design T'S-based policy to the problem of learning in the attribute space. However,
the complete development of an algorithm for the attribute-based MNL-Bandit with
regret depending only on the number of attributes, and an algorithm independent of

any problem parameters remains an interesting open problem.
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Chapter 5

Algorithms for Static Assortment Planning

In this Chapter, we consider settings when the model parameters are known and focus
on developing tractable optimization algorithms for the MNL and the NL model under
totally unimodular constraint structures. The totally unimodular constraints model a
rich class of practical assortment planning problems including cardinality constraints,
partition matroid constraints and joint display and assortment constraints.

First we consider the assortment planning problem under the MNL model and
show that a natural linear programming (LP) relaxation is tight. The LP based
approach provides robustness to handle capacity constraints in addition to the existing
TU constraints. In particular, we consider an arbitrary additional constraint to the
set of T'U constraints such that the resulting set of constraints are not TU. We present
a Polynomial Time Approximation Scheme (PTAS) for the assortment optimization
problem under this more general set of constraints where for any 0 < ¢ < 1, we
obtain a solution with objective value at least (1 — €) times the optimal in running
time polynomial in the input size for a fixed e. As a consequence of this problem,
we obtain PTAS for joint display and assortment optimization problem with an
additional capacity constraint.

We then consider the assortment optimization problem under NL model with TU
constraints and provide a Fully Polynomial Time Approximation Scheme (FPTAS)
for this problem, where for any 0 < € < 1, we obtain a solution with objective
value at least (1 — €) times the optimal in running time polynomial in the input

size and 1/e. We also show that the exact assortment optimization under NL model
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Choice model

Assortment optimization problem

Multinomial Logit (MNL)

e Tight LP relaxation for totally unimodular

constraint structures. (Theorem 5.1)

Joint assortment and display optimization
problem is polynomially solvable. (Section 5.1.3)
PTAS for Joint assortment and display
optimization problem with an additional capacity
constraint. (Theorem 5.2)

Nested Logit (MNL)

Hardness result for TU constraint structures
(Corollary 5.2)

Hardness result for certain parameter settings
(vio # 0) (Corollary 5.3)

FPTAS for TU constraint structures (v;p = 0).
(Section 5.3.2)

Joint assortment and display optimization
problem polynomially solvable under a mild
assumption. (Section 5.3.3)

Table 5.1: Summary of contributions for static assortment optimization.

with TU constraints is NP-hard. For the joint display and assortment optimization

problem, we show that under special settings the problem allows for an exact solution

in polynomial time.

5.1 Assortment Optimization Under MNL with

TU Constraints

In this section, we consider the assortment optimization problem with TU constraints

under the MNL choice model. In particular, we consider the following optimization

problem.

n

.. iU
maximize E

subject to Ax <b

n
v+ D U

x € {0,1}",
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First, we show that a natural LP relaxation for the above problem is tight. We
will then consider an arbitrary additional constraint to the set of TU constraints
such that the resulting set of constraints are not and present a Polynomial Time
Approximation Scheme (PTAS) for the assortment optimization problem (5.1) under
this more general set of constraints where for any 0 < € < 1, we obtain a solution
with objective value at least (1 — €) times the optimal in running time polynomial in

the input size for a fixed e.

Remark 5.1. We would like to note that, Davis et al. [17] also use the LP relaxation
to show that the assortment optimization under TU constraints can be solved optimally
under the MNL choice model. However, they do not explicitly analyze the structure
of extreme points of the LP relaxation. Here, we show that an extreme point optimal
solution for the LP relaxation is “integral” and therefore, gives an optimal solution
for the assortment optimization problem (7?) under TU constraints for the MNL
model. This structural property of the extreme points of the LP relaxation allows us
to obtain near-optimal solutions for more general set of constraints that we discuss

below.

5.1.1 Assortment Optimization: LP relaxation

In this section, we present a LP relaxation for (5.1) and show that the formulation is

tight. Let
1

= n )
Vo + D iy V5T

Po Pi = T;Po, Vi:1,...,n.
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We can reformulate (5.1) as follows.

n
maximize g TiUiD;
(p;po) P

subject to Ap < pob

n

Z%Pz’ =1 (5:2)

1=0
Di € {OaPO}VZE {1a2) ,TL}
po = 0.

Note that (5.2) is an exact reformulation of (5.1). It can be easily reformulated as a

mixed integer program using binary variables as follows.

0<pi<apo Vie{l,2,--- ,n}
pit(l—a)>py Vie{l,2,-- n} (5.3)

z; €{0,1} Vie{1,2,--- ,n}.
5.1.2 Tightness of the LP relaxation

We consider the following LP relaxation for (5.2).

n

ZLp = max TV Pi

(p,po) =1

Ap < pob
7=0

OSpiSpo, Vizl,...,n,
Po = 0.

where we relax the constraints p; € {0,po} to 0 < p; < po foralli=1,...,n. Let P

be the polytope defined by the constraints in (5.4), i.e.,

P= {(pmo) €ER} xRy | Ap < pob, VP +ovopo =1, 0 < p; Spo,Vi}- (5.5)
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We show that all extreme points of P are “integral”. We say that an extreme point

(p,po) € P is integral if p; € {0,1} for all i = 1,...,n and fractional otherwise.
Theorem 5.1. For any extreme point (p,po) € P, p;i € {0,po} for alli=1,... n.

We will prove Theorem 5.1 by establishing a correspondence between extreme

points of P and Q, where
Q={x|Ax<b,0<z;<1 foralli=1,2,...,n},

is the polytope corresponding to relaxed constraints of the optimization problem

(5.1).

Lemma 5.1. If (p,po) is an extreme point of P, then x = p% s an extreme point of

Q. Conversely, if x is an extreme point of Q, then (p,po) where

1
Poz( y P = DPoX

vy + V'X)
is an extreme point of P.

Theorem 5.1 follows from Lemma 5.1 and the fact that any extreme point x of
Q is integral, i.e. x; € {0,1}. Theorem 5.1 proves that any extreme point optimal
solution of LP relaxation (5.4) is the same as the MIP reformulation (5.2) and hence

it suffices to solve the relaxation. We defer the proof of Lemma 5.1 to Appendix.

5.1.3 Example of TU Constraints

Here, we present an important application of assortment planning under the TU
constraints, namely the joint display and assortment optimization problem under the
TU model for the MNL choice model. This problem arises in retailing and online
advertising where the display slot of the product/ad affects the choice probability. In
particular, we consider a model with m display segments and each segment has an

upper bound on the number of products that can be displayed.
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Let n be the total number of products and m be the number of display segments.
There is a bound K; on the number of products in display segment j for all j € [m].
We assume that every product can only be displayed in at most one display segments.
Let x;; € {0,1} denote whether we offer product ¢ in display segment j. For any
product 4, let r; denote the revenue and v;; denote the attraction parameter in display

segment 7. Now, the expected revenue optimization problem can be formulated as:

n m
maximize R(X) = Li nZH Y
Xe{0,1}"<™ Vo + D ig D Viji

subject to C; : ZIU <l,i=1,....n
J=1 (5.6)

Cji injSKj,jzl,...,m
i=1

zi; €{0,1}, i=1,...,n,j=1,...,m.
Constraints {C;} enforce that every product can be displayed only in one of the
display segments, while constraints {C;} enforce the cardinality constraints in each

segment. The constraints in problem (5.6) are identical to the constraints in a

transportation problem and hence are TU.

5.1.4 Extension to More General Constraints

We will now consider a more general variant of the assortment optimization problem
(5.1), where constraints are not necessarily TU. In particular, we consider the following
problem where we have a set of TU constraints and one additional constraint such

that the overall constraints are not TU:

n
.. ;T4
maximize Z =
— v+ D U

subject to Ax <b (5.7)
a’x <z

x € {0,1}",
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where A is a {0, 1} TU matrix, b € Z™, v; > 0 and a; > 0 for all i. Let

Q={x[Ax<b,0<z;<1 foralli=1,2,...,n}
Q:{XEQ ‘aTxgv},
be the polytopes corresponding to the relaxations of (5.1) and (5.7) respectively.

Similar to our approach in Section 5.1.1, we consider the following LP relaxation

for (5.7),

n

maximize E a;P;
(p;po) PR

subject to  (p,po) € P (58)

a’p < pory.
where P is the polytope corresponding to the LP relaxation of the optimization

problem (5.1) as defined in (5.5). Let

A

P={(p,po) €P |a"p<poy },

be the polytope corresponding to the LP relaxation of (5.7). Since constraints in (5.7)
are not TU, the LP relaxation (5.8) may not be tight. In this section, we present a
polynomial time approximation scheme (PTAS) for (5.7) under certain assumptions
on Q. In other words, for a fixed €, we compute a (1 — €)-approximation for (5.7) in
running time polynomial in the input but exponential in 1/e. Our PTAS is based on
the following structure of extreme points of (5.8).

Observe that the polytope o) (respectively 75) is the intersection of the polytope
Q (respectively P) and the hyperplane a’x < ~ (respectively a’p < pyy). Hence,
any extreme point of 0 (respectively 75) is either an extreme point of Q (respectively
P) or a convex combination of two adjacent extreme points of Q (respectively P).
Therefore, if any two adjacent extreme points of Q “differ” only in a small number
of components, then the number of “fractional components” in any extreme point of

O and P is small. Therefore, we can obtain an approximate solution for (5.7) by
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ignoring the small number of “fractional components” from the optimal solution of
(5.8) after appropriate pruning.

More specifically, for any two extreme points X1, Xy of Q, let

d(x1,%2) = [{i | 1; # T2i}|

d(Q) = max{d(x1,X2) | X1, X2 are adjacent extr pts of Q}.

Here d(Q) denotes the maximum number of components by which the two adjacent
extreme points of Q can differ. If d(Q) < ¢, then the number of fractional components
for any extreme point of Q is at most /. From Lemma 5.1, we know that there is a
correspondence between extreme points of P and Q. A similar correspondence also
holds for extreme points of P and O. Hence, the number of “fractional components”
in any extreme point of P is also bounded by ¢. In particular, for any extreme point
(p,po) of P, let

F((p,po))={i>1]0<p; <po},

denote the set of fractional components in (p, pp). We have the following result,

Corollary 5.1. If d(Q) < {, then the number of fractional components for any

extreme point (p,po) of P is bounded by ¢, i.e. | F((p,po))| < ¢.

PTAS when d(Q) is constant. Now we will present a PTAS for the case when
d(Q) is a constant (say ¢). From Lemma 5.1, we know that optimality (feasibility) of
(p, po) is equivalent to optimality (feasibility) of x = p/po for (5.7). From Corollary
5.1, we know that any extreme point to (5.8) has at most ¢ fractional variables as
d(Q) = (. A simple idea to construct a feasible solution for (5.7) from an optimal
solution of (5.8) is to ignore the “fractional variables”. In particular, let (p,py) € P

be an optimal extreme point of (5.8). Define (P, py) as

0 if p; < po
pi =
Do otherwise
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where
1

Vo + Z UZ'.
:p; 70

A

Po =

Observe that we ignore at most ¢ variables of (p, po). If the contribution of these
variables to the objective value is small, then the total decrease in objective value is

also bounded. Let R* denote the optimal objective value of (5.7). If

a;p; < %R* Vi pi < po, (5.9)

then

Z a;p; < eR7,

ief(PyPO)

which implies

(I1—-e)R" < Z a;p; = Z@z‘ﬁm

and (P, o) is a (1 — €)-approximate solution for (5.7). Note that in (p,pg) there can

14
be at most {—J variables such that a;p; > %R*. Therefore, to ensure (5.9) we guess
€

14
the top {—J variables contributing to the objective in (5.7), set those variables p; = po
€

14
and solve the resulting linear program. The running time is exponential in L—J . We
€

provide the details in Algorithm 10 and Theorem 5.2 establishes its correctness.

Theorem 5.2. Let d(Q) < ¢ and (P, po) be the solution obtained by Algorithm 10.
Then Zaiﬁi > (1 — €)R*, where R* is the optimal value of (5.7).
=0

Examples of Q with small d(Q): The polytope Q corresponding to the feasible

region of cardinality constrained joint assortment and display optimization problem

o-{x

The constraints in problem (5.6) are the same as the transportation problem, the

(5.6) is

ZS&jSlVZ} injSKjvjv 0§$ij§1’Vi’j}'

j=1 i=1

number of variables that are different in two adjacent extreme points of the LP

111



Algorithm 10 PTAS for (5.7)

1: Set § = {Stc{l,Q,...,n}
2: for S; € S do

THEN

l
3: if | S| < {—J then
€
4: Obtain (py, p follows: pyg = ———=——
ain (P, pro) as follows: py U0+Ziest "
.| Do ifi € 5
Pu=1 0 otherwise
5: end if
6: if (P, Pro) is feasible in (5.7) then Set Ry = Y, a;ipu
7. else Set Qr={ie{l,2,....,n}]| ¢ ¢ Syand 3 j € S, such that a; < a;}
8: Consider modified (5.8), z_p(t) with additional constraints
Pbi = Po, Vi € St
pi =0, Vi € Q
9: if z.p(t) is feasible then Set (p;,p;,) as the optimal extreme point of
zip (). X
10: Set Sy ={i | pji = pio} 1
11: Obtain (p follows: Py = ———=——
au (ptapt()) as TollowS: Pro vo + Ziest v;
s _ ] P ifieS,
bra 0 otherwise
12: Set Ry = Y i @ipri
13: end if
14: end if
15: end for

16: Set t* = arg max Ry;
¢
17: Output (P, po) = (Pe+, Do)
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relaxation of problem (5.6) is bounded by the maximum cycle length in the
corresponding transportation network. Since the transportation network is a bipartite
graph, the maximum cycle length cannot exceed twice the number of nodes in either

of the partitions. Hence, we have the following result,

Lemma 5.2. For Q corresponding to feasible region of cardinality constrained joint
assortment and display optimization problem (5.6), we have d(Q) < 2m, where m is

the number of display segments.

Theorem-5.2 and the Lemma 5.2 establishes that there exists a PTAS for the
joint assortment and display optimization problem under the MNL choice model in

the presence of an additional constraint.

A Computational Study: Here, we study the computational performance of our
PTAS algorithm for rational optimization over a TU constraint set with one additional
constraint. In particular, we consider the joint assortment and display optimization
problem with both cardinality and capacity constraints. Each item has capacity ¢; and
there is a bound C' on the total capacity of items selected. The problem formulation

is shown below.

maximize R(X)
Xe{O,l}"X m

subject to Cj : sz’j <1, Vi; Gj: Z%’ < Kj; (5.10)
j=1 =1

chixzj <C; w; €{0,1} Vi, j

i=1 j=1
We would like to note that (5.10) is NP hard even for m = 1 (]20]). Algorithm 10
gives a PTAS for the above problem when the number of display m is a constant.
To evaluate the performance of our PTAS algorithm we perform 5 experiments
by varying the number of products (n € {10,50,100}) and the number of display
segments (m € {2,3}). For each experiment, we generate 10 random instances of

problem (5.10). The parameters v, c and r are chosen as uniform random numbers
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products segments Optimality Time for PTAS(secs
Ratio

10 2 0.9408 0.653

50 2 0.996 261.876

50 3 0.947 3606.466

100 2 0.994 2886.35

100 3 0.869 3648.761

Table 5.2: PTAS Performance for different number of products (n) and display
segments (m).

between 0 and 1, as the scale of these parameters does not change the optimal solution.
For every instance, we solve the corresponding LP relaxation and implement a slightly
modified version of the PTAS algorithm. All implementations have been done using
Gurobi libraries in C++. In the modified version of PTAS, we enforce a time limit on
the running time of the algorithm. Specifically, we restrict the time spent in guessing
the top variables (steps 8-9 in Algorithm 10) to one hour. Although Lemma 5.2
bounds the number of fractional variables to 2m, based on empirical observations, we
relaxed the bound to m in order to decrease the number of computations. Hence, we
only considered subsets of size not exceeding L%J instead of the theoretically correct
PT’”J . To avoid trivial cases, the value of the capacity bound C'is appropriately chosen
to ensure that the additional capacity constraint is tight and the optimal solution of
LP relaxation has atleast |m/e| positive components.

Table 5.2 summarizes performance for our PTAS approach. For each experiment,
we report two quantities of interest namely i) the average ratio of objective values
obtained by the PTAS method and the LP solution (zpras/zrp) and ii) the average
running time of the PTAS method. It is important to note that the LP solution (i.e.
optimal solution to LP relaxation of (5.10)) is clearly an upper bound to the optimal
solution to (5.10) itself and hence the ratio zpras/zrp is a conservative measure of
PTAS performance. Even though we fixed ¢ = 0.8, which theoretically guarantees

only a 0.2-approximation, the approximate optimal value is on an average about 85%
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of the optimal value. This suggests that one can use a higher value of € to avoid large

computations and still obtain a good approximation.

