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ABSTRACT

The MNL-Bandit Problem: Theory and Applications

Vashist Avadhanula

One fundamental problem in revenue management that arises in many settings

including retail and display-based advertising is assortment planning. Here, the

focus is on understanding how consumers select from a large number of substitutable

items and identifying the optimal offer set to maximize revenues. Typically, for

tractability, we assume a model that captures consumer preferences and focus on

computing the optimal offer set. A significant challenge here is the lack of knowledge

on consumer preferences. In this thesis, we consider the multinomial logit choice

model, the most popular model for this application domain and develop tractable

robust algorithms for assortment planning under uncertainty. We also quantify the

fundamental performance limits from both computational and information theoretic

perspectives for such problems.

The existing methods for the dynamic problem follow “estimate, then optimize”

paradigm, which require knowledge of certain parameters that are not readily available,

thereby limiting their applicability in practice. We address this gap between theory

and practice by developing new theoretical tools which will aid in designing algorithms

that judiciously combine exploration and exploitation to maximize revenues. We first

present an algorithm based on the principle of “optimism under uncertainty” that

is simultaneously robust and adaptive to instance complexity. We then leverage

this theory to develop a Thompson Sampling (TS) based framework with theoretical

guarantees for the dynamic problem. This is primarily motivated by the growing

popularity of TS approaches in practice due to their attractive empirical properties.

We also indicate how to generalize the TS framework to design scalable dynamic

learning algorithms for high-dimensional data and discuss empirical gains of such

approaches from preliminary implementations on Flipkart, e-commerce firm in India.
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Introduction

The explosive growth of e-commerce firms has brought renewed attention to the field

of revenue management. Many e-commerce firms including Amazon and Flipkart

operate in a low margin and high volume environment, where even small percentage

increase in revenues can translate to substantial profits. Consequently, a central

focus of many business applications is the development of predictive models that

capture consumer behavior to maximize revenue growth. A significant challenge

here is the lack of knowledge on consumer preferences which is further exacerbated

by short selling seasons and evolving demand trends. This necessitates a balanced

exploration-exploitation approach, where we not only have to learn demand trends,

but also simultaneously exploit the information gain. The unprecedented flexibility in

operational decisions associated with modern e-commerce systems not only provides

the possibility but also makes it essential to optimize decision making with evolving

and uncertain consumer tastes. My dissertation expands the scope of revenue

management systems by designing tractable robust algorithms to optimize sequential

decision making under uncertainty for assortment planning, which is a key component

in many revenue management applications.

The first chapter of this dissertation provides an overview of assortment planning

and the multinomial logit model (MNL), which is the most popular predictive model

for this application domain. In this chapter, we also present an overview of existing

approaches for assortment planning under uncertainty and highlight shortcomings

that limit their applicability in practice, thereby motivating a need for more adaptive
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approaches. In Chapter 2, we address this gap between theory and practice by

developing new theoretical tools to design an algorithm based on the principle that

is simultaneously robust and adaptive to instance complexity. In Chapter 3, we

leverage the theory developed in Chapter 2 to design a Thompson Sampling (TS)

based framework with theoretical guarantees for the dynamic problem. This is

primarily motivated by the growing popularity of TS approaches in practice due to

their attractive empirical properties. In Chapter 4, we indicate how to generalize the

TS framework to design scalable dynamic learning algorithms for high-dimensional

data and discuss empirical gains of such approaches from preliminary implementations

on Flipkart, a large e-commerce firm in India. In Chapter 5, we present tractable

algorithms for static assortment planning with constraints under the MNL and more

general Nested Logit choice models. This is studied as a first step to developing

dynamic assortment planning approaches for more general predictive models.

MNL-Bandit Problem. One fundamental problem in revenue management that

arises in many settings including retail and display-based advertising is assortment

planning. Here, the focus is on understanding how consumers select from a large

number of substitutable items and identifying the optimal offer set to maximize

revenues. Typically, for tractability, we assume a model that captures consumer

preferences and focus on computing the optimal offer set. However, model selection

and estimating the parameters is a challenging problem. In many e-commerce settings

such as fast fashion retail, products have short selling seasons. Therefore, the data

on consumer choices is either limited or non existent. The retailer needs to learn

consumer preferences by offering different assortments and observing purchase decisions,

but short selling seasons limit the extent of experimentation. There is a natural trade-

off in these settings, where the retailer need to learn consumer preferences and also

maximize cumulative revenues simultaneously. Finding the right balance between

exploration and exploitation is a challenge.
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In Chapter 1, we consider the MNL model which is the most popular model for this

application domain and formulate the dynamic learning problem in the framework of

multi-armed bandits (MAB). More specifically, we formulate the dynamic problem

as a parametric bandit problem, which we will refer to as the MNL-Bandit problem.

Though it is common practice to study dynamic problems under the MAB framework,

the combinatorial complexity involved with identifying the ideal subset (assortment)

presents many theoretical and computational challenges. We discuss these challenges

in detail along with a review of the existing methods for the MNL-Bandit problem

which typically make restrictive assumptions, severely limiting their applicability in

practice.

UCB Approach for the MNL-Bandit. Motivated by the apparent need for a

tractable policy, in Chapter 2, we develop an efficient algorithm that judiciously

combines exploration of the combinatorial option space and exploitation of that

information to maximize revenues. The key idea in our work is a novel estimation

technique using sampling, where the samples directly give us unbiased estimates of

the model parameters. We use these estimates to leverage the structure of the MNL

model, and to adapt the upper confidence bounds (UCB) policy, a popular bandit

technique, to our problem. Our sampling technique plays an essential role in avoiding

the shortcomings of standard estimation approaches like maximum likelihood, where

the estimates are obtained by optimizing a loss function. The convergence bounds for

estimates resulting from such approaches typically depend on true parameters, which

becomes an impediment in real time implementation. In contrast, our approach which

obtains estimates through sampling is completely independent of model parameters.

Furthermore, we show that our algorithm’s performance is near-optimal as well as

adaptive to the complexity of the instance.

Thompson Sampling for the MNL-Bandit. The UCB based approach developed

in Chapter 2, focuses on robustness and tends to experiment more than necessary.
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To that end, several stream of recent papers observed that Thompson Sampling

(TS) significantly outperform more traditional approaches such as UCB policies. For

standard MAB problems, despite being easy to implement, TS-based algorithms are

hard to analyze and theoretical work on TS is limited. Furthermore, the selection

of prior, efficient posterior computation and theoretical analysis remains particularly

challenging for parametric bandit settings, where arms are related through a small

number of parameters. Motivated by the growing popularity of TS in practice, In

Chapter 3, we leverage the sampling technique to present an approach to adapt

Thompson Sampling to this problem and show that it achieves near-optimal regret

as well as attractive numerical performance. A key ingredient in our approach is a

two moment approximation of the posterior and the ability to judicially correlate

samples, which is done by embedding this approximation in a normal family.

Thompson Sampling in Practice: Evidence from Flipkart.com. In Chapter 4,

we present evidence of empirical gains from employing dynamic assortment planning

in optimizing product recommendations on Flipkart, an Indian ecommerce firm. First,

we show that choice models like MNL which capture consumer preferences over an

assortment have higher predictive power than traditional models which consider each

item independently. We will then present empirical evidence to show that firms

stand to gain by implementing dynamic learning algorithms instead of the traditional

“estimate, then optimize” approaches. In settings like Flipkart, we have a large

number of alternatives that are effectively described by a small number of attributes;

via what is often referred to as a factor model. The possibility of different items

being related to each other only through their attributes raises the possibility that

one can design algorithms whose performance is independent of the number of items,

which is a major source of complexity. Using the analysis developed in Chapter 3 as a

foundation, we present a framework that indicates how to extend our aforementioned

TS-based policy to the problem of learning in the attribute space. Specifically, how

4



to leverage the relation between different items through attributes and achieves a

regret bound which is independent of the number of items, and only depends on the

number of attributes, thereby accelerating the learning.

Static Assortment Planning. Noting that an important ingredient for dynamic

learning is a computationally efficient policy for static optimization, i.e., computing

the optimal set of items to offer when the model parameters are known. In Chapter

5, we consider the MNL model and it’s generalized version, the nested logit model

(NL) and present polynomial time algorithms for computing the optimal assortment

under a large class of constraints.
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Chapter 1

The MNL-Bandit Problem

1.1 Assortment Optimization

In many settings, a decision maker is faced with the problem of identifying the optimal

mix of items, often from a large feasible set to offer to users. For example, a retailer

needs to select a subset (assortment) of products and due to substitution effects,

the demand for an individual product is influenced by the assortment of products

presented to the consumer. In display-based online advertising, a publisher needs to

select a set of advertisements to display to users and due to competition between ads,

the click rates for an individual ad depends on the overall subset of ads displayed.

A recommender system like the one used by Netflix or Amazon, must determine a

subset of items to suggest to users from a large pool of similar alternatives. In all these

settings, items may be valued differently from the decision maker’s perspective and

therefore the assortment of items offered to users have significant impact on revenues.

To identify the ideal offer set, the decision maker must understand the substitution

patterns of users.

Choice models capture these substitution effects among items by specifying the

probability that a user selects an item given the offered set. More specifically, let

N = {1, · · · , N} be the set of available items for the decision maker to offer for

consumers. For any subset S ⊂ N and any item i ∈ S, a choice model describes the

probability of a random consumer preferring item i in the set S as,

π(i, S) = Pr(customer selects item i from offer set S).
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We refer to π(i, S) as choice probabilities. Using these choice probabilities, one can

compute the expected revenue associated with an offer set as the weighted sum of

revenues of items in the offer set and the choice probabilities. More specifically, if

value (revenue) corresponding to every item i ∈ N is ri, then the expected revenue

R(S) of any assortment S ⊂ N can be written as

R(S) =
∑
i∈S

ri · π(i, S).

Then the decision maker can identify the optimal set by computing the set with

highest revenues, an optimization problem commonly referred to as assortment

optimization problem and formulated as

max
S⊆N

R(S). (1.1)

Assortment optimization problems also allow for constraints that arise in practice,

e.g. budget for inventory, product purchasing, display capacity, etc.

Traditionally, assortment decisions are made at the start of the selling period based

on a choice model that has been estimated from historical data; see [27] for a detailed

review. In this dissertation, we focus on the dynamic version of the problem where the

retailer needs to simultaneously learn consumer preferences and maximize revenue.

In many business applications such as fast fashion and online retail, new products

can be introduced or removed from the offered assortments in a fairly frictionless

manner and the selling horizon for a particular product can be short. Therefore,

the traditional approach of first estimating the choice model and then using a static

assortment based on the estimates, is not practical in such settings. Rather, it is

essential to experiment with different assortments to learn consumer preferences,

while simultaneously attempting to maximize immediate revenues. Suitable balancing

of this exploration-exploitation tradeoff is the focal point of this thesis.
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1.1.1 Multinomial Logit Choice Model (MNL)

A fundamental problem in assortment planning is model selection. There is a trade-off

between working with models that have greater predictive power and simple models

that allow greater tractability. Estimating choice probabilities involving large number

of alternatives from transactional data is a highly non-trivial task. Furthermore, note

that the assortment optimization problem is a combinatorial optimization problem for

which trying all 2n possible assortment is not a scalable solution. Though theoretically

choice models with higher predictive power could result in better assortment solutions,

lack of tractable optimization approaches for these problems could make them less

interesting for decision makers. The trade-offs between the predictability and the

tractability of a choice model is an important consideration for the decision maker

in its deployment, particularly in settings where one needs to constantly estimate

and optimize the model. In this dissertation, we consider the multinomial logit

choice model (MNL) for which the tractability is well understood and develop efficient

approaches that learns consumer preferences while simultaneously maximizing revenues.

The dynamic learning algorithms developed in this thesis for the MNL model should

be viewed as a first step towards efficient algorithms for more general choice models.

MNL was introduced independently by Luce [31] and Plackett [38]. In his seminal

work, McFadden [33] showed that the multinomial logit model is part of a larger

class of models that can be modeled within the random utility frame work. In the

random utility framework, it is assumed that consumers have inherent (random)

utility associated with every item and upon presenting an offer set consumers select

the item with the highest utility. In the MNL model, the consumer’s random utilities

are modeled as independent Gumbel random variables. In particular, the utility of

item i is given by:

Ui = µi + ξi,

8



where µi ∈ R denotes the mean utility that a consumer assigns to product i. ξ0, · · · , ξN

are independent and identically distributed random variables having a Gumbel

distribution with location parameter 0 and scale parameter 1 and represent the

idiosyncrasies in consumer population. The choice probabilities for the MNL can

be computed in closed form as πMNL(i, S) = eµi∑
j∈S e

µj ,

In assortment planning problems, consumers always have the option of not choosing

any item from the offered set. Such scenarios are modeled by augmenting the available

set of items with a further index, 0 that indicates an “outside” option. Consumers

purchase some thing from the offered set if the random utility of one of the offered

items is more than the random utility corresponding to the outside option. Therefore,

the choice probabilities can be written as πMNL(i, S) = vi
v0+

∑
j∈S vj

where we denote eµi

by vi denotes for notational brevity. We can also without loss of generality assume

that v0 = 1 by scaling every other parameter. Hence, the choice probabilities for the

MNL model can be reformulated as:

πMNL(i, S) =
vi

1 +
∑

j∈S vj
, (1.2)

and the expected revenue for any assortment S is given by

R(S,v) =
∑
i∈S

ri
vi

1 +
∑

j∈S vj
. (1.3)

From the choice probabilities we can see that the ratio of choice probabilities of two

items, πMNL(i, S) and πMNL(j, S) is independent of the offer set S. This property

is known as the independent of irrelevant attributes (IIA) property [8] and is a

limitation of the MNL model. Other random utility based choice models like Nested

Logit (NL) [47] and Mixed Logit model (mMNL) [34] generalize the MNL model

and are not restricted by the IIA property. However, estimation of these models

and the corresponding assortment planning problems involved are often intractable

highlighting the challenges involved in model selection. See [20] for further discussion

on tractability of choice models. The closed form expression of the choice probabilities
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make this model extremely tractable from estimation and optimization point of view

(see [44].) The tractability of the model in decision making is the primary reason

MNL has been extensively used in practice ([25, 8, 46]).

1.2 Dynamic Learning in Assortment Selection

As alluded to above, many instances of assortment optimization problems commence

with very limited or even no a priori information about consumer preferences.

Traditionally, due to production considerations, retailers used to forecast the uncertain

demand before the selling season starts and decide on an optimal assortment to be

held throughout. There are a growing number of industries like fast fashion and

online display advertising where demand trends change constantly and new products

(or advertisements) can be introduced (or removed) from offered assortments in a

fairly frictionless manner. In such situations, it is possible to experiment by offering

different assortments and observing resulting purchases. Of course, gathering more

information on consumer choice in this manner reduces the time remaining to exploit

said information.

Motivated by aforementioned applications, we consider a stylized dynamic

optimization problem that captures some salient features of this application domain,

where our goal is to develop an exploration-exploitation policy that simultaneously

learns from current observations and exploits this information gain for future decisions.

In particular, we consider a constrained assortment selection problem under the

Multinomial logit (MNL) model with N substitutable products and a “no purchase”

option. The objective is to design a policy that selects a sequence of history dependent

assortments (S1, S2, . . . , ST ) so as to maximize the cumulative expected revenue,

Eπ

(
T∑
t=1

R(St,v)

)
, (1.4)
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where R(S,v) is the revenue corresponding to assortment S as defined as in (1.3).

Direct analysis of (1.4) is not tractable given that the parameters {vi, i = 1, . . . , N}

are not known to the seller a priori. Instead we propose to measure the performance

of a policy via its regret. The objective then is to design a policy that approximately

minimizes the regret defined as

Reg(T,v) =
T∑
t=1

R(S∗,v)− Eπ[R(St,v)], (MNL-Bandit)

where S∗ = argmax
S∈S

R(S,v). This exploration-exploitation problem, which we refer

to as MNL-Bandit, is the focus of this thesis.

We consider several naturally arising constraints over the assortments that the

retailer can offer. These include cardinality constraints (where there is an upper

bound on the number of products that can be offered in the assortment), partition

matroid constraints (where the products are partitioned into segments and the retailer

can select at most a specified number of products from each segment) and joint display

and assortment constraints (where the retailer needs to decide both the assortment

as well as the display segment of each product in the assortment and there is an

upper bound on the number of products in each display segment). More generally,

we consider the set of totally unimodular (TU) constraints on the assortments. Let

x(S) ∈ {0, 1}N be the incidence vector for assortment S ⊆ {1, . . . , N}, i.e., xi(S) = 1

if product i ∈ S and 0 otherwise. We consider constraints of the form

S = {S ⊆ {1, . . . , N} | A x(S) ≤ b, 0 ≤ x ≤ 1} , (1.5)

where A is a totally unimodular matrix and b is integral (i.e., each component of

the vector b is an integer). The totally unimodular constraints model a rich class of

practical assortment planning problems including the examples discussed above. We

refer the reader to [17] for a detailed discussion on assortment and pricing optimization

problems that can be formulated under the TU constraints.
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1.2.1 Existing Approaches for the MNL-Bandit

The problem of dynamic learning under the MNL choice model has been studied in

the literature. [40] and [43] consider the problem of minimizing regret under the MNL

choice model and present an “explore first and exploit later” approach. In particular,

a selected set of assortments are explored until parameters can be estimated to a

desired accuracy and then the optimal assortment corresponding to the estimated

parameters is offered for the remaining selling horizon. The exploration period

depends on certain a priori knowledge about instance parameters. Assuming that

the optimal and next-best assortment are “well separated,” [43] show an asymptotic

O(N log T ) regret bound, while [40] establish a O(N2 log2 T ) regret bound; recall N

is the number of products and T is the time horizon. However, their algorithm relies

crucially on a priori knowledge of system parameters which is not readily available

in practice. As will be illustrated later, absence of this knowledge, these algorithms

can perform quite poorly. In this work, we focus on approaches that simultaneously

explore and exploit demand information, do not require any a priori knowledge or

assumptions, and whose performance is in some sense best possible; thereby, making

our approach more universal in its scope.

1.3 Summary of contributions of Chapters 2, 3, 4

and 5

We summarize the main contributions of Chapters 2, 3, 4 and 5. The primary

contribution of this dissertation is to develop a systematic approach, and supporting

theory, for the MNL-Bandit problem. In Chapter 2, we present an efficient learning

algorithm that does not require any parameter information and has near-optimal

performance. The algorithm is predicated on the upper bound (UCB) type logic,

originally developed to balance the aforementioned trade-off in the multi armed bandit
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(MAB) problem (c.f. [28]). The UCB based algorithm is easy to analyze theoretically

and helps in developing theoretical tools that will aid in designing more efficient

learning based algorithms for the MNL-Bandit problem. In Chapter 3, we leverage the

theory developed in Chapter 2 to design a Thompson Sampling (TS) based framework

with theoretical guarantees for the dynamic problem. This is primarily motivated by

the growing popularity of TS approaches in practice due to their attractive empirical

properties.

In Chapter 4, we indicate how to generalize the TS framework to design scalable

dynamic learning algorithms for high-dimensional data and discuss empirical gains of

such approaches from preliminary implementations on Flipkart, a large e-commerce

firm in India. In Chapter 5, we present tractable algorithms for static assortment

planning with constraints under the MNL and more general Nested Logit choice

models. This is studied as a first step to develop dynamic assortment planning

approaches for more general predictive models.

1.3.1 UCB Approach for the MNL-Bandit

In this chapter we present an efficient online algorithm that judiciously balances the

exploration and exploitation trade-off intrinsic to our problem and achieves a worst-

case regret bound of O(
√
NT logNT ) under a mild assumption, namely that the

no-purchase is the most “frequent” outcome. The assumption regarding no-purchase

is quite natural and a norm in online retailing for example. To the best of our

knowledge, this is the first such policy with provable regret bounds that does not

require prior knowledge of instance parameters of the MNL choice model. Moreover,

the regret bound we present for this algorithm is non-asymptotic.

We also show that for “well separated” instances, the regret of our policy is

bounded by O
(
min

(
N2 logNT/∆,

√
NT logNT

))
where ∆ is the “separability”

parameter. This is comparable to the regret bounds, O (N log T/∆) and
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O
(
N2 log2 T/∆

)
, established in [43] and [40] respectively, even though we do not

require any prior information on ∆ unlike the aforementioned work. It is also

interesting to note that the regret bounds hold true for a large class of constraints, e.g.,

we can handle matroid constraints such as assignment, partition and more general

totally unimodular constraints (see [17]). Our algorithm is predicated on upper

confidence bound (UCB) type logic, originally developed to balance the aforementioned

exploration-exploitation trade-off in the context of the multi-armed bandit (MAB)

problem (cf. [28]).

We also establish a non-asymptotic lower bound for the online assortment

optimization problem under the MNL model. In particular, we show that for the

cardinality constrained problem under the MNL model, any algorithm must incur a

regret of Ω(
√
NT/K), where K is the bound on the number of products that can be

offered in an assortment. This result establishes that our online algorithm is nearly

optimal, the upper bound being within a factor of
√
K of the lower bound. A recent

work by [15] demonstrates a lower bound of Ω(
√
NT ) for the MNL-Bandit problem,

thus suggesting that our algorithm’s performance is optimal even with respect to its

dependence on K.

1.3.2 Thompson Sampling for the MNL-Bandit

In this chapter, relying on structural properties of the MNL model and theoretical

tools developed in Chapter 2, we design a TS approach that is computationally

efficient and yet achieves parameter independent (optimal in order) regret bounds.

Specifically, we present a computationally efficient TS algorithm for the MNL-Bandit

which uses a prior distribution on the parameters of the MNL model such that the

posterior update under the MNL-bandit feedback is tractable. A key ingredient in our

approach is a two moment approximation of the posterior and the ability to judicially

correlate samples, which is done by embedding the two-moment approximation in a
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normal family. We show that our algorithm achieves a worst-case (prior-free) regret

bound of O(
√
NT log TK) under a mild assumption that v0 ≥ vi for all i (more on

the practicality of this assumption later in the text); the bound is non-asymptotic,

the “big oh” notation is used for brevity. This regret bound is independent of the

parameters of the MNL choice model and hence holds uniformly over all problem

instances. The regret is comparable to the existing upper bound of O(
√
NT ) achieved

by the UCB approach in Chapter 2, yet the numerical results demonstrate that

our Thompson Sampling based approach significantly outperforms the UCB-based

approach. The methods developed in this paper highlight some of the key challenges

involved in adapting the TS approach to the MNL-Bandit, and present a blueprint

to address these issues that we hope will be more broadly applicable, and form the

basis for further work in the intersection of combinatorial optimization and machine

learning.

1.3.3 Empirical Evaluation of Thompson Sampling

In Chapter 4, we present evidence of empirical gains from employing dynamic

assortment planning in optimizing product recommendations on Flipkart, an Indian

ecommerce firm. First, we show that choice models like MNL which capture consumer

preferences over an assortment have higher predictive power than traditional models

which consider each item independently. In particular, we consider a structured MNL

model, where every item is described by a set of attributes and the mean utility of a

product is linear in the values of attributes and show that the fit of this stylized MNL

model is better than a simple logistic regression with the same set of attributes, which

is the current model used at Flipkart. We will then present empirical evidence to show

that firms stand to gain by implementing dynamic learning algorithms instead of the

traditional “estimate, then optimize” approaches.
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1.3.4 Static Assortment Optimization

In Chapter 5, we consider settings when the model parameters are known and focus on

developing tractable optimization algorithms for the MNL and the NL model under

totally unimodular constraint structures. The totally unimodular constraints model a

rich class of practical assortment planning problems including cardinality constraints,

partition matroid constraints and joint display and assortment constraints. We refer

the reader to [17] for a detailed discussion on assortment and pricing optimization

problems that can be formulated under the TU constraints.

First we consider the assortment planning problem under the MNL model and

show that a natural linear programming (LP) relaxation is tight. The LP based

approach provides robustness to handle capacity constraints in addition to the existing

TU constraints. In particular, we consider an arbitrary additional constraint to the

set of TU constraints such that the resulting set of constraints are not TU. We present

a Polynomial Time Approximation Scheme (PTAS) for the assortment optimization

problem under this more general set of constraints where for any 0 < ε < 1, we

obtain a solution with objective value at least (1 − ε) times the optimal in running

time polynomial in the input size for a fixed ε. As a consequence of this problem,

we obtain PTAS for joint display and assortment optimization problem with an

additional capacity constraint.

We then consider the assortment optimization problem under NL model with TU

constraints and provide a Fully Polynomial Time Approximation Scheme (FPTAS)

for this problem, where for any 0 < ε < 1, we obtain a solution with objective

value at least (1 − ε) times the optimal in running time polynomial in the input

size and 1/ε. We also show that the exact assortment optimization under NL model

with TU constraints is NP-hard. For the joint display and assortment optimization

problem, we show that under special settings the problem allows for an exact solution

in polynomial time.
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Summary. In Chapters 2, 3 and 4, we focus on designing efficient algorithms for

assortment planning under the most popular choice model. In the final chapter,

we work on developing tractable optimization approaches for general choice models

with the hope that these approaches are a first step in designing dynamic learning

approaches for these choice models in the future.
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Chapter 2

A UCB Approach for the MNL-Bandit

In this Chapter, we describe our proposed policy for the MNL-Bandit problem. Our

algorithm is predicated on upper confidence bound (UCB) type logic, originally

developed to balance the aforementioned exploration-exploitation trade-off in the

context of the multi-armed bandit (MAB) problem (cf. [28]). A key idea in our

algorithm is a novel estimation technique using sampling, where the samples directly

give us unbiased estimates of the model parameters. We use these estimates to

leverage the structure of the MNL model, and to adapt the UCB policy to our

problem. The estimation technique also plays a key role in designing a tractable

Thompson Sampling algorithm in Chapter 3.

We first present in Section 2.1, an efficient online algorithm that judiciously

balances the exploration and exploitation trade-off intrinsic to our problem.

Subsequently, in Section 2.2 show that this algorithm achieves a worst-case regret

bound of O(
√
NT logNT ) under a mild assumption, namely that the no-purchase

is the most “frequent” outcome. The assumption regarding no-purchase is quite

natural and a norm in online retailing for example. To the best of our knowledge,

this is the first such policy with provable regret bounds that does not require prior

knowledge of instance parameters of the MNL choice model. In Section 2.5, we relax

the assumption on “no-purchase” and give a learning algorithm that is independent

of problem parameters and bound its regret.

In Section 2.3, we show that for “well separated” instances, the regret of our

policy is bounded by We also show that for “well separated” instances, the regret
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of our policy is bounded by O
(
min

(
N2 logNT/∆,

√
NT logNT

))
where ∆ is the

“separability” parameter. This is comparable to the regret bounds, O (N log T/∆)

and O
(
N2 log2 T/∆

)
, established in [43] and [40] respectively, even though we do not

require any prior information on ∆ unlike the aforementioned work.

In Section 2.4, we establish a non-asymptotic lower bound for the online assortment

optimization problem under the MNL model. In particular, we show that for the

cardinality constrained problem under the MNL model, any algorithm must incur a

regret of Ω(
√
NT/K), where K is the bound on the number of products that can be

offered in an assortment. This result establishes that our online algorithm is nearly

optimal, the upper bound being within a factor of
√
K of the lower bound. A recent

work by [15] demonstrates a lower bound of Ω(
√
NT ) for the MNL-Bandit problem,

thus suggesting that our algorithm’s performance is optimal even with respect to its

dependence on K.

Finally in Section 2.6, we present a computational study that highlights several

salient features of our algorithm. In particular, we test the performance of our

algorithm over instances with varying degrees of separability between optimal and

sub-optimal solutions and observe that the performance is bounded irrespective of

the “separability parameter.” In contrast, the approach of [43] “breaks down” and

results in linear regret for some values of the “separability parameter.” We also

present results of a simulated study on a real world data set, where we compare

the performance of our algorithm to that of [43]. We observe that the performance

of our algorithm is sub-linear, while the performance of [43] is linear, which further

emphasizes the limitations of “explore first and exploit later” approaches and highlights

the universal applicability of our approach.
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2.1 UCB Algorithm

In this section, we describe our proposed policy for the MNL-Bandit problem. The

policy is designed using the characteristics of the MNL model based on the principle

of optimism under uncertainty. Before introducing our algorithm, we present a quick

background of the UCB family of algorithms [6] for the classic multi-armed bandit

(MAB) problem.

2.1.1 Revisiting UCB for MAB

In the classical MAB problem, there are n arms and a finite time horizon T . The

reward obtained upon playing arm i at time t is rit, generated i.i.d (across time) from

a distribution Fi with fixed but unknown mean, µi. The objective here is to play

arms in an online fashion in order to maximize the cumulative reward or equivalently

minimize the regret which is defined as

RegMAB(T ) =
T∑
t=1

(µi∗ − rt),

where i∗ = arg maxi µi and rt is the reward corresponding to the arm played at time t.

Maximizing cumulative rewards, as with any bandit problems involves experimenting

with various arms to learn these unknown means while simultaneously trying to play

the “best arm” as many times as possible. UCB algorithm provide a structured

framework to judiciously balance the friction between exploration and exploitation

for the MAB problems. As the name suggests, the basic idea of the UCB framework

is to use the observations from the past plays of each arm to construct estimates

UCBt,i that are “upper confidence bounds” of the true rewards. In particular, the

estimates UCBt,i satisfy the following two key properties.

1. UCBt.i for every arm is larger than its mean reward with high probability,

UCBt,i ≥ µi, ∀ i.t
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2. As the arm i is played more and more, the estimate UCBt,i converges to the

true mean with high probability,

|UCBt,i − ri,t| /
1√
Ti(t)

,

where Ti(t) is the number of times arm i is played till time t. The UCB algorithm

plays the best arm according to the estimates UCBt,i and by virtue of first property,

we always have the estimate of the current arm higher than the optimal mean, i.e.

UCBt,it ≥ µi∗ , where it is the arm played at time t. Therefore, we have

T∑
t=1

µi∗ − rt ≤
T∑
t=1

UCBt,it − rt =
T∑
t=1

n∑
i=1

(UCBt,i − ri,t) · 1(it = i)

/
T∑
t=1

n∑
i=1

1√
Ti(t)

.

We have
∑T

t=1

∑n
i=1

1√
Ti(t)
≤
∑n

i=1

√
Ti, where Ti is the total number of times arm i

is played. Noting that
∑n

i=1 Ti = T , by Cauchy Schwartz we have
∑

i

√
Ti ≤

√
nT .

In our UCB based algorithm, we use this same basic idea for algorithm design

and regret analysis. However, the combinatorial nature of the problem brings in new

challenges which we elaborate in the following section.

2.1.2 Challenges and overview

A key difficulty in applying standard multi-armed bandit techniques to the MNL-

Bandit problem is that the response observed on offering an item i is not independent

of other items in assortment S. Therefore, the N items cannot be directly treated

as N independent arms. As mentioned before, a naive extension of MAB algorithms

for this problem would treat each of the feasible assortments as an arm, leading to a

computationally inefficient algorithm with exponential regret. Our policy utilizes the

specific properties of the dependence structure in MNL model to obtain an efficient

algorithm with order
√
NT regret.
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Our policy is based on a non-trivial extension of the UCB algorithm [6]. It uses

the past observations to maintain increasingly accurate upper confidence bounds for

the MNL parameters {vi, i = 1, . . . , N}, and uses these to (implicitly) maintain an

estimate of expected revenue R(S) for every feasible assortment S. In every round,

our policy picks the assortment S with the highest optimistic revenue. There are

two main challenges in implementing this scheme. First, the user response to being

offered an assortment S depends on the entire set S, and does not directly provide

an unbiased sample of demand for an item i ∈ S. In order to obtain unbiased

estimates of vi for all i ∈ S, we offer a set S multiple times: specifically, it is offered

repeatedly until a no-purchase occurs. We show that proceeding in this manner, the

average number of times an item i is selected provides an unbiased estimate of the

parameter vi. The second difficulty is the computational complexity of maintaining

and optimizing revenue estimates for each of the exponentially many assortments. To

this end, we use the structure of the MNL model and define our revenue estimates

such that the assortment with maximum estimated revenue can be efficiently found

by solving a simple optimization problem. This optimization problem turns out to

be a static assortment optimization problem with upper confidence bounds for vi’s

as the MNL parameters, for which efficient solution methods are available.

Remark 2.1. (Related UCB Approaches) Popular extensions of UCB for large

scale problems include the linear bandit (e.g., 5, 39) and generalized linear bandit

(22) problems. However, these do not apply directly to our problem, since the revenue

corresponding to an assortment is nonlinear in problem parameters. Other works (see

14) have considered versions of MAB where one can play a subset of arms in each

round and the expected reward is a function of rewards for the arms played. However,

this approach assumes that the reward for each arm is generated independently of

the other arms in the subset. This is not the case typically in retail settings, and in

particular, in the MNL choice model where user choices depend on the assortment of
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items offered in a time step.

2.1.3 Details of the policy

We divide the time horizon into epochs, where in each epoch we offer an assortment

repeatedly until a no purchase outcome occurs. Specifically, in each epoch `, we

offer an assortment S` repeatedly. Let E` denote the set of consecutive time steps in

epoch `. E` contains all time steps after the end of epoch ` − 1, until a no-purchase

happens in response to offering S`, including the time step at which no-purchase

happens. The length of an epoch |E`| conditioned on S` is a geometric random

variable with success probability defined as the probability of no-purchase in S`. The

total number of epochs L in time T is implicitly defined as the minimum number for

which
∑L

`=1 |E`| ≥ T .