5.2 Nested Logit Model

In this section, we describe the Nested Logit Model (NL). In the NL model the
products are assumed to be partitioned into different nests. Each nest has a certain
number of products and it is assumed that the consumer first selects a nest and then
selects a product within the nest according to a MNL model. More specifically, assume
the products are partitioned into m nests and each nest has n products !. Here, an
assortment S of products typically refers to a m—tuple (S, ,S,,), where S; is the
assortment or subset of products offered in nest 7. In the NL model, every product j
in nest ¢ is associated with a parameter v;,. These parameters are similar to the utility
parameters associated with every product in the MNL model. In addition to these
parameters, every nest ¢ is associated with two additional parameters, v; and v;o. v;
is the dissimilarity parameter that indicates the strength of correlation for demand of
products within a nest and v;g is the parameter corresponding to the outside option
after a consumer has selected nest i. Finally, the parameter vy represents the outside
option to indicate the setting where a consumer does not chose to explore any nest.
For brevity, we will assume that for every nest 1,

JES,

The choice probabilities of a consumer selecting product j from nest ¢ is given as
Vi(S;) Yi;

Vo + D ey VE(Sk)  vio 4 X pes, Vit

The first term on the right hand side of (5.12) is the probability that a consumer

7T-NL<j7 Sl7 te 7Sm) -

(5.12)

selects nest ¢ when offered assortments Sy, --- , S, and the second term in (5.12) is

lwe assume that every nest has same number of products for ease of exposition, one can easily

generalize the framework to handle each nest having different number of products
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the probability that a consumer selects product j in nest ¢ given that the consumer
has already selected nest .

Williams [47] has showed that when the parameters satisfy the conditions v; <1
for all the nests i, then the Nested Logit Model can be modeled within the random
utility framework. In particular, [47] shows that utility of a product j in nest i can
be decomposed as,

Ui. = /LZ']. + Gi]. + fi, (513)

J

where p;; is the mean utility for product ¢ in nest j, while ¢;; are i.i.d random variables
having a Gumbel distribution with location and scale parameters 0 and 1 respectively
that represents the idiosyncrasies of consumer with regard to the product j. ¢&;
represents the idiosyncrasies of consumer with regard to the nests and is distributed
in such a way that maxjes, p;; + €; + & is a Gumbel distribution with scale ;. By
substituting v;; = ", we obtain the choice probabilities specified in (5.12). It is also
to see that when m = 1 and ~; = 1, the choice probabilities are same as the MNL
model, indicating that Nested Logit model generalizes the MNL model. Recently,
[18] showed that the assortment planning problem under the NL model is NP-hard
for the settings when the NL model cannot be formulated within the random utility
framework, i.e. settings when v, # 0 or 7; > 1 for some nest i. > Therefore in this

chapter, we restrict ourselves to the settings when v, = 0 and ~; < 1.

5.3 Assortment Optimization Under NL with TU
Constraints

In this section, we consider the assortment optimization problem with TU constraints

under the NL choice model. In particular, we consider the following optimization

2The proof of hardness discussed in [18] for the case when v; ¢ # 0 is incomplete, as the authors
in their reduction to a partition problem assume square root can be computed exactly in polynomial
time. We build on their reduction technique to close the gap in their proof.
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problem.

m m(xl)%
maximize II(xy, - ,x,) = ™
; Vo + Zj:l Vi(x;)

subject to A;x; <b; V ie{l,--- ,m}

Y Ri(xi)

(5.14)

x; €{0,1}" V ie{l,--- ,m},
where A; is a Totally Unimodular matrix corresponding to the nest ¢ and z; is the
the incidence vector for assortment S; C {1,..., N}, ie., z;(S;) = 1 if product j € S;
and 0 otherwise. In this section we will interchangeably refer to the assortment by
the subset S; or it’s incident vector x;. In a slight of abuse of notation, at places we
will refer to the assortment S; by its incident vector x; and at places by the subset
S;.

Here, we first establish that the assortment optimization problem (5.14) is NP-
hard. We will then provide a Fully Polynomial Time Approximation Scheme (FPTAS)
for this problem. Finally, we will the specific application of (5.14), namely, the
joint display and assortment optimization problem and present a polynomial time

algorithm making a mild assumption on the parameters of the NL-model.

5.3.1 Hardness Result

We show that the general version of problem (5.14) is NP-hard.
Let (S7,---,S%) be the optimal solution to problem (5.14). Problem (?7?) is in P if

for any € > 0, there is an algorithm that computes a solution (S;(€), -, Sp(€)) with
H( T7 aS:n,>_H<Sl(€)7"' 7Sm<€>> Se (515)

in time polynomial in the input size and log(1/e€).

Based on the above definition, we show that there is no polynomial time algorithm

for the assortment optimization problem under the general nested logit model. As
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in Davis et al. [18], we consider the reduction from the partition problem to the
assortment optimization problem under a nested logit model. Consider the following
instance, Z of the partition problem given by:

Cly...,Cn € Ly, ch:2T. (5.16)

j=1

The instance, Z' for the nested logit problem is constructed as follows: There are two
nests. The preference weight for the option of not choosing any of the nests is vy = 0.
The dissimilarity parameters of the two nests are v, = v, = % The first nest Ny has
two products. The revenue and utility parameters associated with the two products
are respectively 1 = 0, v1; = 2 and r19 = 2(T + 1)(T + 3) and vy2 = 2(2T + 1).
The second nest has n + 1 products. The revenue and utility parameter associated
with the first product is 791 = 0 and vy; = 1. The revenues of the other products
in the second nest are identical and they are given by ry; = (T4 1)(27 + 1)Vj =
2,---,n 4+ 1. The utility parameters for the other products in the second nest are
given by vg; = ¢; Vj = 2,--- ,n+ 1. The retailer here is constrained to offer the first
product in both the nests, i.e. the constraints are given by x1; = 1 and x5, = 0.

We prove the following theorem. We defer the proof of Theorem to Appendix.

Theorem 5.3. For any

2T'+1

0<e< 35
(614 3) (3T +2)

there exist an assortment (S1,S2) such that x;(S1) = 1 and x,(S2) = 1 for instance

I with I1(S1, S2) > (T +2)(2T + 1) — € if and only if instance T has a partition.
As a direct consequence of Theorem 5.3, we have the following two results.

Corollary 5.2. Assortment optimization problem ((?7)) with TU constraints under

the NL model i1s NP-hard.

118



Corollary 5.3. If we allow the utility parameters of the no purchase options within
the nests to take on strictly positive values, then the assortment feasibility problem is

NP-hard.

5.3.2 FPTAS for Assortment Optimization with TU

constraints

In this section, we focus on the setting where v;g = 0 for all the nests 2 and consider
a class of TU constraints. We present fully polynomial time approximation scheme
(FPTAS) for the assortment optimization problem for this setting. In particular,
if not offering any product is a feasible assortment, then our algorithm computes a
(1 — €) approximation of the optimal assortment in time polynomial in the input size
and 1/e.

23] presented a linear programming reformulation for the assortment optimization

problem (5.14). We build our FPTAS on the LP reformulation.

Theorem 5.4 ([23]). The assortment optimization problem (5.14) is equivalent to
the following linear program
minimize 2
(v:2)

subject to z > Zyi (5.17)

i=1

Y > V()" (R(x;) — 2) V x; € {0,1}" such that A;x; < b,

It should be noted that the linear program (5.17) has exponential number of
constraints. Consider the following separation problem.
Separation Problem: For a given (2,41, -+ ,¥ym), for each nest i € M decide

whether

yi > V(x)"(R(xi) — 2) V x; € {0,1}" such th-at A;x; < b, (5.18)
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or find an x; € {0,1}" such that A;x; < b; and y; < V(x;)"(R(x;) — z). It is
well established in linear optimization that if we can solve the separation problem in
polynomial time, then the linear program (5.17) can also be solved in polynomial time.

Hence, we focus our efforts on the following optimization problem, for a given z

2 V(x) " (R(x;) — 2)

maximize g;(x;)

subject to A;x; < b; (5.19)

x; € {0,1}"
Given z, the optimization problem (5.19) is sub-problem corresponding to the
individual nests. Our FPTAS approach is based on the idea that if we can solve
the sub-problem approximately, then the linear program reformulation (5.17) of the

assortment optimization (5.14) can be solved approximately.

Solving the Sub-problem approximately: We present a key property of g;(x)

that would be helpful in building our FPTAS for the assortment optimization problem.

Lemma 5.3. g;(x) is a quasi-convez function over Q; = {x € R"|g:(x) > 0}.

" i (rii—2)x; . . .
Proof. We have ¢;(x) = M’Jl,f Observe that >, v;;r;;2; is a linear function,
(i vigas) =
T=i
while (Z;;l vijsj) is a concave function in x. Since g;(x) is non-negative over

Q; and is a ratio of a linear function and a concave function, g;(x) is quasi-convex
over P;. OJ

If we assume that not offering any product is a feasible assortment, then we can
assume without loss of generality that g;(x;) > 0. From Lemma 5.3, we have that
whenever g;(x;) > 0, we have g;(x;) as a quasi-convex function. Hence, for the purpose
of optimizing (5.19), g;(x) is a quasi-convex function. [35] developed FPTAS based on
the work of [21] for minimizing low rank quasi-concave functions over combinatorial
sets. Noting that problem (5.19) is maximizing a quasi-convex function, we develop

our FPTAS on the work of [35].
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We introduce certain concepts and establish results that would lead us to solving the
sub-problem (5.19) approximately.

Let P; be the polytope corresponding to the relaxation of (5.19), i.e.
Pi={xe[0,1]" [Aix <b;}. (5.20)

Let gin(x) = D cn vij(rij — 2)s5, and gia(x) = >,y vi;s; be the linear functions
corresponding to the numerator and denominator of g;(x).

Definition 5.1. For ¢ > 0, an e-convexr Pareto set, denoted by CP., is a set of

solutions such that for all x € P;, there is x' € Conv(CP.) such that

gz’l(X/) > ga() &

Z e Gi2(x) < (1 + €)giz(x)

By definition of the e-convex Pareto set, there exists a x € Conv(CP,) such that

maximize g;(x;)

(1+€)* Mg (x) > subject to Ax; <Db;
X; € {07 ]-}n
Since, g;(x) is a quasi-convex function, the maximum value of g;(x) over a polytope

occurs at an extreme point. Hence for all x € Conv(CP,), there exists a x' € CP,

such that
9i(x') > gi(x).
Therefore, we have the following result which highlights the relation between CP.

and (1 + €) approximate solution to the sub-problem (5.19).

Theorem 5.5. There exists x € CP. such that x is an (1+ €)*77 approzimation to

the sub-problem (5.19).

We provide the details on computing the e-convex Pareto set and complete the

proof of Theorem 5.5 in the Appendix.
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5.3.3 Joint Assortment and Display Optimization Problem

Here we formulate the joint assortment and display optimization problem, where the
retailer needs to select the subset of products to offer and also decide on the display
segment when the customers choose according to an NL model. We will then present
a polynomial time algorithm for this optimization under mild assumptions.

Let m be the total number of nests, n number of products in each segment and /¢
be the number of display segments. There is a bound N;; on the number of products
in display segment k for all k& € [¢]. We assume that every product can only be

displayed in at most one display segments. We use the matrix

Tiir 0 Tile
X;= | 1| e{ov,
Tint = Tint
to denote the assortment of products that we offer in nest ¢ and their display positions,
where z;;;, = 1 if we offer product j in nest ¢ at display slot & and x;;, = 0 otherwise.
Hence, If we offer the assortment x; in nest ¢, the total preference weight associated

with nest ¢ as defined in (5.11) will be given by

n L

j=1 k=1

and the expected revenue, conditioned on the fact that a consumer decided to make

a purchase from nest 7 is given by

7j=1 k=1
Hence, if we offer the assortment (xi, - - ,X,,), then the expected revenue is given
by
‘/i(xi)%
M(xqy, -, Xp) = Qi (X1, ,Xm)Ri(x;) = R;(x;).
( 1 ) lezj\; ( 1 ) ( ) §4U0+ZZGMVZ<X1)W ( )
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We are interested in finding the optimal assortment of products and their display
positions in each nest such that the expected revenue is maximized and the number
of products in a display segment is less than a specified bound. Specifically, we are
interested in solving the following optimization problem:

V(Xi)%
Vo + Zg]‘/il Vi(x;)"

M
maximize II(xy,--,x,) = Z R;(x;)

=1

subject to injk <1 Vjeln], ie[m)]
p (5.21)

@i <N VEe[l, i€ [m]

J
xik € {0,1} Vjen], kell], iem],

where N;; is the upper bound on the number of products allowed at display position

k in nest ¢. The first constraint in (5.21) ensures that every product in each nest can

be assigned to only one display position, while the second one enforces the cardinality

constraints on display segments.

We will make the following assumption and present a polynomial time algorithm

for (5.21).
Assumption 5.1. The utility parameter v;j, corresponding to product j of nest @
when displayed at level k takes the following form,

Uijk:Uiink \V/ZG{]_, ,m} jE{l, 77’L} ke{]_, ,E},

for some A\ > 0.

Remark 5.2. Note that Assumption 5.1 is common for choice models, where the
mean utility of a product is a linear combination of the attributes. In particular,
pi; = Bi - fij, where f;; € R< is a vector of attributes of the product i in nest j,
while B; € R? is the weight associated with each of these attributes for products in

nest 2. One of the product attributes that can potentially influence it’s attractiveness
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to a consumer is where it is displayed. Therefore, assuming display position as an

attribute, Assumption 5.1 is a natural consequence of the linear utility model.

Solution concept: The joint assortment and display optimization problem (5.21) is
a non-linear optimization over {0, 1} variables. We will use the linear programming
formulation (see Theorem 5.4) to design a tractable algorithm for our problem. Note
that the linear program (5.17) has exponential number of constraints. In the rest of
this section, we will show that only polynomial number of constraints are sufficient
to describe the exponential number of constraints. Let P; be the feasible region of

the optimization problem (5.21). In particular,

P; = {Xz € {O, 1}n><Z

Y wp <1Vji€en]Y wip <Ny Vke [5]}
- ,
Definition 5.2. A collection of assortments T; is idejal, if
o T; CP; and |T;| is polynomial in n,
o for every z, there exists a S; € T; such that
Vi(Si)" (Ri(S:) — 2) = Vi(S:)"(Ri(S:) — ) for all S; € P

We will prove the existence of ideal collection of assortments for each nest. Therefore,

the linear program (5.17) is equivalent to the following linear program

minimize z
(y,2)

subject to 2z > Zyz (5.22)

i=1
yi > Vi(S)"(R(s;) —2) VS, €T; Vi={Ll,---,m}.

By transforming the LP (5.17) into LP (5.22), we have shown that the exponential
number of constraints in (5.17) are redundant and it is sufficient to consider only a
polynomial number of constraints to solve the LP (5.17), thus enabling us to solve
the linear program (5.17) in polynomial time. Our proof technique relies heavily on

the following result established by [23],
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Lemma 5.4 ([23]). Fiz i, for every z, there exists a u; such that
argmax V;(S;)"(R(s;) — 2) = argmax V;(S;)(R(s;) — u;).
S, eP; S, eP;

Lemma 5.4 allows for the following interpretation of ¢deal collection of assortments,

Corollary 5.4. A collection of assortments T; is ideal, if
e 7. CP; and |T;| is polynomial in n,

e for every u;, there exists a S, € Ti such that

Corollary 5.4 suggests that to prove the existence of ideal collection of assortments,

it sufficies to show that the parametric optimization problem,

max Vi(Si)(R(si) — wi), (5.23)

has polynomial number of optimal solutions. In the rest of this section, we prove the

existence of ideal collection of assortments and show how to obtain an ideal collection

of assortments.
;

Note that V;(S;)(R;(S;) —u;) = Z Z Uik (735 —u;) 5. Therefore the parametric

j=1 k=1
optimization problem (5.23) is equivalent to

maximize Z Z Vijk(Tij — Wi)Tijk
jeln] kelf
subject to Zmiﬂf <1 Vjé€]ln]
k (5.24)

J

x;k € {0,1} Vje[n], kell.
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Consider the following LP relaxation of (5.24),
maximize Z Z Vi (T35 — Wi) ik
jE€[n] kE[L]

subject to injk <1 Vjé€ln]
k (5.25)

J
OSXngl Vje[n], ke[é]

Since the constraints in the LP relaxation (5.25) are totally unimodular, we have a

tight relaxation. Hence, to prove the existence of ideal collection of assortments, it

suffices to prove that the parametric linear program (5.25) has polynomial number of

optimal solutions.

“Ideal” collection of assortments: We show that it suffices to consider a polynomial
number of values of u; to find the set of optimal solutions to the parametric linear

program (5.25). Define linear functions,
fij(w) = vij(ry; — ),

where v;; is as defined in Assumption (5.1). We show that just by considering the
intersection points of any two linear functions f;;(u) and f;;7(u) and points where
fij(w) vanishes for some j is sufficient to obtain the set of optimal solutions for
the parametric linear program (5.25). Algorithm 11 describes how to obtain an ideal
collection of assortments. Consider the set U; described in Algorithm 11, let uq,--- , uy

be the elements of U; indexed in ascending order of values, i.e.
up, <uy V1<p<p <t

where ¢ is the number of elements in U;. We will prove that for any u; € [uy, upi1],
the optimal solution of the parametric linear program (5.25) remains the same. In

particular, we have the following result
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Algorithm 11 Obtaining ¢deal collection of assortments 7;
1: Set Ut = {u | fi;(u) = 0 for some j € [n]}
2: Set U? = {u | f;j(u) = fij;(u) for some j # j' and j,j" € [n] }
3: Set U; = U U U?
4: Set T; = ¢
)
6

: for each v € U; do
Set S; as the optimal solution of the linear program (5.25) with u; = u, i.e.

S; + argmax E Z Vijk(Tij — W) Sijk

j€[n] kel

subject to Zsiﬂ'k <1 Vjé€lin]
K

Zszjk < Ny VEkel]

J
Ogsmkél VJG[H], ]{36[6]

. Ti=T U {Si}
8: end for
9: Return 7;

Lemma 5.5. Fiz u € [uy, upi1], if

where P; is the set of feasible assortments in nest i as defined in (?7?), then for every
U € [up, upy1], we have
S! € argmax Z Z Vijr(Tij — u')Sjk.
S,eP; .
JjE€[n] ke[{]
Therefore, the collection of assortments obtained by Algorithm 11 are ideal and

the following theorem is direct consequence of Lemma 5.5.

Theorem 5.6. There exist a collection of assortments T; with |T;| = O(n?) that

includes an optimal solution to the linear program (5.25) for any u; € R.

We can use Algorithm 11 to find the ideal collection of assortments in each nest
and then solve the linear program (5.17) to obtain the optimal assortment of products

and their display positions. From Theorem 5.6, we have that the linear program (5.17)
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has m + 1 variables and O(mn?) constraints and hence can be solved in time that is

polynomial in the number of products and number of display segments.

5.4 Conclusion.

In this Chapter, we considered variants of the static assortment optimization problem
under the Nested Logit and Multinomial Logit model and presented (near) optimal
algorithms. Understandably, Multinomial Logit model, owing to its tractability, is a
well studied choice model for assortment planning. [44], [40], [20] have considered the
unconstrained, cardinality constrained and capacity constrained problems respectively
and presented near optimal algorithms. Recently, [17] has presented a linear
programming based solution for a large class of TU constraints. In this chapter,
we contribute to the growing literature for assortment optimization under the MNL
model by presenting a general framework for assortment planning under a large class
of constraints. Our framework based on linear programming is robust enough to
generalize for additional constraint for which exact approach is a hard problem.
Given the ITA property of the MNL model, NL model is attracting considerable
attention. [23] has presented a polynomial time algorithm for cardinality constrained
assortment planning under the NL model. [16] has extended the approach of [23]
to present a polynomial algorithm to compute the optimal assortment of products
and simultaneously compute the prices of the offered products such that the better
quality products have higher prices. In this chapter, we have shown that the general
problem under TU is NP-hard, presented an FPTAS under mild assumptions for
the TU constraint structures and further presented an exact algorithm under specific
parameter settings for a special application of the TU constraints, namely the joint
assortment and the display optimization problem. Our work add to the literature of

assortment planning under the NL model by consider the assortment planning under
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the TU constraint structures. However, an FPTAS for the general TU problem or an
exact algorithm for the joint assortment and display optimization problem for general

parameters are still open questions.
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Appendix A

Concentration Inequalities for Sum of Geometric Random

Variables

Here, we prove concentration inequalities for sum of geometric random variables. Note
that the estimates obtained from the epoch approach are distributed geometrically.
The tail bound established in this section will help us in understanding how fast our
estimate v;, converges to its true mean, v;. The concentration bounds we prove in
this section are similar to Chernoff bounds discussed in [36] (originally discussed in
[4]), but for the fact that in bandit applications the number of arms over which we
estimate the mean is a random variable. Hence, we use a self-normalized martingale

technique to derive concentration bounds.

A.1 Exponential Inequalities for self-normalized
martingales with Geometric distribution

Theorem A.1. Consider n i.i.d geometric random variables Xi,--- , X,,. Let Fy =
o(X1, -+, Xe1) be the filtration corresponding to the random variables {X;}i=1... n

and 1, be a 0 — 1 random variable that is Fy, measurable. Further, let

l
_ X; -1 1-—
X 2 Z“— é 1 and p 2 E(X;) = —2L.
y4
Zzl =1 p

Then for any random variable §, we have
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1 N> ,
1. Pr(X,> (14 0)p) < B |exp (_2(1—1—5)(14_“)2)} if p<1,
i 2,2 -
\Eﬁ _exp (_—625(1/;)2 <3 — %)) if u>1.
.
2. Pr(X, < (1=d)p) < : 6(1+2;12)2 1+u)) ]
\E% _eXP (—%)} if u> 1.

Proof. We have

Therefore, bounding Pr (X, > (14 6)p) and Pr (X, < (1 —4&)u) is equivalent to
bounding Pr (Zle X;l;, > (1+ 5)un4> and Pr (Zle X;1; < (1— 5)un4>. We will
bound the first term and then follow a similar approach for bounding the second

term to complete the proof.

Bounding Pr (X, > (1+0)u):

We have for any A > 0,

¢ ¢
Pr (Z X;1; > (1+ 5);mg> = Pr {exp ()\ZXJZ-) > exp (A(1+ 51)"02711(6))} ,

=1 i=1

= Pr {exp ()\inﬂz — )\(1 + 5)/11716) > 1} ) (Al)

i=1
¢

exp <>‘ZXZ']1" - M1+ 5)/mg)] ,
i=1

where the last inequality follows from Markov inequality. For notational brevity,

<E

denote f(\, 1) by the function,

log (1— p(e* - 1))

fO ) = 5
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We have,

E |:e(/\ > Xillif)\(1+5)ung)]

=K

0 A1+ pu(1—=f(A\,p))n

<} [e(zﬁzl(2AXr2f(A,u))-Jli)} ‘Ez[e <2A(1+5)“(1f@’“))m>]7
where the above inequality follows from Cauchy-Schwartz inequality. Note that for
any ¢, 1; conditioned on Fj is a constant and {X;|F;} is a geometric random variable.

From the proof of Lemma 2.1, for all > 1 and for any 0 < \ < %log 1—;;&, we have,

7)= (= 1>)h'

E (62,\)(1-]11-

Therefore, it follows that

E (6(2>\Xi—2f(/\,u))~h F) <1, (A.3)
and
L
E |exp (Z(Z/\Xi —2f(\ ) L-) = E[E {exp ((2AX; — 2f(A, p)) - L) | Fe}]
i=1
[¢—1
=E | exp (2AX; — 2f(\, ) - 1) - B (ePXem2/ O 1| )
o
<E|[[exp (@A =2\ ) - L-)] ,
Li=1

where the inequality follows from (A.3). Similarly by conditioning with F,_q,--- , F,
we obtain,

E

¢
exp (Z(Q)‘Xi —2f(A ) - L)] <1

=1

From (A.1) and (A.2), we have

Pr <Z£: XL > (1+ 5)W> <E3 [exp ( N1+ 0)u(l — FOA, u))ng)} .

i=1

Therefore, we have

Pr (i X;1; > (1+ 5),ung> < E: [1;1615121 exp ( — 221+ 0)pu(1 — f(/\,,u))m)} , (A4

=1
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where Q@ = {\|0 < X < %log HT”} is the range of A for which the moment generating

function in (A.3) is well definred. Taking logarithm of the objective in (A.4), we have,

argmin e~ AFORA=FOmI 1 — aromin — 2(1 + ) Mg — ny log (1= pu(e* = 1)) (A.5)
AEQ AeQ

Noting that the right hand side in the above equation is a convex function in A\, we
obtain the optimal A by solving for the zero of the derivative. Specifically, at optimal

t, we have
o (1+0)(1+p)
L+p(l+0)

Substituting the above expression in (A.4), we obtain the following bound.

(1 B 5 )nlﬂ(l—i-(s) (1 N (SILL )TLZ
(1+0)(1+ p) L+p

First consider the setting where p € (0, 1).

SIS

Pr(Xe>(1+6)u) <E (A.6)

Case la: If p € (0,1): From Taylor series of log (1 — z), we have that

) _ nedp ned? i
(1+0)1+p)) = 1+p 201+6)1+w?

nep(1 + 6)log (1 -
From Taylor series for log (1 + x), we have

O oy
1 1 <
" Og( +1+u) T (L4p)

Note that if 6 > 1, we can use the fact that log (1 + dz) < dlog (1 + z) to arrive at

the preceding result. Substituting the preceding two equations in (A.6), we have

Pr(X;>(1+6)p) <exp (—2(1 _:?;g:_ ,u)Q)' (A7)

Case 1b: If 1 > 1 : From Taylor series of log (1 — x), we have that

o )<_ng(5u
I+6)(14+p)) = 14p

nep(1 + 6)log (1 —

Y

If 0 < 1, from Taylor series for log (1 + x), we have

o nel npd? ( 2001 )
1 1+ < - 3——— .
" Og( 1+M)_(1+u) 6(1+? \" T+
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If § > 1, we have log (1 + dx) < dlog (1 + x) and from Taylor series for log (1 + z), it

follows that,

) ) S 2
TlglOg 1+ a < "eon — ot 3__/~L .
14+ p (14+p)  6(1+4 p)? 1+ p
Therefore, substituting preceding results in (A.6), we have

E: [exp (— ne 0 (3 - 26—”))] if u>1andé € (0,1),

6(1+p)2 T+u

E> [exp(— ndp? (3—2—“>>] if pu>1landé > 1.

6(1+p)? I+pu

Pr(X;>(1+d)p) <

Bounding Pr (X, < (1 —4)u):

Now to bound the other one sided inequality, we use the fact that for any A > 0,

)= (1 e 1>>h‘

and follow a similar approach. More specifically, from Markov Inequality, for any

E (e—AXi]li

A>0and 0 <9 <1, we have

¢ ¢
Pr (Z X1 < (1— 6)ving) = Pr {exp <_>‘2Xili> > exp (—A(1 — 5);mg)} )
=1 ijl
= Pr {exp (—)\ZXi]li + (1 — (5),ung> > 1} , (A9)

i=1

¢
exp (—)\ZXiL- +A(1— 5);mg>] .

i=1

<E

For notational brevity, denote f(A, 1) by the function,
log (1 — p(e™ — 1))

fp) = 5
We have,
4
E |[exp (—)\ZXﬂli + (1 — 5)/mg>]
e:l
=E |exp (Z(—Axi — (A ) - L) exp (A1 = O)u(1+ f( u))m)] , (A.10)

<E} B [exp (201 = 6)u1 + F\ )ne) |

exp (Z(—m){i —2f(\ 1)) - 11@>

i=1
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where the above inequality follows from Cauchy-Schwartz inequality. Noting that for
any 7, 1; conditioned on F; is a constant and { X;|F;} is a geometric random variable.

Therefore, for all ¢ > 1 and for any A > 0, we have,

7= ()

E (672)\X¢]1i

Therefore, it follows that

E (-2

Fi) <1, (A.11)

and

F [e(zf:1(—2AXi—2f(A,u)>~ni)] _F [IE { (i (-2AXi=2f (A)-14)

7).
fg)] :

—1
H exp ((=2AX; —2f(\,pn)) - 1;) - E (e(_Q’\X‘Z_Qf(’\’“))']l"

=1

=K

-1

Hexp ((=22X; = 2f(A, ) - 1y)

i=1

=K

Y

where the inequality follows from (A.11). Similarly by conditioning with F,_1, - - - , F,
we obtain,

E

¢
exp (Z(_Q)\Xi —2f(A ) - L)] <1

=1

From (A.9) and (A.10), we have

Pr (f: Xl < (1— 5),W) <E: [exp (zm — (L + N u))nf))] .

=1

Therefore, we have

A>0

Pr (Xg <(1- 5)u) < Ez [minexp (2/\(1 —)p(l+ f(/\,,u))neﬂ .

Following similar approach as in optimizing the previous bound (see (A.4)) to establish
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N

Pr (Xg < (1 —5)u) <E




Now we will use Taylor series for log (1 + x) and log (1 — x) in a similar manner
as described for the other bound to obtain the required result. In particular, since

1 —6 <1, we have for any x > 0 it follows that (1 + 1%5)(1*5) < (1+ x) . Therefore,

()70 )] e

Case 2a. If i € (0,1): Note that since X; > 0 for all i, we have a zero probability

we have

M=

Pr (Xg) < (1 — 5)#) <E

event if 0 > 1. Therefore, we assume § < 1 and from Taylor series for log (1 — z), we

) o
nglog 11— S-Wﬂ,
14+ p IL+p

have

and from Taylor series for log (1 + x), we have

woiilo (1+ ) ) ndp bt (3_ 25,u>
s I+p) = (I4+p)  6(1+p)? L+p)

Therefore, substituting the preceding equations in (A.12), we have,

(st ()] e

Case 2b. If p > 1: For similar reasons as discussed above, we assume § < 1 and

N

Pr(X,<(1-du) <E

from Taylor series for log (1 — x), we have

1 (1 S ) < Mol i ned p?
nelo - — — — :
£08 l+p) = 1+p 20+p)2

and from Taylor series for log (1 + z), we have

5,u ngé
log (1 < .
" Og< +1+u) T (14 p)

Therefore, substituting the preceding equations in (A.12), we have,

[exp @%ﬂ | (A14)

The result follows from (A.7), (A.8), (A.13) and (A.14). O

NG

Pr(X;<(1—-6pu) <E
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Now, we will adapt a non-standard corollary from [7] and [26] to our estimates to

obtain sharper bounds.

Lemma A.1. Consider n i.i.d geometric random variables Xy,--- ,X,. Let Fy =
(X1, -+, Xe1) be the filtration corresponding to the random variables {X;}iz1... n

and 1, be a 0 — 1 random variable that s Fy, measurable. Further, let

. ¢

_ X1, 1-p

Xgéz:l:le—a ng £ E 1; and MéE(Xi): L.
Zi:l L; i=1 P

If for any m > 0, n, > 48log (m + 1), then we have for any ¢,

L P (P_Q —,u| S max{ Xz,)_(e} 48log (m+1) 4810g(m+1)> < %'

e ne

241og (m + 1 481log (m +1 4
2. P||Xe— M|>max{\/_u}\/ &l ) 8 ) <—

Ty m

- 3 481 1 3

5. p(x,> 30 Blogm+1)) _ 3
2 n m?

Proof. We will analyze the cases u < 1 and p > 1 separately.

Case-1: < 1.Letd = (p+1) %. First assume that 6 < % Substituting

the value of § in Theorem A.1, we obtain,

7 1
P (Xe—p>op) < —,
) 1
P(Xe—p<=ou) < 05 (A.15)
; 6111 1 2
|Xz—u}<(u+1)\/uog(m+ Nz 2
Ty m

Since § < 1, we have 73( —pn < —%) <P (Xe —u < —5u). Hence, from (A.15),

we have,

and hence, it follows that,

PR2X>p) >1——. (A.16)



From (A.15) and (A.16), we have,

7><|X_M<\/48)(1og(m+1))ZP(‘X_M‘<\/24mog(nwr1) 21_%.

n n m

(A.17)

Since § < %, we have, P (X, <) > P (X, < (1+6)u). Hence, from (A.15), we
have

P ()‘(@ < 3“) 1oL (A.18)
3
2

Therefore, substituting above result in (C.2), the first inequality in Lemma A.1

follows.

_ = 2 S 481 1 4
P |Xg—/ub} >max{v Xg, \/;)(g}\/M S ﬁ (Alg)

Ny

Now consider the scenario, when (1 + 1)/ % > % Then, we have,

A 12(p+1)*log (m + 1)
Mg

nuo; nepoy
_ < et
P ( 2(1+01)(1 + u)Q) =P ( 6(1 + u)2)’

ned 2011 neftdy
— — < = ).
eXp( 6(1+ p1)? (3 Tru)) = P \T6( 2

Therefore, substituting the value of §; in Theorem A.1, we have

1
51 2 57

which implies,

481 1
‘ - og(m+1)
Ny

P (|)‘Q — ) < % (A.20)

Hence, from (A.20) and (A.19), it follows that,

_ — 2 - 481 1 481 1
P ‘Xg—u‘>max{\/Xg,\/;X€}\/ 8log (m + )+ 8log (m + 1) <—

6
Ty Ty m
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Case 2: p>1
Let 0 = 4/ % then by our assumption, we have § < 1. Substituting the

= 2
value of § in Theorem A.1, we obtain,

. 12log (m + 1 2
‘Xg—u‘<,u\/7§—£) 21_@’
1

Hence we have,

I ﬂ}<X£\/4810g(m+1) o (1% u‘<u\/1210g(m+1)

Ny Ny
3
>1——=
- ml?
(A.22)
By assumption p > 1. Therefore, we have P ( 3) >1- % and,
_ X, 1
X2\ —=11>21—-—. A.23
Therefore, from (A.22) and (A.23), we have
. X 481 1 4
|Xg /Ll > maX{Xg, é}\/w S — (A24)
2 Ny m2

We complete the proof by stating that first inequality follows from (A.21) and (A.24),
while second inequality follows from (C.2) and (A.22) and third inequality follows
from (A.18) and (A.20). O

From the proof of Lemma A.1, the following result follows.