At the end of every epoch `, we update our estimates for the parameters of MNL,

which are used in epoch ` + 1 to choose assortment S`+1. For any time step t ∈ E`,

let ct denote the consumer’s response to S`, i.e., ct = i if the consumer purchased

product i ∈ S`, and 0 if no-purchase happened. We define v̂i,` as the number of times

a product i is purchased in epoch `, For every product i and epoch ` ≤ L, we keep

track of the set of epochs before ` that offered an assortment containing product i,

and the number of such epochs. We denote the set of epochs by Ti(`) and the number

of epochs by Ti(`). That is,

Ti(`) = {τ ≤ ` | i ∈ Sτ} , Ti(`) = |Ti(`)|. (2.1)

We compute v̄i,` as the number of times product i was purchased per epoch,

v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ . (2.2)

We show that for all i ∈ S`, v̂i,` and v̄i,` are unbiased estimators of the MNL parameter

vi (see Corollary 2.1 ) Using these estimates, we compute the upper confidence
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bounds, vUCBi,` for vi as,

vUCBi,` := v̄i,` +

√
v̄i,`

48 log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (2.3)

We establish that vUCBi,` is an upper confidence bound on the true parameter vi, i.e.,

vUCBi,` ≥ vi, for all i, ` with high probability (see Lemma 2.2). The role of the upper

confidence bounds is akin to their role in hypothesis testing; they ensure that the

likelihood of identifying the parameter value is sufficiently large. We then offer the

optimistic assortment in the next epoch, based on the previous updates as follows,

S`+1 := argmax
S∈S

max
{
R(S, v̂) : v̂i ≤ vUCBi,`

}
, (2.4)

where R(S, v̂) is as defined in (1.3). We later show that the above optimization

problem is equivalent to the following optimization problem (see Lemma 2.3).

S`+1 := argmax
S∈S

R̃`+1(S), (2.5)

where R̃`+1(S) is defined as,

R̃`+1(S) :=

∑
i∈S

riv
UCB
i,`

1 +
∑
j∈S

vUCBj,`

. (2.6)

We summarize the steps in our policy in Algorithm 1. Finally, we may remark on the

computational complexity of implementing (2.4). The optimization problem (2.4) is

formulated as a static assortment optimization problem under the MNL model with

TU constraints, with model parameters being vUCBi,` , i = 1, . . . , N (see (2.5)). There

are efficient polynomial time algorithms to solve the static assortment optimization

problem under MNL model with known parameters (see [17, 40]). We will now

briefly comment on how Algorithm 1 is different from the existing approaches of [43]

and [40] and also why other standard “bandit techniques” are not applicable to the

MNL-Bandit problem.
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Algorithm 1 Exploration-Exploitation algorithm for MNL-Bandit

1: Initialization: vUCBi,0 = 1 for all i = 1, . . . , N
2: t = 1 ; ` = 1 keeps track of the time steps and total number of epochs respectively
3: while t < T do

4: Compute S` = argmax
S∈S

R̃`(S) =

∑
i∈S

riv
UCB
i,`−1

1+

∑
j∈S

vUCBj,`−1

5: Offer assortment S`, observe the purchasing decision, ct of the consumer
6: if ct = 0 then
7: compute v̂i,` =

∑
t∈E` 1(ct = i), no. of consumers who preferred i in epoch

`, for all i ∈ S`
8: update Ti(`) = {τ ≤ ` | i ∈ S`} , Ti(`) = |Ti(`)|, no. of epochs until ` that

offered product i

9: update v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ , sample mean of the estimates

10: update vUCBi,` =v̄i,` +

√
v̄i,`

48 log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
; ` = `+ 1

11: else
12: E` = E` ∪ t, time indices corresponding to epoch `
13: end if
14: t = t+ 1
15: end while

Remark 2.2. (Universality) Note that Algorithm 1 does not require any prior

knowledge/information about the problem parameters v (other than the assumption

vi ≤ v0, which is subsequently relaxed in Algorithm 3). This is in contrast with the

approaches of [43] and [40], which require the knowledge of the “separation gap,”

namely, the difference between the expected revenues of the optimal assortment and

the second-best assortment. Assuming knowledge of this “separation gap,” both

these existing approaches explore a pre-determined set of assortments to estimate

the MNL parameters within a desired accuracy, such that the optimal assortment

corresponding to the estimated parameters is the (true) optimal assortment with

high probability. This forced exploration of pre-determined assortments is avoided

in Algorithm 1, which offers assortments adaptively, based on the current observed

choices. The confidence regions derived for the parameters v and the subsequent
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assortment selection, ensure that Algorithm 1 judiciously maintains the balance

between exploration and exploitation that is central to the MNL-Bandit problem.

Remark 2.3. (Estimation Approach) Because the MNL-Bandit problem is

parameterized with parameter vector (v), a natural approach is to build on standard

estimation approaches like maximum likelihood (MLE), where the estimates are

obtained by optimizing a loss function. However, the confidence regions for estimates

resulting from such approaches are either:

1. asymptotic and are not necessarily valid for finite time with high probability,

or

2. typically depend on true parameters, which are not known a priori. For example,

finite time confidence regions associated with maximum likelihood estimates

require the knowledge of sup
v∈V

I(v) (see [11]), where I is the Fisher information

of the MNL choice model and V is the set of feasible parameters (that is not

known apriori). Note that using I(vMLE) instead of sup
v∈V

I(v) for constructing

confidence intervals would only lead to asymptotic guarantees and not finite

sample guarantees.

In contrast, in Algorithm 1, we solve the estimation problem by a sampling method

designed to give us unbiased estimates of the model parameters. The confidence

bounds of these estimates and the algorithm do not depend on the underlying model

parameters. Moreover, our sampling method allows us to compute the confidence

regions by simple and efficient “book keeping” and avoids computational issues that

are typically associated with standard estimation schemes such as MLE. Furthermore,

the confidence regions associated with the unbiased estimates also facilitate a tractable

way to compute the optimistic assortment (see (2.4), (2.5) and Step-4 of Algorithm

1), which is less accessible for the MLE estimate.
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2.2 Worst Case Regret Bounds

In what follows, we make the following assumptions.

Assumption 2.1.

1. The MNL parameter corresponding to any product i ∈ {1, . . . , N} satisfies vi ≤

v0 = 1.

2. The family of assortments S is such that S ∈ S and Q ⊆ S implies that Q ∈ S.

The first assumption is equivalent to the ‘no purchase option’ being the most

likely outcome. We note that this holds in many realistic settings, in particular, in

online retailing and online display-based advertising. The second assumption implies

that removing a product from a feasible assortment preserves feasibility. This holds

for most constraints arising in practice including cardinality, and matroid constraints

more generally. We would like to note that the first assumption is made for ease of

presentation of the key results and is not central to deriving bounds on the regret.

In section 2.5, we relax this assumption and derive regret bounds that hold for any

parameter instance.

Our main result is the following upper bound on the regret of the policy stated

in Algorithm 1.

Theorem 1 (Performance Bounds for Algorithm 1). For any instance v = (v0, . . . , vN)

of the MNL-Bandit problem with N products, ri ∈ [0, 1] and Assumption 4.1, the regret

of the policy given by Algorithm 1 at any time T is bounded as,

Reg(T,v) ≤ C1

√
NT logNT + C2N log2NT,

where C1 and C2 are absolute constants (independent of problem parameters).

2.2.1 Proof Outline

In this section, we provide an outline of different steps involved in proving Theorem 1.
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Confidence intervals. The first step in our regret analysis is to prove the following

two properties of the estimates vUCBi,` computed as in (2.3) for each product i.

Specifically, that vi is bounded by vUCBi,` with high probability, and that as a product

is offered an increasing number of times, the estimates vUCBi,` converge to the true

value with high probability. Intuitively, these properties establish vUCBi,` as upper

confidence bounds converging to actual parameters vi, akin to the upper confidence

bounds used in the UCB algorithm for MAB in [6]. We provide the precise statements

for the above mentioned properties in Lemma 2.2. These properties follow from an

observation that is conceptually equivalent to the IIA (Independence of Irrelevant

Alternatives) property of MNL, and shows that in each epoch τ , v̂i,τ (the number of

purchases of product i) provides an independent unbiased estimates of vi. Intuitively,

v̂i,τ is the ratio of probabilities of purchasing product i to preferring product 0 (no-

purchase), which is independent of Sτ . This also explains why we choose to offer

Sτ repeatedly until no-purchase occurs. Given these unbiased i.i.d. estimates from

every epoch τ before `, we apply a multiplicative Chernoff-Hoeffding bound to prove

concentration of v̄i,`.

Validity of the optimistic assortment. The product demand estimates vUCBi,`−1

were used in (2.6) to define expected revenue estimates R̃`(S) for every set S. In

the beginning of every epoch `, Algorithm 1 computes the optimistic assortment

as S` = arg maxS R̃`(S), and then offers S` repeatedly until no-purchase happens.

The next step in the regret analysis is to leverage the fact that vUCBi,` is an upper

confidence bound on vi to prove similar, though slightly weaker, properties for the

estimates R̃`(S). First, we show that estimated revenue is an upper confidence bound

on the optimal revenue, i.e., R(S∗,v) is bounded by R̃`(S`) with high probability.

The proof for these properties involves careful use of the structure of MNL model to

show that the value of R̃`(S`) is equal to the highest expected revenue achievable by

any feasible assortment, among all instances of the problem with parameters in the
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range [0, vUCBi ], i = 1, . . . , n. Since the actual parameters lie in this range with high

probability, we have R̃`(S`) is at least R(S∗,v) with high probability. Lemma 2.4

provides the precise statement. Lemma 2.4 is akin to the first property in Section

2.1.1.

Bounding the regret. The final part of our analysis is to bound the regret in

each epoch. First, we use the fact that R̃`(S`) is an upper bound on R(S∗,v) to

bound the loss due to offering the assortment S`. In particular, we show that the

loss is bounded by the difference between the “optimistic” revenue estimate, R̃`(S`),

and the actual expected revenue, R(S`). We then prove a Lipschitz property of the

expected revenue function to bound the difference between these estimates in terms of

errors in individual product estimates |vUCBi,` − vi|. Finally, we leverage the structure

of the MNL model and the properties of vUCBi,` to bound the regret in each epoch.

Lemma 2.5 provides the precise statements of above properties.

In the rest of this section, we make the above notions precise. Note that Lemma

2.4 and Lemma 2.5 are similar in spirit to first and second properties of the UCB

estimates UCBt,i discussed in Section 2.1.1. Therefore, the proof of Theorem 1 follows

a similar analysis. However, the combinatorial aspects of the assortment optimization

problem brings in additional challenges in completing the proof. In the interest of

continuity, we defer the proof of Theorem 1 to Appendix B.1.

2.2.2 Unbiased estimates

Here, we prove that v̂i,` and v̄i,` are unbiased estimates of the MNL parameter vi. We

show that from the moment generating function of the estimate v̂i,`

Lemma 2.1 (Moment Generating Function). The moment generating function of

estimate conditioned on S`, v̂i, is given by,

E
(
eθv̂i,`

∣∣∣S`) =
1

1− vi(eθ − 1)
, for all θ ≤ log

1 + vi
vi

, for all i = 1, · · · , N.
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Proof. From (1.2), we have that probability of no purchase event when assortment

S` is offered is given by

π(0, S`) =
1

1 +
∑

j∈S` vj
.

Let n` be the total number of offerings in epoch ` before a no purchased occurred,

i.e., n` = |E`| − 1. Therefore, n` is a geometric random variable with probability of

success π(0, S`). And, given any fixed value of n`, v̂i,` is a binomial random variable

with n` trials and probability of success given by

qi(S`) =
vi∑
j∈S` vj

.

In the calculations below, for brevity we use p0 and qi respectively to denote π(0, S`)

and qi(S`). Hence, we have

E
(
eθv̂i,`

)
= En`

{
E
(
eθv̂i,`

∣∣n`)} . (2.7)

Since the moment generating function for a binomial random variable with parameters

n, p is
(
peθ + 1− p

)n
, we have

E
(
eθv̂i,`

∣∣n`) = En`
{(
qie

θ + 1− qi
)n`} . (2.8)

For any α, such that α(1−p) < 1, if n is a geometric random variable with parameter

p, then we have

E(αn) =
p

1− α(1− p)
.

Since n` is a geometric random variable with parameter p0 and by definition of qi and

p0, we have, qi(1− p0) = vip0, it follows that for any θ < log 1+vi
vi

, we have,

En`
{(
qie

θ + 1− qi
)n`} =

p0

1− (qieθ + 1− qi) (1− p0)
=

1

1− vi(eθ − 1)
. (2.9)

The result follows from (2.7), (2.8) and (2.9). �

From the moment generating function, we can establish that v̂i,` is a geometric

random variable with parameter 1
1+vi

. Thereby also establishing that v̂i,` and v̄i,` are
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unbiased estimators of vi. More specifically, from Lemma 2.1, we have the following

result.

Corollary 2.1 (Unbiased Estimates). We have the following results.

1. v̂i,`, ` ≤ L are i.i.d geometrical random variables with parameter 1
1+vi

, i .e. for

any `, i

Pr (v̂i,` = m) =

(
vi

1 + vi

)m(
1

1 + vi

)
∀ m = {0, 1, 2, · · · }.

2. v̂i,`, ` ≤ L are unbiased i.i.d estimates of vi, i .e. E (v̂i,`) = vi ∀ `, i.

2.2.3 Upper confidence bounds

In this section, we will show that the upper confidence bounds vUCBi,` converge to the

true parameters vi from above. Specifically, we have the following result.

Lemma 2.2. For every ` = 1, · · · , L, we have:

1. vUCBi,` ≥ vi with probability at least 1− 6
N`

for all i = 1, . . . , N .

2. There exists constants C1 and C2 such that

vUCBi,` − vi ≤ C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)
,

with probability at least 1− 7
N`

.

We first establish that the estimates v̂i,`, ` ≤ L are unbiased i.i.d estimates of the

true parameter vi for all products. It is not immediately clear a priori if the estimates

v̂i,`, ` ≤ L are independent. In our setting, it is possible that the distribution of the

estimate v̂i,` depends on the offered assortment S`, which in turn depends on the

history and therefore, previous estimates, {v̂i,τ , τ = 1, . . . , ` − 1}. In Lemma 2.1,

we show that the moment generating function of v̂i,` conditioned on S` only depends

on the parameter vi and not on the offered assortment S`, there by establishing that

estimates are independent and identically distributed. Using the moment generating

function, we show that v̂i,` is a geometric random variable with mean vi, i.e., E(v̂i,`) =
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vi. We will use this observation and extend the classical multiplicative Chernoff-

Hoeffding bounds (see [36] and [7]) to geometric random variables. The proof is

provided in Appendix A.2

2.2.4 Optimistic estimate and convergence rates

In this section, we show that the estimated revenue converges to the optimal expected

revenue from above and akin to the upper confidence bounds described in Section

2.1.1. First we leverage the structural properties of the MNL model to establish two

key properties of the optimal expected revenue. In the first property, which we refer

to as restricted monotonicity, we note that the optimal expected revenue is monotone

in the MNL parameters. In the second property, we present a Lipschitz property of

the expected revenue function. In particular, we have the following result.

Lemma 2.3 (Properties of the Optimal Revenue). Fix v ∈ Rn
+, let S∗ be an optimal

assortment when the MNL are parameters are given by v, i.e. S∗ = arg max
S:|S|≤K

R(S,v).

For any w ∈ Rn
+, we have:

1. (Restricted Monotonicity) If vi ≤ wi for all i = 1, · · · , N . Then,

R(S∗,w) ≥ R(S∗,v).

2. (Lipschitz) |R(S∗,v)−R(S∗,w)| ≤
∑

i∈S∗ |vi − wi|
1 +

∑
j∈S∗ vj

.

Proof. We will first prove the restricted monotonicity property and extend the analysis

to prove the Lipschitz property.

Restricted Monotonicity. We prove the result by first showing that for any j ∈ S∗,

we have R(S∗,wj) ≥ R(S∗,v), where wj is vector v with the jth component increased

to wj, i.e. wji = vi for all i 6= j and wjj = wj. We can use this result iteratively to

argue that increasing each parameter of MNL to the highest possible value increases

the value of R(S,w) to complete the proof.
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If there exists j ∈ S such that rj < R(S), then removing the product j from

assortment S yields higher expected revenue contradicting the optimality of S.

Therefore, we have

rj ≥ R(S). ∀j ∈ S.

Multiplying by (vj − wj)(
∑

i∈S/j wi + 1) on both sides of the above inequality and

re-arranging terms, we can show that R(S∗,wj) ≥ R(S∗,v).

Lipschitz. Following the above analysis, we define sets I(S∗) and D(S∗) as

I(S∗) = {i|i ∈ S∗ and vi ≥ wi}

D(S∗) = {i|i ∈ S∗ and vi < wi} ,

and vector u as,

ui =

 wi if i ∈ D(S∗),

vi otherwise.

By construction of u, we have ui ≥ vi and ui ≥ wi for all i. Therefore from the

restricted monotonicity property, we have

R(S∗,v)−R(S∗,w) ≤ R(S∗,u)−R(S∗,w)

≤

∑
i∈S∗

riui

1 +
∑
j∈S∗

uj
−

∑
i∈S∗

riwi

1 +
∑
j∈S∗

uj
,

≤

∑
i∈S∗

(ui − wi)

1 +
∑
j∈S∗

uj
.

Lipschitz property in Lemma 2.3 follows from the definition of ui.

It is important to note that we do not claim that the expected revenue is in general

a monotone function, but only the value of the expected revenue corresponding to

the optimal assortment increases with increase in the MNL parameters.

Now, we show that the estimated revenue is an upper confidence bound on the

optimal revenue. In particular, we have the following result.
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Lemma 2.4. Suppose S∗ ∈ S is the assortment with highest expected revenue, and

Algorithm 1 offers S` ∈ S in each epoch `. Then, for every epoch `, we have

R̃`(S`) ≥ R̃`(S
∗) ≥ R(S∗,v) with probability at least 1− 6

`
.

Proof. From Lemma 2.2 and union bound, we have with at least 1− 6
`

probability that

vUCBi,` > vi for all i ∈ S∗. In Lemma 2.3, we show that the optimal expected revenue

is monotone in the MNL parameters. Therefore, the probability that the estimated

revenue is greater than the optimal revenue is at least as large as the probability of

vUCBi,` > vi for all i ∈ S∗.

The following result provides the convergence rates of the estimate R̃`(S`) to the

optimal expected revenue.

Lemma 2.5. If ri ∈ [0, 1], there exists constants C1 and C2 such that for every

` = 1, · · · , L, we have

(1 +
∑

j∈S` vj)(R̃`(S`)−R(S`,v)) ≤ C1

√
vi log (

√
N`+1)

|Ti(`)| + C2
log (
√
N`+1)

|Ti(`)| ,

with probability at least 1− 7
`
.

Proof. Using a union bound, we can argue that the second statement of Lemma 2.2

holds true for all products in the optimal set with at least a probability of 1− 7
`
. The

result then follows from the Lipschitz property established in Lemma 2.3.

2.3 Improved Regret Bounds for “well

separated” Instances

In this section, we consider the problem instances that are “well separated” and

present an improved logarithmic regret bound. More specifically, we derive anO(log T )

regret bound for Algorithm 1 for instances that are “well separated.” In Section 2.2,
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we established worst case regret bounds for Algorithm 1 that hold for all problem

instances satisfying Assumption 4.1. Although our algorithm ensures that the

exploration-exploitation tradeoff is balanced at all times, for problem instances that

are “well separated,” our algorithm quickly converges to the optimal solution leading

to better regret bounds. More specifically, we consider problem instances where

the optimal assortment and “second best” assortment are sufficiently “separated”

and derive a O(log T ) regret bound that depends on the parameters of the instance.

Note that, unlike the regret bound derived in Section 2.2 that holds for all problem

instances satisfying Assumption 4.1, the bound we derive here only holds for instances

having certain separation between the revenues corresponding to optimal and second

best assortments. In particular, let ∆(v) denote the difference between the expected

revenues of the optimal and second-best assortment, i.e.,

∆(v) = min
{S∈S|R(S,v)6=R(S∗,v)}

{R(S∗,v)−R(S)}. (2.10)

We have the following result.

Theorem 2 (Performance Bounds for Algorithm 1 in “well separated” case). For any

instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products, ri ∈ [0, 1] and

Assumption 4.1, the regret of the policy given by Algorithm 1 at any time T is bounded

as,

Reg(T,v) ≤ B1

(
N2 log T

∆(v)

)
+B2,

where B1 and B2 are absolute constants.

Proof outline. In this setting, we analyze the regret by separately considering the

epochs that satisfy certain desirable properties and the ones that do not. Specifically,

we denote epoch ` as a “good” epoch if the parameters vUCBi,` satisfy the following

property,

0 ≤ vUCBi,` − vi ≤ C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)
,
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and we call it a “bad” epoch otherwise, where C1 and C2 are constants as defined in

Lemma 2.2. Note that every epoch ` is a good epoch with high probability (1− 13
`

)

and we show that regret due to “bad” epochs is bounded by a constant (see Appendix

B.3). Therefore, we focus on “good” epochs and show that there exists a constant τ ,

such that after each product has been offered in at least τ “good” epochs, Algorithm

1 finds the optimal assortment. Based on this result, we can then bound the total

number of “good” epochs in which a sub-optimal assortment can be offered by our

algorithm. Specifically, let

τ =
4NC logNT

∆2(v)
, (2.11)

where C = max{C2
1 , C2}. Then we have the following result.

Lemma 2.6. Let ` be a “good” epoch and S` be the assortment offered by Algorithm

1 in epoch `. If every product in assortment S` is offered in at least τ “good epochs,”

i.e. Ti(`) ≥ τ for all i, then we have R(S`,v) = R(S∗,v) .

Proof. Let V (S`) =
∑

i∈S` vi. From Lemma 2.5, and definition of τ (see (2.11)), we

have,

R(S∗,v)−R(S`,v) ≤ 1

V (S`) + 1

∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 ,

≤ ∆(v)

(
C1

∑
i∈S`
√
vi

2
√
NC (V (S`) + 1)

+
C2

4C

)
.

(2.12)

From Cauchy-Schwartz inequality, we have

∑
i∈S`

√
vi ≤

√
|S`|

∑
i∈S`

vi ≤
√
NV (S`) ≤

√
N (V (S`) + 1) .

Substituting the above inequality in (2.12) and using the fact that C = max{C2
1 , C2},

we obtain R(S∗,v) − R(S`,v) ≤ 3∆(v)
4
. The result follows from the definition of

∆(v).
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The next step in the analysis is to show that Algorithm 1 will offer a small number

of sub-optimal assortments in “good” epochs. We make this precise in the following

observation whose proof amounts to a simple counting exercise using Lemma 2.6.

Lemma 2.7. Algorithm 1 cannot offer sub-optimal assortments in more than Nτ

“good” epochs.

Proof. We complete the proof using an inductive argument on N .

Lemma 2.7 trivially holds for N = 1, since when there is only one product, every

epoch offers the optimal product and the number of epochs offering sub-optimal

assortment is 0, which is less than τ . Now assume that for any N ≤M , we have that

the number of “good epochs” offering sub-optimal products is bounded by Nτ, where

τ is as defined in (2.11). Now consider the setting, N = M + 1. We will now show

that the number of “good epochs” offering sub-optimal products cannot be more than

(M + 1)τ to complete the induction argument. We introduce some notation, let N̂

be the number of products that are offered in more than τ epochs by Algorithm 1,

EG denote the set of “good epochs”, i.e.,

EG =

`
∣∣∣∣∣∣vUCBi,` ≥ vi or vUCBi,` ≤ vi + C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)
∀i

 ,

(2.13)

and E sub opt
G be the set of “good epochs” that offer sub-optimal assortments,

E sub opt
G = {` ∈ EG | R(S`) < R(S∗)} . (2.14)

Case 1: N̂ = N : Let L be the total number of epochs and S1, · · · , SL be the

assortments offered by Algorithm 1 in epochs 1, · · · , L respectively. Let `i be the

epoch that offers product i for the τ th time, specifically,

`i
∆
= min {` | Ti(`) = τ} .
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Without loss of generality, assume that, `1 ≤ `2 ≤ · · · ≤ `N . Let Ê sub opt
G be the set of

“good epochs” that offered sub-optimal assortments before epoch `N−1,

Ê sub opt
G =

{
` ∈ E sub opt

G

∣∣∣ ` ≤ `N−1

}
,

where E sub opt
G is as defined as in (2.14). Finally, let Ê sub opt(N)

G be the set of “good

epochs” that offered sub-optimal assortments not containing product N before epoch

`N−1,

Ê sub opt(N)
G =

{
` ∈ Ê sub opt

G

∣∣∣ N 6∈ S` } .
Every assortment S` offered in epoch ` ∈ Ê sub opt(N)

G can contain at most N − 1 = M

products, therefore by the inductive hypothesis, we have |Ê sub opt(N)
G | ≤ Mτ. We can

partition Ê sub opt
G as,

Ê sub opt
G = Ê sub opt(N)

G ∪
{
` ∈ E sub opt

G

∣∣∣ N ∈ S` } ,
and hence it follows that,

|Ê sub opt
G | ≤Mτ +

∣∣∣{` ∈ E sub opt
G

∣∣∣ N ∈ S` }∣∣∣ .
Note that TN(`N−1) is the number of epochs until epoch `N−1, in which product N

has been offered. Hence, it is higher than the number of “good epochs” before epoch

`N−1 that offered a sub-optimal assortment containing product N and it follows that,

|Ê sub opt
G | ≤Mτ + TN(`N−1). (2.15)

Note that from Lemma 2.6, we have that any “good epoch” offering sub-optimal

assortment must offer product N , since all the the other products have been offered

in at least τ epochs. Therefore, we have, for any ` ∈ E sub opt
G \Ê sub opt

G , N ∈ S` and

thereby,

TN(`N)− TN(`N−1) ≥ |E sub opt
G | − |Ê sub opt

G |.

From definition of `N , we have that TN(`N) = τ and substituting (2.15) in the above

inequality, we obtain

|E sub opt
G | ≤ (M + 1)τ.
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Case 2: N̂ < N : The proof for the case when N̂ < N is similar along the lines of

the previous case (we will make the same arguments using N̂ − 1 instead of N − 1.)

and is skipped in the interest of avoiding redundancy.

The proof for Theorem 2 follows from the above result. In particular, noting that

the number of epochs in which sub-optimal assortment is offered is small, we re-use

the regret analysis of Section 2.2 to bound the regret by O(N2 log T ). We provide a

rigorous proof in Appendix B.3 for the sake of completeness. Note that for the special

case of cardinality constraints, we have |S`| ≤ K for every epoch `. By modifying the

definition of τ in (2.11) to τ = 4KC logNT/∆2(v) and following the above analysis,

we can improve the regret bound to O(NK log T ) for this case. Specifically, we have

the following.

Corollary 2.2 (Bounds in well separated case under cardinality constraints). For any

instance v = (v0, . . . , vN) of the MNL-Bandit problem with N products and cardinality

constraint K, ri ∈ [0, 1] and v0 ≥ vi for all i, the regret of the policy given by

Algorithm 1 at any time T is bounded as,

Reg(T,v) ≤ B1
NK logNT

∆(v)
+B2,

where, B1 and B2 are absolute constants and ∆(v) is defined in (2.10).

It should be noted that the bound obtained in Corollary 2.2 is similar in magnitude

to the regret bounds obtained by [43], when K is assumed to be fixed, and is

strictly better than the regret bound O(N2 log2 T ) established by [40]. Moreover,

our algorithm does not require the knowledge of ∆(v), unlike the aforementioned

papers which build on a conservative estimate of ∆(v) to implement their proposed

policies.
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2.4 Lower Bound for the MNL-Bandit

In this section, we consider the special case of TU constraints, namely, a cardinality

constrained assortment optimization problem, and establish that any policy must

incur a regret of Ω(
√
NT/K). More precisely, we prove the following result.

Theorem 3 (Lower bound on achievable performance). There exists a (randomized)

instance of the MNL-Bandit problem with v0 ≥ vi , i = 1, . . . , N , such that for any N

and K, and any policy π that offers assortment Sπt , |Sπt | ≤ K at time t, we have for

all T ≥ N that,

Reg(T,v) := Eπ

(
T∑
t=1

R(S∗,v)−R(Sπt ,v)

)
≥ C

√
NT

K
,

where S∗ is (at-most) K-cardinality assortment with maximum expected revenue, and

C is an absolute constant.

Remark 2.4. (Optimality) Theorem 3 establishes that Algorithm 1 is optimal if

we assume K to be fixed. We note that the assumption that K is fixed holds in many

realistic settings, in particular, in online retailing, where there are a large number of

products, but only fixed number of slots to show these products. Algorithm 1 is nearly

optimal ifK is also considered to be a problem parameter, with the upper bound being

within a factor of
√
K of the lower bound. In recent work, [15] established a lower

bound of Ω
(√

NT
)

for the MNL-Bandit problem, when K < N/4, thus suggesting

that Algorithm 1 is optimal even with respect to its dependence on K. For the special

case of the unconstrained MNL-Bandit problem (i.e., K = N), the regret bound of

Algorithm 1 can be improved to O(
√
|S∗|T ), where |S∗| is the size of the optimal

assortment (see Appendix B.2) and the optimality gap for the unconstrained setting

is
√
|S∗|.
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2.4.1 Proof overview

For ease of exposition, we focus here on the case where K < N , and present the

proof for lower bound when K = N in Appendix B.5.1. To that end, we will assume

that K < N for the rest of this section. We prove Theorem 2.4 by a reduction to a

parametric multi-armed bandit (MAB) problem, for which a lower bound is known.

Definition 2.1 (MAB instance IMAB). Define IMAB as a (randomized) instance of

MAB problem with N ≥ 2 Bernoulli arms (reward is either 0 or 1) and the probability

of the reward being 1 for arm i is given by,

µi =

 α, if i 6= j,

α + ε, if i = j,
for all i = 1, . . . , N,

where j is set uniformly at random from {1, . . . , N}, α < 1 and ε = 1
100

√
Nα
T

.

Throughout this section we will use the terms algorithm and policy interchangeably.

An algorithm A is referred to as online if it adaptively selects a history dependent

At ∈ {1, . . . , n} at each time t for the MAB problem.

Lemma 2.8. For any N ≥ 2, α < 1, T and any online algorithm A that plays arm

At at time t, the expected regret on instance IMAB is at least
εT

6
. That is,

RegA(T,µµµ) := E

[
T∑
t=1

(µj − µAt)

]
≥ εT

6
,

where, the expectation is both over the randomization in generating the instance (value

of j), as well as the random outcomes that result from pulled arms.

The proof of Lemma 2.8 is a simple extension of the proof of the Ω(
√
NT ) lower

bound for the Bernoulli instance with parameters 1
2

and 1
2

+ ε (for example, see 13),

and has been provided in Appendix B.5 for the sake of completeness. We use the

above lower bound for the MAB problem to prove that any algorithm must incur at

least Ω(
√
NT/K) regret on the following instance of the MNL-Bandit problem.
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Definition 2.2 (MNL-Bandit instance IMNL). Define IMNL as the following (randomized)

instance of MNL-Bandit problem with K-cardinality constraint, N̂ = NK products,

parameters v0 = K and for i = 1, . . . , N̂ ,

vi =

 α, if d i
K
e 6= j,

α + ε, if d i
K
e = j,

where j is set uniformly at random from {1, . . . , N}, α < 1, and ε = 1
100

√
Nα
T

and

ri = 1.

We will show that any MNL-Bandit algorithm has to incur a regret of Ω
(√

NT
K

)
on instance IMNL. The main idea in our reduction is to show that if there exists an

algorithm AMNL for MNL-Bandit that achieves o(
√

NT
K

) regret on instance IMNL,

then we can use AMNL as a subroutine to construct an algorithm AMAB for the

MAB problem that achieves strictly less than εT
6

regret on instance IMAB in time

T , thus contradicting the lower bound of Lemma 2.8. This will prove Theorem 2.4

by contradiction.

2.4.2 Construction of the MAB algorithm using the MNL

algorithm

Algorithm 2 provides the exact construction of AMAB, which simulates the AMNL

algorithm as a “black-box.” Note that AMAB pulls arms at time steps t = 1, . . . , T .

These arm pulls are interleaved by simulations of AMNL steps (Call AMNL , Feedback

to AMNL ). When step ` of AMNL is simulated, it uses the feedback from 1, . . . , `−1 to

suggest an assortment S`; and recalls a feedback from AMAB on which product (or no

product) was purchased out of those offered in S`, where the probability of purchase

of product i ∈ S` is vi
/

(v0 +
∑

i∈S` vi). Before showing that the AMAB indeed provides

the right feedback to AMNL in the `th step for each `, we introduce some notation.
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Algorithm 2 Algorithm AMAB

1: Initialization: t = 0, ` = 0
2: while t ≤ T do
3: Update ` = `+ 1
4: Call AMNL, receive assortment S` ⊂ [N̂ ]
5: Repeat until ‘exit loop’
6: With probability 1

2
, send Feedback to AMNL ‘no product was purchased’,

exit loop
7: Update t = t+ 1
8: With probability 1

2K
, pull arm At = d i

K
e, where i ∈ S`

9: With probability 1
2
− |S`|

2K
, continue the loop (go to Step-5)

10: If reward is 1, send Feedback to AMNL ‘i was purchased’ and exit loop
11: end loop
12: end while

Let M` denote the length of the loop at step `, more specifically, the cumulative

number of times, AMNL was executing steps 6, 8 or 9 in the `th step before exiting the

loop. For every i ∈ S` ∪ 0, let ζ i` denote the event that the feedback to AMNL from

AMAB after step ` of AMNL is “product i is purchased”. We have,

P(M` = m ∩ ζ i`) =
vi

2K

(
1

2K

∑
i∈S`

(1− vi)+
1

2
− |S`|

2K

)m−1

for each i ∈ S` ∪ {0}.