Corollary A.1. Consider n i.i.d geometric random variables Xq,--- ,X,,. Let F, =
o(X1, -+, Xe1) be the filtration corresponding to the random variables {X;}i=1... n

and 1, be a 0 — 1 random variable that is F, measurable. Further, let

= AZ— X ﬂ 1—p
X, 2 &=t o AN and pn 2 E(X) = — 2.
o Zf:l]li " zzl o ( ) p

If p <1, then we have for any m >0
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_ 48X, log (m+1)  48log (m + 1 6
1P |Xg—u|>\/ log(m+1) | 48log(m +1) < —.
Ty Ny m
_ 241 log (m + 1 48log (m + 1 4
) P |X€_M|Z\/ plog(m+1)  4Slogm+1) | _ 4
ny Ty m
_ 481 1
3. P XZZS—M—I—M Si-
2 Ny m2

A.2 Proof of Lemma 2.2 and Lemma 2.11

From Corollary 2.1, it follows that ¢; o are i.i.d geometric random variables with mean

ooy Vi 1{i€S )
i 1{ies}

whenever we refer to Theorem A.1 or Lemma A.1 or Corollary A.1, it is assumed

v;. Furthermore, we have v;, = Therefore, in the rest of this proof

that © = v; and X, = Vi g

Proof of Lemma 2.2: By design of Algorithm 1, we have,

e o 48@»410g<m£+1) 481log (VNI +1) (A.25)
o " ; Ti(0) Ti(¢) ‘
Therefore from Corollary A.1, we have
UCB 6
Pr (v <) < — (A.26)

- N{
The first inequality in Lemma 2.2 follows from (A.26). From triangle inequality and

(A.25), we have,

ucB ucB

‘Uu _Uz" < ‘UM —@i,e‘ + |5 — vi
A27
_ Jaso 1Og(\/N€+1)+4810g(\/N£+1)+w ol (A-27)
- ’L,f E(ﬁ) 7—;(6) Z,f 7] -

From Corollary A.1, we have

Pr(_ 3v; 48log(\/N£+1)>< 3

il > T = A7
R R T Ne
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which implies

log (VN(+ 1)

2,
O

Pr 48171'75

N{’

log (VNC+1)  (48log(VEL+ D) _ 3
EOE T:(0) =Nt

Using the fact that va +b < y/a + Vb for any positive numbers a, b, we have,

By \/@i,glog(\/NKJr 1) N log (VN + 1) - \/vilog(\/NE—l— 1) N log (VN{+1)

BT(0) T(0) 327,(0) Ti(0)
3
< 2
— NE’
(A.28)
From Corollary A.1, we have,
) log (VN{+1)  48log (VNL+1) 4
s . < '
Pr| |vie — vi| > \/24?}2 0 + (0 < N7 (A.29)

From (A.27) and applying union bound on (A.28) and (A.29), we obtain,

|UUCB_Ui|><m+m)\/vilog%€+l)+144logjgg£+1) SNL[

Lemma 2.2 follows from the above inequality and (A.26).

Proof of Lemma 2.11 By design of Algorithm 3, we have,

481 N 1 481 N 1
:JZCB2—UzZ+maX{\/m7Uz,E}\/ 80g;6£+ )+ 80g;\€;£+ ) (A?)O)

Therefore from Lemma A.1, we have

Pr(vy® <wv) < % (A.31)

The first inequality in Lemma 2.2 follows from (A.31). From (A.30), we have,

v = il < Joie® = vl + [0 — ol

| /+1 481 Nl +1
—maX{1/Ulg,”UZg} 48 8 \/;)—i_ >+ Og;\‘/(; i )+|17i,e—vi|-

(A.32)
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From Lemma A.1, we have

o, (_ _ 3 48log (VNI + 1) ) _ 3

> T T = Ne

which implies

log (VN{+1)

Pr | 480,
T

'log(\/ﬁﬁ%—l)_i_(48log(\/ﬁﬁ+1))2 <3
S N

> TR T,(0)

Using the fact that va +b < y/a + Vb, for any positive numbers a, b, we have,

Pr

max { /o0t | 48Ty(0) 32T;(0) T,(0)

<_7
- N/

(max{\/@, Uie} [ log(VNE+1) . \/log (VNC+1)  log(VNE+1) )

(A.33)

From Lemma A.1, we have,

Pr (Uz',e — v;| > max {/v;, vi}\/2410g(g§+ D + 18 log(\/ﬁf+ D ) < 1

T;(0) - NC
(A.34)
From (A.32) and applying union bound on (A.33) and (A.34), we obtain,
P58 — _ ,vilog (VNC+1) | l4dlog (VNC(+1) T
(V72 + \/ﬂ)max{\/ﬁ-,vi} Ti(0) T;(¢) - N
Lemma 2.11 follows from the above inequality and (A.31). O
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Appendix B

UCB Approach for the MNL-Bandit

B.1 Proof of Theorem 1

In this section, we utilize the results established in Section 2.2 and complete the proof

of Theorem 1.

Proof. Let S* denote the optimal assortment, our objective is to minimize the Regret

defined in (MNL-Bandit), which is same as

Reg(T,v) {Z@ V) — R(S,, ))}, (B.1)

Note that L, & and Sy are all random variables and the expectation in equation (B.1)
is over these random variables. Let #H, be the filtration (history) associated with the
policy upto epoch £. The length of the ¢** epoch, |&,| conditioned on S, is a geometric
random variable with success probability defined as the probability of no-purchase in

Sg, ie.
1

Let V(S¢) = >_jecg, vy, then we have E (]85\ ‘ Sg) =14+ V(Sy). Noting that Sy in our

7T(O, Sg) -

policy is determined by H,_;, we have E <|Eg| )7—[@_1> =14+ V(Sy). Therefore, by law

of conditional expectations, we have

Reg(T,v) = {ZE“& V) — R(S;, v ‘Hé 1]}

and hence the Regret can be reformulated as

Reg(T,v) = E {Z (14 V(S0) (R(S*,v) — R(S,, v))} , (B.2)

(=1
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the expectation in equation (B.2) is over the random variables L and S,. For the sake

of brevity, for each £ € 1,--- | L, let
AR=(14V(Sy)) (R(S*,v) — R(S;,V)). (B.3)
Now the Regret can be reformulated as

Reg(T, v) {Z ARE} (B.4)

Let T; denote the total number of epochs that offered an assortment containing

product 7. For all / =1,..., L, define events A, as,

N
_ uce UCB _ vilog (VN +1) log (VN/{+1)
Ao = U < v Or vy > i+ Cl\/ 0 Ch 0

=1

From union bound, it follows that

(A <zpr uce )

LUCB v;log (VNE+1) log (VN +1)

Therefore, from Lemma 2.2, we have,

13

Pr(A) < - (B.5)

Since A, is a “low probability” event (see (B.5)), we analyze the Regret in two
scenarios, one when A, is true and another when A7 is true. We break down the

Regret in an epoch into the following two terms:
E(ARy)) =F [ARg c1(Aper) + ARy - 1I( E_l)] :

Using the fact that R(S*,v) and R(Sy, v) are both bounded by one and V' (S,) < N
n (B.3), we have AR, < N + 1. Substituting the preceding inequality in the above

equation, we obtain,
E(AR;) < (N +1)Pr(A;y) + E [AR, - 1(A7_)] .
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Whenever 1(Af ;) = 1, from the restricted monotonicity property of Lemma 2.3, we
have R,(S*) > R(S*,v) and by our algorithm design, we have R,(S;) > R,(S*) for

all £ > 1. Therefore, it follows that
E{AR} < (N + DPr(A) + E{[(1+ V(S))RAS) ~ R(S, )] - 1(45,) }

From the definition of the event, A, and the Lipschitz property of Lemma 2.3, it

follows that,

[ V(S))(Rel(Se) = R(St,v)) | - (A7)
v; log ( \/_€+ 1)  Chylog (VNL+1)
T n |

Therefore, we have

v;logV/NT  logV/NT
Ti(¢) GIONYE

E{AR} < (N +1)Pr(A1)+CY E

€Sy

(B.6)

where C' = max{C}, Cy}. Combining equations (B.2) and (B.6), we have

Reg(7,v) <ES Y [(N+1Pr(A, 1) +C) : IOT%(\E/)NT 10%\(/gT

/=1 1€Sy

Therefore, from Lemma 2.2, we have

Reg(T,v)<CIE{ N“ +y “Zlog Zlog\/_T},

(=1 1€Sy )
(a)
< CNlogT + CNlog> VNT + CE (Z \/ u:T; log WT) . (BT
1=1

(b) N
< CNlogT + CNlog’ NT + C ) _\/v;log (NT)E(T,).

=1

Inequality (a) follows from the observation that L < T, T; < T,
T,

> 1Y -

T:(£)=1 T;(6)=1

while Inequality (b) follows from Jensen’s inequality.
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For any realization of L, &, T;, and S, in Algorithm 1, we have the following relation

L
Z Ny S T.
(=1

Hence, we have E (Ele ng> < T. Let F denote the filtration corresponding to the

offered assortments Sy, --- , S, then by law of total expectation, we have,
L L L
E (an> = E{ZE;(W)} :E{ZlJerz} ,
=1 =1 =1 i€S

—E {L+ Zum} =E{L} + > vE(T)).
i=1 i=1
Therefore, it follows that
> uE(T) <T. (B.8)
To obtain the worst case upper bound, we maximize the bound in equation (B.7)

subject to the condition (B.8) and hence, we have Reg(7,v) = O(v/NT log NT +
Nlog®> NT). O

B.2 Improved Regret bounds for the

unconstrained MNL-Bandit

Here, we focus on the special case of the unconstrained MNL-Bandit problem and use
the analysis of Appendix B.1 to establish a tighter bound on the Regret for Algorithm
1. First, we note that, in the case of the unconstrained problem, for any epoch ¢,
with high probability, the assortment, S, suggested by Algorithm 1 is a subset of the

optimal assortment, S*. More specifically, the following holds.

Lemma B.1. Let S* = argmaz R(S,v) and Sy be the assortment suggested by
Se{1,,N}

Algorithm 1. Then for any £ =1,--- , L, we have,

Pr(S,c ) >1-

o
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Proof. If there exists a product 7, such that r; > R(S*,v), then following the proof of
Lemma 2.3, we can show that R(S* U4, v) > R(S*,v) and similarly, if there exists a
product 4, such that r; < R(S*,v), we can show that R(S*\{i},v) > R(S*,v). Since
there are no constraints on the set of feasible assortment, we can add and remove

products that will improve the expected revenue. Therefore, we have,
i € S* if and only if r; > R(S™,v). (B.9)

Fix an epoch ¢, let Sy, be the assortment suggested by Algorithm 1. Using similar

arguments as above, we can show that,
i € Sy if and only if r; > R(S,, vi®). (B.10)
From Lemma 2.4, we have ,

Pr(R(Se,v{®) > R(S*,v)) > 1— (B.11)

O

Lemma B.1 follows from (B.9), (B.10) and (B.11). O
From Lemma B.1, it follows that Algorithm 1 only considers products from the set
S* with high probability, and hence, we can follow the proof in Appendix B.1 (by
replacing N with |S*|) to derive sharper Regret bounds. In particular, we have the

following result,

Corollary B.1 (Performance Bounds for unconstrained case). For any instance,
v = (vo,...,vn) of the MNL-Bandit problem with N products and no constraints,
ri € [0,1] and vg > v; fori=1,... N, there exists finite constants Cy and Cy, such

that the Regret of the policy defined in Algorithm 1 at any time T is bounded as,

Reg(T,v) < C1/|S*|Tlog NT 4+ CoN log NT.
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B.3 Proof of Theorem 2

First we state the following auxiliary result that is helpful in proving Theorem 2.

Following the proof of Lemma 2.7, we can establish the following result.

Corollary B.2. The number of epochs that offer a product that does not satisfy the
condition, T;(¢) > log NT, is bounded by N log NT. In particular,

‘{6 ’ T;(¢) <log NT for somei € Sg}‘ < Nlog NT.

We will re-use the ideas from proof of Theorem 1 to prove Theorem 2. Briefly,
we breakdown the Regret into Regret over “good epochs” and “bad epochs.” First
we argue using Lemma 2.2, that the probability of an epoch being “bad epoch” is
“small,” and hence the expected cumulative Regret over the bad epochs is “small.”
We will then use Lemma 2.7 to argue that there are only “small” number of “good
epochs” that offer sub-optimal assortments. Since, Algorithm 1 do not incur Regret
in epochs that offer the optimal assortment, we can replace the length of the horizon
T with the cumulative length of the time horizon that offers sub-optimal assortments
(which is “small”) and re-use analysis from Appendix B.1. We will now make these

notions rigorous and complete the proof of Theorem 2.

Proof. Following the analysis in Appendix B.1, we reformulate the Regret as

Reg(T,v) {i (1+V(Sy)) (R(S™,v) — R(Sg,v))} , (B.12)

1

where S* is the optimal assortment, V' (S¢) = > ;g v; and the expectation in equation
(B.12) is over the random variables L and S,. Similar to the analysis in Appendix

B.1, for the sake of brevity, we define,
AR=(1+V(S)) (R(S",v) — R(S¢,V)) - (B.13)

Now the Regret can be reformulated as

Reg(T, v) {Z ARZ} (B.14)
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For all ¢ =1,..., L, define events A, as,

N
—| ] { wuce A UCB A v;log (VNI + 1) log (VN{+1)
AT e e ClJ o T T

i=1
Let & = {E ‘ T;(¢) < log NT for some i € Sg}. We breakdown the Regret in an epoch

into the following terms.
E(ARy) =E, [ARg C1(Apm) F AR - 1(Af_) - L0 € &) + ARy - 1(A;_) - 1(£ € 50)} :

Using the fact that R(S*,v) and R(S;, v) are both bounded by one and V(S,) < N
in (B.13), we have AR, < N + 1. Substituting the preceding inequality in the above

equation, we obtain,
E(AR)) < (N +1)Pr(Aey) + (N+1D)Pr(l € &) + E[AR, - 1(A7_,) - L(L € £9)].

From the analysis in Appendix ?? (see (B.5)), we have P(A;) < £. Therefore, it

follows that,

13(N +1)
1

Substituting the above inequality in (B.14), we obtain

E (AR < +(N+1DPr(l € ) +E[AR, - 1(A5 ;) -1(€ € &) .

L
Reg(T,v) < 14NlogT+ (N +1)> Pr(l € ) +E
(=1

From Corollary B.2, we have that Zle 1(¢ € §) < Nlog NT. Hence, we have,

> AR, I(A ) 1(L € 50)] .

(=1

Reg(7,v) <14NlogT + N(N +1)logNT + E

> AR -1(A5 L) 1( € 56)] .
=1

(B.15)

Let 5§“b’°pt be the set of “good epochs” offering sub-optimal products, more specifically,
E-oPt 2 (| 1(Af) = 1 and R(S;,v) < R(S*,v)}.
If R(Sy,v) = R(S*,v), then by definition, we have AR, = 0. Therefore, it follows

that,

E (Y AR-1(A; ) -1(Le&)| =E| Y AR, -1(Le)]. (B.16)

=1 sub_opt
le€s
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Whenever 1(AS_,) = 1, from Lemma 2.3, we have, R,(S*) > R(S*,v) and by our

algorithm design, we have R(S;) > Ry(S*) for all £ > 1. Therefore, it follows that

E{AR, - 1(49)} < E{[(L+ V(S))(Re(Se) = R(SH V)| - 1AL - 1(e € €9},

v;log (VN +1 Cylog (VNI + 1 )
<2 Cl\/ g<w) + g(Tz«(e) oacee
vilog (VNI +1)
Soiezsjp T;(0) '
| (B.17)

where C' = C} + Cy, the second inequality in (B.17) follows from the definition of the
event, A, and the last inequality follows from the definition of set £. From equations

(B.15), (B.16), and (B.17) , we have,

Reg(T,v) < 14N?log NT + CE Z Z loﬁ% : (B.18)

Ees;ub,opt 1€Sy
Let T} be the number of “good epochs” that offered sub-optimal assortments containing
product i, specifically,
T = [{eeegton
7

1€ Sg}‘ .
Substituting the inequality > peerso \/%(@ < /T; in (B.18) and noting that T; < T,

we obtain,

N
Reg(T,v) < 14N?log NT + C’X:]E7r (y/TilogT) :
i=1

From Jenson’s inequality, we have E, (\/T Z) < /E, (T}) and therefore, it follows

that,

N
Reg(7,v) < 14NlogT + NClog NT + C'>  /E. (T;) log NT.

i=1
From Cauchy-Schwartz inequality, we have, Zfil VE: (T;) < \/ N Zf\il E. (T3).
Therefore, it follows that,

N
Reg(T,v) < 14N*1og NT + C'\| N Y E. (T;)log NT.