Hence, the probability that AMAB ’s feedback to AMNL is “product i is purchased” is,

pS`(i) =
∞∑
m=1

P(M` = m ∩ ζ i`) =
vi

v0 +
∑

q∈S` vq
.

This establish that AMAB provides the appropriate feedback to AMNL .

2.4.3 Proof of Theorem 2.4

We prove the result by establishing three key results. First, we upper bound the

regret for the MAB algorithm, AMAB . Then, we prove a lower bound on the regret

for the MNL algorithm, AMNL . Finally, we relate the regret of AMAB and AMNL and

use the established lower and upper bounds to show a contradiction.
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For the rest of this proof, assume that L is the total number of calls to AMNL in

AMAB . Let S∗ be the optimal assortment for IMNL. For any instantiation of IMNL,

it is easy to see that the optimal assortment contains K items, all with parameter

α + ε, i.e., it contains all i such that d i
K
e = j. Therefore, V (S∗) = K(α + ε) = Kµj.

Note that if an algorithm offers an assortment, S`, such that |S`| < K, then we can

improve the regret incurred by this algorithm for the MNL-Bandit instance IMNL by

offering an assortment Ŝ` = S` ∪ {i} for some i 6∈ S`. Since our focus is on lower

bounding the regret, we will assume, without loss of generality, that |S`| = K for the

rest of this section.

Upper bound for the regret of the MAB algorithm. The first step in our

analysis is to prove an upper bound on the regret of the MAB algorithm, AMAB on

the instance IMAB. Let us label the loop following the `th call to AMNL in Algorithm

2 as `th loop. Note that the probability of exiting the loop is p = E[1
2

+ 1
2
µAt ] =

1
2

+ 1
2K
V (S`), where V (S`)

∆
=
∑

i∈S` vi. In every step of the loop until exited, an arm

is pulled with probability 1/2. The optimal strategy would pull the best arm so that

the total expected optimal reward in the loop is
∑∞

r=1(1− p)r−1 1
2
µj =

µj
2p

= 1
2Kp

V (S∗).

Algorithm AMAB pulls a random arm from S`, so total expected algorithm’s reward in

the loop is
∑∞

r=1(1− p)r−1 1
2K
V (S`) = 1

2Kp
V (S`). Subtracting the algorithm’s reward

from the optimal reward, and substituting p, we obtain that the total expected regret

of AMAB over the arm pulls in loop ` is

V (S∗)− V (S`)

(K + V (S`))
.

Noting that V (S`) ≥ Kα, we have the following upper bound on the regret for the

MAB algorithm.

RegAMAB
(T,µµµ) ≤ 1

(1 + α)
E

(
L∑
`=1

1

K
(V (S∗)− V (S`))

)
, (2.16)

where the expectation in equation (2.16) is over the random variables L and S`.
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Lower bound for the regret of the MNL algorithm. Here, we derive a lower

bound on the regret of the MNL algorithm, AMNL on the instance IMNL. Specifically,

RegAMNL
(L,v) = E

[
L∑
`=1

V (S∗)

v0 + V (S∗)
− V (S`)

v0 + V (S`)

]

≥ 1

K(1 + α)
E

[
L∑
`=1

(
V (S∗)

1 + ε
1+α

− V (S`)

)]
.

Therefore, it follows that,

RegAMNL
(L,v) ≥ 1

(1 + α)
E

[
L∑
`=1

1

K
(V (S∗)− V (S`))−

εv∗L

(1 + α)2

]
, (2.17)

where v∗ = α+ ε and the expectation in equation (2.17) is over the random variables

L and S`.

Relating the regret of the MNL algorithm and the MAB algorithm. Finally,

we relate the regret of the MNL algorithm AMNL and MAB algorithm AMAB to derive

a contradiction. The first step in relating the regret involves relating the length of

the horizons of AMNL and AMAB, L and T respectively. Note that, after every call to

AMNL (“Call AMNL” in Algorithm 2), many iterations of the following loop may be

executed; in roughly 1/2 of those iterations, an arm is pulled and t is advanced (with

probability 1/2, the loop is exited without advancing t). Therefore, T should be at

least a constant fraction of L. The following result makes this precise.

Lemma 2.9. Let L be the total number of calls to AMNL when AMAB is executed for

T time steps. Then,

E(L) ≤ 3T.

Proof. Let η` be the random variable that denote the duration, assortment S` has

been considered by AMAB, i.e. η` = 0, if we no arm is pulled when AMNL suggested

assortment S` and η` ≥ 1, otherwise. We have

L−1∑
`=1

η` ≤ T.
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Therefore, we have E
(∑L−1

`=1 η`

)
≤ T . Note that E(η`) ≥ 1

2
. Hence, we have E(L) ≤

2T + 1 ≤ 3T.

Now we are ready to prove Theorem 3. From (2.16) and (2.17), we have

RegAMAB
(T,µµµ) ≤ E

(
RegAMNL

(L,v) +
εv∗L

(1 + α)2

)
.

For the sake of contradiction, suppose that the regret of the AMNL , RegAMNL
(L,v) ≤

c
√

N̂L
K

for a constant c to be prescribed below. Then, from Jensen’s inequality, it

follows that,

RegAMAB
(T,µµµ) ≤ c

√
N̂E(L)

K
+
εv∗E(L)

(1 + α)2
.

From lemma B.4, we have that E(L) ≤ 3T . Therefore, we have, c

√
N̂E(L)
K

= c
√
NE(L) ≤

c
√

3NT = cεT
√

3
α
< εT

12
on setting c < 1

12

√
α
3
. Also, using v∗ = α + ε ≤ 2α, and

setting α to be a small enough constant, we can get that the second term above is

also strictly less than εT
12

. Combining these observations, we have

RegAMAB
(T,µµµ) < εT

12
+ εT

12
= εT

6
,

thus arriving at a contradiction.

2.5 Relaxing the “no-purchase” assumption

In this section, we extend our approach (Algorithm 1) to the setting where the

assumption that vi ≤ v0 for all i is relaxed. The essential ideas in the extension

remain the same as our earlier approach, specifically optimism under uncertainty,

and our policy is structurally similar to Algorithm 1. The modified policy requires

a small but mandatory initial exploration period. However, unlike the works of [40]

and [43], the exploratory period does not depend on the specific instance parameters

and is constant for all problem instances. Therefore, our algorithm is parameter

independent and remains relevant for practical applications. Moreover, our approach
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continues to simultaneously explore and exploit after the initial exploratory phase.

In particular, the initial exploratory phase is to ensure that the estimates converge to

the true parameters from above particularly in cases when the attraction parameter

vi (frequency of purchase), is large for certain products. We describe our approach

in Algorithm 3.

Algorithm 3 Exploration-Exploitation algorithm for MNL-Bandit general
parameters

1: Initialization: vUCBi,0 = 1 for all i = 1, . . . , N

2: t = 1 ; ` = 1 keeps track of the time steps and total number of epochs respectively
3: Ti(1) = 0 for all i = 1, . . . , N

4: while t < T do

5: Compute S` = argmax
S∈S

R̃`(S) =

∑
i∈S

riv
UCB
i,`−1

1+

∑
j∈S

vUCBj,`−1

6: if Ti(`) < 48 log (
√
N`+ 1) for some i ∈ S` then

7: Consider Ŝ ={i|Ti(`) < 48 log (
√
N`+ 1)}

8: Choose S` ∈ S such that S` ⊂ Ŝ

9: end if

10: Offer assortment S`, observe the purchasing decision, ct of the consumer
11: if ct = 0 then
12: compute v̂i,` =

∑
t∈E` 1(ct = i), no. of consumers who preferred i in epoch

`, for all i ∈ S`
13: update Ti(`) = {τ ≤ ` | i ∈ S`} , Ti(`) = |Ti(`)|, no. of epochs until ` that

offered product i

14: update v̄i,` =
1

Ti(`)

∑
τ∈Ti(`)

v̂i,τ , sample mean of the estimates

15: update vUCB2i,` =v̄i,` + max
{√

v̄i,`, v̄i,`
}√48 log (

√
N`+1)

Ti(`)
+ 48 log (

√
N`+1)

Ti(`)

16: ` = `+ 1
17: else
18: E` = E` ∪ t, time indices corresponding to epoch `
19: end if
20: t = t+ 1
21: end while

We can extend the analysis in Section 2.2 to bound the regret of Algorithm 3 as

follows.
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Theorem 4 (Performance Bounds for Algorithm 3). For any instance v = (v0, . . . , vN),

of the MNL-Bandit problem with N products, ri ∈ [0, 1] for all i = 1, . . . , N , the regret

of the policy corresponding to Algorithm 3 at any time T is bounded as,

Reg(T,v) ≤ C1

√
BNT logNT + C2N log2NT + C3NB logNT,

where C1, C2 and C3 are absolute constants and B = max{maxi
vi
v0
, 1}.

Proof outline. Note that Algorithm 3 is very similar to Algorithm 1 except for

the initial exploratory phase. Hence, to bound the regret we first prove that the

initial exploratory phase is indeed bounded and then follow the approach discussed

in Section 2.2 to establish the correctness of the confidence intervals, the optimistic

assortment, and finally deriving the convergence rates and regret bounds. We will

now make the above notions precise.

Bounding Exploratory Epochs. We would denote an epoch ` as an “exploratory

epoch” if the assortment offered in the epoch contains a product that has been offered

in less than 48 log (
√
N`+ 1) epochs. It is easy to see that the number of exploratory

epochs is bounded by 48N logNT , where T is the selling horizon under consideration.

We then use the observation that the length of any epoch is a geometric random

variable to bound the total expected duration of the exploration phase. Hence, we

bound the expected regret due to explorations.

Lemma 2.10. Let L be the total number of epochs in Algorithm 3 and let EL denote

the set of “exploratory epochs,” i.e.

EL =
{
`
∣∣∣ ∃ i ∈ S` such that Ti(`) < 48 log (

√
N`+ 1)

}
,

where Ti(`) is the number of epochs product i has been offered before epoch `. If E`

denote the time indices corresponding to epoch ` and vi ≤ Bv0 for all i = 1, . . . , N ,

for some B ≥ 1, then we have that,

E

(∑
`∈EL

|E`|

)
< 49NB logNT,
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where the expectation is over all possible outcomes of Algorithm 3.

Proof. Consider an ` ∈ EL, note that |E`| is a geometric random variable with

parameter 1/V (S`) + 1. Since vi ≤ Bv0, for all i and we can assume without loss

of generality v0 = 1, we have |E`| as a geometric random variable with parameter p,

where p ≥ 1/(B|S`|+ 1). Therefore, we have the conditional expectation of |E`| given

that assortment S` is offered is bounded as,

E (|E`| | S`) ≤ B|S`|+ 1. (2.18)

Note that after every product has been offered in at least 48 logNT epochs, then we

do not have any exploratory epochs. Therefore, we have that

∑
`∈EL

|S`| ≤ 48N logNT.

Substituting the above inequality in (2.18), we obtain

E

(∑
`∈EL

|E`|

)
≤ 48BN logNT + 48N logNT.

Confidence Intervals. We will now show a result analogous to Lemma 2.2, that

establish the updates in Algorithm 3, vUCB2i,` , as upper confidence bounds converging

to actual parameters vi. Specifically, we have the following result.

Lemma 2.11. For every epoch `, if Ti(`) ≥ 48 log (
√
N`+ 1) for all i ∈ S`, then we

have,

1. vUCB2i,` ≥ vi with probability at least 1− 6
N`

for all i = 1, · · · , N .

2. There exists constants C1 and C2 such that

vUCB2i,` − vi ≤ C1 max {
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)
,

with probability at least 1− 7
N`
.
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The proof is very similar to the proof of Lemma 2.2, where we first establish the

following concentration inequality for the estimates v̂i,`, when Ti(`) ≥ 48 log (
√
N`+ 1)

from which the above result follows. The proof of Lemma 2.11 along with the proof

of Lemma 2.2 is deferred to Appendix A.2.

Convergence Rates of the Revenue Estimate: Using a union bound, we can

argue that the second statement of Lemma 2.11 holds true for all products in the

optimal set with at least a probability of 1− 7
`
. The following result which specifies

the convergence rate of the revenue estimate follows from the Lipschitz property

established in Lemma 2.3.

Lemma 2.12. For every epoch `, if ri ∈ [0, 1] and Ti(`) ≥ 48 log (
√
N`+ 1) for all

i ∈ S`, then there exists constants C1 and C2 such that for every `, we have

(1 +
∑

j∈S` vj)(R̃`(S`)−R(S`,v)) ≤ C1 max
{√

vi, vi
}√ log (

√
N`+1)

|Ti(`)| + C2
log (
√
N`+1)

|Ti(`)| ,

with probability at least 1− 7
`
.

Note that Lemma 2.4 and Lemma 2.12 are similar in spirit to first and second

properties of the UCB estimates UCBt,i discussed in Section 2.1.1. Therefore, the

proof of Theorem 4 follows a similar analysis. However, the combinatorial aspects

of the assortment optimization problem brings in additional challenges in completing

the proof. In the interest of continuity, we defer the proof of Theorem 1 to Appendix

B.4.

2.6 Computational Study

In this section, we present insights from numerical experiments that test the empirical

performance of our policy and highlight some of its salient features. We study

the performance of Algorithm 1 from the perspective of robustness with respect to

the “separability parameter” of the underlying instance. In particular, we consider
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varying levels of separation between the revenues corresponding to the optimal

assortment and the second best assortment and perform a regret analysis numerically.

We contrast the performance of Algorithm 1 with the approach in [43] for different

levels of separation. We observe that when the separation between the revenues

corresponding to optimal assortment and second best assortment is sufficiently small,

the approach in [43] breaks down, i.e., incurs linear regret, while the regret of Algorithm

1 only grows sub-linearly with respect to the selling horizon. We also present results

from a simulated study on a real world data set.

2.6.1 Robustness of Algorithm 1

Here, we present a study that examines the robustness of Algorithm 1 with respect to

the instance separability. We consider a parametric instance (see (2.19)), where the

separation between the revenues of the optimal assortment and next best assortment

is specified by the parameter ε and compare the performance of Algorithm 1 for

different values of ε.

Experimental setup. We consider the parametric MNL setting with N = 10,

K = 4, ri = 1 for all i and utility parameters v0 = 1 and for i = 1, . . . , N ,

vi =

 0.25 + ε, if i ∈ {1, 2, 9, 10}

0.25, else ,
(2.19)

where 0 < ε < 0.25, specifies the difference between revenues corresponding to the

optimal assortment and the next best assortment. Note that this problem has a

unique optimal assortment, {1, 2, 9, 10} with an expected revenue of 1 + 4ε/2 + 4ε

and next best assortment has revenue of 1 + 3ε/2 + 3ε. We consider four different

values for ε, ε = {0.05, 0.1, 0.15, 0.25}, where higher value of ε corresponds to larger

separation, and hence an “easier” problem instance.
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Figure 2.1: Performance of Algorithm 1 measured as the regret on the parametric
instance (2.19). The graphs illustrate the dependence of the regret on T for
“separation gaps” ε = 0.05, 0.1, 0.15 and 0.25 respectively.

Results. Figure 2.1 summarizes the performance of Algorithm 1 for different values

of ε. The results are based on running 100 independent simulations, the standard

errors are within 2%. Note that the performance of Algorithm 1 is consistent across

different values of ε; with a regret that exhibits sub linear growth. Observe that as

the value of ε increases the regret of Algorithm 1 decreases. While not immediately

obvious from Figure 2.1, the regret behavior is fundamentally different in the case

of “small” ε and “large” ε. To see this, in Figure 2.2 we focus on the regret for

ε = 0.05 and ε = 0.25 and fit to log T and
√
T respectively. (The parameters of these

functions are obtained via simple linear regression of the regret vs log T and
√
T

respectively). It can be observed that the regret is roughly logarithmic when ε = 0.25,

and in contrast roughly behaves like
√
T when ε = 0.05. This illustrates the theory

developed in Section 2.3, where we showed that the regret grows logarithmically with

time, if the optimal assortment and next best assortment are “well separated,” while

the worst-case regret scales as
√
T .
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Figure 2.2: Best fit for the regret of Algorithm 1 on the parametric instance (2.19).
The graphs (a), (b) illustrate the dependence of the regret on T for “separation gaps”
ε = 0.05, and 0.25 respectively. The best y = β1 log T+β0 fit and best y = β1

√
T+β0

fit are superimposed on the regret curve.

2.6.2 Comparison with existing approaches

In this section, we present a computational study comparing the performance of

our algorithm to that of [43]. (To the best of our knowledge, [43] is currently the

best existing approach for our problem setting.) To be implemented, their approach

requires certain a priori information of a “separability parameter”; roughly speaking,

measuring the degree to which the optimal and next-best assortments are distinct

from a revenue standpoint. More specifically, their algorithm follows an explore-then-

exploit approach, where every product is offered for a minimum duration of time that

is determined by an estimate of said “separability parameter.” After this mandatory

exploration phase, the parameters of the choice model are estimated based on the past

observations and the optimal assortment corresponding to the estimated parameters

is offered for the subsequent consumers. If the optimal assortment and the next best

assortment are “well separated,” then the offered assortment is optimal with high

probability, otherwise, the algorithm could potentially incur linear regret. Therefore,

the knowledge of this “separability parameter” is crucial. For our comparison, we

consider the exploration period suggested by [43] and compare it with the performance
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of Algorithm 1 for different values of separation (ε). We will see that for any given

exploration period, there is an instance where the approach in [43] “breaks down” or

in other words incurs linear regret, while the regret of Algorithm 1 grows sub-linearly

(O(
√
T ), more precisely) for all values of ε as asserted in Theorem 1.

Experimental setup and results. We consider the parametric MNL setting

as described in (2.19) and for each value of ε ∈ {0.05, 0.1, 0.15, 0.25}. Since the

implementation of the policy in [43] requires knowledge of the selling horizon and

minimum exploration period a priori, we take the exploration period to be 20 log T

as suggested in [43] and the selling horizon T = 106. Figure 2.3 compares the regret

of Algorithm 1 with that of [43]. The results are based on running 100 independent

simulations with standard error of 2%. We observe that the regret for [43] is better

than the regret of Algorithm 1 when ε = 0.25 but is worse for other values of ε. This

can be attributed to the fact that for the assumed exploration period, their algorithm

fails to identify the optimal assortment within the exploration phase with sufficient

probability and hence incurs a linear regret for ε = 0.05, 0.1 and 0.15. Specifically,

among the 100 simulations we tested, the algorithm of [43] identified the optimal

assortment for only 7%, 40%, 61% and 97% cases, when ε = 0.05, 0.1, 0.15, and 0.25,

respectively. This highlights the sensitivity to the “separability parameter” and the

importance of having a reasonable estimate for the exploration period. Needless

to say, such information is typically not available in practice. In contrast, the

performance of Algorithm 1 is consistent across different values of ε, insofar as the

regret grows in a sub-linear fashion in all cases.
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Figure 2.3: Comparison with the algorithm of [43]. The graphs (a), (b), (c) and (d)
compares the performance of Algorithm 1 to that of [43] on problem instance (2.19),
for ε = 0.05, 0.1, 0.15 and 0.25 respectively.

2.6.3 Performance of Algorithm 1 on a simulation of real

data

Here, we present the results of a simulated study on a real data set and compare the

performance of Algorithm 1 to that of [43].

Data description. We consider the “UCI Car Evaluation Database” (see [29])

which contains attributes for N = 1728 cars and consumer ratings for each car. The

exact details of the attributes are provided in Table 2.1. Rating for each car is also

available. In particular, every car is associated with one of the following four ratings,

unacceptable, acceptable, good and very good.

55



Attribute Attribute Values

price Very-high, high, medium, low
maintenance costs Very-high, high, medium, low

# doors 2, 3, 4, 5 or more
passenger capacity 2, 4, more than 4
luggage capacity small, medium and big
safety perception low, medium, high

Table 2.1: Attribute information of cars in the database

Assortment optimization framework. We assume that the consumer choice is

modeled by the MNL model, where the mean utility of a product is linear in the values

of attributes. More specifically, we convert the categorical attributes described in

Table 2.1 to attributes with binary values by adding dummy attributes (for example

“price very high”, “price low” are considered as two different attributes that can take

values 1 or 0). Now every car is associated with an attribute vector mi ∈ {0, 1}22,

which is known a priori and the mean utility of product i is given by the inner product

µi = θ ·mi i = 1, . . . , N,

where θ ∈ R22 is some fixed but initially unknown attribute weight vector. Under

this model, the probability that a consumer purchases product i when offered an

assortment S ⊂ {1, . . . , N} is assumed to be,

pi(S) =


eθ·mi

1 +
∑

j∈S e
θ·mj

, if i ∈ S ∪ {0}

0, otherwise,

(2.20)

Let m = (m1, . . . ,mN). Our goal is to offer assortments S1, . . . , ST at times 1, . . . , T

respectively such that the cumulative sales are maximized or alternatively, minimize

the regret defined as

Regπ(T,m) =
T∑
t=1

(∑
i∈S∗

pi(S)−
∑
i∈St

pi(St)

)
, (2.21)
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where

S∗ = arg max
S

∑
i∈S

eθ·mi

1 +
∑

j∈S e
θ·mj

.

Note that regret defined in (2.21) is a special case formulation of the regret defined

in (MNL-Bandit) with ri = 1 and vi = eθ·mi for all i = 1, . . . , N .

Experimental setup and results. We first estimate a ground truth MNL model

as follows. Using the available attribute level data and consumer rating for each

car, we estimate a logistic model assuming every car’s rating is independent of the

ratings of other cars to estimate the attribute weight vector θ. Specifically, under the

logistic model, the probability that a consumer will purchase a car whose attributes

are defined by the vector m ∈ {0, 1}22 and the attribute weight vector θ is given by

pbuy(θ,m)
∆
= P (buy|θ) =

eθ·m

1 + eθ·m
.

For the purpose of training the logistic model on the available data, we consider the

consumer ratings of “acceptable,” “good,” and “very good” as success or intention

to buy and the consumer rating of “unacceptable” as a failure or no intention to

buy. We then use the maximum likelihood estimate θMLE for θ to run simulations

and study the performance of Algorithm 1 for the realized θMLE. In particular, we

compute θMLE that maximizes the following regularized log-likelihood

θMLE = arg max
θ

N∑
i=1

log pbuy(θ,mi)− ‖θ‖2.

The objective function in the preceding optimization problem is convex and therefore

we can use any of the standard convex optimization techniques to obtain the estimate,

θMLE. It is important to note that the logistic model is only employed to obtain an

estimate for θ, θMLE. The estimate θMLE is assumed to be the ground truth MNL

model and is used to simulate the feedback of consumer choices for our learning

Algorithm 1 and the learning algorithm proposed by [43].
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Figure 2.4: Comparison with the algorithm of [43] on real data. The graph compares
the performance of Algorithm 1 to that of [43] on the “UCI Car Evaluation Databse’
for T = 107.

We compare the performance of Algorithm 1 with that of [43], in terms of regret

as defined in (2.21) with θ = θMLE and at each time index, the retailer can only show

at most k = 100 cars. We implement [43]’s approach with their suggested mandotary

exploration period, which explores every product for at least 20 log T periods. Figure

2.4 plots the regret of Algorithm 1 and the [43] policy, when the selling horizon is

T = 107. The results are based on running 100 independent simulations and have a

standard error of 2%. We can observe that while the initial regret of [43] is smaller, the

regret grows linearly with time, suggesting that the exploration period was too small.

This further illustrates the shortcomings of an explore-then-exploit approach which

requires knowledge of underlying parameters. In contrast, the regret of Algorithm 1

grows in a sublinear fashion with respect to the selling horizon and does not require

any a priori knowledge on the parameters, making a case for the universal applicability

of our approach.

Summary and main insights. In this Chapter, we have studied the dynamic

assortment selection problem under the widely used multinomial logit choice model.

Formulating the problem as a parametric multi-arm bandit problem, we present a
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policy that learns the parameters of the choice model while simultaneously maximizing

the cumulative revenue. Focusing on a policy that would be universally applicable, we

highlight the limitations of existing approaches and present a novel computationally

efficient algorithm, whose performance (as measured by the regret) is nearly-optimal.

Furthermore, our policy is adaptive to the complexity of the problem instance, as

measured by “separability” of items. The adaptive nature of the algorithm is manifest

in its “rate of learning” the unknown instance parameters, which is more rapid if the

problem instance is “less complex.”
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Chapter 3

Thompson Sampling for the MNL-Bandit

It is widely recognized that UCB-type algorithms that optimize the worst case regret

typically tend to spend “too much time” in the exploration phase, resulting in

poor performance in practice (regret-optimality bounds notwithstanding). To that

end, several studies (see [37], [24], [32]) have demonstrated that TS significantly

outperforms the state of the art methods in practice. Motivated by the attractive

empirical properties, in this chapter, we focus on a Thompson Sampling (TS) approach

to the MNL-Bandit problem.

In Section 3.1 we give an overview of TS approach for the classical multi-armed

bandit problem and highlight challenges associated with designing TS policies. In

Section 3.2, we present our adaptations of the Thompson Sampling algorithm for

the MNL-Bandit. In particular, we describe how to leverage the sampling technique

introduced in Chapter 2 and design a prior distribution on the parameters of the MNL

model such that the posterior update under the MNL-bandit feedback is tractable.

In Section 2.2, we prove our main result that our algorithm achieves a regret

bounded as Õ(
√
NT log TK). Here, we also highlight the key ingredient of our

approach, a two moment approximation of the posterior and the ability to judicially

correlate samples, which is done by embedding the two-moment approximation in a

normal family. In Section 3.4 demonstrates the empirical efficiency of our algorithm

design.
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3.1 Overview of Thompson Sampling

Thompson Sampling, introduced by Thompson [45] in 1933 is one of the oldest

algorithms for bandit problems. For the classical MAB problem, where there are n

arms with unknown means, {µi}i=1,··· ,n, a TS based policy proceeds in the following

manner

Algorithm 4 Basic Structure of TS policy for the classical MAB Problem

1: Assume a prior distribution Pr0(µ) on the parameters {µ}i=1,··· ,n.
2: for t = 1, 2, . . . do
3: Sample parameters µ̃ from the prior/posterior distribution Prt−1(µ)
4: Play the arm with highest sampled parameters, i.e. it = arg maxi µ̃i
5: Observe reward rt which is generated from the distribution Pr(rt|µ)
6: Update the posterior Prt(µ) = Pr(µ|rt) ∝ Pr(rt|µ)Pr(µ)
7: end for

For ease of exposition we will consider the special case of two-armed bandits to

highlight the intuition for why TS works in practice. In the TS algorithm, we generate

samples µ̃1,t and µ̃2,t and play the arm with the larger sample. In the worst case that

the sub-optimal arm has been played large number of times, the posterior distribution

of the sub-optimal arm (say arm 2) will be concentrated around its true mean, µ2,

(µ2 < µ1). If the optimal arm is not played often, then the posterior distribution of

the optimal arm will have larger variance, which will frequently result in the sampled

values being larger than the true mean, µ̃1 > µ1, which further ensures that the

optimal arm is played more often. Typically, a worst case regret analysis of TS

proceeds by showing that the best arm is optimistic (in the sense that the sampled

parameter is larger than the true parameter) at least once every few steps.

Despite being intuitive, there are a number of challenges involved in designing a

TS based approach. The primary concern is the the choice of prior, which not only

has to ensure the posterior update is tractable but also guarantee that the posterior

distribution has sufficient variance to explore the optimal arm. The tractability of the

posterior update also impede the analysis of such an algorithm. For example, in all
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existing work ([3], [2]) on worst-case regret analysis for TS, the prior is chosen to allow

a conjugate posterior, which permits theoretical analysis. For general posteriors, only

Bayesian regret bounds (see [41]) have been proven, which are much weaker than the

worst case regret notion we consider in this dissertation. There are also a number

of heuristics or posterior approximation (see [42, 37]) algorithm that indicate how

to approximate the TS algorithm. However, it is not immediately clear if these

approximate TS based approaches facilitate theoretical analysis.

3.2 Algorithm.

In this section, we describe our posterior sampling (aka Thompson Sampling) based

algorithm for the MNL-Bandit problem. The basic structure of Thompson Sampling

involves maintaining a posterior on the unknown problem parameters, which is updated

every time new feedback is obtained. In the beginning of every round, a sample set

of parameters is generated from the current posterior distribution, and the algorithm

chooses the best option according to these sample parameters. In the MNL-Bandit

problem, there is one unknown parameter vi associated with each item. To adapt

the TS algorithm for this problem, we would need to maintain a joint posterior

for (v1, . . . , vN). However, updating such a joint posterior is non-trivial since the

feedback observed in every round is a sample from multinomial choice probability,

vi/(1 +
∑

j∈S vj), which clearly depends on the subset S offered in that round. In

particular, even if we initialize with an independent prior from a popular analytical

family such as multivariate Gaussian, the posterior distribution after observing the

MNL choice feedback can have a complex description. As a first step in addressing this

challenge, we attempt to design a Thompson Sampling algorithm with independent

priors. In particular, we leverage a sampling technique introduced in in Chapter

2 that allows us to decouple individual parameters from the MNL choice feedback
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and provides unbiased estimates of these parameters. We can utilize these unbiased

estimates to efficiently maintain independent conjugate Beta priors for the parameters

vi for each i. We present the details in Algorithm 1 below.

3.2.1 A TS algorithm with independent conjugate Beta

priors

Here, we present the first version of our Thompson sampling algorithm, which will

serve as an important building block for our main algorithm in Section 3.2.3. In

this version, we maintain a Beta posterior distribution for each item i = 1, . . . , N ,

which is updated as we observe users’ choice of items from the offered subsets. A key

challenge here is to choose priors that can be efficiently updated on observing user

choice feedback, in order to obtain increasingly accurate estimates of parameters {vi}.

To address this, we use the sampling technique introduced in Chapter 2 to decouple

estimates of individual parameters from the complex MNL feedback. The idea is to

offer a set S multiple times; in particular, a chosen set S is offered repeatedly until

the “outside option” is repeatedly picked (in the motivating application discussed

earlier, this corresponds displaying the same subset of ads until we observe a user

who does not click on any of the displayed ads). Proceeding in this manner, due to

the structure of the MNL model, the average number of times an item i is selected

provides an unbiased estimate of parameter vi. Moreover, the number of times an

item i is selected is independent of the displayed set and is a geometric distribution

with success probability 1/(1 + vi) and mean vi (see Lemma 2.1 in Chapter 2). This

observation is used as the basis for our epoch based algorithmic structure and our

choice of prior/posterior, as a conjugate to this geometric distribution.

Epoch based offerings: Our algorithm proceeds in epochs ` = 1, 2, . . . similar to

Algorithm 1 in Chapter 2. An epoch is a group of consecutive time steps, where a set
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S` is offered repeatedly until the outside option is picked in response to offering S`.

The set S` to be offered in an epoch ` is picked in the beginning of the epoch based

on the sampled parameters from the current posterior distribution; the construction

of these posteriors and choice of S` is described in the next paragraph. We denote

the group of time steps in an epoch as E`, which includes the time step at which an

outside option was preferred.

The following lemma which establishes the existence of a conjugate prior to our

estimates play a key role in algorithmic construction.

Lemma 3.1 (Conjugate Priors). For any α > 3, β > 0, let Xα,β = 1
Beta(α,β)

− 1

and fα,β be a probability distribution of the random variable Xα,β. If vi is distributed

as fα,β and ṽi,` is a geometric random variable with success probability 1
vi+1

, then we

have,

P
(
vi

∣∣∣ṽi,` = m
)

= fα+1,β+m(vi).

Proof. The proof of the lemma follows from the following result on the probability

density function of the random variable Xα,β. Specifically, we have for any x > 0

fα,β(x) =
1

B(α, β)

(
1

1 + x

)α+1(
x

x+ 1

)β−1

, (3.1)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

and Γ(a) is the gamma function. Since we assume that the

parameter vi’s prior distribution is same as that of Xα,β, we have from (3.1) and

Lemma 2.1,

P
(
vi
∣∣ṽi,` = m

)
∝
(

1

1 + vi

)α+2(
vi

vi + 1

)β+m−1

.

Construction of conjugate prior/posterior: From Lemma 2.1, we have that for

any epoch ` and for any item i ∈ S`, the estimate ṽi,`, the number of picks of item i

in epoch ` is geometrically distributed with success probability 1/(1 + vi). Suppose
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that the prior distribution for parameter vi in the beginning of an epoch ` is same as

that of

Xi =
1

Beta(ni, Vi)
− 1,

where Beta(ni, Vi) is the Beta random variable with parameters ni and Vi. In Lemma

3.1, we show that after observing the geometric variable ṽi,` = m, the posterior

distribution of vi is same as that of,

X ′i =
1

Beta(ni + 1, Vi +m)
− 1.