=1
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For any epoch £, we have |S;| < N. Hence, we have SN T} < N|5§“b’°pt|. From
Lemma 2.7, we have |£5">°"| < N7. Therefore, we have >~ E, (7;) < N?r and
hence, it follows that,

Reg(T,v) < 14N?log NT + CN+/N7log NT,

N?log NT
A(v)

(B.19)
< 14N?1ogNT + C

B.4 Proof of Theorem 4

Proof of Theorem 4 is very similar to the proof of Theorem 1. Note that Ey is the set
of “exploratory epochs,” i.e. epochs in which at least one of the offered product is

offered less than the required number of times. We breakdown the Regret as follows:

Reg(T,v) = {Z\& V) — R(S;,v) }+E{Zy& ,v) — R(S,, ))}.

leE], 123053
Reg;1 RegQ(T,v)
Since for any S, we have, R(S,v) < R(S*,v) < 1, it follows that,
Reg(T,v) <E {Z t } + Regy (T, v).
(EET

From Lemma 2.10, it follows that,
Reg(T,v) < 49N Blog NT + Reg, (T, v). (B.20)

We will focus on the second term in the above equation, Reg,(7,v). Following the

analysis in Appendix B.1, we can show that,

Reg,(T,v) = E { 3" (14 V(S) (R(S",v) — R(Se, v))} . (B.21)

(ZEy,

Similar to the analysis in Appendix B.1, for the sake of brevity, we define,
AR=(14+V(Sy)) (R(S*,v) — R(S;,V)) . (B.22)
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Now, Reg, (7, v) can be reformulated as

Reg,(T,v) { Z ARg} (B.23)

LZET
Let T; denote the total number of epochs that offered an assortment containing

product i. For all £ =1,..., L, define events B, as,

N
B.=|J{c,uD},
=1

where C, = {UUC32 < vi} and

log (VN + 1) log (VN{+1)
_ UCBZ A — A
D = > v+ Crmax{ o, “l}\/ o 4T T

From union bound, it follows that

(B) < Zpr UB2 )

log (VNL+1) | log (VNL+1)
UCB2
+Pr > v; + Cy max {/v;, U,}\/ Ti(0) T Ti(0)

Therefore, from Lemma 2.11, we have,

13

Pr(Be) < (B.24)

Since B, is a “low probability” event (see (B.24)), we analyze the Regret in two
scenarios: one when By is true and another when Bj is true. We break down the

Regret in an epoch into the following two terms.
E (AR@) =F [AR@ . ]1(8@,1) + ARy - 1(8?71).}

Using the fact that R(S*,v) and R(S, v) are both bounded by one and V(S;) < BN
n (B.22), we have AR, < N + 1. Substituting the preceding inequality in the above

equation, we obtain,
E(ARy) < B(N +1)Pr(Bi_1) + E [AR, - 1(B;_,)] -

157



Whenever 1(B5_,) = 1, from Lemma 2.3, we have R,(S*) > R(S*,v) and by our

algorithm design, we have R(S;) > Ry(S*) for all £ > 1. Therefore, it follows that

E{AR:} < BN +1)Pr(Bey) + E{[(1+ V(S))(R(Se) = R(Se,v))] - 1(Bi_,) }
(B.25)

From the definition of the event, B, and Lemma 2.12, we have,

(L VS)(Re(Se) = B(Siv))] - 1(B;,y) <

log (VNL+1)  Cylog (VNE+1)
gg:ﬁ (01 max{via\/a‘}\/ T.(0) + T(0) ) ,

and therefore, substituting above inequality in (B.25), we have
logvVNT logV/NT
T(0) ) )’
(B.26)

E{AR,} < B(N +1)Pr(B,_1) + CZE max{v;, /v }

€Sy

where C' = max{C}, Cy}. Combining equations (B.20), (B.23) and (B.26), we have

L
Reg(T,v) < 49BN log NT + E {Z B(N + 1)Pr (Az-l)}
=1

C max{v;, Vv, } Z

1€Sy

L
+) E

=1
Define sets Z = {i|v; > 1} and D = {i|v; < 1}. Therefore, we have,

gV NT logvV/NT

logv/NT logV/NT
Ti(¢) Ti(¢) '

L
1
Reg(T,v) < 98NBlog NT + CE ZZ max {+/v;, v; } ©

(=1 i€Sy ﬂ(g) CZ—‘Z(E)
(a)
< 98NBlog NT 4+ CNlog> NT + CE (Z viTilog NT + Y /T log NT) ,
€D i€

(b)
< 98NBlog NT + CNlog’? NT + C > \/vE(T;)log NT + > v;\/E(T;) log NT
€D €L

(B.27)

inequality (a) follows from the observation that VN < N.L <T, T, < T,

T; 1 T; 1
> =< VT and ) <logT;,
Ti(£)=1 Ti(¢) Ti(£)=1 Ti(6)
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while inequality (b) follows from Jensen’s inequality. From (B.8), we have that,

> uE(T) <T.

To obtain the worst case upper bound, we maximize the bound in equation (B.27)
subject to the above constraint. Noting that the objective in (B.27) is concave, we use
the KKT conditions to derive the worst case bound as Reg(T, v) = O(v/BNT log NT+
Nlog? NT + BNlog NT). O

B.5 Lower Bound

We follow the proof of (v NT') lower bound for the Bernoulli instance with parameters

%. We first establish a bound on KL divergence, which will be useful for us later.

Lemma B.2. Let p and q denote two Bernoulli distributions with parameters o + €
and o respectively. Then, the KL divergence between the distributions p and q is

bounded by 4K €,

4
KL(pllq) < —¢€.
8]
Proof. Proof.
KL(p|q) log —*— & (1— a)log ——2
=a-lo —a)log ——
Plig ga—l—e gl—a—e

=« |log

:alog(l— (1_a)€(a+6)) —log(l—lja)

using 1 — 2 < e~® and bounding the Taylor series for —log1 — x by = + 2 * 22 for

€

T = , we have
11—«
ae €

KL < 4¢*
(pllg) < Aot 1-a *

2 4

= (Z +4) < =
!



.

Fix a guessing algorithm, which at time ¢ sees the output of a coin a;. Let
Py, --- | P, denote the distributions for the view of the algorithm from time 1 to T,
when the biased coin is hidden in the i** position. The following result establishes for
any guessing algorithm, there are at least % positions that a biased coin could be and

will not be played by the guessing algorithm with probability at least % . Specifically,

Lemma B.3. Let A be any guessing algorithm operating as specified above and let

t < &%, fore <} and N >12. Then, there exists J C {1,--- , N} with |J| > ¥

such that

N | —

Proof. Proof. Let N; to be the number of times the algorithm plays coin ¢ up to time
t. Let Py be the hypothetical distribution for the view of the algorithm when none
of the N coins are biased. We shall define the set J by considering the behavior of

the algorithm if tosses it saw were according to the distribution F,. We define,

n={i

Since ), Ep,(N;) =t and ), Po(a; = i) = 1, a counting argument would give us

3t .
Ep,(N;) < N} yJo = {l

PO(at = Z) < % } and J = Jl N JQ. (B28)

2N N
|Jy| > ~5 and |Jo| > ?n and hence |J| > 3 Consider any j € J, we will now prove
that if the biased coin is at position j, then the probability of algorithm guessing
the biased coin will not be significantly different from the P, scenario. By Pinsker’s

inequality, we have

. , 1
[Py = ) = Polas = ) < 5/21082- KL(R|| Py, (B.29)

where K L(P||F;) is the KL divergence of probability distributions Py and P; over

the algorithm. Using the chain rule for KL-divergence, we have
KL(R||F;) = Ep,(N;) K L(pllq),
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where p is a Bernoulli distribution with parameter a and q is a Bernoulli distribution

with parameter a + €. From Lemma B.2 and (B.28), we have that Therefore,
4¢?
KL(PollFy) < —,

Therefore,

, Nl
Pilac = j) < Pola = J) + 51/2l082 - KL(Ro|| Py,

IN

4€2
(2 IOg 2)?EP0<Nj)7 (BBO)

N | —

S
N

3 31
<2 4 log2 ]2 < 2
Sy TVEess LS5

The second inequality follows from (B.28), while the last inequality follows from the

fact that N > 12 and ¢t < 6]2)7?2 .
Proof of Lemma 2.8. Let € = %. Suppose algorithm A plays coin a; at time ¢

for each t = 1,---,T. Since T' < 6]\07—66“2, for all t € {1,---,T — 1} there exists a set

Jy C{1,---, N} with [J;| > & such that

Vi€, Pi(jeS) <

N | —

Let ¢* denote the position of the biased coin. Then,

€
E (pta, | 7" € Jy) < '(a+e)+§.a:a+§7

| —

E (pa, | & J;) < a + e

Since |J;] > & and ¢ is chosen randomly, we have P(i* € J;) > 3. Therefore, we
have

1 € 2 o€
—-<0z+—>—|——-(a+e):a+—

<
Has 2) 73 6

-3
We have p* = o + € and hence the Regret > %.
Lemma B.4. Let L be the total number of calls to Ayn when Amag is executed for

T time steps. Then,
E(L) < 3T.



Proof. Let 1, be the random variable that denote the duration, assortment S, has
been considered by Ay ap, i.e. np = 0, if we no arm is pulled when A,y suggested

assortment Sy and 7, > 1, otherwise. We have

L—-1
Z ne <T.
=1

Therefore, we have E (Zf:_f 77@> < T. Note that E(n,) > 3. Hence, we have E(L) <
2T +1 < 3T. O]

B.5.1 Lower Bound for the unconstrained
MNL-Bandit problem (K = N)

We will complete proof of Theorem 2.4 by showing that the lower bound holds true
for the case when K = N. We will show this by reduction to a parametric multi

armed bandit problem with 2 arms.

Definition B.1 (MNL-Bandit instance fMNL). Define TunL as the following (randomized)
instance of unconstrained MNL-Bandit problem, N products, with revenues, r1 = 1,

ro = 311266 and r; = 0.01 for alli =3,--- , N, and MNL parameters vg = 1, v; = % for

alli=2,--- N, while vy is randomly set at {3, + €}, where ¢ = |/ 5.

202
Preliminaries on the MINNL-Bandit instance fMNL: Note that unlike the MNL-
Bandit instance, Iyni, where any product can have the biased (higher) MNL parameter,

in the MNL-Bandit instance Iy, only one product (product 1) can be biased. From

the proof of Lemma B.1, we have that,
i € S*if and only if r; > R(S*,v), (B.31)

where S* is the optimal assortment for fMNL.

Note that the revenue corresponding to assortment {1} is
1+ 2¢
R({1}v) =4 3+2%

3




Note that $#2¢ > ry = £ > 1 > g = 0.01 and since R(S*,v) > R({1},v), from
(B.31), we have that optimal assortment is either {1} or {1, 2}, specifically, we have

that
S*e {{1},{1,2}}.

Therefore, we have,
{1}, if V1 =

Lie
(1,2}, ifv =1

St = (B.32)
Note that since r3 < , for any S and ¢, such that ¢ > 3 and ¢ € S, we have
R(S,v) > R(SU{i},v).
Therefore, if v; = % + ¢, for any S # {1}, we have
R({1},v) = R(S.v) = R({1}.v) = R({1,2},v) > . (B.33)
and similarly if v; = 3, for any S # {1, 2}, we have,

R({1},v) = R(S,v) = R({1,2},v) — (g}):% (B.34)

5| -

Before providing the formal proof, we first present the intuition behind the result.
Any algorithm that does not offer product 2 when v; = 1/2 will incur a regret
and similarly any algorithm that offers product 2 when v; = 1/2 + €. Hence, any
algorithm that attempts to minimize regret on instance Iune has to quickly learn if
v; = 1/24€ or vy = 1/2. From Chernoff bounds, we know that we need approximately
1/€* observations to conclude with high probability if v; = 1/2 + € or 1/2. Therefore
in each of these 1/¢* time steps, we are likely to incur a regret of ¢, leading to a
cumulative regret of 1/e ~ VT. In what follows, we will formalize this intuition
on similar lines to the proof of Lemma 2.8. First, we present two auxillary results

required to prove Lemma 2.4.
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Lemma B.5. Let S be an arbitrary subset of {1,--- N} and Py, Py denote the
probability distributions over the discrete space {0,1,..., N} governed by the MNL
feedback on instance fMNL when the offer set is S and vi = 1/2 and vy = 1/2 + €
respectively. In particular, we assume,

0, ifi¢gSU{0},

2, ifi=0,

1

1 ifies.

/

0, if i ¢ SU{0},
1 2, Zf?’ =0,
_ X
2+ S|+ 21 (1€ S) 1 if i € S\{1}

| 142 ifi=1

Py (0)

Then for any S,
KL (P5||Py) < 4¢, (B.35)
where KL is the Kullback-Leibler divergence.

Proof. If 1 € S, we have P5 and P} to be the same distributions and the Kullback-

Leibler divergence between them is 0. Therefore without loss of generality, assume

that 1 € S.

L (R3PY) = 3 Ps)tos (50
o1 (PEO) 50 10g (PEU) S 1og ((Por()
= Py (0)leg (7»5(0) +]~e%\1p° )t (Pf(j)) Pl ( i) ) |

EESS (1+ % >+ L (1_ 2(|S] + 1) )

T IS[r2 8 21+ 15]) " 18[+2 ® 2+ SN +20) )"
2(|5|+1)e( 1 ) )

< 1— <4

= (|S[+ 2)2 (1+20)) ="

where the first inequality follows from the fact that for any z € (0, 1),

log (1+2) <z and log(l —z) < —x.
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Lemma B.6. Let Py and Py denote the probability distribution over consumer choices
(throughout the planning horizon T' ) when assortments are offered according to algorithm
Amne and feedback to the algorithm is provided via the MNL-Bandit instances fMNL,

when vy = 1/2 and vy = 1/2 + € respectively. Then, we have,
KL (Po|[P,) < 4T¢?,

where KL (Po||Py) is the Kullback-Leibler divergence between the distributions Py and

Py. Specifically,

KLFE) = 30 Plojios (1), (B.36)

ce{0,1,- ,N}T

where ¢ € {0,1,--- , N}T is the observed set of choices by the algorithm At

Proof. From the chain rule for Kullback-Liebler divergence, it follows that,
T

KL (IBo[|Py) =) > Po(c*)KL (Po(ct)[[Pi(ce)ler, -+ s emn)
=1 {e1 e 1}€{0,0, N}t-1

(B.37)

where,

KL (Po(co)[[P1(ce)|er, -+ s em1) = ZPO {ciler, -+ cima}log (

PU {Ct|clu"' 7Ct1}>
P, {Ct’Ch"' 7Ct71} .

Note that assortment offered by Aune at time ¢, S; is completely determined by
the reward history ci,...,¢, -1 and conditioned on S;, the reward at time ¢, ¢ is
independent of the reward history ¢y, -, ¢;_1. Therefore, it follows that,
Po (ciler, -+ 1) = Pot(e) and Py (ciler, - cmr) = Prt(e),
and hence, we have,
KL (]P)O(Ct)H]P)l(Ct)‘Cl"" 7Ct71) KL P Ct HP ) (B38)

where P and Py are defined as in Lemma B.5. Therefore from (B.37), (B.38) and

Lemma B.5, we have,

!

POHP1 Z HP < 4T€2.
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Proof of Theorem 2.4: Fix a guessing algorithm Apn., which at time ¢ sees
the consumer choice based on the offer assortment S;. Let Py and P; denote the
distributions for the view of the algorithm from time 1 to 7T, when v; = % and
v = % + € respectively. Let T, be the number of times A offers product 2 and let
Ep,(T3) and Ep, (T3) be the expected number of times product 2 is offered by \A.
T
B, (T2) — Bz, (T)| < |D Po(2€5,) —Pi(2 € 5],

t=1

<Y IPo(2€ 8) —Pi(2€ Sy)], (B.39)

t=1

T
1 T
<> :5\/2 log 2 - KL (Po|Py) = E\/QlogQ - KL (Po|Py),
t=1

where KL (Py||P;) as the Kullback-Leibler divergence between the distributions P,
and Py as defined in (B.36) and the last inequality follows from Pinsker’s inequality.

From Lemma B.6, we have that,

KL (]P)OH]P)I) S 4T€2.

Substituting the value of €, we obtain KL (Po[[P;) < 3 and from (B.39), we have
T
(B (T3) — Ep, (T5)] < - (B.40)
Since v, can be % and % + e with equal probability, we have
1 1 1 1
Reg 4, (T, V) = §RegAMNL T,v,|v, = 3 + éRegAMNL T,v,|v, = 3 +e].
(B.41)

From (B.34) we have that, in every time step we don’t offer product {2}, we incur a

Regret of at least 55 and hence it follows that,

1 €
Reg.AMNL (T’V’ ‘Ul = 5) 2 %(T - EPO(TQ))v

and similarly from (B.33) we have that, in every time step we offer product {2}, we

incur a Regret of at least 55 and hence it follows that,

1
V] = — + 6) > LEPI(TQ).

Reg 4,0 (T,V, 5 > 53
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Therefore, from (B.41) and (B.40), it follows that,

€ 3Te

Ry (T V) 2 o [T — (B, (T2) — Bz, (T2)) 2 2
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Appendix C

Thompson Sampling for the MNL-Bandit

C.1 Bounds on the deviation of MNL Expected
Revenue

Here, we bound the difference between the expected revenues of the offer set S,
corresponding to the sampled parameters, u(¢) and the true parameters, v. In order
to establish this bound, we will first present two concentration results. In the first
result, utilizing the large deviation properties of Gaussian distribution, we show that
over time, the posterior distributions concentrate around their means. The second
result proves a Chernoff-like bound which suggests that the means of the posterior
distribution concentrates around the true parameters. The second result is similar to
the Corollary A.1 which is a consequence of the exponential inequalities for Geometric

random variables that were derived in Theorem A.1.

Proof of Lemma A.1l.

Let 6; = \/ 4(”"””):;1% (D) We analyze the cases &; < 1 and §; > 1 separately.

Case 1: §; < % : For any v; < 1 and ¢; < 1/2, we have,

>ml 1
2460+ o) = 601 f o) = e8P H D,

and

>mlog(p+1).

6(1+v;)2\" 1+4v;) = 6(1+uv)
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Therefore, substituting §; = \/ 4(”#21])21&? (1) iy Lemma A.1 with &;, we have,

1

P

P (m(e) < \/4”1'(“1‘ *2mlog(p ¥ ”) s1- 2

n;(0) pm

From the above three results, we have,

. (I@-(ﬁ) < \/16@-(6) (6:(6) + 1) log (p + 1))
' ' n;(0)

By assumption, v; < 1. Therefore, we have v;(v; + 2) < 3v; and,

5 () — 12v;log (p+ 1) 3
P (!vl(ﬁ) i < \/ nel0) ) >1 o

4(vi+2)m log (p+1)
vin; (L)

(C.2)

Case 2: §; > % : Now consider the scenario, when \/ > % Then, we

have,
5 A 8(v; + 2)mlog (p + 1)
! UZTL,(E)

1
>_7
-2

which implies for any v; < 1,
nvzé_zz ’I’L’Uigi
2014+ 0)(1 +v;)2 — 12(1 + v;)’
n(izvz 2521)1 > nvig,;

Therefore, substituting the value of §; in Lemma A.1, we have
24m1 1 2

P (l@-(ﬁ) oy > Amlcs (ot )) <z

n pm

Proof of Lemma 3.3: Note that we have y;(¢) = 9;(¢) +6;(¢) - max {69 (¢)}.

Therefore, from union bound, we have,

P{11i(0) = 5:(0)] > 46,(0)/log K [6,(0) } =P (L_J {o0) > MOW})
<Y P (¢(0) > 4/log )

Jj=1
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The result follows from the above inequality and the following anti-concentration

bound for the normal random variable () (¢) (see formula 7.1.13 in [1]).

1
4/

Corollary C.1. For any item i and any epoch £, we have

~ 1
e T2 Py (|0(])(€)| > z) < 3¢ e 212,

E (Jui(€) — 9:(0)]) < 464(£)+/1og TK.

Proof. In Lemma 3.3, we show that for any »r > 0 and i =1,--- , N, we have,

P (Im(ﬁ) —5:(0)] > 46,(0)/Tog TK) < 7“4.1K3’

where 6;(() = 4/ 507}1(”“) + B logT . Since Sy C {1,---, N}, we have for any i € Sy

and r > 0, we have

|pJZ 0) — | > 46;(¢)\/logrK for any i € Sg)

N
<P (U | (€) — 0;(6)] > 4UZ(€)\/long> : (C.3)
i=1
N
<

Since |p;(¢) — 9;(¢)| is a non-negative random variable, we have

() - (0] = [ TP 0) — 0,(0)] = a} d,

P {|1s(0) — ir(0)] > o} do + / P{Js(0) — 6:(0)| = «} da,
46;(0)v1og TK
46;(£)y/log (r+1)K
< 46,(¢ \/logTK—l—Z/ P{Y > z}dx,

46;(£)\/logrK (04)

/4@ O)V1Tog TK

0

a = N/l K+1 N\/il
< 45,(0)V1og TK + 5 — V-5 (r ;K)’i’* 8"
r=T

< 46;(0)\/logTK for any T'> N,

where the inequality (a) follows from (C.3). O
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C.2 Proof of Theorem 3.1

In this section, we will utilize the above properties and follow the outline discussed
in Section 3.3.1 to complete the proof of Theorem 1. For the sake of brevity we will

use the following notation for the rest of this section.

e For any assortment S, V'(5) 2 Y ics Vi
o For any ¢,7 < L, define AR, and ARy, in the following manner

ARy 2 (1+V(S) [R(Se, w(£)) — R(Se, v)]

ARy, 2 (14 V(S,) [R(Se, w(€)) — R(Se, p(7))]

e Let Ay denote the complete set €2 and for all £ =1,..., L, define events A, as

Ap = {!W) — i 2 \/24m12ig+1) n 48107i$)+ D for some i =1, ,N}

We will bound the regret by bounding both the terms in (3.4). We will first focus
on bounding the second term, Reg, (7', v) and then extend this analysis to bound the

first term, Reg, (7, v).

Bounding Reg,(7T,v): Note that conditioned on event S, the length of the ¢
epoch, |EA is a geometric random variable with probability of success po(S;) =
1/(1+ V(Se)). Therefore using conditional expectations, we can reformulate Reg, (7', v)

as,

Reg,(T,v) {Z ARg} (C.5)

Noting that A, is a “low probability” event, we analyze the regret in two scenarios,

one when Ay is true and another when .A§ is true. More specifically,

E(AR;) =E[AR; - 1(Ar1) + AR, - 1(AS )],

§K+1

+E [AR, - 1(A45_))] ,
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where the last inequality follows from Lemma A.1 and the fact that both R(Sp, pu(¢))
and R(Sy,v) are both bounded by one and V(S,) < K. Therefore from Lemma 2.3

it follows that,

E[AR,-1(A_))] <E

D lw(0) =il ﬂ(Ail)] :

1€Sy

<E |3 |u(0) - is(0)

1€Sy

(C.7)

+E

\/24%- log (£+1) , 48log (£ +1)

where the last inequality follows from the definition of event A, and triangle inequality.

In Corollary C.1, we use Lemma 3.3 to show that the first term in above inequality,
which is difference between the sampled parameter and the mean of the posterior
distribution is bounded. Therefore, from (D.23), (D.24), (C.7), Corollary C.1 and
Lemma A.1, we have,

Rego(T,v) < C1E (Z DT long)K > T O,E (Z 3 log 1K ) . (C.8)

(=1 €S, =1 €S, ’

where C7 and (5 are absolute constants. If T; denote the total number of epochs

product i is offered, then we have,

(a) n
Regy(T,v) < CoNlog> TK + C1E ( V;T; log TK) ,
=1

(b) N
< CoN1og’ TK + C1 Y +/vilog (TK)E(T).

i=1

T.
l 1
Inequality (a) follows from the observation that L < T, T; < T, Z < T

and Z

ni(£)=1
Smce that expected epoch length condition on the event S = Sy is 1 + V(S,), we

s
s

< log T;, while Inequality (b) follows from Jensen’s inequality.

Z

have, > v, E(T;) < T. To obtain the worst case upper bound, we maximize the bound

in equation (C.9) subject to the above condition and hence, we have
Regy(T,v) < C1\/NTlog TK + CyN log® TK). (C.10)
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We will now focus on the first term in (3.4), Reg, (7', v

Bounding Reg,(T,v): Let T denote the set of optimistic epochs. Recall that £EA"(¢)
is the set of non-optimistic epochs between ¢** epoch and the subsequent optimistic

epoch. Therefore, we can reformulate Reg;(T,v) as,

Regy(I,v) = E[Y 1(CeT)- 3. |&I(R(S",v) - R(S,,u(7))]
(=1

TEEAN(K)
Note that for any ¢, by algorithm design we have that S, is the optimal set for the
sampled parameters, i.e., R(Sy, u(¢)) > R(S*, u(¢)). From the restricted monotonicity

property, for any ¢ € T, we have R(S*,u(¢)) > R(S*,v). Therefore, it follows that,

Reg (T, v) <E[> 1(L€T)- > IE|(R(S,p(t) = R(S- (7)),

1 TEEAN ()

¢ ED 1(CeT) Y |EI(RSeul) = R(Se,u(m)],  (C.11)

where inequality (a) follows from the fact S, is the optimal assortment for the
sampled parameters pu(7) and inequality (b) follows from the observation that the
expected length of the 7" epoch conditioned on event S = S, is 1 + V/(S,). Following
the approach of bounding Reg, (7', v), we analyze the first term, Reg,(7,v) in two

scenarios, one when A, is true and another when A is true. More specifically,

E <ZfesA"(e) AR“) B cem AR - L( A1) + ARy, - 1(A7 )]

K+1 K+1 ’
E[[EA(0)] - 1(Ap-1)] + ARy, - 1(AS_y)],

SR 1)) B S S (0 — )l (C.12)

TEEAN (L) 1E€S,

B0 1A T E |14 3 S () — vl + () |

TEEAN () iES,
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where inequality (a) follows from the fact that R(Sy, p(¢)) and R(Sy, u(7)) are both
bounded by one and V' (S;) < K, inequality (b) follows from Lemma 2.3 and inequality

(c) follows from the triangle inequality.

Following the approach of Bounding Reg,(7,Vv), specifically along the lines of
(C.7) and Corollary C.1, we can show that

vilog TK n logTK
ni(() ni(l)
Since 7 > ¢ we have n;(¢) < n;(7). Therefore, from (C.11), (C.12) and Lemma A.1

(A7) - [a(l) — v < G

we obtain the following inequality.

Reg,(T,v) <E

. (C13)

An v;logTK logTK
Z‘S |Z (Cl n;(£) T n;(0)

LeT €Sy

for some constants Cy and Cy. If |EA"(.)| is not a random variable and constant, then
bounding the above inequality is similar to bounding Reg, (7', v) (see (C.8)). In the
remainder of this section, we will show how to utilize Lemma 3.6 to bound Reg, (7', v).

From Cauchy-Schwarz inequality, we have

An vz-logTK_ 1/2 [ oAn /|2 1/2 | ilog TK
E ZZ"‘: (O)lCh Tl SClZZE [[ef )] - E ok
LeT €Sy a ? €Sy
logTK log? TK
An 1/2 An 2 1/2
B[S T 0B | <oy e e ee K]
LET €Sy a ? €Sy

Therefore from Lemma 3.6 for some absolute constant C', we have,

v;log TK U [log® TK
< (S5 [HaTE] 5 [sg—mba
{ i€S, ¢ iES, ?
v;logTK lo TK
I BNVl S

¢ iesS, v ¢ iesS, 1

(C.14)

C
<— TKE TKE
K

where the last inequality follows Cauchy-Schwarz inequality. Since v; < 1 for all 4,

we have,
N

T;
S SR 3 N VTR T

¢ €S, i=1 n;(0)=1
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and

N T;

¢ i€S, Z i=1 n,(

Therefore by substituting preceeding two inequalities in (C.14), we obtain that

NT

T, v) <
Regl( V) C K 9

for some constant C. The result follows from this inequality and (C.10).
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Appendix D

First,

Thompson Sampling Approach for Attribute Based

Learning

we introduce some notation which we will use throughout this section and

establish some strutural results that will play a key role in proving

D.1

Notation and Key Structural Results

For the rest of this section, we will use the following notations.

t—1

M, 2 Z Z ;T (D.1)

T=11€S,

. For any v e R" and 7 € S, let

ey

1+ Zjes evi’

G253 ps (0-2) - an

T=1i€S,

12

PS(%‘)
(D.2)

Let 1; () be the indicator random variable corresponding to the event that item

7 has been clicked at time ¢.

Let 0%, ¢ be the MLE estimate of 6, at time ¢. From the first order conditions

we have,

i ZPST (OnLe - Ti)xi = i Z 1,(7) (D.3)

T=114i€S; T=114€S;
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n 2 (ps, (0. x) — 1(7)) -,
i€S, (D.4)

A
& = 9:(0.) — 9:(Ohae)-
6. Let F, be the filtration (history) associated with the policy upto epoch 7. Note

that by definition of choice model, 7, is a martingale adapted to (F).

7. From (D.3), we have,
t—1
T=1

8.
ot = exp (e - 7i + 0 - Ol )
@f = eXp (Qf\/ILE : l"z) ) (D.6)
v; = exp (0, - ;) .

9. Following (??), we define the analysis epoch.

T ={t:o{(t) > v forallie S},
succ(t) =min{7 € T : 7 > 7} (D.7)
EMt) = {7 :7 € (t,succ(t))} forallt € T.

D.1.1 Key Technical Lemmas

In the following result, we show that the inner product of any real valued vector p

and the martingale 7, is bounded.

Lemma D.1. For any p € R4 |p-n,| < \/2 D ics. (- z:)°.

Proof. By definition of 7n,, we have

lp-n.)? = | Zp - 2; (ps, (0, - z;) — 1 (iis clicked at time 7)) |

€Sy

From Cauchy-Schwartz inequality, it follows that,

P <Y (- 2i)? ) (ps, (0. - 1) — 1i(7))%.

1€ST i€Sr

177



We have for any non-negative numbers a and b, we have (a — b)? < a® + b. Noting
that ps_(.) and 1(.) are non-negative numbers, we have,
o> <D (i) (Z P, (B i) + ) ﬂi(T)) :
i€Sy i€Sy i€Sy
Since at most one item can be clicked, we have » ., ¢ 1 (i is clicked at time 7) < 1
and therefore we have,

lp-n,l” < Z (p-x)° (Zpé(é* xi) + 1) :

1€S, i€S,
Noting that pg, (.) is non-negative, we have ..o p% (0-2;) < (3,cq ps, (0 - [L’Z))Q <1
and therefore it follows that,
o> <2 (p-mi)?.
i€S,

]

We follow the approach of [22] and use the following facts to derive concentration
properties of the MLE etimate. We refer the reader to Exercise 2.4 of [48] and

Corollary 2.2 of [19] for the proof of these facts.

Fact D.1. For any filtration (Fi;k > 0) and real valued martingale ny, adapted to

2p2

(Fi). If |nk| < B, then we have E [e¥%|Fp_y] < e’

Fact D.2. If A and B are random variables such that

2
E [exp {fyA — 7?BQH <1 forall v € R.

Then, for any 6 > /2 and y > 0,

(120 (s (2 00))) <o (-5),

In the following result, we establish a sub-gaussian property for the inner product

of any real valued vector p and the martingale 7.
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Corollary D.1. For any p € R?, we have for any T,
E [ |F,y] < 700, (D.8)
E [exp (vo - & =7 lpll3g)] < 1. (D.9)

Proof. From Lemma D.1, we have that p - 7, is a martingale bounded by

\/ 2 ics. (p-xi)* and therefore from Fact D.2 we have the first result.
Now we will prove the second result. From the law of conditional expectations, we

have

E [exp (vp - & = ¥llpl3n)] = E (E [exp (vo - & = 2llpl3s) | Fi-1])

=E (E exp (27 (P Ty — iGZST(p : xz’)2>> |E—1D

t—2
=E | exp [Zv(p-m (p- x:) )
€S

T=1

"Eexp | p-m-1 — Z(P'%)Q Fi1

1ESE_1

g g
E( ’y(p-m—Z(p'xi)Q)DSl-

Claim D.1. For any 0 and 0 and any assortment S, we have,

§5Z)(9—A

From (D.8), we have

E [exp (vp- & =7 llplis)] <E

)ps (6 - 2;) — ps (9 : x)

Proof. From triangle inequality we have,

|PS (9* : xz) —Ps (elt\/ILE : %)‘
< Z < o eé'mi> + Zjes e(elzﬁé'xi) — e(é':’:ﬁg'xi)
= (142 es€” )1+ 2 e5€"™)

0-z,; éxz 02 0-x;
- D ics |€ + D ies ZjeS elastbas) _ o(Oartoa)
B (143 ese®™) (1 + 3 cqe"")

0-x; eéwi
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For any z < 0, we have 1 — e* < x. Therefore, for any x, y, it follows that |e® —e¥| <

max{e”, e’ }|z — y|. Using this fact,

0,20 s e )| < 3 OO
Ps\Us - Ti) — Ps i) | > - )
M i€S (1 + ZjeS ee.xj)(l + Zjes ea'xj)

+ ZiES ZjeS max {e(é'xﬁe'xi), €<é'xi+9.mj)} (’ (0~ é) C X

+’(0—é)-xj

)

(1+ ZjeS e?) (1 + ZjeS evs)

Using the fact that

mas (e, e*7 < (14 30 M1+ Y )

jes jes
S max{er e Pty < o143 )1+ Y ),
jes os =

we will have,

‘ps (0-x;) — ps <é : l‘z)

92‘(9—@).@ .

i€S
]
We adapt the following result from [22].
Lemma D.2. Letto > d+ 1. Then,
T 2
KT

SN min{|lz?, 1.1} < 2dlog (ch )

t=to i€ ' 0
Proof. Enumerate the vectors {x;}ies, t=1... 7 s y1,- -+ ,yp, where p = Zle |S;|. Let

My = S22 yyT. Furthermore, let , be such that
det <Mt) — det(M,).

Since y,y! is a positive semi-definite matrix for any 7 we have,

T p
SO minf ], 013 < S mind |yl 1) (D.10)

t=to i€St =t
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We will now focus on bounding the right hand side of (D.10). By definition of Mg+1,

we have

R . N ~ ~ /
det(Myy 1) = det(M; + yeyi ;) = det(M,) (1 + My, (Mé Wyg) )

p
— det(N1,) (1+ flyell g+ ) = det(VT5,) TT (14 Iyl ) -
t=tg
where the last line follows from the fact that 1+ Hngz is an eigenvalue of the matrix
I+ M[l/ Zyg- <M[ 1 2yg>/ and that all other eigenvalues are equal to one. Thus, using
the fact that < 2log (1 4 z) which holds for any 0 < x < 1, we have

p
S ming )2 1} <2 log (lylPg - +1)

0=ty ¢=tgy

p
=2log [ | (IIyHQJ\z;1 + 1)

=ty
— 2log (—det(%)> — 2log <—det(MT)> .
det(M,,) det(M,)
Note that the trace of M; is upper bounded by Ktc?. Then, since the trace of the
positive definite matrix M, is equal to the sum of its eigenvalues and det(M;) is the
product of its eigen values, we have det(M;) < (ktc?)?. In addition, det(M;,) > g
since tg > d + 1. Thus,

2
z:z:mm{HmZH2 1,1} < 2dlog (K)\C T)

t=tg 1€S;

Corollary D.2. Let tg > d+ 1. Then,

KET
Zme{HaszM L1) <2d10g( i )

t=to i1€St

Proof. Using the Cauchy-Schwarz inequality and Lemma D.2, we have

T T
- . KT
g E min{||z;|[,,-1, 1} < VKT g E mln{HmiH?\/[;l, 1} < \/ZdKTlog ( ) )

t=tg 1€S; t=tg 1€S; 0

]
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D.2 Concentration Bounds

Lemma D.3. For any 6 > 0, we have

(||§t||M—1 > 124/dlogdd ) d858.