Therefore, we use the distribution of 1
Beta(1,1)

−1 as the starting prior for vi, and then,

in the beginning of epoch `, the posterior is distributed as 1
Beta(ni(`),Vi(`))

− 1, with

ni(`) being the number of epochs the item i has been offered before epoch ` (as part

of an assortment), and Vi(`) being the number of times it was picked by the user.

Selection of subset to be offered: To choose the subset to be offered in epoch `,

the algorithm samples a set of parameters µ1(`), . . . , µN(`) independently from the

current posteriors and finds the set that maximizes the expected revenue as per the

sampled parameters. In particular, the set S` to be offered in epoch ` is chosen as:

S` := arg max
|S|≤K

R(S,µµµ(`)) (3.2)

There are efficient polynomial time algorithms available to solve this optimization

problem (e.g., refer to [17] and [40]).

The details of our procedure are provided in Algorithm 5.

3.2.2 Challenges and key ideas.

Posterior approximation and Correlated sampling. Algorithm 5 presents some

unique challenges in theoretical analysis. A worst case regret analysis of Thompson

Sampling based algorithms for MAB typically relies on showing that the best arm

is optimistic at least once every few steps, in the sense that the parameter sampled
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Algorithm 5 A TS algorithm for MNL-Bandit with Independent Beta priors

Initialization: For each item i = 1, · · · , N , Vi = 1, ni = 1.

t = 1, keeps track of the time steps

` = 1, keeps count of total number of epochs

while t ≤ T do

(a) (Posterior Sampling) For each item i = 1, · · · , N , sample θi(`) from the
Beta(ni, Vi) and compute µi(`) = 1

θi(`)
− 1

(b) (Subset Selection) Compute S` = arg max
|S|≤K

R(S,µµµ(`)) =
∑
i∈S riµi(`)

1+
∑
j∈S µj(`)

(c) (Epoch-based offering)

repeat

Offer the set S`, and observe the user choice ct;

Update E` = E` ∪ t, time indices corresponding to epoch `; t = t+ 1

until ct = 0

(d) (Posterior update)

For each item i ∈ S`, compute ṽi,` =
∑

t∈E` I(ct = i), no. of picks of item
i in epoch `.

Update Vi = Vi + ṽi,`, ni = ni + 1, ` = `+ 1.

end while

from the posterior is better than the true parameter. Due to the combinatorial

nature of our problem, such a proof approach requires showing that every few steps,

all the K items in the optimal offer set have sampled parameters that are better than

their true counterparts. However, Algorithm 1 samples the posterior distribution for

each parameter independently in each round. This makes the probability of being

optimistic exponentially small in K.

We address this challenge by employing correlated sampling across items. To

implement correlated sampling, we find it useful to approximate the Beta posterior

distribution by a Gaussian distribution with approximately the same mean and

variance as the former; to obtain what was referred to in the introduction as a two-

moment approximation. This allows us to generate correlated samples from the N

Gaussian distributions as linear transforms of a single standard Gaussian random
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variable. Under such correlated sampling, the probability of all K optimal items

to be simultaneously optimistic is a constant, as opposed to being exponentially

small (in K) in the case of independent samples. However, such correlated sampling

reduces the overall variance of the maximum of N samples severely, thus reducing

exploration. We boost the variance by taking K samples instead of a single sample

of the standard Gaussian. The resulting variant of Thompson Sampling algorithm is

presented in Algorithm 6 in Section 3.2.3. We prove a near-optimal regret bound for

this algorithm in Section 3.3.

3.2.3 A TS algorithm with posterior approximation and

correlated sampling

Motivated by the challenges in theoretical analysis of Algorithm 5 described earlier,

in this section we design a variant, Algorithm 6. There are three main changes

in this version of the algorithm; posterior approximation by means of a Gaussian

distribution, correlated sampling, and taking multiple samples (for “variance boosting”).

We describe each of these changes below. First, we present the following result that

helps us in approximating the posterior.

Lemma 3.2 (Moments of the Posterior Distribution). If X is a random variable

distributed as Beta(α, β), then

E
(

1
X
− 1
)

= β
α−1

, and Var
(

1
X
− 1
)

=
β
α−1( β

α−1
+1)

α−2
.

Proof. We prove the result by relating the mean of the posterior to the mean of the

Beta distribution. Let X̂ = 1
X
− 1. From (3.1), we have

E(X̂) =
1

B(α, β)

∫ ∞
0

x

(
1

1 + x

)α+1(
x

x+ 1

)β−1

dx,

Substituting y = 1
1+x

, we have

E(X̂) =
1

B(α, β)

∫ 1

0

yα−2(1− y)βdx =
B(α− 1, β + 1)

B(α, β)
=

β

α− 1
.
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Similarly, we can derive the expression for the Var(X̂).

Posterior approximation: We approximate the posterior distributions used in

Algorithm 5 for the MNL parameters vi, by Gaussian distributions with approximately

the same mean and variance (refer to Lemma 3.2). In particular, let

v̄i,` :=
Vi(`)

ni(`)
, σ̂i(`) :=

√
50v̄i,`(v̄i,` + 1)

ni(`)
+ 75

√
log TK

ni(`)
, (3.3)

where ni(`) is the number of epochs the item i has been offered before epoch ` (as

part of an assortment), and Vi(`) being the number of times it was picked by the user.

We will use N (v̄i,`, σ̂
2
i (`)) as the posterior distribution for item i in the beginning of

epoch `. The Gaussian approximation of the posterior will facilitate efficient correlated

sampling from posteriors. The correlated sampling will play a key role in avoiding

some theoretical challenges in analyzing Algorithm 5.

Correlated sampling: Given the posterior approximation by Gaussian distributions,

we correlate the samples by using a common standard normal variable and constructing

our posterior samples as an appropriate transform of this common standard normal.

More specifically, in the beginning of an epoch `, we generate a sample from the

standard normal distribution, θ ∼ N (0, 1) and the posterior sample for item i,

is generated as v̄i,` + θσ̂i(`). This allows us to generate sample parameters for

i = 1, . . . , N that are either simultaneously high or simultaneously low, thereby,

boosting the probability that the sample parameters for all the K items in the best

assortment are optimistic (the sampled parameter values are higher than the true

parameter values).

Multiple (K) samples: The correlated sampling decreases the joint variance of the

sample set. More specifically, if θi were sampled independently from the standard

normal distribution for every i, then for any epoch `, we have that

Var

(
max

i=1,··· ,N
{v̂i(`) + θσ̂i(`)}

)
< Var

(
max

i=1,··· ,N
{v̂i(`) + θiσ̂i(`)}

)
.
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In order to boost this joint variance and ensure sufficient exploration, we modify

the procedure to generate multiple sets of samples. In particular, in the beginning

of an epoch `, we now generate K independent samples from the standard normal

distribution, θ(j) ∼ N (0, 1), j = 1, . . . , K. And then for each j, a sample parameter

set is generated as:

µ
(j)
i (`) := v̂i(`) + θ(j)σ̂i(`), i = 1, . . . , N,

Then, we use the highest valued samples

µi(`) := max
j=1,··· ,K

µ
(j)
i (`),∀i,

to decide the assortment to offer in epoch `,

S` := arg max
S∈S

R(S,µµµ(`))

We summarize the steps in Algorithm 6. Here, we also have an “initial exploration

period,” where for every item i, we offer a set containing only i until the user selects

the outside option.

Intuitively, the second moment approximation by Gaussian distribution and

multiple samples in Algorithm 6 may make posterior converge slower and increase

exploration. However, the correlated sampling may compensate for these effects by

reducing the variance of the maximum of N samples, and therefore reducing the

overall exploration. In Section 3.4, we illustrate some of these insights through some

preliminary numerical simulations. Here, correlated sampling is observed to provide

significant improvements when compared to independent sampling, and posterior

approximation by Gaussian distribution has little impact.

3.3 Regret Analysis

We prove an upper bound on the regret of Algorithm 6 for the MNL-Bandit problem,

under the following assumption.
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Algorithm 6 A TS algorithm with Gaussian approximation and correlated sampling

Input Parameters α = 50 and β = 75
Initialization: t = 0, ` = 0, ni = 0 for all i = 1, · · · , N .

for each item, i = 1, · · · , N do

Display item i to users until the user selects the “outside option”. Let ṽi,1 be
the number of times item i was offered. Update: Vi = ṽi,1 − 1, t = t + ṽi,1,
` = `+ 1 and ni = ni + 1.

end for

while t ≤ T do

(a) (Correlated Sampling) for j = 1, · · · , K

Sample θ(j)(`) from the distribution N (0, 1); update v̄i,` = Vi
ni

.

For each item i ≤ N , compute µ
(j)
i (`) = v̄i,` + θ(j)(`) ·(√

αv̄i,`(v̄i,`+1)

ni
+ β

√
log TK
ni

)
.

end

For each item i ≤ N , compute µi(`) = max
j=1,··· ,K

µ
(j)
i (`)

(b) (Subset selection) Same as step (b) of Algorithm 5.

(c) (Epoch-based offering) Same as step (c) of Algorithm 5.

(d) (Posterior update) Same as step (d) of Algorithm 5.

end while

Assumption 3.1. For every item i ∈ {1, . . . , N}, the MNL parameter vi satisfies

vi ≤ v0 = 1.

This assumption is equivalent to the outside option being more preferable to any

other item. This assumption holds for many applications like display advertising,

where users do not click on any of the displayed ads more often than not. Our main

theoretical result is the following upper bound on the regret of Algorithm 6.

Theorem 3.1. For any instance v = (v0, · · · , vN) of the MNL-Bandit problem with

N products, ri ∈ [0, 1], and satisfying Assumption 4.1, the regret of Algorithm 6 in

time T is bounded as,

Reg(T,v) ≤ C1

√
NT log TK + C2N log2 TK,
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where C1 and C2 are absolute constants (independent of problem parameters).

3.3.1 Proof Sketch

We break down the expression for total regret

Reg(T,v) := E

[
T∑
t=1

R(S∗,v)−R(St,v)

]
,

into regret per epoch, and rewrite it as follows:

Reg(T,v) = E

[
L∑
`=1

|E`| (R(S∗,v)−R(S`,µµµ(`)))

]
︸ ︷︷ ︸

Reg1(T,v)

+ E

[
L∑
`=1

|E`| (R(S`,µµµ(`))−R(S`,v))

]
︸ ︷︷ ︸

Reg2(T,v)

,

(3.4)

where |E`| is the number of time steps in epoch `, and S` is the set repeatedly offered by

our algorithm in epoch `. Then, we bound the two terms: Reg1(T,v) and Reg2(T,v)

separately.

Since S` was chosen as optimal set for MNL instance with parameters µµµ(`), the

first term Reg1(T,v) is essentially the difference between the optimal revenue of the

true instance and the optimal revenue of the sampled instance. This term contributes

no regret if the revenues corresponding to the sampled instances are optimistic, i.e.

if R(S`,µµµ(`)) > R(S∗,v). Unlike optimism under uncertainty approaches like UCB,

this property is not directly ensured by our Thompson Sampling based algorithm. To

bound this term, we utilize anti-concentration properties of the posterior, as well as

the dependence between samples for different items, in order to prove that at least

one of the K sampled instances is optimistic often enough.

The second term Reg2(T,v) captures the difference in the revenue of the offered

set S` when evaluated on sampled parameters in comparison to the true parameters.

We bound this by utilizing the concentration properties of the posterior distributions.
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It involves showing that for the sets that are played often, the posterior will converge

quickly, so that revenue on the sampled parameters will be close to that on the true

parameters.

In what follows, we will first highlight three key results involved in proving

Theorem 1. In Section C.2 we will put together these properties and follow the

above outline to prove Theorem 1.

Structural properties of the optimal revenue.

The first step in our regret analysis is to leverage the structural properties of the MNL

revenue function established in Lemma 2.3. Re-collect that in the first property, which

we refer to as restricted monotonicity, we have that the optimal expected revenue is

monotone in the MNL parameters. In the second property, we have a Lipschitz

property for the expected revenue function. In particular, the difference between the

expected revenue corresponding to two different MNL parameters is bounded in terms

of the difference in individual parameters. These properties project the non-linear

reward function of the MNL choice into its parameter space and help us focus on

analyzing the posterior distribution of the parameters.

Concentration of the posterior distribution.

The next step in the regret analysis is to show that as more observations are made,

the posterior distributions concentrate around their means, which in turn concentrate

around the true parameters. More specifically, we have the following two results.

Lemma 3.3. For any ` ≤ T and i ∈ {1, · · · , N}, we have for any r > 0,

P
(
|µi(`)− v̂i(`)| > 4σ̂i(`)

√
log rK

)
≤ 1

r4K3
,

where σ̂i(`) is as defined in (3.3).
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Lemma 3.4. If vi ≤ 1 for all i = 1, · · · , N , then for any m, ρ > 0, ` ∈ {1, 2, · · · }

and i ∈ {1, · · · , N} we have,

1. P

(
|v̂i(`)− vi| > 4

√
v̂i(`)(v̂i(`) + 1)m log (ρ+ 1)

ni(`)
+

24m log (ρ+ 1)

ni(`)

)
≤ 5

ρm
.

2. P

(
|v̂i(`)− vi| ≥

√
12vim log (ρ+ 1)

ni(`)
+

24m log (ρ+ 1)

ni(`)

)
≤ 4

ρm
.

The above results indicate that for any item i and at the beginning of any epoch

`, the difference between the sample from the posterior distribution µi(`) and the

true parameter vi is bounded and is decreasing over time. Lemma 3.3 follows from

the large deviation properties of Gaussian distribution and Lemma A.1 is similar to

Chernoff bounds. For the sake of continuity, we defer the proof of these concentration

results to Appendix C.1. Leveraging the Lipschitz property of the optimal revenue,

this concentration of sample parameter around its true value will help us prove that

the difference between the expected revenue of the offer set S` corresponding to the

sampled parameters, µµµ(`), and the true parameters, v also becomes smaller with time.

In particular, we have the following result.

Lemma 3.5 (v). For any epoch `, if S` = arg max
S:|S|≤K

R(S,µµµ(`))

E

{
(1 +

∑
j∈S`

vj) [R(S`,µµµ(`))−R(S`,v)]

}
≤ E

[
C1

∑
i∈S`

√
vi log TK

ni(`)
+ C2

log TK

ni(`)

]
,

where C1 and C2 are absolute constants (independent of problem parameters).

The concentration property of the posterior distribution allows us to bound the

second term, Reg2(T,v) in (3.4). Therefore to bound the regret, it suffices to bound

the difference between the the optimal revenue R(S∗,v) and the expected revenue of

the offer set corresponding to sampled parameters R(S`,µµµ(`)).
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Anti-Concentration of the posterior distribution.

We refer to an epoch ` as optimistic if expected revenue of the optimal set corresponding

to the sampled parameters is higher than the expected revenue of the optimal set

corresponding to true parameters, i.e., R(S∗,µµµ(`)) ≥ R(S∗,v). Any epoch that is

not optimistic is referred to as non-optimistic epoch. Since S` is an optimal set for

the sampled parameters, we have R(S`,µµµ(`)) ≥ R(S∗,µµµ(`)). Hence, for any optimistic

epoch `, the difference between the optimal revenueR(S∗,v) and the expected revenue

of the offer set corresponding to sampled parameters R(S`,µµµ(`)) is bounded by zero.

This suggests that as the number of optimistic epochs increases, the term Reg1(T,v)

decreases. The final and important technical component of our analysis is showing

that the regret over non-optimistic epochs is “small”. More specifically, we prove

that there are only a “small” number of non-optimistic epochs. From the restricted

monotonicity property of the optimal revenue (see Lemma 2.3), we have that an

epoch ` is optimistic if every sampled parameter, µi(`) is at least as high as the true

parameter vi for every item i in the optimal set S∗. Recall that each posterior sample

µ
(j)
i (`), is generated from a Gaussian distribution, whose mean concentrates around

the true parameter vi. We can use this observation to conclude that any sampled

parameter will be greater than the true parameter with constant probability, i.e.

µ
(j)
i (`) ≥ vi. However, to show that an epoch is optimistic, we need to show that

sampled parameters for all the items in S∗ are larger than the true parameters. This

is where the correlated sampling feature of our algorithm plays a key role. We use

the dependence structure between samples for different items in the optimal set, and

variance boosting provided by the sampling of K independence sample sets to prove

an upper bound of roughly 1/K on the number of consecutive epochs between two

optimistic epochs. More specifically, we have the following result.

Lemma 3.6 (Spacing of optimistic epochs). Let EAn(τ) denotes the group of consecutive

epochs between an optimistic epoch τ and the next optimistic epoch τ ′. For any
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p ∈ [1, 2], we have,

E1/p
[∣∣EAn(τ)

∣∣p] ≤ e12

K
+ 301/p.

Proof. Note that for any non-negative discrete random variable, X, we have E(X) =∑
x P (X ≥ x). Hence, we will first establish a lower bound on the probability

P
{∣∣EAn(τ)

∣∣p ≥ q
}

and use the preceding fact to obtain a bound on the moments

of the number of non-optimistic epochs.

For the sake of brevity, let r = bq1/pc and z =
√

log (rK + 1). Hence, we have,

P
{∣∣EAn(τ)

∣∣p ≥ q
}

= P {|E(τ)| ≥ r} .

By definition, EAn(τ) less than r implies that one of the epochs τ + 1, · · · , τ + r

is optimistic. More specifically we have,

P
{∣∣EAn(τ)

∣∣ > r
}

= 1− P
({
{µi(`) ≥ vi for all i ∈ S∗} for some ` ∈ (τ, τ + r]

})
,

≤ 1− P
({
{µi(`) ≥ v̂i(`) + zσ̂i(`) ≥ vi for all i ∈ S∗} for some ` ∈ (τ, τ + r]

})
.

For the sake of brevity, let A` denote the event that the sampled parameter for every

item in the optimal set is larger than z standard deviations away from the mean of

the posterior distribution. Furthermore, B` denote the event that the true parameter

of every item in the optimal set is smaller than mean of the posterior distribution

plus z times the standard deviation of the posterior distribution. More specifically

we have,

A` = {µi(`) ≥ v̂i(`) + zσ̂i(`) for all i ∈ S∗} ,

B` = {v̂i(`) + zσ̂i(`) ≥ vi for all i ∈ S∗} .

Bτ =
τ+r⋂
`=τ+1

B`.
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Therefore we have,

P
{∣∣EAn(τ)

∣∣ ≥ r
}
≤ P

(
τ+r⋂
`=τ+1

Ac` ∪Bc
`

)
,

≤ P

(
τ+r⋂
`=τ+1

Ac`

)
+

τ+r∑
`=τ+1

P(Bc
`),

≤ P

(
τ+r⋂
`=τ+1

Ac`

)
+
∑
i∈S∗

P (v̂i(`) + zσ̂i(`) < vi) .

(3.5)

where the last two inequalities follows from union bound. Note that from the

concentration property of the posterior distribution (see Lemma A.1), the probability

of every event in the above inequality is small. In particular, substituting m = 3.1

and ρ = rK in Lemma A.1 and using the fact that rK ≤ TK we obtain,

P (v̂i(`) + zσ̂i(`) < vi) ≤
1

(rK)3.1
. (3.6)

We will now use the tail bounds for Gaussian random variables to bound the probability

P(Ac`). For any Gaussian random variable, Z with mean µ and standard deviation σ,

we have,

Pr(Z > µ+ xσ) ≥ 1√
2π

x

x2 + 1
e−x

2/2.

Note that by design of Algorithm 6, µi(`) = v̂i(`) + σ̂i(`) max
j≤K

θ(j)(`), where θ(j)(`)

are i.i.d standard normal random variables. Therefore, we have

P

(
τ+r⋂
`=τ+1

Ac`

)
= P

(
θ(j)(`) ≤ z for all ` ∈ (τ, τ + r] and for all j = 1, · · · , K

)
,

a

≤
[
1−

(
1√
2π

√
log rK

log rK + 1
· 1√

rK

)]rK
,

b

≤ exp

(
− r1/2

√
2π

2
√

log rK

4 log rK + 1

)
,

c

≤ 1

(rK)2.2
for any r ≥ e12

K
,

(3.7)

where inequality (a) follows from the tail bounds for standard normal random variables,

inequality (b) follows from the fact that 1− x ≤ e−x for all x ≥ 0 and inequality (c)

follows from the fact that exp
(
−
√
x/2π log x

)
≤ 1/x2.2 for any x ≥ e12.

76



Hence from (3.5), (3.6), and (3.7) we have ,

P
{∣∣EAn(τ)

∣∣ ≥ r
}
≤ 1

(rK)2.1
+

1

(rK)2.2
for any r ≥ e12

K
.

The result follows from the above inequality, definition of r and the fact that∑∞
x=1

1
xy

is constant for any y > 1.

We will now briefly discuss how the above properties are put together to bound

Reg1(T,v) and Reg2(T,v). A complete proof is provided in Appendix C.2.

Bounding the first term Reg1(T,v).

Firstly, by our assumption v0 ≥ vi,∀i, the outside option is picked at least as

often as any particular item i. Therefore, it is not difficult to see that the expected

value of epoch length |E`| is bounded by K + 1, so that Reg1(T,v) is bounded as

(K + 1)E

(
L∑
`=1

R(S∗,v)−R(S`,µµµ(`))

)
.

Recall that for every optimistic epoch, we have that the set S∗ has at least as much

revenue on the sampled parameters as on the true parameters. Hence, optimistic

epochs don’t contribute to this term.

To bound the contribution of the remaining epochs, we bound the individual

contribution of any “non-optimistic” epoch ` by relating it to the closest optimistic

epoch τ before it. By definition of an optimistic epoch and by the choice of S` as the

revenue maximizing set for the sampled parameters µµµ(`), we have

R(S∗,v)−R(S`,µµµ(`)) ≤ R(Sτ ,µµµ(τ))−R(S`,µµµ(`)) ≤ R(Sτ ,µµµ(τ))−R(Sτ ,µµµ(`)).

To bound the last term, R(Sτ ,µµµ(τ))−R(Sτ ,µµµ(`)), the difference in the revenue of

the set Sτ corresponding to two different sample parameters: µµµ(τ) and µµµ(`), we will

utilize the concentration property of the posterior and the Lipschitz property of the

revenue function. From Lemma 3.5, the difference in the revenues can be bounded
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by the sum of sample variances σ̂i(τ) + σ̂i(`) and since the variance at the beginning

of epoch τ is larger than the variance at the beginning of epoch `, we have,

|R(Sτ ,µµµ(τ))−R(Sτ ,µµµ(`))| . O

(∑
i∈Sτ

σ̂i(τ)

)
.

From the above bound, we have that the regret in non-optimistic epoch is bounded

by the sample variance in the closest optimistic epoch before it. Utilizing the fact on

an average there are only 1/K non-optimistic epochs (see Lemma 3.6) between any

two consecutive optimistic epochs, we can bound the term Reg1(T,v) as:

Reg1(T,v) ≤ (K + 1)O

(
E

[ ∑
`∈optimistic

1

K

∑
i∈S`

σ̂i(`)

])
.

A bound of Õ(
√
NT ) on the sum of these deviations can be derived, which will also

be useful for bounding the second term, as discussed next.

Bounding the second term Reg2(T,v).

Noting that the expected epoch length when set S` is offered is 1 +
∑

j∈S` vi,

Reg2(T,v) can be reformulated as

Reg2(T,v) = E

[
L∑
`=1

(1 + V (S`)) (R(S`,µµµ(`))−R(S`,v))

]
,

Again, as discussed above, using Lipschitz property of revenue function and the

concentration properties of the posterior distribution, this can be bounded in terms

of posterior standard deviation (see (3.3))

Reg2(T,v) . O

(
E

[
L∑
`=1

∑
i∈S`

σ̂i(`)

])
.

Overall, the above analysis on Reg1 and Reg2 implies roughly the following bound

on regret

O(
L∑
`=1

∑
i∈S`

σ̂i(`)) = O

(
L∑
`=1

∑
i∈S`

√
vi

ni(`)
+

1

ni(`)

)
log TK ≤ O(

N∑
i=1

log TK
√
vini),

where ni is total number of times i was offered in time T . Then, utilizing the bound

of T on the expected number of total picks, i.e.,
∑N

i=1 vini ≤ T , and doing a worst

case scenario analysis, we obtain a bound of Õ(
√
NT ) on Reg(T,v).
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3.4 Empirical study

In this section, we analyze the various design components of our Thompson Sampling

approach through numerical simulations. The aim is to isolate and understand the

effect of individual features of our algorithm design like Beta posteriors vs. Gaussian

approximation, independent sampling vs. correlated sampling, and single sample vs.

multiple samples, on the practical performance.

We simulate an instance of MNL-Bandit problem with N = 1000, K = 10 and

T = 2×105, and the MNL parameters {vi}i=1,...,N generated randomly from Unif[0, 1].

And, we compute the average regret based on 50 independent simulations over the

randomly generated instance. In Figure 3.1, we report performance of following

different variants of TS:

i) Algorithm 1: Thompson Sampling with independent Beta priors, as described

in Algorithm 1.

ii) TSIndpendent Gaussian Priors: Algorithm 1 with Gaussian posterior approximation and

independent sampling. More specifically, for each epoch ` and for each item i, we

sample a Gaussian random variable independently with the mean and variance

equal to the mean and variance of the Beta prior in Algorithm 1 (see Lemma

3.3).

iii) TSGaussian Correlated Sampling: Algorithm 1 with Gaussian posterior approximation

and correlated sampling. In particular, for every epoch `, we sample a standard

normal random variable. Then for each item i, we obtain a corresponding

sample by multiplying and adding the preceding sample with the standard

deviation and mean of the Beta prior in Algorithm 1 (see Step (a) in Algorithm

6). We use the values α = β = 1 for this variant of Thompson Sampling.

iv) Algorithm 6: Algorithm 1 with Gaussian posterior approximation with correlated

sampling and boosting by using multiple (K) samples. This is essentially the
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Figure 3.1: Regret growth with T for various heuristics on a randomly generated
MNL-Bandit instance with N = 1000, K = 10.

version with all the features of Algorithm 6. We use the values α = β = 1 for

this variant of Thompson Sampling.

For comparison, we also present the performance of UCB approach in Chapter 2.

We repeated this experiment on several randomly generated instances and a similar

performance was observed. The performance of all the variants of TS is observed to

be better than the UCB approach in our experiments, which is consistent with the

other empirical evidence in the literature.

Among the TS variants, the performance of Algorithm 1, i.e., Thompson Sampling

with independent Beta priors is similar to TSIndpendent Gaussian Priors, the version with

independent Gaussian (approximate) posteriors; indicating that the effect of posterior

approximation is minor. The performance of TSGaussian Correlated Sampling, where we

generated correlated samples from the Gaussian distributions, is significantly better

than all the other variants of the algorithm. This is consistent with our remark earlier

that to adapt the Thompson sampling approach of the classical MAB problem to our

setting, ideally we would like to maintain a joint prior over the parameters {vi}i=1,...,N

and update it to a joint posterior on observing the bandit feedback. However, since
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this can be quite challenging and intractable, we used independent priors over the

parameters. The superior performance of TSGaussian Correlated Sampling demonstrates the

potential benefits of considering a joint (correlated) prior/posterior in such settings

with combinatorial arms. Finally, we observe that the performance of Algorithm 6,

where an additional “variance boosting” is provided through K independent samples,

is worse than TSGaussian Correlated Sampling as expected, but still significantly better than

the independent Beta posterior version Algorithm 1. Hence, significant improvements

in performance due to correlated sampling feature of Algorithm 6 compensate for the

slight deterioration caused by boosting.

3.5 Conclusion

In this Chapter, relying on structural properties of the MNL model, we develop a TS

approach that is computationally efficient and yet achieves parameter independent

(optimal in order) regret bounds. Specifically, we present a computationally efficient

TS algorithm for the MNL-Bandit which uses a prior distribution on the parameters

of the MNL model such that the posterior update under the MNL-bandit feedback is

tractable. A key ingredient in our approach is a two moment approximation of the

posterior and the ability to judicially correlate samples, which is done by embedding

the two-moment approximation in a normal family. We show that our algorithm

achieves a worst-case (prior-free) regret bound of O(
√
NT log TK) under a mild

assumption that v0 ≥ vi for all i (more on the practicality of this assumption later

in the text); the bound is non-asymptotic, the “big oh” notation is used for brevity.

This regret bound is independent of the parameters of the MNL choice model and

hence holds uniformly over all problem instances. The regret is comparable to the

existing upper bound of O(
√
NT ) proved in Chapter 2, yet the numerical results

demonstrate that our Thompson Sampling based approach significantly outperforms
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the UCB-based approach. Furthermore, the regret bound is also comparable to the

lower bound of Ω(
√
NT ) established by [15] under the same assumption, suggesting

the optimality of our algorithm. The methods developed in this paper highlight some

of the key challenges involved in adapting the TS approach to the MNL-Bandit,

and present a blueprint to address these issues that we hope will be more broadly

applicable, and form the basis for further work in the intersection of combinatorial

optimization and machine learning.
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Chapter 4

Empirical Evaluation of Thompson Sampling: Evidence

from Flipkart

In this chapter, we present evidence of empirical gains from employing dynamic

assortment planning in optimizing product recommendations on Flipkart, an Indian

ecommerce firm. First, in Section 4.2 we show that choice models like MNL which

capture consumer preferences over an assortment have higher predictive power than

traditional models which consider each item independently. In particular, we consider

a structured MNL model, where every item is described by a set of attributes and the

mean utility of a product is linear in the values of attributes. We show that the fit

of this stylized MNL model is better than a simple logistic regression with the same

set of attributes, which is the current model used at Flipkart. In Section 4.3, we will

then present empirical evidence using click data from Flipkart to show that there is

much to gain by implementing dynamic learning algorithms instead of the traditional

“estimate, then optimize” approaches. In particular, we observe that an online

algorithm like Thompson Sampling performs better in comparison to traditional

approaches like estimating the model parameters based on initial observations and

optimizing the decisions based on these estimates for the rest of the time period.

An important technical contribution of this chapter is the generalization of the

learning algorithms from Chapters 2 and Chapters 3, which were designed to learn

the model parameters in the product space. The possibility of different items being

related to each other only through their attributes raises the possibility that one

can design algorithms whose performance is independent of the number of items,
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which is a major source of complexity. In Section 4.4, using the analysis developed

in Chapter 3 as a foundation, we discuss how to extend the TS policy of Chapter

3 to the problem of learning in the attribute space. Specifically, we study how to

leverage the relation between different items through attributes and obtain a regret

bound which is independent of the number of items, and only depends on the number

of attributes.

In this chapter, we describe our collaboration with Flipkart’s homepage

optimization team, where we consider the problem of improving product

recommendations on the homepage while accounting for substitution patterns and

adjusting the recommendations “on the fly.” We will now present a brief background

on the Flipkart’s homepage optimization problem.

4.1 Introduction

Flipkart is an Indian e-commerce firm that has been founded in 2007 and has grown

rapidly since to capture 39% of the total Indian e-commerce market [10]. It deals with

a diverse range of products, serving more than 15 million active monthly consumers

([30]) who have collectively generated a revenue of US $ 7 billion in 2017 ([9]). Most

of Flipkart’s consumer base access Flipkart using a mobile app or a browser on the

mobile phone, providing the firm with an unprecedented access in tracking consumer

behavior on their site and using this information for future decision making.

One fundamental problem that concerns Flipkart is that of identifying the relevant

set of products to display to a user. However, the challenges involved in identifying the

optimal set of products to display are multi-fold. In settings like Flipkart, where the

inventory is regularly updated with new items and demand trends constantly change,

one has to constantly learn consumer preferences while concurrently attempting to

maximizing revenues. This problem is further compounded by the fact that we can
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Figure 4.1: (Left) Example of Flipkart’s Homepage. (Right) The enlarged widget,
containing group of products. articles. The widget on the top has products that
is being pushed by the sales team with discounts, while the widget below has
smartphones.

only show a small number of products from a large selection of product categories and

consumer preferences for a product depend on the overall set displayed (substitution

effect). Moreover, apart from selecting the set of items to display we also need

to decide how to bundle the items and where to display them. Motivated by this

apparent need for a structured framework to recommend relevant set of items to

consumers, in this dissertation, we consider the problem of identifying the optimal

configuration of products on the homepage while accounting for substitution patterns

and uncertainty in consumer preferences.

4.1.1 Background

On Flipkart, when a consumer visits their homepage they are displayed a wide range

of products (see Figure 4.1). The standard practice at Flipkart is to group a selected

set of products that follow a common theme or serve a common sales purpose as

a widget and display an assortment of widgets to the consumer. For example, in
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Figure 4.2: Example of homepage displaying widgets of similar theme

Figure 4.1, observe that there are 6 widgets (on the left image) and the products

in each widget follow a common theme. More specifically, the widget titled “Deals

of the Day” consists of products for which there’s an ongoing discount offer, while

the widget titled “Smartphones You Love” exclusively contains a pre-decided set of

smartphones.