Proof. Let 6 = 4+/dlogtd, S; be such that 52 M, and e; be the i*" unit vector (i.e.,
for all j # i, e;; = 0 and e; = 1). Noting that [|&2 -, = 20, €75, e;el S;1¢,, we

have,

P (II&H2 1z 3d52> > S el S > 9d52] ,

P [ 13
i=1
A&l s el 5776 > 952}) ’

P(
i=1

d
<Y P& el S > 967 )

d
d

IN

(D.11)

Let p; = S;'e;. From Corollary D.1 it follows that random variables A = p; - & and
B = |pill3,-+ satisfy the conditions of Fact D.2. Using the fact [|p;]|, ., = 1 and
t t

substituting y = 2 in Fact D.2, we have,

(KtTS ez} > 35) T8

The result follows from the above inequality and (D.11). m

Now we will prove the finite time concentration bounds for the MLE estimate,
O e of Algorithm 9. However, these bounds depend on the problem parameters.

Specifically, we prove that,

Lemma D.4. For any 6 > 0, we have,

JdTog 5K d 1
60v/dlog 0 kd S min {fai] 5y . 1})

P (\psT (0 @) = ps, (Oee - @:)| > = K5

H 1€ESt
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Proof. We will follow the proof steps of [22]. From Fundamental Theorem of Calculus,

we have
&= gt(g*) - gt(eﬁ/lLE) = Gt(e* - QK/ILE)v
where

1
G, = / V(s0, + (1 — 5)0iye)ds.
0

From Claim D.1, we have

|ps, (0« - zi) = ps, (Bjace - i) | < min {52 (0. — Oaie) - il 1} a

ies

< min {52 |G, -y, 1}
i€S

< min {52 oo llaillgor 1} -
iesS

We have Vg, (0) = S0_1 >ics, Titipg, (0 x;). By Assumption 4.2, for any 6 € © and
i, we have pg (0 - x;) > c,. Therefore, we have G; > ¢, M, and it follows that,
t : o
‘PST (0. - z;) — ps, <9MLE : x,)| < min § — Z ||ft||M;1 ||$i||M;1a L.
c
K ies,
If % > ies, €ella1l|@illyr- = 1, then the result is trivial since the probability of the
event under consideration is zero. Therefore, we focus on the case when
)
= Ml il < 1.
Cu i€S,
Therefore, we have,

60
P (}psf (0. - ;) — ps, (Oyaie - )| > - Z VdlogdKd - ||:ri||Mt1>

P oies,

12
<P <Z 1Eellagrlill a2 > — > VdlogdKd- HxiHMt_17>

i€S, B oies,
12
< 5P (6l bl > 2 VARRIRG- il ).
i€Sy ®
The result follows from the above result and Lemma D.3 O]
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Lemma D.5. For any t <T, we have for any r > 0,

1
Pr (|9fnax| > 4\/10ng> <

rd K3°

Proof. By definition we have ¢ = max {69 (t)}. Therefore, from union bound,
J=Ly

we have,

Pr <O {ej(t) > m/W}) < i Pr <9J‘(t) > 4\/@) .

j=1
The result follows from the above inequality and the following anti-concentration

bound for the normal random variable 6\ (¢) (see formula 7.1.13 in [1]).

1
4/

e T2 - Py (|9(j)(t)| > z) < e /2,

DN | —

Corollary D.3. For any assortment S and time t,

) < 2EEE S i

H €Sy

E (|ps (3}) — ps (9}

Jill g1}

Proof. From Claim D.1, we have

Ips (3}) — ps (8})] < min {52 |log(}) — log ()], 1} ,

€S

::mm{5§jw;gwummlﬂ}7 (D.12)

i€s
. 5 "
Smln _Z|0max| ’ ||xi||M{171 )
u ics
where the last inequality follows from Assumption 4.2. In Lemma D.5, we show that

for any r > 0, Pr (|0%,,.| > 4y/1ogrK) < —=. Therefore it follows that,

N A )5 1
Pr (\ps (0}) —ps (8))] > mln{a\/longZ HxiHMtIJ}) < (D13

i€S

If %Zie& ViogrK||zl[j;-+ = 1, then the result is trivial since the probability

of the event under consideration is zero. Therefore, we focus on the case when

> Vies, VIBTE ]y < 1.
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Let X = |ps (0}) — ps (0})] and y = % > ies llzillp-1 Since X is a non-negative

random variable, we have

E(X) = /Ooo Pr{X > 2} du,

yVlogrK o0
:/ Pr{sz}dx+/ Pr{X >z} dz,
0 yv/logrK
o0 yy/log (r+1)K
<y 10g7‘K+Z/ Pr{X >z} dz,
=1 Y y(t)VIogrK (D 14)

a = N+/log (rK + 1) — Ny/logrK
<yVigTK + ) e ,
r=T

< 25 il V0B TR

K oies,

where the inequality (a) follows from (D.13). O

D.3 Anti-Concentration Property: Bounding the

Length of the Analysis Epoch

Here, we prove that the expected length (and higher moments) of the analysis epoch

(see D.7) is bounded by a constant. Specifically, we have the following result.

Lemma D.6. Let EA™ be the group of consecutive epochs between an optimistic epoch t
and the next optimistic epoch t, excluding the epochs t and t. Then, for any p € 1,2],

we have,
1

2
EVP [|lEA ()] < 5= + 307,
K
Proof. For notational brevity, we introduce some notation.

Notation.

o r=|(¢+ 1)), 2= /log (rk + 1), and for each i = 1,--- , N,
60+/dlogd

oi(t) = TH%‘HH;l
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e Define events,

Ay = {ps, (8}) > ps, (0}) + 264(t) for allie S*},

By = {ps, (0;) + 26:(t) > ps, (v;) forallie S}, (D.15)
t+r
B.= () B
T=t+1

We have,
Pr{|e?®)|" <q+1} =Pr{|E(t)| <r}.
By definition, length of the analysis epoch, EA"(¢) less than r, implies that one of the

algorithm epochs from ¢ + 1,--- |t + r is optimistic. Hence we have,
Pr {‘SA"(t)‘ <r}=Pr ({ {0] > v; for all i € S*} for some 7 € (t,t+r]}> :
> Pr ({ {0] > 0] 4+ z6;(t) > v; for all i € S*} for some 7 € (¢,t + T]}) :

From (D.15), we have,

Pr{|e*(t)| <r} > Pr( U ATQBT> :

T=t+1
i (D.16)
:1—Pr< N AguBg).
T=t+1
t+r
We will now focus on the term, Pr ( N AU Bﬁ),
T=t+1
t+r t+r t+r
Pr< N AguB:) = Pr { N AiUBﬁ}ﬂBT> —|—Pr<{ N AguB;}mB:) ,
T=t+1 T=t+1 r=t+1
t+r
<Pr| N A:) + Pr(B°),
T=t+1
t+r T+Tr
< Pr m Ai) + Z Pr(B?),
T=t+1 t=7+1
(D.17)
where the inequality follows from union bound. Note that,
Pr(BS) = Pr (U {07 + z6:(7) < vz}> :
iest (D.18)

< Z Pr (0} + 264(7) < v;) .

1€S*
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Noting that \/dlogd-logrK = log(drK). Noting that [[z;|lz-1 > [lzil[y-1, we

substitute 0 = rK in Lemma D.4 to obtain,

. . 1
From (D.18) and (D.19), we obtain,
. 1
Pr(BT) S W’ and
T4+7 1 (DQO)
Pr(By) < .
Z "(Bi) < (drK)7

t=7+1
We will now use the tail bounds for Gaussian random variables to bound the probability
Pr(A¢). For any Gaussian random variable, Z with mean p and standard deviation

o, we have,

1 x 2
Pr(Z > >___ 7 /2
r( u+xa)_mx2+1e

Noting that e” is a monotonic function, by construction of /Lz(j )(t) in Algorithm 9. We
have,
t+r
M(r]&)zP(%W@gzﬁmmteﬁm+ﬂam&mﬂj:L~yK)
T=t+1
Since §W(t), j=1,--- ,K, t=7+1,--- ,7+r are independently sampled from the

distribution, N (0, 1), we have,

Py h“ ae b oy 1 log (rk +1) 1
A Vorlog(rK +1)+1 K +1
< exn | — r1/2 2 /log (rK + 1) (D.21)
= &P Vordlog (rK +1)+1

rK

1 e12
< W for any r > e

From (D.16), (D.17), (D.20) and (D.21), we have that,

1 1 el?
An > _ _ > I
Pr {|5 (t)} < 7"} >1 R k) for any r > 7
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From definition r > (¢ 4+ 1)'/? — 1, we obtain

1 1 12 P
An p
Pr{|€ (t)} <q+1}Z1_(q—|—1)2~1/P—1_(q+1)2'2/10—1 for any ¢ > (7%—1) .

Therefore, we have,

SA“ PrS pZt,
E || {lEMP >t}

< (fu) £ Y PrEOF = 0.

el2p
q= Kp

o e 1 1 612 p
SGP—FZW—FWS(?—FI) + 30.
12p

9="Fp

The result follows from the above inequality.

D.4 Proof of Theorem 4.1

Notations. For the sake of brevity, we introduce some notations.

e For any ¢,7 < T, define AR, and AR, , in the following manner

||l>

[R(S,,3") — R(S),v)]
[R(S,,#*) — R(S,,#")]

AR,

>

ARt,T

e Let Ay denote the complete set © and for all t = 1,...,T, define events A; as

60+/dlogtKd .
_— Z [|@i]lp;—1 for some i

K 1ESE

Ar = {|p5t (QltvlLE : %) — ps, (0 - xz)‘ >

e A= Ui*l A
Reg(T.60,) : =E | Y (R(S",v) = R(S;,v))
T T (D.22)
=Y E[R(S",v) = R(S;,¥)] + > _E[R(S,,¥') — R(S}, V)]
h Reg;(rT,v) h Reg;( ) ’
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We will complete the proof by bounding the two terms in (D.22). We first focus on

bounding Reg, (7', v).

Bounding Reg,(7,v): We have the second term in (D.22) reformulated as

Reg, (T, v) {Z ARt} (D.23)

Noting that A; is a “low probability” event, we analyze the Regret in two scenarios,

one when A; is true and another when A is true. More specifically,

E(AR) =E [ARt L(Ai—1) + ARy - 1( A7 1)} )

Using the fact that R(S;, v*) and R(S;,v) are both bounded by one, we have

E(AR;) < Pr(A;_1) + E [AR, - 1(A5_))] .

Substituting 6 = ¢t in Lemma D.4, we obtain that Pr(A; ;) < Therefore, it

1
KTdT8"
follows that,

E{ARt}<l+E[ARt 1A )] (D.24)

From triangle inequality, we have,

|R(S:, %) = R(S,,v)| < |ps, (&) — ps, (v1))]

1€St

Hence, it follows that,

E[AR,-1(A; )] <E

> s, (01) = s, (vi)] - 1( 51)]-

1€St

From triangle inequality, we have

E[AR; -1 E | [ps (@) — ps.(8])] - 1 ?1)]
1€St

+E Z‘pSt — Ps; UZ) ’IL< f—l)]?
€St
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and from the definition of the event A¢ ,, it follows that,

S [ps (8 — ps, wm]

1€St

E[AR, - 1(A4A5 ;)] <E

(D.25)
\/dl tK
60 bUyalogtisa me{ ‘%ZHM 1 1}]
i€ St
From Corollary D.1, we have
o5v/log T K
B[S I 69) - o t>\] ST |5 i {1}
1€St i€St
From (D.23), (D.24) and (D.25), we have,
T
65v/dlog dT'K
Reg,(T,v) < 08 E (ZZmin{HxiﬂMt_l,l}> :
Cu t=1 ieS;
From Corollary D.2, we have
1 2KT
Reg, (T, v) < 130d— \/ log (Cw > TK logdlog TK (D.26)
Cy 0

We will now focus on the first term in (D.22).

Bounding Reg,(T,v): Recall, T is the set of optimistic epoch and the sanalysis

tth

epoch £A"(t) is the set of non-optimistic epochs between ™" epoch and the subsequent

optimistic epoch. Therefore, we can reformulate Reg, (7, v) as,

T

Reg,(T,v) =E | Y 1(teT)- > (R(S",v) - R(S,7"))

t=1 TEEAN(L)
Note that for any 7, by algorithm design we have that S, is the optimal set when the

MNL parameters are given by v7, i.e.,
R(S,,%7) > R(S,,¥7).

Similarly, we have R(S;, ¥') > R(S*,¥"'). Furthermore, since ¢ is an optimistic epoch,
from the restricted monotonicity property (see Lemma 2.3), we have R(S* v') >

R(S*,v). Hence, for any t € T, we have
R(S;,v') > R(S*,v).
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Therefore, it follows that,

T
Reg,(T,v) <E | 1(teT)- Z AR, | . (D.27)

t=1 TESA”
Following the approach of bounding Reg, (T, v), we analyze the first term, Reg, (T, v)

in two scenarios, one when A; is true and another when A is true. More specifically,

E Z ARtT =E Z ARtT' At 1)+ARtT. ( ?—l)

TeEAN(t TEEAN (¢

From triangle inequality, we have,

|R(S:,¥*) — R(S;,v7)| = |R(S;, ¥*) = R(S;, v) + R(S;, v) — R(S;, V")
< Z (lpst (f}f) — Ds; (U1)| + |pSt (f}:) - pSt(vi)D
1€St

Hence, it follows that,

E |AR,., - 1( } > s, (@) = ps.(vi)] - 1( Ai_l)]
1€St

+E Z|p5t — Ps, Uz)| IL( A?l)] .
1€St

Using the fact that R(S;, V") and R(S;,97) are bounded by one, we have

E (ARt,T) S E

]]'(At—l) + Z (’pSt (f&f) — Ps, (UZ)‘ + |pSt (@Z) — Ps, (vl)D : ﬂ'( Afl)]
1€St
(D.28)
From Corollary D.1, we have

B | [ps. () — s At)!] < 2SR S min 0,1}

€St H 1E€St

and by definition of the set 1 (/lt,1> , we have

B[S s () - ps o )‘] < SOVTIOE TR ¢~

min{HxiHMt—1, 1}.
K 1E€St

1E€St

Therefore from the above two inequalities, it follows that,
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dl Kd
E | [ps, () pstvl>|]s65v O8RS min {1}

1ESE K €St

Similarly, we have

Z |p5t pSt Uz)|] S 65 dlcogTKdzmln{Hl‘ZHMtl,l}

H iESE
65/dlog TKd
< o8 me{uxiHMt_l, 1},

K €St

(D.29)

iESE

where the last inequality follows form the fact that 7 > ¢ (which implies M; < M,).

Substituting (D.29) in (D.28), we have,

E( Y AR, |<E ygA"(t)|-ﬂ(At_1)}
TEEM(t) ) (D.30)
[ 130/ () |\/dTog TKd .
E 7 ()] me{HxiHMtl,l}]

H €Sy

Now we will focus on the first term in the above inequality. From Cauchy-Schwarz

inequality, we have,

E|IE™(0)] 1(A)| < BV (M 0F) P (As)

Substituting 6 = ¢ in Lemma D.4 and using union bound, we obtain that

A 1
Pridir) < T

In Lemma D.6, we show that
2 el?
B [Jemnf?] < S 4 a0

Therefore, from the above three inequalities, it follows that,

Z|5A“ I(A,- 1)] < % (D.31)

Now focusing on the second term in (D.30). We have,

E [ 1er )] 3 min { i1} ZDEA"(t)\mm{Hxith171}]

teT 1€St teT i€St
(D.32)

<E
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From Cauchy-Schwartz inequality, we have

E <ZZ €2 ()| min { 1]y 1 1})

teT i€St
2
<E ZZ|€An(t)|2.ZZmin{|l]}il|M;l,1} (D.33)
1T €S 1T s
<E| D lEm@r 303 min {llnl, 001
teT €S teT €S '

From Jensen’s inequality, for any two random variables X,Y, we have
E(X -Y) < EV3X?EV2(Y?).

Therefore substituting

X= > > lemm,

teT i€SE

Y= 35 (lailz, o +1),

teT ieSs

we have,

E (ZZ €2 (8) min { [zl 1})

teT i€St

< VKE? (Z ‘5An(t)‘2> .EY2 <ZZmin{HxiH?wtl,1}> :

teT teT €St
From Lemma D.6, it follows that for some constant C,
B (Z S €40(1)  min {HxiHM;l, 1}) < OVKTEY? (Z S min {HxiH?\rl, 1}) .
teT i€S; teT i€S: t

From Lemma D.2, we have

QKT
Reg, (T, v) < (J\/ dlog (%A ) TK (D.34)
0

The result follows from (D.34) and (D.26).
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Appendix E

Static Assortment Optimization

E.1 Proof of Lemma 5.1

Proof. Consider any extreme point, (p,po) of P. Note that there must be n + 1

linearly independent and active constraints. Let

So={i|pi=0}, Si={i|pi=po},
T =i Zaijpj = bipo } (E.1)
j=1

k=1So| + |S1] + |T].
We claim that £ > n. This follows as we have |Sy| + | S| linearly independent and
active constraints from the constraint set Sy U S, |T'| active constraints from the
constraint set 7" and one active constraint from the constraint Z?:o v;p; = 1. Hence
the total number of linearly independent and active constraints at (p, po) is at most
k+1.
Without loss of generality we can assume that & = n; since £ > n implies that

|So| + |S1] +|T| + 1 > n+ 1, making some constraints in 7" redundant. Let

A(T) —=b(T)
A(T) b(T)
I(S) O
Bp = s Bx = I(S()) 5 bm = 0 5 (E 2)
I(Sl> —e
. I(Sl) e

Note that B, is the basis matrix corresponding to the extreme point (p, py). Hence,

B, is full rank. For the sake of contradiction, assume that B, is not full rank. There
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there exists A € R™, X # 0 such that A'B, = 0, then we have
v o] [xm, om0 -]
which implies

p
|:A/ 0:| Bp = _pO/\,bxa
Po

Since B, is a full rank, we have A'b, # 0 and p, # 0, contradicting that,

Hence, B, is a full rank and x = p/py is a basic feasible solution in Q corresponding
to the basis matrix B,.