To manage the large number of products that could be displayed on the homepage,

Flipkart follows the following mechanism in generating and selecting the widgets to

be displayed. There are several units/teams within Flipkart that generate content

(widgets) that serve their team’s business function. For example, a sales team creates

widgets consisting of products that are being offered with discounts. A merchandising

team generates widgets consisting of specific brands that they want to advertise

on the home page. Similarly, a recommendation team generates widgets consisting

of products that the team perceives are ideal fit for the consumer on whom they

have collected data before. Anytime a consumer visits the homepage, all the teams

(automatically/algorithmically) generate their content and sends the widget requests

to a centralized team, referred to as the homepage optimization team, which will then

identify the optimal combination of widgets to be displayed for the user.
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On an average, the homepage team receives around 30− 40 widget requests from

various teams, after which it has to decide on the order in which the suggested widgets

should be displayed. Typically, consumers only interact with around 3 − 5 widgets

depending on the screen space and hence, it is essential for the homepage team to

optimize the rankings of the widgets to display so that the most relevant widgets

are displayed in the most visible segments. Moreover widgets generated by different

teams have an overlap in the theme of products and leads to substitution among

the widgets displayed. For example, in Figure 4.2 we can observe that widgets “Six

Day Super Savers,” “Offers for You,” and “Discounts for You” that are similar in

spirit being displayed to a consumer. Consumers who are shopping around for a

good deal on items would be equally interested in all the three widgets in contrast

to the case where only one of the widget pertains to an offer. If one estimates the

popularity of the widgets individually without accounting for substitution patterns,

then the estimates will be significantly different in the above mentioned two scenarios.

Therefore, to ensure the optimal configuration of the widgets, it is essential to consider

a framework that accounts for substitution among the available alternatives.

4.2 Multinomial Logit and Logistic Regression

Here we present empirical evidence of the aforementioned discussion. More specifically,

we argue that the MNL model which accounts for presence of similar alternatives has

a better predictive power than Logistic model, which is the current model used for

estimating the popularity of individual widgets by the homepage optimization team

at Flipkart. Before going into the details of the logistic and MNL model, we first

briefly describe the data available for the study.
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Attribute Description

Gender Binary: male/female
Single category customer Binary: only interested in single category

Is Parent Binary: true/false
Is Student Binary: true/false
Monetary Categorical, indicating spending power: {1,2,3,4,5}

RFM
Categorical, indicating the status: {Platnum, Bronze,
Gold, Silver}

Recency Categorical, indicating the activity: {1,2,3,4,5}

Table 4.1: Description of available user attributes

4.2.1 Data Description

User Attributes. Flipkart’s customer base predominantly interact with the firm

either via the mobile app or a mobile browser. This makes it easy for Flipkart to

track user attributes and personalize the widgets for that specific user. We provide

the details of user attributes available in Table 4.1. However, due to an actively

growing user base, there are still a considerable number of users for whom the personal

attributes are unknown. For these users, Flipkart typically displays widgets assuming

the average value for the unknown attributes.

Understandably, we have to account for heterogeneity in user preferences to develop

models with higher predictive power. In this Chapter, our focus is on developing a

better understanding of the impact of product recommendations that account for

substitutions. Therefore, for the purpose of this study to avoid accounting for user

heterogeneity, we focus only on a specific category of users for which all the observable

attributes are same. Table 4.2 provides the details of the attributes for our considered

segment.

Widget Attributes. As discussed earlier, every time a consumer interacts with

the Flipkart’s app or the homepage, different business units generate new widgets

and request the homepage team to display their content to the user. The homepage

optimization team, in order to predict which widgets will be more relevant for the user
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Attribute Value

Gender male
Single category customer false

Is Parent Binary: false
Is Student Binary: true
Monetary 5

RFM Platinum
Recency 5

Table 4.2: User attributes for the segment under consideration

keeps track of certain widget attributes including the business unit that generated

the widget, the content in the widget, the theme of the widget, at what position

(rank) and with what layout has it been displayed. Table 4.3 provides the detailed

descriptions of the widget attributes.

We convert the categorical attributes described in Table 4.3 to attributes with

binary values by adding dummy attributes (for example each of the 13 widget types

is considered as different as a different attribute that can take values 1 or 0) resulting

in 1564 attributes. Now every widget is associated with an attribute vector xi ∈

{0, 1}1564. We focus on consumer click data on a single day, 16th of April in 2018.

There were approximately 250,000 unique user requests with the users having

attributes described in Table 4.2. The click rate for individual widgets was 10%,

while the click rate for the homepage (i.e., at least one of the widget is clicked) is

around 35%. Around 8% of the users have clicked on multiple widgets, since random

utility choice models do not allow for the possibility of clicking multiple items, we

assume that only one these widgets is clicked and randomly select a widget (out of

the clicked ones) to be the clicked widget. In what follows, we will discuss the fit of

the Logistic Regression and the MNL model on this data set.
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Attribute Description

Widget Type
Categorical (13 types)- indicating the type of widget,
for example if it is an advertisement/product card/deal
card

Content Type
Categorical (14 types) - indicating the content and
generator of the widget, for example personalized
recommendation card based on past purchases

Is Pinned
If the widget is forced to be displayed by one of the
business unit

View type
Categorical (12 types) Display configuration of the
widget.

Rank
Position/Rank of the widget displayed. There were 40
unique rank/positions.

Store Categories
Product categories grouped in the widget. On an
average there are 2 product categories for every widget.
Over all there are 1483 unique product categories.

Store Null
A dummy feature to indicate product categories
information is not available.

Table 4.3: Description of Widget Attributes

4.2.2 Logistic Regression

In the logistic model, every item’s demand is estimate independently of the offer set.

More specifically, under the logistic model, the probability that a consumer will click

on a widget whose attributes are defined by the vector x ∈ {0, 1}1564 and the attribute

weight vector θLogReg is given by

pClick(θ
LogReg, x)

∆
= P

(
Click

∣∣θLogReg) =
eθ

LogReg·x

1 + eθLogReg·x
.

We utilize the click information on each widget offered and then leverage the maximum

likelihood estimation θLogRegMLE for θLogReg to estimate the click through rate of the offered
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widgets and study the fit of the logistic model for the estimated θMLE. In particular,

we compute θLogRegMLE that maximizes the following regularized log-likelihood

θLogRegMLE = arg max
θ

T∑
t=1

log pClick(θ, xt)− ‖θ‖2.

The objective function in the preceding optimization problem is convex and therefore

we can use any of the standard convex optimization techniques to obtain the estimate,

θLogRegMLE (see [12].) We obtain the estimates using the popular stochastic gradient

descent technique.

4.2.3 MNL model

In the MNL choice model, we assume that the mean utility of a product is linear in

the values of attributes. More specifically, the mean utility of widget i, with attribute

vector xi is given by the inner product

µi = θMNL · xi ∀ i

where θMNL ∈ R1564 is some fixed but initially unknown attribute weight vector.

Under this model, the probability that a consumer clicks on widget i when offered an

assortment of widgets S ⊂ {1, . . . , N} is assumed to be,

pi(S) =


eθ

MNL·xi

1 +
∑

j∈S e
θMNL·xj

, if i ∈ S ∪ {0}

0, otherwise,

(4.1)

Here, again, we utilize the click information for each user request and then leverage

the maximum likelihood estimation θMLE for θ to estimate the click through rate of

the offered widgets and study the fit of the logistic model for the estimated θMLE. In

particular, we compute θMLE that maximizes the following regularized log-likelihood

θMNL
MLE = arg max

θ

T∑
t=1

∑
i∈St∪{0}

1 (widget i is clicked) · log pi(θ, xi)− ‖θ‖2. (4.2)
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Figure 4.3: Fit of logistic and MNL regression on Flipkart’s consumer click data.

The objective function in the preceding optimization problem is also convex and

therefore we can use any of the standard convex optimization techniques to obtain

the estimate, θMNL
MLE (see [12].) We obtain the estimates using the popular stochastic

gradient descent technique.

4.2.4 Results: Fit of Logistic Regression vs Fit of the MNL

model

For both logistic regression and MNL regression, we perform a 10− fold cross validation

with 30-70 % train and test split. In particular, we randomly split the consumer click

data into training and testing with 30% of the data in training segment and the

remaining 70% of the data in the testing segment. We repeat this 10 times and

compute the average of the 10 results for a more robust comparison. In Figure 4.3,

we plot the roc curves of the fit on the test data. We can observe that the fit

corresponding to the MNL model is significantly larger than the fit corresponding to

the Logistic Regression with the corresponding area under the curve (AUC) being

77% and 64% respectively. This suggests that working with models that accounts for

substitution patterns will provide better handle on understanding consumer preferences

and thereby help in making optimal decisions.
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4.3 Thompson Sampling for Optimal

Configuration of Widgets

As discussed earlier, in settings like Flipkart, the inventory is regulary updated with

new items and the demand trends constantly change. For example, 61 new product

categories were introduced on the next day and 428 new product categories were

introduced over the period of next one week, for which we have no historical data.

The standard approach of estimating the widget preferences over a small amount of

historical data and then optimizing the decisions based on this estimates is no longer

optimal in such settings. Several studies (see [37], [24], [32]) in the literature have

demonstrated that TS significantly improves the decision making under uncertainty.

However, designing learning approaches in the attribute space are associated with new

challenges as the difficulty not only arises from the fact that there are combinatorial

number of assortments that can be offered, but also from the fact that a small number

of attributes can lead to significantly large number of products to consider, making

the number of possibilities to choose from extremely large.

In this Section, we will first present a common heuristic approach to implement

a TS policy for learning in the attribute space. Subsequently in the next section,

we will indicate how to generalize some of the theoretical ideas from Chapter 3 to

design a provable TS algorithm for the attribute space1. More specifically, using the

click data on Flipkart, we present empirical evidence of efficacy of our approximate

Thompson Sampling approach in identifying the optimal configuration of the widgets,

i.e. the optimal ranking of the widgets. Furthermore, we will also show that the TS

approach perform better than the “ estimate, then optimize” methods, contributing

to the growing literature that advocates for moving beyond such standard practices.

1 In the data, we do not have information regarding what widgets were rejected from being
displayed. Therefore, we focus on optimizing the ranking of the widgets that were displayed to
study the performance of Thompson Sampling.

93



Problem Description. Here we assume that the MNL choice model estimated in

Section 4.2 as the ground truth model and further assume that we do not know the

model parameters. Our objective is to learn these unknown attribute weights to

identify the optimal configuration of the widgets (i.e. ranking among widgets), while

simultaneously maximizing the over all click rates. With some abuse of notation,

whenever we refer an assortment by it’s attribute vector, we will assume that the

attribute vector xi does not include the display position/rank information of the

widget. We will now describe the rank optimization problem more formally.

Let St = (x1t,x2t, · · · ,xkt) be the assortment of widgets that has been displayed

for the tth user request and rit denote the rank/display positions of the widget with

the attribute xit. Our goal is to offer the assortment of widgets St = (x1t,x2t, · · · ,xkt)

at the optimal ranks r∗it such that the cumulative clicks are maximized according to

the assumed MNL choice model, i.e.

max
r1,··· ,rT

T∑
t=1

pi(St, rt) (4.3)

where pi(St, rt) is the choice probability (see (4.1)) of item i being clicked when

widgets with attributes {xit}i=1,··· ,k are displayed at positions rit respectively. Note

that if θMNL
MLE is known a priori, then one can compute the optimal ranking for the

widgets in a straightforward manner. In particular, for any collection of widgets

St = (x1t,x2t, · · · ,xkt), we compute the inner product xit · θMLE
MNL. and assign the

widgets to the ranks in the decreasing order of the magnitude of the inner product.

However, since θMLE
MNL is assumed to be unknown we have to focus on learning these

weights while trying to maximize the cumulative click rate as described in (4.3).

In what follows, we present a TS based learning approach to identify the optimal

configuration of the widgets while maximizing the click through rates.
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4.3.1 Laplacian Approximation

As discussed in Section 3.1, a fundamental challenge involved in pursing TS based

approaches is the prior selection in order to allow tractable posterior update. One

approach to address the challenge of tractable posterior update is approximating the

posterior distribution by a multi-variate Gaussian distribution, a technique introduced

by [37] and commonly referred to as Laplace Approximation. We refer the reader to

[42] for other approximations for posterior sampling.

The likelihood function corresponding to the MNL choice model when assortments

S1, · · · , Sτ are offered, is as follows:

Pr(Data observed until time t) =
t−1∏
τ=1

∏
i∈Sτ∪ 0

 eθ
MNL·xi

1 +
∑
j∈Sτ

eθ
MNL·xj


1(widget i is clicked)

.

Therefore, if we assume a prior f0(θ) on the attribute weights, by Bayes rules, we

have that the posterior density at time t− 1 for θ satisfies

ft−1(θ) ∝ f0(θ)
t−1∏
τ=1

∏
i∈Sτ∪ 0

 eθ
MNL·xi

1 +
∑
j∈Sτ

eθ
MNL·xj


1(widget i is clicked)

.

For notational brevity, let g(θ) denote the right hand side of the above equation.

Note that if f0(θ) is a concave function, then log g(θ) is concave and furthermore,

g(θ) is unimodal (say the mode is θ̂.) In Laplacian approximation, we consider a

second-order Taylor approximation to the log-density around it’s mode and assume

that g(θ) = elog g(θ) sharply peaks around θ̂. In particular,

log g(θ) ≈ log g(θ̂)− 1

2
(θ − θ̂)TC(θ − θ̂),

where C = −∇2 log g(θ̂) is the Hessian of log g(θ) at its mode. Therefore, if we

start with a uniform prior, in Laplace Approximation, we compute the mode as the

maximum likelihood estimate and approximate the posterior as Gaussian distribution
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with mean as the maximum likelihood estimate θMNL
MLE and co-variance matrix as the

inverse of the hessian matrix at the MLE estimate. Algorithm 7 provides the details

of the approach.

Algorithm 7 TS with Laplacian Approximation for the Rank Optimization problem

Input: Tuning parameter α, warm up period T0

while t ≤ T0 do
Offer widgets in assortment St at random positions, rt
Observe click information ct and track data Dt = Dt−1 ∪ {(St, rt, ct)}
t = t+ 1

end while
while t ≤ T do

Compute θMLE
t as the MLE from observations Dt−1 (see (4.2))

Compute Ht as the Hessian of the log-likelhood function at θMLE
t .

Sample θTSt ∼ N
(
θMLE
t , αH−1

t

)
Offer widgets in the assortment St at the optimal ranks assuming θTSt as the

true parameter

Observe click information ct and track data Dt = Dt−1 ∪ {(St, rt, ct)}
t = t+ 1.

end while

Note that the Hessian Ht in our problem setting is a matrix of dimension 1564,

computing H−1
t at every time step is a computationally expensive process. Therefore,

to speed up the learning algorithm, we follow the approach in [37] and further

approximate the covariance matrix by a diagonal matrix. We also perform the updates

in a batch fashion to further enhance the computational speed of TS algorithm.

Algorithm 8 provide the details of our tractable TS algorithm.

4.3.2 Results

Performance Metric. A policy which does not learn attribute weights would

configure the widgets randomly. In contrast, an algorithm which has a priori knowledge

of the weights offers the widgets in the optimal order there by resulting in an increased

click through rates (CTR). Any policy π which does not know the attribute weights

but attempts to learn them will perform better than a random policy but worse than
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Algorithm 8 TS with Diagonal Approximation of Laplacian

Input: Tuning parameter α, batch size T0.
θ̂i = 0, qi = λ for all i = 1, · · · , 1564.

while t ≤ T do
Sample θTSi ∼ N

(
θi, q

−1
i

)
Offer widgets in the assortment St at the optimal ranks assuming θTS as the

true parameter. Observe click information ct
t = t+ 1
if t is a multiple of T0 then

Consider a batch of observations {(Sτ , rτ , cτ )}{τ=t−T0,··· ,t}

Compute θMLE as the regularized MLE from the new observations, i.e.
argmax of the following objective function.

−1

2

1564∑
i=1

qi(θi−θ̂i)2+
t∑

τ=t−T0

[∑
j∈Sτ

1 (widget i is clicked) θ · xj − log

(
1 +

∑
`∈Sτ

exp (θ · x`)

)]
.

Update θ̂ = θMLE and qi =
t∑

τ=t−T0

∑
`∈Sτ

x2
`i · p`(Sτ )−

(∑
`∈Sτ

x`i · p`(Sτ )

)2

,

where p`(Sτ ) is the choice probability as defined in (4.1).
end if

end while

the policy that knows these weights a priori. Therefore, we evaluate the performance

of the policy π by comparing the gain in CTR it obtains over a random policy and

the gain in CTR obtained by a policy which knows weights a priori over a random

policy. More specifically, let

Reg(T ) =
T∑
t=1

(∑
i∈St

pi(St, r
∗
t )−

∑
i∈St

pi(St, r
Random
t )

)
, (4.4)

be the gain in CTR obtained by the policy that knows the attribute weights over a

policy that configures widgets randomly and et

Regπ(T ) =
T∑
t=1

(∑
i∈St

pi(St, r
π
t )−

∑
i∈St

pi(St, r
Random
t )

)
, (4.5)

be the gain in CTR obtained by policy π over a random policy. We measure the

performance of policy π by the ration Regπ/Reg(T ). Higher value of the ratio suggests

that the algorithm learns the weights quickly and is mimicking the policy which has
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knowledge of weights a priori. On the contrary, lower value of the ratio suggests that

the algorithm has not still figured out attribute weights and is behaving similar to a

random policy.
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Figure 4.4: Comparing the Performance of Thompson Sampling with “Estimate, then
Optimize” approach

We implement Algorithm 8 with T0 = 2000 and λ = 1. We also implement the

common “estimate, then optimize” policy, where the weights are estimated based on

randomly selected x% of the data and then the ranks are optimized for the remaining

100 − x% of the data based on the aforementioned estimates. Figure 4.4 plots the

performance of Algorithm 8 and the performance of “estimate, then optimize” policy

for various values of x ranging from 0.02% to 81%. The results are based on running

50 independent simulations and have a standard error of 2%. We can observe that the

Thompson Sampling’s performance is around 93% of the policy that has knowledge

of the weights a priori, suggesting that TS based policy is almost comparable to the

policy that knows the weights. We also observe that the performance of the “estimate,

then optimize” approach depends on how much data is leveraged for estimation. One

can note that estimating over small amount of data leads to under exploration, while

estimating with large amounts of data leads to over exploration and poor performance,

highlighting the common challenge associated with these approaches. Furthermore,

we can observe that TS based policy outperforms the “estimate, then optimize”
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approach for all possible estimation data sizes. izon and does not require any a priori

knowledge on the parameters, making a case for the universal applicability of our

approach.

4.4 Theoretical Guarantees

In this Section, we indicate how to generalize the theory developed in Chapter 3 to

design an algorithm with provable guarantees. Here, we consider a variant of the

MNL-Bandit problem with cardinality constraints and product attributes. More

specifically, we assume that the choice probabilities are as described in 4.1, i.e.,

the probability that a consumer clicks on product i when offered an assortment of

products S ⊂ {1, . . . , N} is assumed to be,

pi(S) =


eθ∗·xi

1 +
∑

j∈S e
θ∗·xj

, if i ∈ S ∪ {0}

0, otherwise,

where θ∗ ∈ Rd is some fixed, but initially unknown parameter vector. Let R(S, θ∗)

denote the expected revenue when assortment S is offered and the parameter vector

is given by θ∗. Our goal is to offer assortments S1, · · · , ST at times 1, · · · , T such that

|St| ≤ K to minimize regret defined as,

Reg(T, θ∗) =
T∑
t=1

R(S∗, θ∗)− E [R(St, θ∗)] , (4.6)

and more specifically obtain regret bounds that depend on the dimension of attributes,

d and not on the number of products.

We will briefly describe how the techniques of TS algorithm for MNL-Bandit

developed in Chapter 3 can be used to design an algorithm for the above problem.

Challenges and overview. A key difficulty in our problem arises not only from

the fact that there are combinatorial number of assortments that can be offered, but
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also from the fact that a small number of attributes can lead to significantly large

number of products to consider, making the number of possibilities to choose from

extremely large. We adapt some fundamental ideas from Algorithm 5. Since our

primary objective is to obtain regret bounds that are not dependent on the number

of products, we focus on the attribute space rather than the product space, where it

can exploit the past purchase behavior to update the posterior distribution for the

attribute weight vector θ. However, there are two main challenges in implementing

this scheme.

First, unlike the MNL-Bandit scenario, it is not easy to obtain unbiased estimates

for the values of parameter vector θ. To overcome this issue, we use a maximum

likelihood estimate and use the Laplacian approximation described in Section 4.3.1

to update the posterior distribution. A key aspect in our analysis is establishing

the concentration bounds for the MLE estimate. We use the martingale argument

(see [22]) for the MLE estimates to derive such bounds. As discussed earlier in

Chapter 3, the worst case analysis of TS typically proceeds by showing that the

best arm is optimistic at least once every few steps, in the sense that its sampled

parameter is better than the true parameter. To avoid the challenges involved with

the combinatorial structure of the MNL Bandit problem, we correlated sampling and

variance boosting as in Chapter 3 to facilitate theoretical analysis.

4.4.1 Algorithm.

Algorithm 9 provides the details of our TS algorithm.

We make the following assumptions to facilitate analysis.

Assumption 4.1. The norm of attribute vectors mi is bounded for all i = 1, · · · , N ,

i.e. there exists cx <∞ such that for all i ≤ N , we have ‖xi‖2 ≤ cx.
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Algorithm 9 Approximate TS for Assortment Planning in Attribute Space

Input: Tuning parameter α, warm up period t0
while t ≤ T do

Compute θMLE
t as the MLE from observations Dt−1 (see (4.2))

Compute Ht as the Hessian of the log-likelhood function at θMLE
t .

(a) (Correlated Sampling) for j = 1, · · · , K

Sample θ(j)(t) from the distribution N (0, 1);

For each item i ≤ N , compute µ
(j)
i (t) = θMLE

t · xi + αθ(j)(t) · ‖xi‖H−1
t

.

end

For each item i ≤ N , compute µi(t) = max
j=1,··· ,K

µ
(j)
i (t)

(b) (Subset selection) Compute St = arg max
|S|≤K

R(S,µµµ(t)) =

∑
i∈S rie

µi(t)

1 +
∑

j∈S e
µj(t)

Observe click information ct and track data Dt = Dt−1 ∪ {(St, rt, ct)}
t = t+ 1.

end while

Assumption 4.2. There exists a constant cµ > 0 such that cµ = infθ∈Θ, i≤N
·
pSτ (θ·xi),

where Θ is the set of all feasible attribute weights.

Assumption 4.3. supθ∈Θ, i≤N exp(θ
′xi) ≤ 1.

We first establish a concentration inequality for the MLE estimate using the

martingale argument of [22]. Observe that the correlated sampling in step (a) of

Algorithm 9 is similar to the correlated sampling step of Algorithm 6. Therefore,

we can follow the proof technique of Algorithm 6 to leverage the anti-concentration

properties of Gaussian distribution to argue that the best arm is optimistic often

enough. Noting that the optimistic arm is played often, we can then follow the UCB

analysis of [22] to derive the following result. We present a detailed proof in Appendix

D.

Theorem 4.1. If α =
60
√
d log d

cµ
, then under Assumptions 4.1 and 4.2, the regret
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of Algorithm 9 is bounded as

Regret ≤ O

(
d

logKTd

cµ

√
KT log

(
c2
xT

λ0

))
,

where λ0 is the minimum eigenvalue of Mt0
∆
=
∑t0

t=1

∑
i∈St xix

T
i .

4.5 Conclusion.

In this Chapter, we have demonstrated empirical gains from employing dynamic

assortment planning in optimizing product recommendations on Flipkart, an Indian

ecommerce firm. We have also argued that choice models like MNL which capture

consumer preferences over an assortment have higher predictive power than traditional

models which consider each item independently. Using the analysis developed in

Chapter 3 as a foundation, we have presented a framework that indicates how to

design TS-based policy to the problem of learning in the attribute space. However,

the complete development of an algorithm for the attribute-based MNL-Bandit with

regret depending only on the number of attributes, and an algorithm independent of

any problem parameters remains an interesting open problem.
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Chapter 5

Algorithms for Static Assortment Planning

In this Chapter, we consider settings when the model parameters are known and focus

on developing tractable optimization algorithms for the MNL and the NL model under

totally unimodular constraint structures. The totally unimodular constraints model a

rich class of practical assortment planning problems including cardinality constraints,

partition matroid constraints and joint display and assortment constraints.

First we consider the assortment planning problem under the MNL model and

show that a natural linear programming (LP) relaxation is tight. The LP based

approach provides robustness to handle capacity constraints in addition to the existing

TU constraints. In particular, we consider an arbitrary additional constraint to the

set of TU constraints such that the resulting set of constraints are not TU. We present

a Polynomial Time Approximation Scheme (PTAS) for the assortment optimization

problem under this more general set of constraints where for any 0 < ε < 1, we

obtain a solution with objective value at least (1 − ε) times the optimal in running

time polynomial in the input size for a fixed ε. As a consequence of this problem,

we obtain PTAS for joint display and assortment optimization problem with an

additional capacity constraint.

We then consider the assortment optimization problem under NL model with TU

constraints and provide a Fully Polynomial Time Approximation Scheme (FPTAS)

for this problem, where for any 0 < ε < 1, we obtain a solution with objective

value at least (1 − ε) times the optimal in running time polynomial in the input

size and 1/ε. We also show that the exact assortment optimization under NL model
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Choice model Assortment optimization problem

Multinomial Logit (MNL)

� Tight LP relaxation for totally unimodular
constraint structures. (Theorem 5.1)

� Joint assortment and display optimization
problem is polynomially solvable. (Section 5.1.3)

� PTAS for Joint assortment and display
optimization problem with an additional capacity
constraint. (Theorem 5.2)

Nested Logit (MNL)

� Hardness result for TU constraint structures
(Corollary 5.2)

� Hardness result for certain parameter settings
(vi0 6= 0) (Corollary 5.3)

� FPTAS for TU constraint structures (vi0 = 0).
(Section 5.3.2)

� Joint assortment and display optimization
problem polynomially solvable under a mild
assumption. (Section 5.3.3)

Table 5.1: Summary of contributions for static assortment optimization.

with TU constraints is NP-hard. For the joint display and assortment optimization

problem, we show that under special settings the problem allows for an exact solution

in polynomial time.

5.1 Assortment Optimization Under MNL with

TU Constraints

In this section, we consider the assortment optimization problem with TU constraints

under the MNL choice model. In particular, we consider the following optimization

problem.

maximize
n∑
i=1

rivixi
v0 +

∑n
j=1 vjxj

subject to Ax ≤ b

x ∈ {0, 1}n,

(5.1)
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First, we show that a natural LP relaxation for the above problem is tight. We

will then consider an arbitrary additional constraint to the set of TU constraints

such that the resulting set of constraints are not and present a Polynomial Time

Approximation Scheme (PTAS) for the assortment optimization problem (5.1) under

this more general set of constraints where for any 0 < ε < 1, we obtain a solution

with objective value at least (1− ε) times the optimal in running time polynomial in

the input size for a fixed ε.

Remark 5.1. We would like to note that, Davis et al. [17] also use the LP relaxation

to show that the assortment optimization under TU constraints can be solved optimally

under the MNL choice model. However, they do not explicitly analyze the structure

of extreme points of the LP relaxation. Here, we show that an extreme point optimal

solution for the LP relaxation is “integral” and therefore, gives an optimal solution

for the assortment optimization problem (??) under TU constraints for the MNL

model. This structural property of the extreme points of the LP relaxation allows us

to obtain near-optimal solutions for more general set of constraints that we discuss

below.

5.1.1 Assortment Optimization: LP relaxation

In this section, we present a LP relaxation for (5.1) and show that the formulation is

tight. Let

p0 =
1

v0 +
∑n

j=1 vjxj
, pi = xip0, ∀i = 1, . . . , n.
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We can reformulate (5.1) as follows.

maximize
(p,p0)

n∑
i=0

rivipi

subject to Ap ≤ p0b

n∑
i=0

vipi = 1

pi ∈ {0, p0} ∀ i ∈ {1, 2, · · · , n}

p0 ≥ 0.

(5.2)

Note that (5.2) is an exact reformulation of (5.1). It can be easily reformulated as a

mixed integer program using binary variables as follows.

0 ≤ pi ≤ xip0 ∀ i ∈ {1, 2, · · · , n}

pi + (1− xi) ≥ p0 ∀ i ∈ {1, 2, · · · , n}

xi ∈ {0, 1} ∀ i ∈ {1, 2, · · · , n}.

(5.3)

5.1.2 Tightness of the LP relaxation

We consider the following LP relaxation for (5.2).

zLP = max
(p,p0)

n∑
i=1

rivipi

Ap ≤ p0b

n∑
j=0

vjpj = 1

0 ≤ pi ≤ p0, ∀i = 1, . . . , n,

p0 ≥ 0.

(5.4)

where we relax the constraints pi ∈ {0, p0} to 0 ≤ pi ≤ p0 for all i = 1, . . . , n. Let P

be the polytope defined by the constraints in (5.4), i.e.,

P =

{
(p, p0) ∈ Rn

+ × R+ | Ap ≤ p0b, v′p + v0p0 = 1, 0 ≤ pi ≤ p0, ∀i

}
. (5.5)
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We show that all extreme points of P are “integral”. We say that an extreme point

(p, p0) ∈ P is integral if pi ∈ {0, 1} for all i = 1, . . . , n and fractional otherwise.

Theorem 5.1. For any extreme point (p, p0) ∈ P, pi ∈ {0, p0} for all i = 1, . . . , n.

We will prove Theorem 5.1 by establishing a correspondence between extreme

points of P and Q, where

Q = {x | Ax ≤ b, 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n} ,

is the polytope corresponding to relaxed constraints of the optimization problem

(5.1).

Lemma 5.1. If (p, p0) is an extreme point of P, then x = p
p0

is an extreme point of

Q. Conversely, if x is an extreme point of Q, then (p, p0) where

p0 =
1

(v0 + v′x)
, p = p0x

is an extreme point of P.

Theorem 5.1 follows from Lemma 5.1 and the fact that any extreme point x of

Q is integral, i.e. xi ∈ {0, 1}. Theorem 5.1 proves that any extreme point optimal

solution of LP relaxation (5.4) is the same as the MIP reformulation (5.2) and hence

it suffices to solve the relaxation. We defer the proof of Lemma 5.1 to Appendix.

5.1.3 Example of TU Constraints

Here, we present an important application of assortment planning under the TU

constraints, namely the joint display and assortment optimization problem under the

TU model for the MNL choice model. This problem arises in retailing and online

advertising where the display slot of the product/ad affects the choice probability. In

particular, we consider a model with m display segments and each segment has an

upper bound on the number of products that can be displayed.
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Let n be the total number of products and m be the number of display segments.

There is a bound Kj on the number of products in display segment j for all j ∈ [m].

We assume that every product can only be displayed in at most one display segments.

Let xij ∈ {0, 1} denote whether we offer product i in display segment j. For any

product i, let ri denote the revenue and vij denote the attraction parameter in display

segment j. Now, the expected revenue optimization problem can be formulated as:

maximize
X∈{0,1}n×m

R(X) =

∑n
i=1

∑m
j=1 rivijxij

v0 +
∑n

i=1

∑m
j=1 vijxij

subject to Ci :
m∑
j=1

xij ≤ 1, i = 1, . . . , n

Cj :
n∑
i=1

xij ≤ Kj, j = 1, . . . ,m

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m.

(5.6)

Constraints {Ci} enforce that every product can be displayed only in one of the

display segments, while constraints {Cj} enforce the cardinality constraints in each

segment. The constraints in problem (5.6) are identical to the constraints in a

transportation problem and hence are TU.

5.1.4 Extension to More General Constraints

We will now consider a more general variant of the assortment optimization problem

(5.1), where constraints are not necessarily TU. In particular, we consider the following

problem where we have a set of TU constraints and one additional constraint such

that the overall constraints are not TU:

maximize
n∑
i=1

virixi
v0 +

∑n
j=1 vjxj

subject to Ax ≤ b

αααTx ≤ γ

x ∈ {0, 1}n,

(5.7)
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where A is a {0, 1}m×n TU matrix, b ∈ Zm, vi ≥ 0 and αi ≥ 0 for all i. Let

Q = {x | Ax ≤ b, 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n}

Q̂ =
{
x ∈ Q

∣∣ αααTx ≤ γ
}
,

be the polytopes corresponding to the relaxations of (5.1) and (5.7) respectively.

Similar to our approach in Section 5.1.1, we consider the following LP relaxation

for (5.7),

maximize
(p,p0)

n∑
i=0

aipi

subject to (p, p0) ∈ P

αααTp ≤ p0γ.

(5.8)

where P is the polytope corresponding to the LP relaxation of the optimization

problem (5.1) as defined in (5.5). Let

P̂ =
{

(p, p0) ∈ P
∣∣ αααTp ≤ p0γ

}
,

be the polytope corresponding to the LP relaxation of (5.7). Since constraints in (5.7)

are not TU, the LP relaxation (5.8) may not be tight. In this section, we present a

polynomial time approximation scheme (PTAS) for (5.7) under certain assumptions

on Q. In other words, for a fixed ε, we compute a (1− ε)-approximation for (5.7) in

running time polynomial in the input but exponential in 1/ε. Our PTAS is based on

the following structure of extreme points of (5.8).

Observe that the polytope Q̂ (respectively P̂) is the intersection of the polytope

Q (respectively P) and the hyperplane αααTx ≤ γ (respectively αααTp ≤ p0γ). Hence,

any extreme point of Q̂ (respectively P̂) is either an extreme point of Q (respectively

P) or a convex combination of two adjacent extreme points of Q (respectively P).

Therefore, if any two adjacent extreme points of Q “differ” only in a small number

of components, then the number of “fractional components” in any extreme point of

Q̂ and P̂ is small. Therefore, we can obtain an approximate solution for (5.7) by
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ignoring the small number of “fractional components” from the optimal solution of

(5.8) after appropriate pruning.