Conversely, consider x, any extreme point of Q. Let

1

Vo + VX

Clearly (p,po) € P. We define the quantities Sy, 51,7,k as in (E.1) and B,,B,, b,

Po = , P = PoX.

as in (E.2). Using similar arguments, we can assume k = n without loss of generality.
Since x is a basic feasible solution corresponding to the basis B,, B, is full rank.

For the sake of contradiction, suppose B, is not full rank. Then there exists

A € R™™ X # 0 such that A'B, = 0. Therefore,

which implies
()‘([n]))/(BxP + pOba:) + /\n—&-l(vlp + UOPO) =0.
Since B,x = b,, we have B,p + pob, = 0 and \,,; = 0. Note that, XBp =0 and
AB, = |A([n])By + Aui1V' A([1])'by + Any1vo

Therefore A([n])'B, = 0, contradicting the fact that B, is full rank. Hence, B, is a
full rank matrix and (p, po) is the basic feasible solution corresponding to the basis

matrix B,. This completes the proof. O
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E.2 Proof of Theorem 5.2

Proof. Let (p*,p§) be an optimal solution to (5.7). Let S = {i > 1 |pf >0}. In
Steps 3-6 of the algorithm we consider all the solutions that have strictly less than
|£]. Hence, without loss of generality assume that |S| > EJ and S ={1,2,... k}
for some k > [¢] and a < ap_1 < -+ < ag. Also, let S; = {1,2,...,k*} where
=14

Note that p} = p5 = --- = p; = pj;. Therefore,

appy, < ap—1pp_q < - < aqpy,

which implies

€
>k *
A 41Dk 11 < ZR .

Now consider a feasible point of (5.7), (p1,p10) defined as

1 P1o if ¢ c Sl
y D1 =

Pio="——"T<—
Vo + D ies, Vi 0 otherwise.

implying p;;, < py; for all i € S;. and since (p1,pi1o) is a feasible point to (5.7), it
follows that

Z a;p1; = i a;p1; < R* which implies Z a;py; < R

1€S] =1 €51

By construction of zp(1), we must also have pj, = 0 for every i > k* and ap+ < a;,

implying

€ .
a;py; < QpePr- < ZR* for all © > k.

Observe that 2z p(1) > R* and the variables i in the extreme point (p}, pj,) that can
be fractional are ¢ > k*. Therefore, a;pj; < (e- R*)/¢ for all i € F(p7,p},). Thus by

Lemma 5.1, it follows that » ;. 7. a:pj (1) < eR*, which implies

(1—€)R" < zp(l) —eR" < Zaiﬁi(l).
=0
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E.3 Proof of Theorem 5.3

Proof. Davis et al. [18] show that if instance Z has a partition (U, Us) such that

ZC]':ZC]':T,

jelr JEU?

then, the assortment (S; = {1}, S = U;) has expected revenue of (T + 2) - (27 + 1).
Furthermore, they show if there is an assortment (Si,S3) such that II(S;, Sy) >
(T'+2)(27 + 1), then instance Z has a partition (S, [n] \ S2). We complete the proof
by establishing that for any

2T +1
€< 55
(6T +3) (3T +2)

if there exists an assortment (S, S2) such that I1(Sy, S2) > (T +2)(27 + 1) — €, then

we have that > . o ¢; = T. Davis et al. [18] show that S; = {1} for maximizing

1€ES2

I1(S1, S2). Suppose there exists (S7,.52) such that I1(Sy, S9) > (T4 2)(2T + 1) — e.
Then

> jesy Ci
2T +3)2T+1)VT + 1+ (T +1)(2T + 1) ——===2—=—
\/H‘Zjesgcj
> (T+2)2T+1) —¢

1+ s, ¢ +/2+ 22T + 1)

dividing by (27" + 1) on both sides, we have

2(T+3)\/T+1+(T+1)§J§—230
V J 2 J Z(T—|— )_

€
2
I+ s, ¢+ 2+ 20QT +1) 2T +1

which implies,

AT +30WT+1 [1+> ¢+ (T+1) (Zq)

JES2 JES2

> 2(T +2)VT + 1 1+ch+(T+2) (HZ@)

JES? JES2

e Y 2vT L 14 o,

2I'+1 JES> JES>
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Hence we have,

c< . 1+ ) G+2VT+1 1+ ¢

2T+ 1 v vl

> 2VT +1 1+ch+(T+1)+<1+ch),

JES2 JES2

which implies

2

(2T+1)-<\/T+ - 1+2j652cj>
€2

2

(2T+1)-<\/T+ - 1+2j652cj)

67 + 3
The inequality follows from the fact that 1 4 )

>

jes, ¢ < 2T+ 1 and VI'+1 <

2

V2T + 1. Now multiplying with (x/T +14+,/1+ Zjes2 cj> in the numerator and

denominator of right hand side of the above expression, we have the following inequality
2

CT+1)- (T - Tyeq )

(6T + 3) (JT—H+,/1 + s cj)2

QT +1) (T = $yes, cj)2
(67 43) (T +1+2T + 1)

€ >

Note that if ) c; # T, then since ¢; are integers, we have that

JES2

2T +1
€> 5,
(6T +3) (3T +2)

contradicting the hypothesis that ¢ < %. Hence, we have for any € <
%’ I1(Sy, Sa) > (T +2)(2T + 1) — € implies that » ;o c; =T. O

E.4 Computing the e-convex Pareto set

We now describe a polynomial (in n and %) time algorithm to compute the CP..

Before proceeding further, let us try and understand the Pareto set P().
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Definition E.1. A Pareto set, denoted by P;(7), is a set of solutions x € P; such

that for all x € P;, there is no x' € P; such that
gin(x') > gi(x) & gi2(x) < gia(x)

The Pareto set corresponds to the optimal solutions of the weighted linear program
max wi g;1(X) — wagia(x) over the polytope P;, for all weight vectors wy,ws € R
Since, we are maximizing a linear function over the polytope P;, the optimal solutions
will be extreme points of P;, which in our case will be feasible to our combinatorial
optimization problem (5.19). It is easy to see that the Pareto set P;(7) contains the
optimal solution to the sub-problem (5.19). However, computing a Pareto set may be
computationally infeasible. Therefore, we compute the e-convex Pareto set in hope
of finding an approximate optimal solution.

The idea behind the algorithm for finding an e-convex Pareto set CP. is to choose
a polynomial number of such weight vectors ({wy, ws}) and obtain the corresponding
extreme point solutions for the weighted linear programs. We present the algorithm
for evaluating the e-convex Pareto set below and later establish the correctness of
the algorithm. In steps 3-4 of the algorithm, we fix the weight set (possible choices
for wy, wy) by enforcing the max{w;,wy} = U, for some pre-decided U. Let M be
such that, % < gin(x) < M and % < gia(x) < M. In steps 5-7, we choose another
weight set R(M), which scales the linear functions g;1, g;» appropriately so that we
can compute the e-convex Pareto set CP.. (see the proof of correctness for better
understanding)

The following theorem due to [21] establishes the correctness of the above algorithm.

We present the proof specifically to our context for the sake of completeness.

Theorem E.1 (Diakonikolas and Yannakakis (2008)). The above algorithm
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Algorithm 12 Computing e-convex Pareto sets for the sub-problem (5.19)
1

1+e¢

1: Choose ¢; > 0 such that 1 — ¢ =

2 U« [g,let U] ={1,2,--- .U}

1

Wi(U) «{U} x [U] , Wa(U) < [U] x {U}

W(U) =Wi(U) U Wy(U)

S(M) — {20’ 21’ . ,22ﬂog2 Ml}

Ry(M) < {1} x S(M) , Ro(M) + S(M) x {1}

R(M) = Ri(M) U Ry(M)

CP.+ ¢

for each r € R(M) do do

10: for each w € W(U) do do

11: x* <— optimal extreme point for {maxrw;g;1(x) — rowagia(x) : Ax <
bi, 0 S X S 1}

12: end for

13: end for

14: CP. + CP.U{x*}

15: Return CP.

yields an e-conver Pareto set CP., i.e. ¥V x € P;, 3 x" € Conv(CP.) such that

91‘1(X)
1+ €

gin(x') < (14 €)gin(x)

ga(x') >

Proof. PROOF Let Q(U) denote the set of extreme points generated by the above
algorithm and also let the set of optimal extreme points generated by the above
algorithm be xi,---,x;, where [ is the total number of unique solutions obtained

during the above algorithm.

Lemma E.1 (Diakonikolas and Yannakakis(2008)). Suppose that x is in the
Pareto-set P;(m) such that g;1(x) < 2g;2(x) and gia(x) < 2g41(x) and x € Q(U), then

there exists a x' € Conv(Q(U)), such that

g (x') > (1 —e1)ga(x)

gi2(x') < (14 €1)gi2(x)
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Proof. PROOF Suppose there is no x’ € Conv(Q(U)) such that
gi(X') = (1 = e1)gin (x) & gio(x') < (1 + €1)gi2(x)

then the following linear program is infeasible:

l

Z Ajgin(x5) > (1 — €1)gin(x)

j=1

D Nigia(x)) < (1+ €1)gia(x)

=1
D=
=1
>\17>\27"' 7)\1 Z 0

By Farka’s lemma, there exists wq, ws and v which satisfy the following inequalities,

w19i1(X;) — Wagia(X;) +v <0V j=1,---1
w1<]. — 61)gi1(X) — U}Q(l + El)giQ(X) +v > 0

wy, wy >0

which implies that wy, ws > 0 and

wlgil(xj) - w29i2(xj> < wl(l - El)gil(x) - w2(1 + €1)9¢2(X) Vj=1---,1

To establish contradiction to the assumption that there is no such x’, it suffices
to show that there exists a j such that wyg;1(x;) — wagia(x;) > wi(1 — €1)gi1(x) —

wa(1 + €1)gia(x).

Consider arbitrary wq,ws > 0, without loss of generality, it can be assumed that
the maximum value of {wy,we} is U. Let wi = |w;] and w} = [wq], we clearly

have {wj, w3} € W(U) and let x* be the optimal extreme point for the objective
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max wj gy (X) —w3gia(x), then x* € Q(U) and hence without loss of generality assume

that for some j <[, x* = x;. We will now show that
w10i1(X;) — wagi2(x5) > w1 (1 — €1)gi1(x) — wa(l + €1)giz(x)
Note that w; —w] <1 and wj — wy < 1 and remember that we have enforced by
scaling max{wy,we} = U, let t € {1,2} be such that w; = U, we have w; = w; and

(w1 — w})gin (%) + (w5 — wa)gia(x) < Y gin(x) < 20 (x5) < eaUgi(x))
k={1.2)/t

< e (w1gin (%) + wagi2(x))
where the second inequality follows from the fact that the assumption that g;;(x) <
2¢gi2(x) and g;o(x) < 2¢;1(x), the third inequality follows from our choice of U = [2/¢ |
and the last inequality follows from the fact that Ugi(x;) < wigi(X) + wagia(x).
Therefore, from this chain of inequalities, we get

wi (1 — €1)gin (%) — wa (1l + €1)gia(x) < wigin(x) — w5gi2(x)
Since x; is the optimal solution for the objective max wjg;1(x) — w3gi2(x), we have
wigin (x) — w3gi2(x) < wigi (%) — wygia(x;)
Noting that w] < w; and w3 > wy, we have
wigi (X5) — wigin(X;) < wiga (X5) — wagin(X;)

Combing the above three inequalities, we have the required contradiction.

If the above lemma was true for any x € P;(n), instead of, for only x € P;(7) such
that g;1(x) < 2g;2(x) and g;2(x) < 2¢;1(x), then the Theorem would have followed
from the Lemma, since P;(m) contains at least one optimal solution. Consider any
x € P, the ratios g;1(x)/gi2(x) and gi2(x)/gi1(x) are both bounded by M?, hence

there exists {r,79} € R(M), such that rig;1(x) and reg;2(x) are within a factor of
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2 of each other. Now x belongs to the Pareto-set of the weighted objectives 7 g;1(x)

and ryg;2(x) and by the above lemma, there exists a .S € Conv(Q(U)) such that

Tlgz‘l(X/) > (1 - 61)7“19i1(x) & 7’19i2(X/) < (1 + 61)7"29z‘2(X)

= gn(x') > (1 — €1)ga(x) & gio(x") < (1 + €1)gi2(x)

1
By definition of €;, we have 1 — ¢; = TT¢ which implies that € > ¢; and hence we
€
have
;1\ X
gin(x') = 911J(FE) & gio(x') < (1 + €)gia(x)

E.5 Proof of Lemma 5.5

Proof. For the sake of contradiction, assume that
S! ¢ argmax Z Z Vijr(Tij — ') Sjk.
Si€Pi jem] keld
and let

S; e arg max Z Z Vi (Tij — ') Sij-

SI€P jeln) kel
We claim that the number of products offered in assortment S* and S; is same. This
follows by observing that the linear functions f;;j(u) and f;;(u’) have the same sign
in the interval [u,, u,41] for all j € [n]. Without loss of generality assume that the
number of products offered in S; is less than the number of products offered in S*;.
Therefore, there must exist a product j that is offered in S*; and not offered in S,.
Hence, we have r;; < v’ and 7;; < v implying that not offering product j in S*; would

increase the value of

DO vign(riy — u)siy,

Jj€[n] kel
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contradicting the optimality of S;.

Since S} and S; offer the same number of products, we have two cases

1. There exists two products j, j* such that j is offered in S¥ and not offered in S,

while j is offered in S; and not offered in S:.
2. S; and S? offer the same set of products, but at different display positions.

Consider the first scenario, where there are two products j, ' such that j is offered
in S7 and not offered in S,, while j is offered in S; and not offered in Sr. Let k,
k" be the display slots of products j, j’ in the assortments S} and S, respectively.
Therefore, we must have
Vi (Tij — w) > (i — )
Vige (rigr — W) 2 v (riy — )
The first inequality follows from the hypothesis that product j is included in S,
while product j’ is not. Similarly the second inequality folows from the hypothesis
that product j/ is included in S;, while product j is not. From (??) we have that
Vijk = VijAip. Hence, we have
vij(rij — u) 2 vig (riy — )
Vi (rigp — ') = vy (ryy — o),
contradicting the fact that f;;(u) — fi;(u) and fi;(v') — fij(v') have the same sign in
the interval [u,, up+1].
Consider the second scenario, where the same products are offered in different display
slots in S} and S,. For such a scenario to occur, there must be a set of products
whose display positions in the assortment S} are shifted in a cyclical fashion from the

display positions in the assortment S,. Without loss of generality, let those products

be indexed 1,--- ,q. Let the display positions of these products in the assortment S}
be ki, -+, kg, then the display positions of these products in the assortment S, will
be ks, -+, kg, k1 respectively. We have one of the three possibilities,
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o There exists j € {1,---,q — 2} such that Ay, < Aix,., and i, > Aig,,

.)\ikj<)‘ik forallj6{1,~~,q—1}

j+1
® \ik; > iy, forall je{l,---,q—1},
For the first case, consider the following inequalities

Vijy (Tij = 1) 4 Vi1 (Tigg1) — 1) 2 Vighy o (15 — ) + Vi, (Pigi+1) — v)
Vijks i (Tt — W) + Vigrnyky o (M) — W) 2= Vigag o (i — ) + Vigemg 40 (Tigien) — @)
The first inequality follows from the hypothesis that in assortment S} product j is
displayed in slot k; and product j + 1 is displayed in slot k;;; and not vice versa.
Similarly, the second inequality follows from the hypothesis that in assortment S;
product j is displayed in slot k;;; and product j + 1 is displayed in slot k;,2 and not

vice versa. We have that v;;, = v;;A\,. Hence, we have

()\ikj - )\ikj+1)vij(rij —u) > (Aikj - )\ikj+1)vi(j+1)(7“i(j+1) —u)
(Aikj1 — ik o) Vij (155 — u') > (Aikj 1 — ik 2 Vi 1) (Tigi+1) — '),
which implies
vig(riy — ) 2 iga)(Tigi4) — )
Vign) (Tig4ny — u') = vi(ryg — o),

contradicting the fact that f;;(u) — fiy(u) and fi;(v') — fij(v') have the same sign in
the interval [u,, u,41]. We can prove a similar contradiction by consider the products
indexed 1, ¢ and considering inequalities corresponding to swapping the display

positions of these products. Hence, we have

S € argmax E g Vijk(rij — W) sk Y u' € [up, upya].
Si€Pi et kel
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