More specifically, for any two extreme points x1,x2 of Q, let

d(x1,x2) = |{i | x1i 6= x2i}|

d(Q) = max {d(x1,x2) | x1, x2 are adjacent extr pts of Q} .

Here d(Q) denotes the maximum number of components by which the two adjacent

extreme points ofQ can differ. If d(Q) ≤ `, then the number of fractional components

for any extreme point of Q̂ is at most `. From Lemma 5.1, we know that there is a

correspondence between extreme points of P and Q. A similar correspondence also

holds for extreme points of P̂ and Q̂. Hence, the number of “fractional components”

in any extreme point of P̂ is also bounded by `. In particular, for any extreme point

(p, p0) of P̂ , let

F((p, p0)) = {i ≥ 1 | 0 < pi < p0} ,

denote the set of fractional components in (p, p0). We have the following result,

Corollary 5.1. If d(Q) ≤ `, then the number of fractional components for any

extreme point (p, p0) of P̂ is bounded by `, i.e. |F((p, p0))| ≤ `.

PTAS when d(Q) is constant. Now we will present a PTAS for the case when

d(Q) is a constant (say `). From Lemma 5.1, we know that optimality (feasibility) of

(p, p0) is equivalent to optimality (feasibility) of x = p/p0 for (5.7). From Corollary

5.1, we know that any extreme point to (5.8) has at most ` fractional variables as

d(Q) = `. A simple idea to construct a feasible solution for (5.7) from an optimal

solution of (5.8) is to ignore the “fractional variables”. In particular, let (p, p0) ∈ P̂

be an optimal extreme point of (5.8). Define (p̂, p̂0) as

p̂i =

 0 if pi < p0

p̂0 otherwise
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where

p̂0 =
1

v0 +
∑
i:p̂i 6=0

vi
.

Observe that we ignore at most ` variables of (p, p0). If the contribution of these

variables to the objective value is small, then the total decrease in objective value is

also bounded. Let R∗ denote the optimal objective value of (5.7). If

aipi ≤
ε

`
R∗ ∀ i : pi < p0, (5.9)

then ∑
i∈F(p,p0)

aipi ≤ εR∗,

which implies

(1− ε)R∗ ≤
∑

i 6∈F(p,p0)

aipi =
∑
i

aip̂i,

and (p̂, p̂0) is a (1− ε)-approximate solution for (5.7). Note that in (p, p0) there can

be at most

⌊
`

ε

⌋
variables such that aipi >

ε

`
R∗. Therefore, to ensure (5.9) we guess

the top

⌊
`

ε

⌋
variables contributing to the objective in (5.7), set those variables pi = p0

and solve the resulting linear program. The running time is exponential in

⌊
`

ε

⌋
. We

provide the details in Algorithm 10 and Theorem 5.2 establishes its correctness.

Theorem 5.2. Let d(Q) ≤ ` and (p̂, p̂0) be the solution obtained by Algorithm 10.

Then
n∑
i=0

aip̂i > (1− ε)R∗, where R∗ is the optimal value of (5.7).

Examples of Q with small d(Q): The polytope Q corresponding to the feasible

region of cardinality constrained joint assortment and display optimization problem

(5.6) is

Q =

{
X

∣∣∣∣∣
m∑
j=1

xij ≤ 1 ∀i,
n∑
i=1

xij ≤ Kj ∀j, 0 ≤ xij ≤ 1 , ∀ i, j

}
.

The constraints in problem (5.6) are the same as the transportation problem, the

number of variables that are different in two adjacent extreme points of the LP
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Algorithm 10 PTAS for (5.7)

1: Set S =

{
St ⊂ {1, 2, . . . , n}

∣∣∣∣ |St| ≤ ⌊`ε
⌋ }

.

2: for St ∈ S do

3: if |St| <
⌊
`

ε

⌋
then

4: Obtain (p̂t, p̂t0) as follows: p̂t0 =
1

v0 +
∑

i∈St vi

p̂ti =

{
p̂t0 if i ∈ St
0 otherwise

5: end if
6: if (p̂t, p̂t0) is feasible in (5.7) then Set Rt =

∑n
i=0 aip̂ti

7: else Set Qt = {i ∈ {1, 2, . . . , n} | i /∈ St and ∃ j ∈ St such that aj ≤ ai}
8: Consider modified (5.8), zLP(t) with additional constraints

pi = p0, ∀i ∈ St
pi = 0, ∀i ∈ Qt

9: if zLP(t) is feasible then Set (p∗t , p
∗
t0) as the optimal extreme point of

zLP(t).
10: Set Ŝt = {i | p∗ti = p∗t0}
11: Obtain (p̂t, pt0) as follows: p̂t0 =

1

v0 +
∑

i∈St vi

p̂ti =

{
p̂t0 if i ∈ Ŝt
0 otherwise

12: Set Rt =
∑n

i=0 aip̂ti
13: end if
14: end if
15: end for
16: Set t∗ = arg max

t
Rt;

17: Output (p̂, p̂0) = (p̂t∗ , p̂t∗0)
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relaxation of problem (5.6) is bounded by the maximum cycle length in the

corresponding transportation network. Since the transportation network is a bipartite

graph, the maximum cycle length cannot exceed twice the number of nodes in either

of the partitions. Hence, we have the following result,

Lemma 5.2. For Q corresponding to feasible region of cardinality constrained joint

assortment and display optimization problem (5.6), we have d(Q) ≤ 2m, where m is

the number of display segments.

Theorem-5.2 and the Lemma 5.2 establishes that there exists a PTAS for the

joint assortment and display optimization problem under the MNL choice model in

the presence of an additional constraint.

A Computational Study: Here, we study the computational performance of our

PTAS algorithm for rational optimization over a TU constraint set with one additional

constraint. In particular, we consider the joint assortment and display optimization

problem with both cardinality and capacity constraints. Each item has capacity ci and

there is a bound C on the total capacity of items selected. The problem formulation

is shown below.

maximize
X∈{0,1}n×m

R(X)

subject to Ci :
m∑
j=1

xij ≤ 1, ∀i ; Cj :
m∑
j=1

xij ≤ Kj;

n∑
i=1

m∑
j=1

cixij ≤ C ; xij ∈ {0, 1} ∀ i, j

(5.10)

We would like to note that (5.10) is NP hard even for m = 1 ([20]). Algorithm 10

gives a PTAS for the above problem when the number of display m is a constant.

To evaluate the performance of our PTAS algorithm we perform 5 experiments

by varying the number of products (n ∈ {10, 50, 100}) and the number of display

segments (m ∈ {2, 3}). For each experiment, we generate 10 random instances of

problem (5.10). The parameters v, c and r are chosen as uniform random numbers
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products segments Optimality
Ratio

Time for PTAS(secs)

10 2 0.9408 0.653
50 2 0.996 261.876
50 3 0.947 3606.466
100 2 0.994 2886.35
100 3 0.869 3648.761

Table 5.2: PTAS Performance for different number of products (n) and display
segments (m).

between 0 and 1, as the scale of these parameters does not change the optimal solution.

For every instance, we solve the corresponding LP relaxation and implement a slightly

modified version of the PTAS algorithm. All implementations have been done using

Gurobi libraries in C++. In the modified version of PTAS, we enforce a time limit on

the running time of the algorithm. Specifically, we restrict the time spent in guessing

the top variables (steps 8-9 in Algorithm 10) to one hour. Although Lemma 5.2

bounds the number of fractional variables to 2m, based on empirical observations, we

relaxed the bound to m in order to decrease the number of computations. Hence, we

only considered subsets of size not exceeding
⌊
m
ε

⌋
instead of the theoretically correct⌊

2m
ε

⌋
. To avoid trivial cases, the value of the capacity bound C is appropriately chosen

to ensure that the additional capacity constraint is tight and the optimal solution of

LP relaxation has atleast bm/εc positive components.

Table 5.2 summarizes performance for our PTAS approach. For each experiment,

we report two quantities of interest namely i) the average ratio of objective values

obtained by the PTAS method and the LP solution (zPTAS/zLP ) and ii) the average

running time of the PTAS method. It is important to note that the LP solution (i.e.

optimal solution to LP relaxation of (5.10)) is clearly an upper bound to the optimal

solution to (5.10) itself and hence the ratio zPTAS/zLP is a conservative measure of

PTAS performance. Even though we fixed ε = 0.8, which theoretically guarantees

only a 0.2-approximation, the approximate optimal value is on an average about 85%
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of the optimal value. This suggests that one can use a higher value of ε to avoid large

computations and still obtain a good approximation.

5.2 Nested Logit Model

In this section, we describe the Nested Logit Model (NL). In the NL model the

products are assumed to be partitioned into different nests. Each nest has a certain

number of products and it is assumed that the consumer first selects a nest and then

selects a product within the nest according to a MNL model. More specifically, assume

the products are partitioned into m nests and each nest has n products 1. Here, an

assortment S of products typically refers to a m−tuple (S1, · · · , Sm), where Si is the

assortment or subset of products offered in nest i. In the NL model, every product j

in nest i is associated with a parameter vij . These parameters are similar to the utility

parameters associated with every product in the MNL model. In addition to these

parameters, every nest i is associated with two additional parameters, γi and vi0. γi

is the dissimilarity parameter that indicates the strength of correlation for demand of

products within a nest and vi0 is the parameter corresponding to the outside option

after a consumer has selected nest i. Finally, the parameter v0 represents the outside

option to indicate the setting where a consumer does not chose to explore any nest.

For brevity, we will assume that for every nest i,

V (Si) = vi0 +
∑
j∈S`

vij. (5.11)

The choice probabilities of a consumer selecting product j from nest i is given as

πNL(j, S1, · · · , Sm) =
V γi(Si)

v0 +
∑m

k=1 V
γk(Sk)

·
vij

vi0 +
∑

`∈Si vi`
(5.12)

The first term on the right hand side of (5.12) is the probability that a consumer

selects nest i when offered assortments S1, · · · , Sm and the second term in (5.12) is

1we assume that every nest has same number of products for ease of exposition, one can easily
generalize the framework to handle each nest having different number of products
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the probability that a consumer selects product j in nest i given that the consumer

has already selected nest i.

Williams [47] has showed that when the parameters satisfy the conditions γi ≤ 1

for all the nests i, then the Nested Logit Model can be modeled within the random

utility framework. In particular, [47] shows that utility of a product j in nest i can

be decomposed as,

Uij = µij + εij + ξi, (5.13)

where µij is the mean utility for product i in nest j, while εij are i.i.d random variables

having a Gumbel distribution with location and scale parameters 0 and 1 respectively

that represents the idiosyncrasies of consumer with regard to the product j. ξi

represents the idiosyncrasies of consumer with regard to the nests and is distributed

in such a way that maxj∈Si µij + εij + ξi is a Gumbel distribution with scale γi. By

substituting vij = eµij , we obtain the choice probabilities specified in (5.12). It is also

to see that when m = 1 and γi = 1, the choice probabilities are same as the MNL

model, indicating that Nested Logit model generalizes the MNL model. Recently,

[18] showed that the assortment planning problem under the NL model is NP-hard

for the settings when the NL model cannot be formulated within the random utility

framework, i.e. settings when vi,0 6= 0 or γi > 1 for some nest i. 2 Therefore in this

chapter, we restrict ourselves to the settings when vi0 = 0 and γi ≤ 1.

5.3 Assortment Optimization Under NL with TU

Constraints

In this section, we consider the assortment optimization problem with TU constraints

under the NL choice model. In particular, we consider the following optimization

2The proof of hardness discussed in [18] for the case when vi,0 6= 0 is incomplete, as the authors
in their reduction to a partition problem assume square root can be computed exactly in polynomial
time. We build on their reduction technique to close the gap in their proof.

116



problem.

maximize Π(x1, · · · ,xm) =
m∑
i=1

Vi(xi)
γi

v0 +
∑m

j=1 Vj(xj)
γjRi(xi)

subject to Aixi ≤ bi ∀ i ∈ {1, · · · ,m}

xi ∈ {0, 1}n ∀ i ∈ {1, · · · ,m},

(5.14)

where Ai is a Totally Unimodular matrix corresponding to the nest i and xi is the

the incidence vector for assortment Si ⊆ {1, . . . , N}, i.e., xj(Si) = 1 if product j ∈ Si

and 0 otherwise. In this section we will interchangeably refer to the assortment by

the subset Si or it’s incident vector xi. In a slight of abuse of notation, at places we

will refer to the assortment Si by its incident vector xi and at places by the subset

Si.

Here, we first establish that the assortment optimization problem (5.14) is NP-

hard. We will then provide a Fully Polynomial Time Approximation Scheme (FPTAS)

for this problem. Finally, we will the specific application of (5.14), namely, the

joint display and assortment optimization problem and present a polynomial time

algorithm making a mild assumption on the parameters of the NL-model.

5.3.1 Hardness Result

We show that the general version of problem (5.14) is NP-hard.

Let (S∗1 , · · · , S∗m) be the optimal solution to problem (5.14). Problem (??) is in P if

for any ε > 0, there is an algorithm that computes a solution (S1(ε), · · · , Sm(ε)) with

Π(S∗1 , · · · , S∗m)− Π(S1(ε), · · · , Sm(ε)) ≤ ε (5.15)

in time polynomial in the input size and log(1/ε).

Based on the above definition, we show that there is no polynomial time algorithm

for the assortment optimization problem under the general nested logit model. As
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in Davis et al. [18], we consider the reduction from the partition problem to the

assortment optimization problem under a nested logit model. Consider the following

instance, I of the partition problem given by:

c1, . . . , cn ∈ Z+,
n∑
j=1

cj = 2T. (5.16)

The instance, I ′ for the nested logit problem is constructed as follows: There are two

nests. The preference weight for the option of not choosing any of the nests is v0 = 0.

The dissimilarity parameters of the two nests are γ1 = γ2 = 1
2
. The first nest N1 has

two products. The revenue and utility parameters associated with the two products

are respectively r11 = 0, v11 = 2 and r12 = 2(T + 1)(T + 3) and v12 = 2(2T + 1).

The second nest has n + 1 products. The revenue and utility parameter associated

with the first product is r21 = 0 and v21 = 1. The revenues of the other products

in the second nest are identical and they are given by r2j = (T + 1)(2T + 1)∀j =

2, · · · , n + 1. The utility parameters for the other products in the second nest are

given by v2j = cj ∀j = 2, · · · , n+ 1. The retailer here is constrained to offer the first

product in both the nests, i.e. the constraints are given by x11 = 1 and x21 = 0.

We prove the following theorem. We defer the proof of Theorem to Appendix.

Theorem 5.3. For any

0 < ε <
2T + 1

(6T + 3) (3T + 2)2 ,

there exist an assortment (S1, S2) such that x1(S1) = 1 and x1(S2) = 1 for instance

I ′ with Π(S1, S2) ≥ (T + 2)(2T + 1)− ε if and only if instance I has a partition.

As a direct consequence of Theorem 5.3, we have the following two results.

Corollary 5.2. Assortment optimization problem ( (??)) with TU constraints under

the NL model is NP-hard.
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Corollary 5.3. If we allow the utility parameters of the no purchase options within

the nests to take on strictly positive values, then the assortment feasibility problem is

NP-hard.

5.3.2 FPTAS for Assortment Optimization with TU

constraints

In this section, we focus on the setting where vi0 = 0 for all the nests i and consider

a class of TU constraints. We present fully polynomial time approximation scheme

(FPTAS) for the assortment optimization problem for this setting. In particular,

if not offering any product is a feasible assortment, then our algorithm computes a

(1− ε) approximation of the optimal assortment in time polynomial in the input size

and 1/ε.

[23] presented a linear programming reformulation for the assortment optimization

problem (5.14). We build our FPTAS on the LP reformulation.

Theorem 5.4 ([23]). The assortment optimization problem (5.14) is equivalent to

the following linear program

minimize
(y,z)

z

subject to z ≥
m∑
i=1

yi

yi ≥ V (xi)
γi(R(xi)− z) ∀ xi ∈ {0, 1}n such that Aixi ≤ bi

(5.17)

It should be noted that the linear program (5.17) has exponential number of

constraints. Consider the following separation problem.

Separation Problem: For a given (z, y1, · · · , ym), for each nest i ∈ M decide

whether

yi ≥ V (xi)
γi(R(xi)− z) ∀ xi ∈ {0, 1}n such th-at Aixi ≤ bi (5.18)
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or find an xi ∈ {0, 1}n such that Aixi ≤ bi and yi < V (xi)
γi(R(xi) − z). It is

well established in linear optimization that if we can solve the separation problem in

polynomial time, then the linear program (5.17) can also be solved in polynomial time.

Hence, we focus our efforts on the following optimization problem, for a given z

maximize
xi

gi(xi)
4
= V (xi)

γi(R(xi)− z)

subject to Aixi ≤ bi

xi ∈ {0, 1}n

(5.19)

Given z, the optimization problem (5.19) is sub-problem corresponding to the

individual nests. Our FPTAS approach is based on the idea that if we can solve

the sub-problem approximately, then the linear program reformulation (5.17) of the

assortment optimization (5.14) can be solved approximately.

Solving the Sub-problem approximately: We present a key property of gi(x)

that would be helpful in building our FPTAS for the assortment optimization problem.

Lemma 5.3. gi(x) is a quasi-convex function over Qi = {x ∈ Rn|gi(x) ≥ 0}.

Proof. We have gi(x) =
∑n
j=1 vij(rij−z)xj

(
∑n
j=1 vijxj)

1−γi . Observe that
∑n

j=1 vijrijxj is a linear function,

while
(∑n

j=1 vijsj

)1−γi
is a concave function in x. Since gi(x) is non-negative over

Qi and is a ratio of a linear function and a concave function, gi(x) is quasi-convex

over Pi. �

If we assume that not offering any product is a feasible assortment, then we can

assume without loss of generality that gi(xi) ≥ 0. From Lemma 5.3, we have that

whenever gi(xi) ≥ 0, we have gi(xi) as a quasi-convex function. Hence, for the purpose

of optimizing (5.19), gi(x) is a quasi-convex function. [35] developed FPTAS based on

the work of [21] for minimizing low rank quasi-concave functions over combinatorial

sets. Noting that problem (5.19) is maximizing a quasi-convex function, we develop

our FPTAS on the work of [35].
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We introduce certain concepts and establish results that would lead us to solving the

sub-problem (5.19) approximately.

Let Pi be the polytope corresponding to the relaxation of (5.19), i.e.

Pi = {x ∈ [0, 1]n | Aix ≤ bi} . (5.20)

Let gi1(x) =
∑

j∈N vij(rij − z)sj, and gi2(x) =
∑

j∈N vijsj be the linear functions

corresponding to the numerator and denominator of gi(x).

Definition 5.1. For ε > 0, an ε-convex Pareto set, denoted by CPε, is a set of

solutions such that for all x ∈ Pi, there is x′ ∈ Conv(CPε) such that

gi1(x′) ≥ gi1(x)

1 + ε
& gi2(x) ≤ (1 + ε)gi2(x)

By definition of the ε-convex Pareto set, there exists a x ∈ Conv(CPε) such that

maximize
xi

gi(xi)

(1 + ε)2−γigi(x) ≥ subject to Aixi ≤ bi

xi ∈ {0, 1}n

Since, gi(x) is a quasi-convex function, the maximum value of gi(x) over a polytope

occurs at an extreme point. Hence for all x ∈ Conv(CPε), there exists a x′ ∈ CPε

such that

gi(x
′) ≥ gi(x).

Therefore, we have the following result which highlights the relation between CPε

and (1 + ε) approximate solution to the sub-problem (5.19).

Theorem 5.5. There exists x ∈ CPε such that x is an (1 + ε)2−γi approximation to

the sub-problem (5.19).

We provide the details on computing the ε-convex Pareto set and complete the

proof of Theorem 5.5 in the Appendix.
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5.3.3 Joint Assortment and Display Optimization Problem

Here we formulate the joint assortment and display optimization problem, where the

retailer needs to select the subset of products to offer and also decide on the display

segment when the customers choose according to an NL model. We will then present

a polynomial time algorithm for this optimization under mild assumptions.

Let m be the total number of nests, n number of products in each segment and `

be the number of display segments. There is a bound Nik on the number of products

in display segment k for all k ∈ [`]. We assume that every product can only be

displayed in at most one display segments. We use the matrix

Xi =


xi11 · · · xi1`

...
...

...

xin1 · · · xin`

 ∈ {0, 1}n×`,
to denote the assortment of products that we offer in nest i and their display positions,

where xijk = 1 if we offer product j in nest i at display slot k and xijk = 0 otherwise.

Hence, If we offer the assortment xi in nest i, the total preference weight associated

with nest i as defined in (5.11) will be given by

Vi(xi) =
n∑
j=1

∑̀
k=1

vijkxijk,

and the expected revenue, conditioned on the fact that a consumer decided to make

a purchase from nest i is given by

Ri(xi) =
n∑
j=1

∑̀
k=1

vijkxijk
Vi(xi)

rij.

Hence, if we offer the assortment (x1, · · · ,xm), then the expected revenue is given

by

Π(x1, · · · ,xm) =
∑
i∈M

Qi(x1, · · · ,xm)Ri(xi) =
∑
i∈M

Vi(xi)
γi

v0 +
∑

l∈M Vl(xl)
γlRi(xi).

122



We are interested in finding the optimal assortment of products and their display

positions in each nest such that the expected revenue is maximized and the number

of products in a display segment is less than a specified bound. Specifically, we are

interested in solving the following optimization problem:

maximize Π(x1, · · · ,xm) =
M∑
i=1

Vi(xi)
γi

v0 +
∑M

j=1 Vj(xj)
γj
Ri(xi)

subject to
∑
k

xijk ≤ 1 ∀ j ∈ [n], i ∈ [m]

∑
j

xijk ≤ Nik ∀ k ∈ [`], i ∈ [m]

xijk ∈ {0, 1} ∀ j ∈ [n], k ∈ [`], i ∈ [m],

(5.21)

where Nik is the upper bound on the number of products allowed at display position

k in nest i. The first constraint in (5.21) ensures that every product in each nest can

be assigned to only one display position, while the second one enforces the cardinality

constraints on display segments.

We will make the following assumption and present a polynomial time algorithm

for (5.21).

Assumption 5.1. The utility parameter vijk corresponding to product j of nest i

when displayed at level k takes the following form,

vijk = vijλik ∀i ∈ {1, · · · ,m} j ∈ {1, · · · , n} k ∈ {1, · · · , `},

for some λik > 0.

Remark 5.2. Note that Assumption 5.1 is common for choice models, where the

mean utility of a product is a linear combination of the attributes. In particular,

µij = βββi · fij, where fij ∈ Rd is a vector of attributes of the product i in nest j,

while βββi ∈ Rd is the weight associated with each of these attributes for products in

nest i. One of the product attributes that can potentially influence it’s attractiveness
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to a consumer is where it is displayed. Therefore, assuming display position as an

attribute, Assumption 5.1 is a natural consequence of the linear utility model.

Solution concept: The joint assortment and display optimization problem (5.21) is

a non-linear optimization over {0, 1} variables. We will use the linear programming

formulation (see Theorem 5.4) to design a tractable algorithm for our problem. Note

that the linear program (5.17) has exponential number of constraints. In the rest of

this section, we will show that only polynomial number of constraints are sufficient

to describe the exponential number of constraints. Let Pi be the feasible region of

the optimization problem (5.21). In particular,

Pi =

{
Xi ∈ {0, 1}n×`

∣∣∣∣∣ ∑
k

xijk ≤ 1 ∀ j ∈ [n],
∑
j

xijk ≤ Nik ∀ k ∈ [`]

}
Definition 5.2. A collection of assortments Ti is ideal, if

� Ti ⊂ Pi and |Ti| is polynomial in n,

� for every z, there exists a Ŝi ∈ Ti such that

Vi(Ŝi)
γi

(Ri(Ŝi)− z) ≥ Vi(Si)
γi(Ri(Si)− z) for all Si ∈ Pi.

We will prove the existence of ideal collection of assortments for each nest. Therefore,

the linear program (5.17) is equivalent to the following linear program

minimize
(y,z)

z

subject to z ≥
m∑
i=1

yi

yi ≥ Vi(Si)
γi(R(si)− z) ∀ Si ∈ Ti ∀ i = {1, · · · ,m}.

(5.22)

By transforming the LP (5.17) into LP (5.22), we have shown that the exponential

number of constraints in (5.17) are redundant and it is sufficient to consider only a

polynomial number of constraints to solve the LP (5.17), thus enabling us to solve

the linear program (5.17) in polynomial time. Our proof technique relies heavily on

the following result established by [23],
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Lemma 5.4 ([23]). Fix i, for every z, there exists a ui such that

arg max
Si∈Pi

Vi(Si)
γi(R(si)− z) = arg max

Si∈Pi
Vi(Si)(R(si)− ui).

Lemma 5.4 allows for the following interpretation of ideal collection of assortments,

Corollary 5.4. A collection of assortments Ti is ideal, if

� Ti ⊂ Pi and |Ti| is polynomial in n,

� for every ui, there exists a Ŝi ∈ Ti such that

Vi(Ŝi)(Ri(Ŝi)− ui) ≥ Vi(Si)(Ri(Si)− ui) for all Si ∈ Pi.

Corollary 5.4 suggests that to prove the existence of ideal collection of assortments,

it sufficies to show that the parametric optimization problem,

max
Si∈Pi

Vi(Si)(R(si)− ui), (5.23)

has polynomial number of optimal solutions. In the rest of this section, we prove the

existence of ideal collection of assortments and show how to obtain an ideal collection

of assortments.

Note that Vi(Si)(Ri(Si)−ui) =
n∑
j=1

∑̀
k=1

vijk(rij−ui)xijk. Therefore the parametric

optimization problem (5.23) is equivalent to

maximize
∑
j∈[n]

∑
k∈[`]

vijk(rij − ui)xijk

subject to
∑
k

xijk ≤ 1 ∀ j ∈ [n]

∑
j

xijk ≤ Nik ∀ k ∈ [`]

xijk ∈ {0, 1} ∀ j ∈ [n], k ∈ [`].

(5.24)
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Consider the following LP relaxation of (5.24),

maximize
∑
j∈[n]

∑
k∈[`]

vijk(rij − ui)xijk

subject to
∑
k

xijk ≤ 1 ∀ j ∈ [n]

∑
j

xijk ≤ Nik ∀ k ∈ [`]

0 ≤ xijk ≤ 1 ∀ j ∈ [n], k ∈ [`].

(5.25)

Since the constraints in the LP relaxation (5.25) are totally unimodular, we have a

tight relaxation. Hence, to prove the existence of ideal collection of assortments, it

suffices to prove that the parametric linear program (5.25) has polynomial number of

optimal solutions.

“Ideal” collection of assortments: We show that it suffices to consider a polynomial

number of values of ui to find the set of optimal solutions to the parametric linear

program (5.25). Define linear functions,

fij(u) = vij(rij − u),

where vij is as defined in Assumption (5.1). We show that just by considering the

intersection points of any two linear functions fij(u) and fij′(u) and points where

fij(u) vanishes for some j is sufficient to obtain the set of optimal solutions for

the parametric linear program (5.25). Algorithm 11 describes how to obtain an ideal

collection of assortments. Consider the set Ui described in Algorithm 11, let u1, · · · , ut

be the elements of Ui indexed in ascending order of values, i.e.

up < up′ ∀ 1 ≤ p < p′ ≤ t,

where t is the number of elements in Ui. We will prove that for any ui ∈ [up, up+1],

the optimal solution of the parametric linear program (5.25) remains the same. In

particular, we have the following result

126



Algorithm 11 Obtaining ideal collection of assortments Ti
1: Set U1 = {u | fij(u) = 0 for some j ∈ [n]}
2: Set U2 = {u | fij(u) = fij′(u) for some j 6= j′ and j, j′ ∈ [n] }
3: Set Ui = U1 ∪ U2

4: Set Ti = φ
5: for each u ∈ Ui do
6: Set Si as the optimal solution of the linear program (5.25) with ui = u, i.e.

Si ← arg max
∑
j∈[n]

∑
k∈[`]

vijk(rij − u)sijk

subject to
∑
k

sijk ≤ 1 ∀ j ∈ [n]∑
j

sijk ≤ Nik ∀ k ∈ [`]

0 ≤ sijk ≤ 1 ∀ j ∈ [n], k ∈ [`].

7: Ti = Ti ∪ {Si}
8: end for
9: Return Ti

Lemma 5.5. Fix u ∈ [up, up+1], if

S∗i ∈ arg max
Si∈Pi

∑
j∈[n]

∑
k∈[`]

vijk(rij − u)sijk,

where Pi is the set of feasible assortments in nest i as defined in (??), then for every

u′ ∈ [up, up+1], we have

S∗i ∈ arg max
Si∈Pi

∑
j∈[n]

∑
k∈[`]

vijk(rij − u′)sijk.

Therefore, the collection of assortments obtained by Algorithm 11 are ideal and

the following theorem is direct consequence of Lemma 5.5.

Theorem 5.6. There exist a collection of assortments Ti with |Ti| = O(n2) that

includes an optimal solution to the linear program (5.25) for any ui ∈ R.

We can use Algorithm 11 to find the ideal collection of assortments in each nest

and then solve the linear program (5.17) to obtain the optimal assortment of products

and their display positions. From Theorem 5.6, we have that the linear program (5.17)
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has m+ 1 variables and O(mn2) constraints and hence can be solved in time that is

polynomial in the number of products and number of display segments.

5.4 Conclusion.

In this Chapter, we considered variants of the static assortment optimization problem

under the Nested Logit and Multinomial Logit model and presented (near) optimal

algorithms. Understandably, Multinomial Logit model, owing to its tractability, is a

well studied choice model for assortment planning. [44], [40], [20] have considered the

unconstrained, cardinality constrained and capacity constrained problems respectively

and presented near optimal algorithms. Recently, [17] has presented a linear

programming based solution for a large class of TU constraints. In this chapter,

we contribute to the growing literature for assortment optimization under the MNL

model by presenting a general framework for assortment planning under a large class

of constraints. Our framework based on linear programming is robust enough to

generalize for additional constraint for which exact approach is a hard problem.

Given the IIA property of the MNL model, NL model is attracting considerable

attention. [23] has presented a polynomial time algorithm for cardinality constrained

assortment planning under the NL model. [16] has extended the approach of [23]

to present a polynomial algorithm to compute the optimal assortment of products

and simultaneously compute the prices of the offered products such that the better

quality products have higher prices. In this chapter, we have shown that the general

problem under TU is NP-hard, presented an FPTAS under mild assumptions for

the TU constraint structures and further presented an exact algorithm under specific

parameter settings for a special application of the TU constraints, namely the joint

assortment and the display optimization problem. Our work add to the literature of

assortment planning under the NL model by consider the assortment planning under
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the TU constraint structures. However, an FPTAS for the general TU problem or an

exact algorithm for the joint assortment and display optimization problem for general

parameters are still open questions.
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Appendix A

Concentration Inequalities for Sum of Geometric Random

Variables

Here, we prove concentration inequalities for sum of geometric random variables. Note

that the estimates obtained from the epoch approach are distributed geometrically.

The tail bound established in this section will help us in understanding how fast our

estimate v̄i,` converges to its true mean, vi. The concentration bounds we prove in

this section are similar to Chernoff bounds discussed in [36] (originally discussed in

[4]), but for the fact that in bandit applications the number of arms over which we

estimate the mean is a random variable. Hence, we use a self-normalized martingale

technique to derive concentration bounds.

A.1 Exponential Inequalities for self-normalized

martingales with Geometric distribution

Theorem A.1. Consider n i.i.d geometric random variables X1, · · · , Xn. Let F` =

σ(X1, · · · , X`−1) be the filtration corresponding to the random variables {Xi}i=1,··· ,n

and 1` be a 0− 1 random variable that is F` measurable. Further, let

X̄`
∆
=

∑`
i=1Xi · 1i∑`
i=1 1i

, n`
∆
=
∑̀
i=1

1i and µ
∆
= E(Xi) =

1− p
p

.

Then for any random variable δ, we have
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1. Pr
(
X̄` > (1 + δ)µ

)
≤


E

1
2

[
exp

(
− n`µδ

2

2(1 + δ)(1 + µ)2

)]
if µ ≤ 1,

E
1
2

[
exp

(
− n`δ

2µ2

6(1 + µ)2

(
3− 2δµ

1 + µ

))]
if µ ≥ 1.

2. Pr
(
X̄` < (1− δ)µ

)
≤


E

1
2

[
exp

(
− n`δ

2µ

6(1 + µ)2

(
3− 2δµ

1 + µ

))]
if µ ≤ 1,

E
1
2

[
exp

(
− n`δ

2µ2

2(1 + µ)2

)]
if µ ≥ 1.

Proof. We have

X̄i(`) =
1

n`

∑̀
i=1

Xi1`.

Therefore, bounding Pr
(
X̄` > (1 + δ)µ

)
and Pr

(
X̄` < (1− δ)µ

)
is equivalent to

bounding Pr
(∑`

i=1Xi1i > (1 + δ)µn`

)
and Pr

(∑`
i=1 Xi1i < (1− δ)µn`

)
. We will

bound the first term and then follow a similar approach for bounding the second

term to complete the proof.

Bounding Pr
(
X̄` > (1 + δ)µ

)
:

We have for any λ > 0,

Pr

(∑̀
i=1

Xi1i > (1 + δ)µn`

)
= Pr

{
exp

(
λ
∑̀
i=1

Xi1i

)
> exp (λ(1 + δi)vini(`))

}
,

= Pr

{
exp

(
λ
∑̀
i=1

Xi1i − λ(1 + δ)µn`

)
> 1

}
,

≤ E

[
exp

(
λ
∑̀
i=1

Xi1i − λ(1 + δ)µn`

)]
,

(A.1)

where the last inequality follows from Markov inequality. For notational brevity,

denote f(λ, µ) by the function,

f(λ, µ) = −
log
(
1− µ(e2λ − 1)

)
2

.
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We have,

E
[
e(λ

∑`
i=1Xi1i−λ(1+δ)µn`)

]
= E

[
e(

∑`
i=1(λXi−f(λ,µ))·1i) · e

(
−λ(1+δ)µ(1−f(λ,µ))n`

)]
,

≤ E
1
2

[
e(

∑`
τ=1(2λXi−2f(λ,µ))·1i)

]
· E

1
2 [e

(
−2λ(1+δ)µ(1−f(λ,µ))n`

)
],

(A.2)

where the above inequality follows from Cauchy-Schwartz inequality. Note that for

any i, 1i conditioned on Fi is a constant and {Xi|Fi} is a geometric random variable.

From the proof of Lemma 2.1, for all i ≥ 1 and for any 0 < λ < 1
2

log 1+µ
µ
, we have,

E
(
e2λXi1i

∣∣Fi) =

(
1

1− µ(e2λ − 1)

)
1i

.

Therefore, it follows that

E
(
e(2λXi−2f(λ,µ))·1i

∣∣Fi) ≤ 1, (A.3)

and

E

[
exp

(∑̀
i=1

(2λXi − 2f(λ, µ)) · 1i

)]
= E [E {exp ((2λXi − 2f(λ, µ)) · 1i)|F`}]

= E

[
`−1∏
i=1

exp ((2λXi − 2f(λ, µ)) · 1`) · E
(
e(2λX`−2f(λ,µ))·1i

∣∣F`)]

≤ E

[
`−1∏
i=1

exp ((2λX` − 2f(λ, µ)) · 1i)

]
,

where the inequality follows from (A.3). Similarly by conditioning with F`−1, · · · ,F1,

we obtain,

E

[
exp

(∑̀
i=1

(2λXi − 2f(λ, µ)) · 1i

)]
≤ 1.

From (A.1) and (A.2), we have

Pr

(∑̀
i=1

Xi1i > (1 + δ)µn`

)
≤ E

1
2

[
exp

(
− 2λ(1 + δ)µ(1− f(λ, µ))n`

)]
.

Therefore, we have

Pr

(∑̀
i=1

Xi1i > (1 + δ)µn`

)
≤ E

1
2

[
min
λ∈Ω

exp
(
− 2λ(1 + δ)µ(1− f(λ, µ))n`

)]
, (A.4)
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where Ω = {λ|0 < λ < 1
2

log 1+µ
µ
} is the range of λ for which the moment generating

function in (A.3) is well definred. Taking logarithm of the objective in (A.4), we have,

argmin
λ∈Ω

e−2λ(1+δ)µ(1−f(λ,µ))·n` = argmin
λ∈Ω

− 2(1 + δ)λn`µ− n` log
(
1− µ(e2λ − 1)

)
.(A.5)

Noting that the right hand side in the above equation is a convex function in λ, we

obtain the optimal λ by solving for the zero of the derivative. Specifically, at optimal

t, we have

e2λ =
(1 + δ)(1 + µ)

1 + µ(1 + δ)
.

Substituting the above expression in (A.4), we obtain the following bound.

Pr
(
X̄` > (1 + δ)µ

)
≤ E

1
2

[(
1− δ

(1 + δ)(1 + µ)

)n`µ(1+δ)(
1 +

δµ

1 + µ

)n`]
. (A.6)

First consider the setting where µ ∈ (0, 1).

Case 1a: If µ ∈ (0, 1): From Taylor series of log (1− x), we have that

n`µ(1 + δ) log

(
1− δ

(1 + δ)(1 + µ)

)
≤ − n`δµ

1 + µ
− n`δ

2µ

2(1 + δ)(1 + µ)2
,

From Taylor series for log (1 + x), we have

n` log

(
1 +

δµ

1 + µ

)
≤ n`δµ

(1 + µ)
,

Note that if δ > 1, we can use the fact that log (1 + δx) ≤ δ log (1 + x) to arrive at

the preceding result. Substituting the preceding two equations in (A.6), we have

Pr
(
X̄` > (1 + δ)µ

)
≤ exp

(
− n`µδ

2

2(1 + δ)(1 + µ)2

)
. (A.7)

Case 1b: If µ ≥ 1 : From Taylor series of log (1− x), we have that

n`µ(1 + δ) log

(
1− δ

(1 + δ)(1 + µ)

)
≤ − n`δµ

1 + µ
,

If δ < 1, from Taylor series for log (1 + x), we have

n` log

(
1 +

δµ

1 + µ

)
≤ n`δµ

(1 + µ)
− n`δ

2µ2

6(1 + µ)2

(
3− 2δµ

1 + µ

)
.
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If δ ≥ 1, we have log (1 + δx) ≤ δ log (1 + x) and from Taylor series for log (1 + x), it

follows that,

n` log

(
1 +

δµ

1 + µ

)
≤ n`δµ

(1 + µ)
− n`δµ

2

6(1 + µ)2

(
3− 2µ

1 + µ

)
.

Therefore, substituting preceding results in (A.6), we have

Pr
(
X̄` > (1 + δ)µ

)
≤

 E 1
2

[
exp

(
− n`δ

2µ2

6(1+µ)2

(
3− 2δµ

1+µ

))]
if µ ≥ 1 and δ ∈ (0, 1),

E 1
2

[
exp

(
− n`δµ

2

6(1+µ)2

(
3− 2µ

1+µ

))]
if µ ≥ 1 and δ ≥ 1.

(A.8)

Bounding Pr
(
X̄` < (1− δ)µ

)
:

Now to bound the other one sided inequality, we use the fact that for any λ > 0,

E
(
e−λXi1i

∣∣Fi) =

(
1

1− µ(e−λ − 1)

)
1i

.

and follow a similar approach. More specifically, from Markov Inequality, for any

λ > 0 and 0 < δ < 1, we have

Pr

(∑̀
i=1

Xi1i < (1− δ)vin`

)
= Pr

{
exp

(
−λ
∑̀
i=1

Xi1i

)
> exp (−λ(1− δ)µn`)

}
,

= Pr

{
exp

(
−λ
∑̀
i=1

Xi1i + λ(1− δ)µn`

)
> 1

}
,

≤ E

[
exp

(
−λ
∑̀
i=1

Xi1i + λ(1− δ)µn`

)]
.

(A.9)

For notational brevity, denote f(λ, µ) by the function,

f(λ, µ) = −
log
(
1− µ(e−2λ − 1)

)
2

.

We have,

E

[
exp

(
−λ
∑̀
i=1

Xi1i + λ(1− δ)µn`

)]

= E

[
exp

(∑̀
i=1

(−λXi − f(λ, µ)) · 1i

)
· exp

(
λ(1− δ)µ(1 + f(λ, µ))n`

)]
,

≤ E
1
2

[
exp

(∑̀
i=1

(−2λXi − 2f(λ, µ)) · 1i

)]
· E

1
2

[
exp

(
2λ(1− δ)µ(1 + f(λ, µ))n`

)]
,

(A.10)
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where the above inequality follows from Cauchy-Schwartz inequality. Noting that for

any τ , 1i conditioned on Fi is a constant and {Xi|Fi} is a geometric random variable.

Therefore, for all i ≥ 1 and for any λ > 0, we have,

E
(
e−2λXi1i

∣∣Fi) =

(
1

1− µ(e−2λ − 1)

)
1i

.

Therefore, it follows that

E
(
e(−2λXi−2f(λ,µ))·1i

∣∣Fi) ≤ 1, (A.11)

and

E
[
e(

∑`
i=1(−2λXi−2f(λ,µ))·1i)

]
= E

[
E
{
e(

∑`
i=1(−2λXi−2f(λ,µ))·1i)

∣∣∣F`}] ,
= E

[
`−1∏
i=1

exp ((−2λXi − 2f(λ, µ)) · 1i) · E
(
e(−2λX`−2f(λ,µ))·1i

∣∣F`)] ,
= E

[
`−1∏
i=1

exp ((−2λXi − 2f(λ, µ)) · 1i)

]
,

where the inequality follows from (A.11). Similarly by conditioning with F`−1, · · · ,F1,

we obtain,

E

[
exp

(∑̀
i=1

(−2λXi − 2f(λ, µ)) · 1i

)]
≤ 1.

From (A.9) and (A.10), we have

Pr

(∑̀
i=1

Xi1i < (1− δ)µn`

)
≤ E

1
2

[
exp

(
2λ(1− δ)µ(1 + f(λ, µ))n`)

)]
.

Therefore, we have

Pr
(
X̄` < (1− δ)µ

)
≤ E

1
2

[
min
λ>0

exp
(

2λ(1− δ)µ(1 + f(λ, µ))n`

)]
.

Following similar approach as in optimizing the previous bound (see (A.4)) to establish

the following result.

Pr
(
X̄` < (1− δ)µ

)
≤ E

1
2

[(
1 +

δ

(1− δ)(1 + µ)

)n`µ(1−δ)(
1− δµ

1 + µ

)n`]
.
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Now we will use Taylor series for log (1 + x) and log (1− x) in a similar manner

as described for the other bound to obtain the required result. In particular, since

1− δ ≤ 1, we have for any x > 0 it follows that (1 + x
1−δ )

(1−δ) ≤ (1 + x) . Therefore,

we have

Pr
(
X̄`) < (1− δ)µ

)
≤ E

1
2

[(
1 +

δ

1 + µ

)n`µ(
1− δµ

1 + µ

)n`]
. (A.12)

Case 2a. If µ ∈ (0, 1): Note that since Xi ≥ 0 for all i, we have a zero probability

event if δ > 1. Therefore, we assume δ < 1 and from Taylor series for log (1− x), we

have

n` log

(
1− δµ

1 + µ

)
≤ − n`δµ

1 + µ
,

and from Taylor series for log (1 + x), we have

n`µ log

(
1 +

δ

1 + µ

)
≤ n`δµ

(1 + µ)
− n`δ

2µ

6(1 + µ)2

(
3− 2δµ

1 + µ

)
.

Therefore, substituting the preceding equations in (A.12), we have,

Pr
(
X̄` < (1− δ)µ

)
≤ E

1
2

[
exp

(
− n`δ

2µ

6(1 + µ)2

(
3− 2δµ

1 + µ

))
.

]
(A.13)

Case 2b. If µ ≥ 1: For similar reasons as discussed above, we assume δ < 1 and

from Taylor series for log (1− x), we have

n` log

(
1− δµ

1 + µ

)
≤ − n`δµ

1 + µ
− n`δ

2µ2

2(1 + µ)2
,

and from Taylor series for log (1 + x), we have

n` log

(
1 +

δµ

1 + µ

)
≤ n`δ

(1 + µ)
.

Therefore, substituting the preceding equations in (A.12), we have,

Pr
(
X̄` < (1− δ)µ

)
≤ E

1
2

[
exp

(
− n`δ

2µ2

2(1 + µ)2

)]
. (A.14)

The result follows from (A.7), (A.8), (A.13) and (A.14).
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Now, we will adapt a non-standard corollary from [7] and [26] to our estimates to

obtain sharper bounds.

Lemma A.1. Consider n i.i.d geometric random variables X1, · · · , Xn. Let F` =

σ(X1, · · · , X`−1) be the filtration corresponding to the random variables {Xi}i=1,··· ,n

and 1` be a 0− 1 random variable that is F` measurable. Further, let

X̄`
∆
=

∑`
i=1Xi · 1i∑`
i=1 1i

, n`
∆
=
∑̀
i=1

1i and µ
∆
= E(Xi) =

1− p
p

.

If for any m > 0, n` > 48 log (m+ 1), then we have for any `,

1. P
(∣∣X̄` − µ

∣∣ > max
{√

X̄`, X̄`

}√
48 log (m+1)

n`
+ 48 log (m+1)

n`

)
≤ 6

m2 .

2. P

∣∣X̄` − µ
∣∣ ≥ max {√µ, µ}

√
24 log (m+ 1)

n`
+

48 log (m+ 1)

n`

 ≤ 4

m2
,

3. P
(
X̄` ≥

3µ

2
+

48 log (m+ 1)

n

)
≤ 3

m2
.

Proof. We will analyze the cases µ < 1 and µ ≥ 1 separately.

Case-1: µ ≤ 1. Let δ = (µ + 1)
√

6 log (m+1)
µn`

. First assume that δ ≤ 1
2
. Substituting

the value of δ in Theorem A.1, we obtain,

P
(
X̄` − µ > δµ

)
≤ 1

m2
,

P
(
X̄` − µ < −δµ

)
≤ 1

m2
,

P

∣∣X̄` − µ
∣∣ < (µ+ 1)

√
6µ log (m+ 1)

n`

 ≥ 1− 2

m2
.

(A.15)

Since δ ≤ 1
2
, we have P

(
X̄` − µ ≤ −µ

2

)
≤ P

(
X̄` − µ ≤ −δµ

)
. Hence, from (A.15),

we have,

P
(
X̄` − µ ≤ −

µ

2

)
≤ 1

m2
,

and hence, it follows that,

P
(
2X̄ ≥ µ

)
≥ 1− 1

N`2
. (A.16)
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From (A.15) and (A.16), we have,

P

(∣∣X̄ − µ∣∣ <√48X̄ log (m+ 1)

n

)
≥ P

(∣∣X̄ − µ∣∣ <√24µ log (m+ 1)

n

)
≥ 1− 3

m2
.

(A.17)

Since δ ≤ 1
2
, we have, P

(
X̄` ≤ 3µ

2

)
≥ P

(
X̄` < (1 + δ)µ

)
. Hence, from (A.15), we

have

P
(
X̄` ≤

3µ

2

)
≥ 1− 1

m2
. (A.18)

Since, µ ≤ 1, we have P
(
X̄` ≤ 3

2

)
≥ 1− 1

m2 and

P

(
X̄` ≤

√
3X̄

2

)
≥ 1− 1

m2
.

Therefore, substituting above result in (C.2), the first inequality in Lemma A.1

follows.

P

∣∣X̄` − µ
∣∣ > max

{√
X̄`,

√
2

3
X̄`

}√
48 log (m+ 1)

n`

 ≤ 4

m2
. (A.19)

Now consider the scenario, when (µ+ 1)
√

6 log (m+1)
µn`

> 1
2
. Then, we have,

δ1
∆
=

12(µ+ 1)2 log (m+ 1)

µn`
≥ 1

2
,

which implies,

exp

(
− nµδ2

1

2(1 + δ1)(1 + µ)2

)
≤ exp

(
− n`µδ1

6(1 + µ)2

)
,

exp

(
− n`δ

2
1µ

6(1 + µ)2

(
3− 2δ1µ

1 + µ

))
≤ exp

(
− n`µδ1

6(1 + µ)2

)
.

Therefore, substituting the value of δ1 in Theorem A.1, we have

P
(∣∣X̄` − µ

∣∣ > 48 log (m+ 1)

n`

)
≤ 2

m2
. (A.20)

Hence, from (A.20) and (A.19), it follows that,

P

∣∣X̄` − µ
∣∣ > max

{√
X̄`,

√
2

3
X̄`

}√
48 log (m+ 1)

n`
+

48 log (m+ 1)

n`

 ≤ 6

m2
.

(A.21)
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Case 2: µµµ ≥ 1

Let δ =
√

12 log (m+1)
n

, then by our assumption, we have δ ≤ 1
2
. Substituting the

value of δ in Theorem A.1, we obtain,

P

∣∣X̄` − µ
∣∣ < µ

√
12 log (m+ 1)

n`

 ≥ 1− 2

m2
,

P
(
2X̄` ≥ µ

)
≥ 1− 1

m2
.

Hence we have,

P

∣∣X̄` − µ
∣∣ < X̄`

√
48 log (m+ 1)

n`

 ≥ P
∣∣X̄` − µ

∣∣ < µ

√
12 log (m+ 1)

n`


≥ 1− 3

ml2
.

(A.22)

By assumption µ ≥ 1. Therefore, we have P
(
X̄` ≥ 1

2

)
≥ 1− 1

m2 and,

P

(
X̄` ≥

√
X̄`

2

)
≥ 1− 1

m2
. (A.23)

Therefore, from (A.22) and (A.23), we have

P

∣∣X̄` − µ
∣∣ > max

{
X̄`,

√
X̄`

2

}√
48 log (m+ 1)

n`

 ≤ 4

m2
. (A.24)

We complete the proof by stating that first inequality follows from (A.21) and (A.24),

while second inequality follows from (C.2) and (A.22) and third inequality follows

from (A.18) and (A.20).

From the proof of Lemma A.1, the following result follows.

Corollary A.1. Consider n i.i.d geometric random variables X1, · · · , Xn. Let F` =

σ(X1, · · · , X`−1) be the filtration corresponding to the random variables {Xi}i=1,··· ,n

and 1` be a 0− 1 random variable that is F` measurable. Further, let

X̄`
∆
=

∑`
i=1Xi · 1i∑`
i=1 1i

, n`
∆
=
∑̀
i=1

1i and µ
∆
= E(Xi) =

1− p
p

.

If µ ≤ 1, then we have for any m > 0
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1. P

∣∣X̄` − µ
∣∣ >

√
48X̄` log (m+ 1)

n`
+

48 log (m+ 1)

n`

 ≤ 6

m2
.

2. P

∣∣X̄` − µ
∣∣ ≥√24µ log (m+ 1)

n`
+

48 log (m+ 1)

n`

 ≤ 4

m2
.

3. P
(
X̄` ≥

3µ

2
+

48 log (m+ 1)

n`

)
≤ 3

m2
.

A.2 Proof of Lemma 2.2 and Lemma 2.11

From Corollary 2.1, it follows that v̂i,` are i.i.d geometric random variables with mean

vi. Furthermore, we have v̄i,` =
∑`
τ=1 v̂i,τ1{i∈Sτ}∑`
τ=1 1{i∈Sτ}

. Therefore, in the rest of this proof

whenever we refer to Theorem A.1 or Lemma A.1 or Corollary A.1, it is assumed

that µ = vi and X̄` = v̄i,`.

Proof of Lemma 2.2: By design of Algorithm 1, we have,

vUCBi,` = v̄i,` +

√
48v̄i,`

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (A.25)

Therefore from Corollary A.1, we have

Pπ
(
vUCBi,` < vi

)
≤ 6

N`
. (A.26)

The first inequality in Lemma 2.2 follows from (A.26). From triangle inequality and

(A.25), we have,

∣∣vUCBi,` − vi
∣∣ ≤ ∣∣vUCBi,` − v̄i,`

∣∣+ |v̄i,` − vi|

=

√
48v̄i,`

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
+ |v̄i,` − vi| .

(A.27)

From Corollary A.1, we have

Pr

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
,

145



which implies

Pr

48v̄i,`
log (
√
N`+ 1)

Ti(`)
> 72vi

log (
√
N`+ 1)

Ti(`)
+

(
48 log (

√
N`+ 1)

Ti(`)

)2
 ≤ 3

N`
,

Using the fact that
√
a+ b <

√
a+
√
b for any positive numbers a, b, we have,

Pr

√ v̄i,` log (
√
N`+ 1)

48Ti(`)
+

log (
√
N`+ 1)

Ti(`)
>

√
vi log (

√
N`+ 1)

32Ti(`)
+

log (
√
N`+ 1)

Ti(`)


≤ 3

N`
,

(A.28)

From Corollary A.1, we have,

Pr

|v̄i,` − vi| >
√

24vi
log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

 ≤ 4

N`
. (A.29)

From (A.27) and applying union bound on (A.28) and (A.29), we obtain,

P

∣∣vUCBi,` − vi
∣∣ > (

√
72 +

√
24)

√
vi log (

√
N`+ 1)

Ti(`)
+

144 log (
√
N`+ 1)

Ti(`)

 ≤ 7

N`
.

Lemma 2.2 follows from the above inequality and (A.26).

Proof of Lemma 2.11 By design of Algorithm 3, we have,

vUCB2i,` = v̄i,` + max
{√

v̄i,`, v̄i,`
}√48 log (

√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
. (A.30)

Therefore from Lemma A.1, we have

Pr
(
vUCB2i,` < vi

)
≤ 6

N`
. (A.31)

The first inequality in Lemma 2.2 follows from (A.31). From (A.30), we have,

∣∣vUCB2i,` − vi
∣∣ ≤ ∣∣vUCBi,` − v̄i,`

∣∣+ |v̄i,` − vi|

= max
{√

v̄i,`, v̄i,`
}√

48
log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)
+ |v̄i,` − vi| .

(A.32)
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From Lemma A.1, we have

Pr

(
v̄i,` >

3vi
2

+
48 log (

√
N`+ 1)

Ti(`)

)
≤ 3

N`
,

which implies

Pr

48v̄i,`
log (
√
N`+ 1)

Ti(`)
> 72vi

log (
√
N`+ 1)

Ti(`)
+

(
48 log (

√
N`+ 1)

Ti(`)

)2
 ≤ 3

N`
,

Using the fact that
√
a+ b <

√
a+
√
b, for any positive numbers a, b, we have,

Pr

max
{√

v̄i,`, v̄i,`
}

max
{√

vi, vi
} √v̄i,`

log (
√
N`+ 1)

48Ti(`)
>

√
log (
√
N`+ 1)

32Ti(`)
+

log (
√
N`+ 1)

Ti(`)


≤ 3

N`
,

(A.33)

From Lemma A.1, we have,

Pr

|v̄i,` − vi| > max {
√
vi, vi}

√
24

log (
√
N`+ 1)

Ti(`)
+

48 log (
√
N`+ 1)

Ti(`)

 ≤ 4

N`
.

(A.34)

From (A.32) and applying union bound on (A.33) and (A.34), we obtain,

Pr

 ∣∣vUCB2i,` − vi
∣∣

(
√

72 +
√

24) max
{√

vi, vi
} >

√
vi log (

√
N`+ 1)

Ti(`)
+

144 log (
√
N`+ 1)

Ti(`)

 ≤ 7

N`
.

Lemma 2.11 follows from the above inequality and (A.31). �
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Appendix B

UCB Approach for the MNL-Bandit

B.1 Proof of Theorem 1

In this section, we utilize the results established in Section 2.2 and complete the proof

of Theorem 1.

Proof. Let S∗ denote the optimal assortment, our objective is to minimize the Regret

defined in (MNL-Bandit), which is same as

Reg(T,v) = E

{
L∑
`=1

|E`| (R(S∗,v)−R(S`,v))

}
, (B.1)

Note that L, E` and S` are all random variables and the expectation in equation (B.1)

is over these random variables. Let H` be the filtration (history) associated with the

policy upto epoch `. The length of the `th epoch, |E`| conditioned on S` is a geometric

random variable with success probability defined as the probability of no-purchase in

S`, i.e.

π(0, S`) =
1

1 +
∑

j∈S` vj
.

Let V (S`) =
∑

j∈S` vj, then we have E
(
|E`|

∣∣∣ S`) = 1 + V (S`). Noting that S` in our

policy is determined by H`−1, we have E
(
|E`|
∣∣∣H`−1

)
= 1 + V (S`). Therefore, by law

of conditional expectations, we have

Reg(T,v) = E

{
L∑
`=1

E
[
|E`| (R(S∗,v)−R(S`,v))

∣∣∣ H`−1

]}
,

and hence the Regret can be reformulated as

Reg(T,v) = E

{
L∑
`=1

(1 + V (S`)) (R(S∗,v)−R(S`,v))

}
, (B.2)
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the expectation in equation (B.2) is over the random variables L and S`. For the sake

of brevity, for each ` ∈ 1, · · · , L, let

∆R`=(1 + V (S`)) (R(S∗,v)−R(S`,v)) . (B.3)

Now the Regret can be reformulated as

Reg(T,v) = E

{
L∑
`=1

∆R`

}
. (B.4)

Let Ti denote the total number of epochs that offered an assortment containing

product i. For all ` = 1, . . . , L, define events A` as,

A` =
N⋃
i=1

vUCBi,` < vi or vUCBi,` > vi + C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 .

From union bound, it follows that

Pr (A`) ≤
N∑
i=1

Pr
(
vUCBi,` < vi

)
+ Pr

vUCBi,` > vi + C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 .

Therefore, from Lemma 2.2, we have,

Pr(A`) ≤
13

`
. (B.5)

Since A` is a “low probability” event (see (B.5)), we analyze the Regret in two

scenarios, one when A` is true and another when Ac` is true. We break down the

Regret in an epoch into the following two terms:

E (∆R`) = E
[
∆R` · 1(A`−1) + ∆R` · 1(Ac`−1)

]
.

Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`) ≤ N

in (B.3), we have ∆R` ≤ N + 1. Substituting the preceding inequality in the above

equation, we obtain,

E (∆R`) ≤ (N + 1)Pr(A`−1) + E
[
∆R` · 1(Ac`−1)

]
.

149



Whenever 1(Ac`−1) = 1, from the restricted monotonicity property of Lemma 2.3, we

have R̃`(S
∗) ≥ R(S∗,v) and by our algorithm design, we have R̃`(S`) ≥ R̃`(S

∗) for

all ` ≥ 1. Therefore, it follows that

E {∆R`} ≤ (N + 1)Pr(A`−1) + E
{[

(1 + V (S`))(R̃`(S`)−R(S`,v))
]
· 1(Ac`−1)

}
From the definition of the event, A` and the Lipschitz property of Lemma 2.3, it

follows that, [
(1 + V (S`))(R̃`(S`)−R(S`,v))

]
· 1(Ac`−1)

≤
∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 .

Therefore, we have

E {∆R`} ≤ (N + 1)Pr (A`−1) + C
∑
i∈S`

E

√vi log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 , (B.6)

where C = max{C1, C2}. Combining equations (B.2) and (B.6), we have

Reg(T,v) ≤ E


L∑
`=1

(N + 1)Pr (A`−1) + C
∑
i∈S`

√vi log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 .

Therefore, from Lemma 2.2, we have

Reg(T,v) ≤ CE


L∑
`=1

N + 1

`
+
∑
i∈S`

√
vi log

√
NT

Ti(`)
+
∑
i∈S`

log
√
NT

Ti(`)

 ,

(a)

≤ CN log T + CN log2
√
NT + CE

(
n∑
i=1

√
viTi log

√
NT

)
,

(b)

≤ CN log T + CN log2NT + C
N∑
i=1

√
vi log (NT )E(Ti).

(B.7)

Inequality (a) follows from the observation that L ≤ T , Ti ≤ T ,

Ti∑
Ti(`)=1

1√
Ti(`)

≤
√
Ti, and

Ti∑
Ti(`)=1

1

Ti(`)
≤ log Ti,

while Inequality (b) follows from Jensen’s inequality.

150



For any realization of L, E`, Ti, and S` in Algorithm 1, we have the following relation

L∑
`=1

n` ≤ T.

Hence, we have E
(∑L

`=1 n`

)
≤ T. Let F denote the filtration corresponding to the

offered assortments S1, · · · , SL, then by law of total expectation, we have,

E

(
L∑
`=1

n`

)
= E

{
L∑
`=1

EF (n`)

}
= E

{
L∑
`=1

1 +
∑
i∈S`

vi

}
,

= E

{
L+

n∑
i=1

viTi

}
= E{L}+

n∑
i=1

viE(Ti).

Therefore, it follows that ∑
viE(Ti) ≤ T. (B.8)

To obtain the worst case upper bound, we maximize the bound in equation (B.7)

subject to the condition (B.8) and hence, we have Reg(T,v) = O(
√
NT logNT +

N log2NT ).

B.2 Improved Regret bounds for the

unconstrained MNL-Bandit

Here, we focus on the special case of the unconstrained MNL-Bandit problem and use

the analysis of Appendix B.1 to establish a tighter bound on the Regret for Algorithm

1. First, we note that, in the case of the unconstrained problem, for any epoch `,

with high probability, the assortment, S` suggested by Algorithm 1 is a subset of the

optimal assortment, S∗. More specifically, the following holds.

Lemma B.1. Let S∗ = argmax
S∈{1,··· ,N}

R(S,v) and S` be the assortment suggested by

Algorithm 1. Then for any ` = 1, · · · , L, we have,

Pr (S` ⊂ S∗) ≥ 1− 6

`
.
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Proof. If there exists a product i, such that ri ≥ R(S∗,v), then following the proof of

Lemma 2.3, we can show that R(S∗ ∪ i,v) ≥ R(S∗,v) and similarly, if there exists a

product i, such that ri < R(S∗,v), we can show that R(S∗\{i},v) ≥ R(S∗,v). Since

there are no constraints on the set of feasible assortment, we can add and remove

products that will improve the expected revenue. Therefore, we have,

i ∈ S∗ if and only if ri ≥ R(S∗,v). (B.9)

Fix an epoch `, let S` be the assortment suggested by Algorithm 1. Using similar

arguments as above, we can show that,

i ∈ S` if and only if ri ≥ R(S`,v
UCB
` ). (B.10)

From Lemma 2.4, we have ,

Pr
(
R(S`,v

UCB
` ) ≥ R(S∗,v)

)
≥ 1− 6

`
. (B.11)

Lemma B.1 follows from (B.9), (B.10) and (B.11). �

From Lemma B.1, it follows that Algorithm 1 only considers products from the set

S∗ with high probability, and hence, we can follow the proof in Appendix B.1 (by

replacing N with |S∗|) to derive sharper Regret bounds. In particular, we have the

following result,

Corollary B.1 (Performance Bounds for unconstrained case). For any instance,

v = (v0, . . . , vN) of the MNL-Bandit problem with N products and no constraints,

ri ∈ [0, 1] and v0 ≥ vi for i = 1, . . . , N , there exists finite constants C1 and C2, such

that the Regret of the policy defined in Algorithm 1 at any time T is bounded as,

Reg(T,v) ≤ C1

√
|S∗|T logNT + C2N logNT.
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B.3 Proof of Theorem 2

First we state the following auxiliary result that is helpful in proving Theorem 2.

Following the proof of Lemma 2.7, we can establish the following result.

Corollary B.2. The number of epochs that offer a product that does not satisfy the

condition, Ti(`) ≥ logNT , is bounded by N logNT. In particular,∣∣∣{` ∣∣∣ Ti(`) < logNT for some i ∈ S`
}∣∣∣ ≤ N logNT.

We will re-use the ideas from proof of Theorem 1 to prove Theorem 2. Briefly,

we breakdown the Regret into Regret over “good epochs” and “bad epochs.” First

we argue using Lemma 2.2, that the probability of an epoch being “bad epoch” is

“small,” and hence the expected cumulative Regret over the bad epochs is “small.”

We will then use Lemma 2.7 to argue that there are only “small” number of “good

epochs” that offer sub-optimal assortments. Since, Algorithm 1 do not incur Regret

in epochs that offer the optimal assortment, we can replace the length of the horizon

T with the cumulative length of the time horizon that offers sub-optimal assortments

(which is “small”) and re-use analysis from Appendix B.1. We will now make these

notions rigorous and complete the proof of Theorem 2.

Proof. Following the analysis in Appendix B.1, we reformulate the Regret as

Reg(T,v) = E

{
L∑
`=1

(1 + V (S`)) (R(S∗,v)−R(S`,v))

}
, (B.12)

where S∗ is the optimal assortment, V (S`) =
∑

j∈S` vj and the expectation in equation

(B.12) is over the random variables L and S`. Similar to the analysis in Appendix

B.1, for the sake of brevity, we define,

∆R`=(1 + V (S`)) (R(S∗,v)−R(S`,v)) . (B.13)

Now the Regret can be reformulated as

Reg(T,v) = E

{
L∑
`=1

∆R`

}
. (B.14)
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For all ` = 1, . . . , L, define events A` as,

A` =
N⋃
i=1

vUCBi,` < vi or vUCBi,` > vi + C1

√
vi log (

√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 .

Let ξ =
{
`
∣∣∣ Ti(`) < logNT for some i ∈ S`

}
. We breakdown the Regret in an epoch

into the following terms.

E (∆R`) = Eπ
[
∆R` · 1(A`−1) + ∆R` · 1(Ac`−1) · 1(` ∈ ξ) + ∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
.

Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`) ≤ N

in (B.13), we have ∆R` ≤ N + 1. Substituting the preceding inequality in the above

equation, we obtain,

E (∆R`) ≤ (N + 1)Pr(A`−1) + (N + 1)Pr (` ∈ ξ) + E
[
∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
.

From the analysis in Appendix ?? (see (B.5)), we have P(A`) ≤ 13
`
. Therefore, it

follows that,

E (∆R`) ≤
13(N + 1)

`
+ (N + 1)Pr (` ∈ ξ) + E

[
∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
.

Substituting the above inequality in (B.14), we obtain

Reg(T,v) ≤ 14N log T + (N + 1)
L∑
`=1

Pr (` ∈ ξ) + E

[
L∑
`=1

∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
.

From Corollary B.2, we have that
∑L

`=1 1(` ∈ ξ) ≤ N logNT. Hence, we have,

Reg(T,v) ≤ 14N log T +N(N + 1) logNT + E

[
L∑
`=1

∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
.

(B.15)

Let E sub opt
G be the set of “good epochs” offering sub-optimal products, more specifically,

E sub opt
G

∆
= {` | 1(Ac`) = 1 and R(S`,v) < R(S∗,v)} .

If R(S`,v) = R(S∗,v), then by definition, we have ∆R` = 0. Therefore, it follows

that,

E

[
L∑
`=1

∆R` · 1(Ac`−1) · 1(` ∈ ξc)

]
= E

 ∑
`∈Esub opt
G

∆R` · 1(` ∈ ξc)

 . (B.16)
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Whenever 1(Ac`−1) = 1, from Lemma 2.3, we have, R̃`(S
∗) ≥ R(S∗,v) and by our

algorithm design, we have R̃`(S`) ≥ R̃`(S
∗) for all ` ≥ 1. Therefore, it follows that

E {∆R` · 1(Ac`)} ≤ E
{[

(1 + V (S`))(R̃`(S`)−R(S`,v))
]
· 1(Ac`−1) · 1(` ∈ ξc)

}
,

≤
∑
i∈S`

C1

√
vi log (

√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 · 1(` ∈ ξc),

≤ C
∑
i∈S`

√
vi log (

√
N`+ 1)

Ti(`)
.

(B.17)

where C = C1 +C2, the second inequality in (B.17) follows from the definition of the

event, A` and the last inequality follows from the definition of set ξ. From equations

(B.15), (B.16), and (B.17) , we have,

Reg(T,v) ≤ 14N2 logNT + CE


∑

`∈Esub opt
G

∑
i∈S`

√
logNT

Ti(`)

 , (B.18)

Let Ti be the number of “good epochs” that offered sub-optimal assortments containing

product i, specifically,

Ti =
∣∣∣{` ∈ E sub opt

G

∣∣∣ i ∈ S`}∣∣∣ .
Substituting the inequality

∑
`∈Esub opt
G

1√
Ti(`)
≤
√
Ti in (B.18) and noting that Ti ≤ T ,

we obtain,

Reg(T,v) ≤ 14N2 logNT + C
N∑
i=1

Eπ
(√

Ti log T
)
.

From Jenson’s inequality, we have Eπ
(√

T i

)
≤
√
Eπ (Ti) and therefore, it follows

that,

Reg(T,v) ≤ 14N log T +NC logNT + C

N∑
i=1

√
Eπ (Ti) logNT.

From Cauchy-Schwartz inequality, we have,
∑N

i=1

√
Eπ (Ti) ≤

√
N
∑N

i=1 Eπ (Ti).

Therefore, it follows that,

Reg(T,v) ≤ 14N2 logNT + C

√√√√N
N∑
i=1

Eπ (Ti) logNT.
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For any epoch `, we have |S`| ≤ N . Hence, we have
∑N

i=1 Ti ≤ N |E sub opt
G |. From

Lemma 2.7, we have |E sub opt
G | ≤ Nτ . Therefore, we have

∑N
i=1 Eπ (Ti) ≤ N2τ and

hence, it follows that,

Reg(T,v) ≤ 14N2 logNT + CN
√
Nτ logNT,

≤ 14N2 logNT + C
N2 logNT

∆(v)
.

(B.19)

B.4 Proof of Theorem 4

Proof of Theorem 4 is very similar to the proof of Theorem 1. Note that E` is the set

of “exploratory epochs,” i.e. epochs in which at least one of the offered product is

offered less than the required number of times. We breakdown the Regret as follows:

Reg(T,v) = E

{∑
`∈EL

|E`| (R(S∗,v)−R(S`,v))

}
︸ ︷︷ ︸

Reg1(T,v)

+E

{∑
`6∈EL

|E`| (R(S∗,v)−R(S`,v))

}
︸ ︷︷ ︸

Reg2(T,v)

.

Since for any S, we have, R(S,v) ≤ R(S∗,v) ≤ 1, it follows that,

Reg(T,v) ≤ E

{∑
`∈EL

|E`|

}
+ Reg2(T,v).

From Lemma 2.10, it follows that,

Reg(T,v) ≤ 49NB logNT + Reg2(T,v). (B.20)

We will focus on the second term in the above equation, Reg2(T,v). Following the

analysis in Appendix B.1, we can show that,

Reg2(T,v) = E

{∑
6̀∈EL

(1 + V (S`)) (R(S∗,v)−R(S`,v))

}
. (B.21)

Similar to the analysis in Appendix B.1, for the sake of brevity, we define,

∆R`=(1 + V (S`)) (R(S∗,v)−R(S`,v)) . (B.22)
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Now, Reg2(T,v) can be reformulated as

Reg2(T,v) = E

{∑
`6∈EL

∆R`

}
. (B.23)

Let Ti denote the total number of epochs that offered an assortment containing

product i. For all ` = 1, . . . , L, define events B` as,

B` =
N⋃
i=1

{C` ∪ D`} ,

where C` =
{
vUCB2i,` < vi

}
and

D` =

vUCB2i,` > vi + C1 max {
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 .

From union bound, it follows that

Pr (B`) ≤
N∑
i=1

Pr
(
vUCB2i,` < vi

)
,

+ Pr

vUCB2i,` > vi + C1 max {
√
vi, vi}

√
log (
√
N`+ 1)

Ti(`)
+ C2

log (
√
N`+ 1)

Ti(`)

 .

Therefore, from Lemma 2.11, we have,

Pr(B`) ≤
13

`
. (B.24)

Since B` is a “low probability” event (see (B.24)), we analyze the Regret in two

scenarios: one when B` is true and another when Bc` is true. We break down the

Regret in an epoch into the following two terms.

E (∆R`) = E
[
∆R` · 1(B`−1) + ∆R` · 1(Bc`−1).

]
Using the fact that R(S∗,v) and R(S`,v) are both bounded by one and V (S`) ≤ BN

in (B.22), we have ∆R` ≤ N + 1. Substituting the preceding inequality in the above

equation, we obtain,

E (∆R`) ≤ B(N + 1)Pr(B`−1) + E
[
∆R` · 1(Bc`−1)

]
.
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Whenever 1(Bc`−1) = 1, from Lemma 2.3, we have R̃`(S
∗) ≥ R(S∗,v) and by our

algorithm design, we have R̃`(S`) ≥ R̃`(S
∗) for all ` ≥ 1. Therefore, it follows that

E {∆R`} ≤ B(N + 1)Pr(B`−1) + E
{[

(1 + V (S`))(R̃`(S`)−R(S`,v))
]
· 1(Bc`−1)

}
.

(B.25)

From the definition of the event, B` and Lemma 2.12, we have,[
(1 + V (S`))(R̃`(S`)−R(S`,v))

]
· 1(Bc`−1) ≤

∑
i∈S`

C1 max{vi,
√
vi}

√
log (
√
N`+ 1)

Ti(`)
+
C2 log (

√
N`+ 1)

Ti(`)

 ,

and therefore, substituting above inequality in (B.25), we have

E {∆R`} ≤ B(N + 1)Pr (B`−1) + C
∑
i∈S`

E

max{vi,
√
vi}

√
log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 ,

(B.26)

where C = max{C1, C2}. Combining equations (B.20), (B.23) and (B.26), we have

Reg(T,v) ≤ 49BN logNT + E

{
L∑
`=1

B(N + 1)Pr (A`−1)

}

+
L∑
`=1

E

C max{vi,
√
vi}
∑
i∈S`

√ log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 .
Define sets I = {i|vi ≥ 1} and D = {i|vi < 1}. Therefore, we have,

Reg(T,v) ≤ 98NB logNT + CE


L∑
`=1

∑
i∈S`

max {
√
vi, vi}

√
log
√
NT

Ti(`)
+

log
√
NT

Ti(`)

 ,

(a)

≤ 98NB logNT + CN log2NT + CE

(∑
i∈D

√
viTi logNT +

∑
i∈I

vi
√
Ti logNT

)
,

(b)

≤ 98NB logNT + CN log2NT + C
∑
i∈D

√
viE(Ti) logNT +

∑
i∈I

vi
√

E(Ti) logNT,

(B.27)

inequality (a) follows from the observation that
√
N ≤ N ,L ≤ T , Ti ≤ T ,

Ti∑
Ti(`)=1

1√
Ti(`)

≤
√
Ti and

Ti∑
Ti(`)=1

1

Ti(`)
≤ log Ti,
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while inequality (b) follows from Jensen’s inequality. From (B.8), we have that,

∑
viE(Ti) ≤ T.

To obtain the worst case upper bound, we maximize the bound in equation (B.27)

subject to the above constraint. Noting that the objective in (B.27) is concave, we use

the KKT conditions to derive the worst case bound as Reg(T,v) = O(
√
BNT logNT+

N log2NT +BN logNT ). �

B.5 Lower Bound

We follow the proof of Ω(
√
NT ) lower bound for the Bernoulli instance with parameters

1
2
. We first establish a bound on KL divergence, which will be useful for us later.

Lemma B.2. Let p and q denote two Bernoulli distributions with parameters α + ε

and α respectively. Then, the KL divergence between the distributions p and q is

bounded by 4Kε2,

KL(p‖q) ≤ 4

α
ε2.

Proof. Proof.

KL(p‖q) = α · log
α

α + ε
+ (1− α) log

1− α
1− α− ε

= α

log
1− ε

1− α
1 + ε

α

− log

(
1− ε

1− α

)
,

= α log

(
1− ε

(1− α)(α + ε)

)
− log

(
1− ε

1− α

)
,

using 1 − x ≤ e−x and bounding the Taylor series for − log 1− x by x + 2 ∗ x2 for

x =
ε

1− α
, we have

KL(p‖q) ≤ −αε
(1− α)(α + ε)

+
ε

1− α
+ 4ε2,

= (
2

α
+ 4)ε2 ≤ 4

α
ε2.
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�.

Fix a guessing algorithm, which at time t sees the output of a coin at. Let

P1, · · · , Pn denote the distributions for the view of the algorithm from time 1 to T ,

when the biased coin is hidden in the ith position. The following result establishes for

any guessing algorithm, there are at least N
3

positions that a biased coin could be and

will not be played by the guessing algorithm with probability at least 1
2

. Specifically,

Lemma B.3. Let A be any guessing algorithm operating as specified above and let

t ≤ Nα
60ε2

, for ε ≤ 1
4

and N ≥ 12. Then, there exists J ⊂ {1, · · · , N} with |J | ≥ N
3

such that

∀j ∈ J, Pj(at = j) ≤ 1

2
.

Proof. Proof. Let Ni to be the number of times the algorithm plays coin i up to time

t. Let P0 be the hypothetical distribution for the view of the algorithm when none

of the N coins are biased. We shall define the set J by considering the behavior of

the algorithm if tosses it saw were according to the distribution P0. We define,

J1 =

{
i

∣∣∣∣EP0(Ni) ≤
3t

N

}
, J2 =

{
i

∣∣∣∣P0(at = i) ≤ 3

N

}
and J = J1 ∩ J2. (B.28)

Since
∑

iEP0(Ni) = t and
∑

iP0(at = i) = 1, a counting argument would give us

|J1| ≥
2N

3
and |J2| ≥

2n

3
and hence |J | ≥ N

3
. Consider any j ∈ J , we will now prove

that if the biased coin is at position j, then the probability of algorithm guessing

the biased coin will not be significantly different from the P0 scenario. By Pinsker’s

inequality, we have

|Pj(at = j)− P0(at = j)| ≤ 1

2

√
2 log 2 ·KL(P0‖Pj), (B.29)

where KL(P0‖Pj) is the KL divergence of probability distributions P0 and Pj over

the algorithm. Using the chain rule for KL-divergence, we have

KL(P0‖Pj) = EP0(Nj)KL(p||q),
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where p is a Bernoulli distribution with parameter α and q is a Bernoulli distribution

with parameter α + ε. From Lemma B.2 and (B.28), we have that Therefore,

KL(P0‖Pj) ≤
4ε2

α
,

Therefore,

Pj(at = j) ≤ P0(at = j) +
1

2

√
2 log 2 ·KL(P0‖Pj),

≤ 3

N
+

1

2

√
(2 log 2)

4ε2

α
EP0(Nj),

≤ 3

N
+
√

2 log 2

√
3tε2

Nα
≤ 1

2
.

(B.30)

The second inequality follows from (B.28), while the last inequality follows from the

fact that N > 12 and t ≤ Nα
60ε2

�.

Proof of Lemma 2.8. Let ε =
√

N
60αT

. Suppose algorithm A plays coin at at time t

for each t = 1, · · · , T . Since T ≤ Nα
60ε2

, for all t ∈ {1, · · · , T − 1} there exists a set

Jt ⊂ {1, · · · , N} with |Jt| ≥ N
3

such that

∀ j ∈ Jt, Pj(j ∈ St) ≤
1

2
.

Let i∗ denote the position of the biased coin. Then,

E (µat | i∗ ∈ Jt) ≤
1

2
· (α + ε) +

1

2
· α = α +

ε

2
,

E (µat | i∗ 6∈ Jt) ≤ α + ε.

Since |Jt| ≥ N
3

and i∗ is chosen randomly, we have P (i∗ ∈ Jt) ≥ 1
3
. Therefore, we

have

µat ≤
1

3
·
(
α +

ε

2

)
+

2

3
· (α + ε) = α +

5ε

6

We have µ∗ = α + ε and hence the Regret ≥ Tε
6

.

Lemma B.4. Let L be the total number of calls to AMNL when AMAB is executed for

T time steps. Then,

E(L) ≤ 3T.
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Proof. Let η` be the random variable that denote the duration, assortment S` has

been considered by AMAB, i.e. η` = 0, if we no arm is pulled when AMNL suggested

assortment S` and η` ≥ 1, otherwise. We have

L−1∑
`=1

η` ≤ T.

Therefore, we have E
(∑L−1

`=1 η`

)
≤ T . Note that E(η`) ≥ 1

2
. Hence, we have E(L) ≤

2T + 1 ≤ 3T.

B.5.1 Lower Bound for the unconstrained

MNL-Bandit problem (K = N)

We will complete proof of Theorem 2.4 by showing that the lower bound holds true

for the case when K = N. We will show this by reduction to a parametric multi

armed bandit problem with 2 arms.

Definition B.1 (MNL-Bandit instance ÎMNL). Define ÎMNL as the following (randomized)

instance of unconstrained MNL-Bandit problem, N products, with revenues, r1 = 1,

r2 = 1+ε
3+2ε

and ri = 0.01 for all i = 3, · · · , N, and MNL parameters v0 = 1, vi = 1
2

for

all i = 2, · · · , N , while v1 is randomly set at {1
2
, 1

2
+ ε}, where ε =

√
1

32T
.

Preliminaries on the MNL-Bandit instance ÎMNL: Note that unlike the MNL-

Bandit instance, IMNL, where any product can have the biased (higher) MNL parameter,

in the MNL-Bandit instance ÎMNL, only one product (product 1) can be biased. From

the proof of Lemma B.1, we have that,

i ∈ S∗ if and only if ri ≥ R(S∗,v), (B.31)

where S∗ is the optimal assortment for ÎMNL.

Note that the revenue corresponding to assortment {1} is

R({1},v) =


1 + 2ε

3 + 2ε
, if v1 = 1

2
+ ε

1

3
, if v1 = 1

2
.
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Note that 1+2ε
3+2ε

> r2 = 1+ε
3+2ε

> 1
3
> r3 = 0.01 and since R(S∗,v) ≥ R({1},v), from

(B.31), we have that optimal assortment is either {1} or {1, 2}, specifically, we have

that

S∗ ∈ {{1}, {1, 2}} .

Therefore, we have,

S∗ =

 {1}, if v1 = 1
2

+ ε,

{1, 2}, if v1 = 1
2
.

(B.32)

Note that since r3 <
1
3
, for any S and i, such that i ≥ 3 and i 6∈ S, we have

R(S,v) > R(S ∪ {i},v).

Therefore, if vi = 1
2

+ ε, for any S 6= {1}, we have

R({1},v)−R(S,v) ≥ R({1},v)−R({1, 2},v) ≥ ε

20
, (B.33)

and similarly if vi = 1
2
, for any S 6= {1, 2}, we have,

R({1},v)−R(S,v) ≥ R({1, 2},v)−R({1},v) =
ε

12
≥ ε

20
. (B.34)

Before providing the formal proof, we first present the intuition behind the result.

Any algorithm that does not offer product 2 when v1 = 1/2 will incur a regret

and similarly any algorithm that offers product 2 when v1 = 1/2 + ε. Hence, any

algorithm that attempts to minimize regret on instance ÎMNL has to quickly learn if

v1 = 1/2+ε or v1 = 1/2. From Chernoff bounds, we know that we need approximately

1/ε2 observations to conclude with high probability if v1 = 1/2 + ε or 1/2. Therefore

in each of these 1/ε2 time steps, we are likely to incur a regret of ε, leading to a

cumulative regret of 1/ε ≈
√
T . In what follows, we will formalize this intuition

on similar lines to the proof of Lemma 2.8. First, we present two auxillary results

required to prove Lemma 2.4.
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Lemma B.5. Let S be an arbitrary subset of {1, · · · , N} and PS0 ,PS1 denote the

probability distributions over the discrete space {0, 1, . . . , N} governed by the MNL

feedback on instance ÎMNL when the offer set is S and v1 = 1/2 and v1 = 1/2 + ε

respectively. In particular, we assume,

PS0 (i) =
1

2 + |S|
×


0, if i 6∈ S ∪ {0},

2, if i = 0,

1 if i ∈ S.

PS1 (i) =
1

2 + |S|+ 2ε1 (1 ∈ S)
×



0, if i 6∈ S ∪ {0},

2, if i = 0,

1 if i ∈ S\{1}

1 + 2ε if i = 1.

Then for any S,

KL
(
PS0
∥∥PS1 ) ≤ 4ε2, (B.35)

where KL is the Kullback-Leibler divergence.

Proof. If 1 6∈ S , we have PS0 and PS1 to be the same distributions and the Kullback-

Leibler divergence between them is 0. Therefore without loss of generality, assume

that 1 ∈ S.

KL
(
PS0
∥∥PS1 ) =

N∑
j=0

PS0 (j) log

(
PS0 (j)

PS1 (j)

)
,

= PS0 (0) log

(
PS0 (0)

PS1 (0)

)
+

∑
j∈{S}\1

PS0 (j) log

(
PS0 (j)

PS1 (j)

)
+ PS0 (1) log

(
PS0 r(1)

PS1 (1)

)
,

=
|S|+ 1

|S|+ 2
log

(
1 +

2ε

2 + |S|

)
+

1

|S|+ 2
log

(
1− 2ε(|S|+ 1)

(2 + |S|)(1 + 2ε)

)
,

≤ 2(|S|+ 1)ε

(|S|+ 2)2

(
1− 1

(1 + 2ε)

)
≤ 4ε2,

where the first inequality follows from the fact that for any x ∈ (0, 1),

log (1 + x) ≤ x and log(1− x) ≤ −x.
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Lemma B.6. Let P0 and P1 denote the probability distribution over consumer choices

(throughout the planning horizon T ) when assortments are offered according to algorithm

AMNL and feedback to the algorithm is provided via the MNL-Bandit instances ÎMNL,

when v1 = 1/2 and v1 = 1/2 + ε respectively. Then, we have,

KL (P0‖P1) ≤ 4Tε2,

where KL (P0‖P1) is the Kullback-Leibler divergence between the distributions P0 and

P1. Specifically,

KL (P0‖P1) =
∑

c∈{0,1,··· ,N}T
P(c) log

(
P(c)

P1(c)

)
, (B.36)

where c ∈ {0, 1, · · · , N}T is the observed set of choices by the algorithm AMNL.

Proof. From the chain rule for Kullback-Liebler divergence, it follows that,

KL (P0‖P1) =
T∑
t=1

∑
{c1,··· ,ct−1}∈{0,1,··· ,N}t−1

P0(ct)KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) ,

(B.37)

where,

KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) =
∑
ct

P0 {ct|c1, · · · , ct−1} log

(
P0 {ct|c1, · · · , ct−1}
P1 {ct|c1, · · · , ct−1}

)
.

Note that assortment offered by AMNL at time t, St is completely determined by

the reward history c1, . . . , ct−1 and conditioned on St, the reward at time t, ct is

independent of the reward history c1, · · · , ct−1. Therefore, it follows that,

P0 (ct|c1, · · · , ct−1) = PSt0 (ct) and P1 (ct|c1, · · · , ct−1) = PSt1 (ct),

and hence, we have,

KL (P0(ct)‖P1(ct)|c1, · · · , ct−1) = KL
(
PSt0 (ct)

∥∥PSt1 (ct)
)
, (B.38)

where PSt0 and PSt1 are defined as in Lemma B.5. Therefore from (B.37), (B.38) and

Lemma B.5, we have,

KL (P0‖P1) =
T∑
t=1

KL
(
PSt0

∥∥PSt1

)
≤ 4Tε2.
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Proof of Theorem 2.4: Fix a guessing algorithm AMNL, which at time t sees

the consumer choice based on the offer assortment St. Let P0 and P1 denote the

distributions for the view of the algorithm from time 1 to T , when v1 = 1
2

and

v1 = 1
2

+ ε respectively. Let T2 be the number of times A offers product 2 and let

EP0(T2) and EP1(T2) be the expected number of times product 2 is offered by A.

|EP0(T2)− EP1(T2)| ≤

∣∣∣∣∣
T∑
t=1

P0(2 ∈ St)− P1(2 ∈ St)

∣∣∣∣∣ ,
≤

T∑
t=1

|P0(2 ∈ St)− P1(2 ∈ St)| ,

≤
T∑
t=1

1

2

√
2 log 2 · KL (P0‖P1) =

T

2

√
2 log 2 · KL (P0‖P1),

(B.39)

where KL (P0‖P1) as the Kullback-Leibler divergence between the distributions P0

and P1 as defined in (B.36) and the last inequality follows from Pinsker’s inequality.

From Lemma B.6, we have that,

KL (P0‖P1) ≤ 4Tε2.

Substituting the value of ε, we obtain KL (P0‖P1) ≤ 1
2

and from (B.39), we have

|EP0(T2)− EP1(T2)| ≤ T

4
. (B.40)

Since v1 can be 1
2

and 1
2

+ ε with equal probability, we have

RegAMNL
(T,v) =

1

2
RegAMNL

(
T,v,

∣∣∣v1 =
1

2

)
+

1

2
RegAMNL

(
T,v,

∣∣∣v1 =
1

2
+ ε

)
.

(B.41)

From (B.34) we have that, in every time step we don’t offer product {2}, we incur a

Regret of at least ε
20

and hence it follows that,

RegAMNL

(
T,v,

∣∣∣v1 =
1

2

)
≥ ε

20
(T − EP0(T2)),

and similarly from (B.33) we have that, in every time step we offer product {2}, we

incur a Regret of at least ε
20

and hence it follows that,

RegAMNL

(
T,v,

∣∣∣v1 =
1

2
+ ε

)
≥ ε

20
EP1(T2).
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Therefore, from (B.41) and (B.40), it follows that,

RegAMNL
(T,v) ≥ ε

20
[T − (EP1(T2)− EP0(T2))] ≥ 3Tε

80
.

�
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Appendix C

Thompson Sampling for the MNL-Bandit

C.1 Bounds on the deviation of MNL Expected

Revenue

Here, we bound the difference between the expected revenues of the offer set S`

corresponding to the sampled parameters, µµµ(`) and the true parameters, v. In order

to establish this bound, we will first present two concentration results. In the first

result, utilizing the large deviation properties of Gaussian distribution, we show that

over time, the posterior distributions concentrate around their means. The second

result proves a Chernoff-like bound which suggests that the means of the posterior

distribution concentrates around the true parameters. The second result is similar to

the Corollary A.1 which is a consequence of the exponential inequalities for Geometric

random variables that were derived in Theorem A.1.

Proof of Lemma A.1.

Let δi =
√

4(vi+2)m log (ρ+1)
vini(`)

. We analyze the cases δi ≤ 1
2

and δi ≥ 1
2

separately.

Case 1: δi ≤ 1
2

: For any vi ≤ 1 and δi ≤ 1/2, we have,

viδ
2
i ni(`)

2(1 + δi)(1 + vi)2
≥ viδ

2
i ni(`)

6(1 + vi)
≥ m log (ρ+ 1),

and

viδ
2
i ni(`)

6(1 + vi)2

(
3− 2δivi

1 + vi

)
≥ viδ

2
i ni(`)

6(1 + vi)
≥ m log (ρ+ 1).

168



Therefore, substituting δi =
√

4(vi+2)m log (ρ+1)
vini(`)

in Lemma A.1 with δi, we have,

P (2v̂i(`) ≥ vi) ≥ 1− 1

ρm
,

P

(
|v̂i(`)− vi| <

√
4vi(vi + 2)m log (ρ+ 1)

ni(`)

)
≥ 1− 2

ρm
.

(C.1)

From the above three results, we have,

P

(
|v̂i(`)− vi| <

√
16v̂i(`) (v̂i(`) + 1) log (ρ+ 1)

ni(`)

)

≥ P

(
|v̂i(`)− vi| <

√
4vi(vi + 2) log (ρ+ 1)

ni(`)

)
≥ 1− 3

ρm
.

(C.2)

By assumption, vi ≤ 1. Therefore, we have vi(vi + 2) ≤ 3vi and,

P

(
|v̂i(`)− vi| <

√
12vi log (ρ+ 1)

ni(`)

)
≥ 1− 3

ρm
.

Case 2: δi >
1
2

: Now consider the scenario, when
√

4(vi+2)m log (ρ+1)
vini(`)

> 1
2
. Then, we

have,

δ̄i
∆
=

8(vi + 2)m log (ρ+ 1)

vini(`)
≥ 1

2
,

which implies for any vi ≤ 1,

nviδ̄
2
i

2(1 + δ̄i)(1 + vi)2
≥ nviδ̄i

12(1 + vi)
,

nδ̄2
i vi

6(1 + vi)2

(
3− 2δ̄ivi

1 + vi

)
≥ nviδ̄i

12(1 + vi)
.

Therefore, substituting the value of δ̄i in Lemma A.1, we have

P
(
|v̂i(`)− vi| >

24m log (ρ+ 1)

n

)
≤ 2

ρm
.

Proof of Lemma 3.3: Note that we have µi(`) = v̂i(`) + σ̂i(`) · max
j=1,··· ,K

{θ(j)(`)}.

Therefore, from union bound, we have,

P
{
|µi(`)− v̂i(`)| > 4σ̂i(`)

√
log rK

∣∣∣v̂i(`)} = P

(
K⋃
j=1

{
θj(`) > 4

√
log rK

})

≤
K∑
j=1

P
(
θj(`) > 4

√
log rK

)
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The result follows from the above inequality and the following anti-concentration

bound for the normal random variable θ(j)(`) (see formula 7.1.13 in [1]).

1

4
√
π
· e−7z2/2 < Pr

(
|θ(j)(`)| > z

)
≤ 1

2
e−z

2/2.

Corollary C.1. For any item i and any epoch `, we have

E (|µi(`)− v̂i(`)|) ≤ 4σ̂i(`)
√

log TK.

Proof. In Lemma 3.3, we show that for any r > 0 and i = 1, · · · , N , we have,

P
(
|µi(`)− v̂i(`)| > 4σ̂i(`)

√
log rK

)
≤ 1

r4K3
,

where σ̂i(`) =
√

50v̂i(v̂i+1)
ni

+ 75
√

log TK
ni

. Since S` ⊂ {1, · · · , N}, we have for any i ∈ S`

and r > 0, we have

P
(
|µi(`)− v̂i(`)| > 4σ̂i(`)

√
log rK for any i ∈ S`

)
≤ P

(
N⋃
i=1

|µi(`)− v̂i(`)| > 4σ̂i(`)
√

log rK

)
,

≤ N

r4K3
.

(C.3)

Since |µi(`)− v̂i(`)| is a non-negative random variable, we have

E(|µi(`)− v̂i(`)|) =

∫ ∞
0

P {|µi(`)− v̂i(`)| ≥ x} dx,

=

∫ 4σ̂i(`)
√

log TK

0

P {|µi(`)− v̂i(`)| ≥ x} dx+

∫ ∞
4σ̂i(`)

√
log TK

P {|µi(`)− v̂i(`)| ≥ x} dx,

≤ 4σ̂i(`)
√

log TK +
∞∑
r=T

∫ 4σ̂i(`)
√

log (r+1)K

4σ̂i(`)
√

log rK

P {Y ≥ x} dx,

a

≤ 4σ̂i(`)
√

log TK +
∞∑
r=T

N
√

log (rK + 1)−N
√

log rK

r4K3
,

≤ 4σ̂i(`)
√

log TK for any T ≥ N,

(C.4)

where the inequality (a) follows from (C.3).
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C.2 Proof of Theorem 3.1

In this section, we will utilize the above properties and follow the outline discussed

in Section 3.3.1 to complete the proof of Theorem 1. For the sake of brevity we will

use the following notation for the rest of this section.

� For any assortment S, V (S)
∆
=
∑

i∈S vi

� For any `, τ ≤ L, define ∆R` and ∆R`,τ in the following manner

∆R`
∆
= (1 + V (S`)) [R(S`,µµµ(`))−R(S`,v)]

∆R`,τ
∆
= (1 + V (Sτ )) [R(S`,µµµ(`))−R(S`,µµµ(τ))]

� Let A0 denote the complete set Ω and for all ` = 1, . . . , L, define events A` as

A` =

{
|v̂i(`)− vi| ≥

√
24vi log (`+ 1)

ni(`)
+

48 log (`+ 1)

ni(`)
for some i = 1, · · · , N

}

We will bound the regret by bounding both the terms in (3.4). We will first focus

on bounding the second term, Reg2(T,v) and then extend this analysis to bound the

first term, Reg1(T,v).

Bounding Reg2(T,v): Note that conditioned on event S`, the length of the `th

epoch, |EAl| is a geometric random variable with probability of success p0(S`) =

1/(1 + V (S`)). Therefore using conditional expectations, we can reformulate Reg2(T,v)

as,

Reg2(T,v) = E

{
L∑
`=1

∆R`

}
. (C.5)

Noting that A` is a “low probability” event, we analyze the regret in two scenarios,

one when A` is true and another when Ac` is true. More specifically,

E (∆R`) = E
[
∆R` · 1(A`−1) + ∆R` · 1(Ac`−1)

]
,

≤ K + 1

`2
+ E

[
∆R` · 1(Ac`−1)

]
,

(C.6)
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where the last inequality follows from Lemma A.1 and the fact that both R(S`,µµµ(`))

and R(S`,v) are both bounded by one and V (S`) ≤ K. Therefore from Lemma 2.3

it follows that,

E
[
∆R` · 1(Ac`−1)

]
≤ E

[∑
i∈S`

|µi(`)− vi| · 1(Ac`−1)

]
.

≤ E

[∑
i∈S`

|µi(`)− v̂i(`)|

]
+ E

[√
24vi log (`+ 1)

ni(`)
+

48 log (`+ 1)

ni(`)

]
,

(C.7)

where the last inequality follows from the definition of eventA` and triangle inequality.

In Corollary C.1, we use Lemma 3.3 to show that the first term in above inequality,

which is difference between the sampled parameter and the mean of the posterior

distribution is bounded. Therefore, from (D.23), (D.24), (C.7), Corollary C.1 and

Lemma A.1, we have,

Reg2(T,v) ≤ C1E

(
L∑
`=1

∑
i∈S`

√
vi log TK

ni(`)

)
+ C2E

(
L∑
`=1

∑
i∈S`

log TK

ni(`)

)
, (C.8)

where C1 and C2 are absolute constants. If Ti denote the total number of epochs

product i is offered, then we have,

Reg2(T,v)
(a)

≤ C2N log2 TK + C1E

(
n∑
i=1

√
viTi log TK

)
,

(b)

≤ C2N log2 TK + C1

N∑
i=1

√
vi log (TK)E(Ti).

(C.9)

Inequality (a) follows from the observation that L ≤ T , Ti ≤ T ,

Ti∑
ni(`)=1

1√
ni(`)

≤
√
Ti

and

Ti∑
ni(`)=1

1

ni(`)
≤ log Ti, while Inequality (b) follows from Jensen’s inequality.

Since that expected epoch length condition on the event S = S` is 1 + V (S`), we

have,
∑
viE(Ti) ≤ T. To obtain the worst case upper bound, we maximize the bound

in equation (C.9) subject to the above condition and hence, we have

Reg2(T,v) ≤ C1

√
NT log TK + C2N log2 TK). (C.10)
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We will now focus on the first term in (3.4), Reg1(T,v.

Bounding Reg1(T,v): Let T denote the set of optimistic epochs. Recall that EAn(`)

is the set of non-optimistic epochs between `th epoch and the subsequent optimistic

epoch. Therefore, we can reformulate Reg1(T,v) as,

Reg1(T,v) = E[
L∑
`=1

1(` ∈ T ) ·
∑

τ∈EAn(`)

|Eτ |(R(S∗,v)−R(Sτ ,µµµ(τ)))]

Note that for any `, by algorithm design we have that S` is the optimal set for the

sampled parameters, i.e., R(S`,µµµ(`)) ≥ R(S∗,µµµ(`)). From the restricted monotonicity

property, for any ` ∈ T , we have R(S∗,µµµ(`)) ≥ R(S∗,v). Therefore, it follows that,

Reg1(T,v) ≤ E[
L∑
`=1

1(` ∈ T ) ·
∑

τ∈EAn(`)

|Eτ |(R(S`,µµµ(`))−R(Sτ ,µµµ(τ)))],

(a)

≤ E[
L∑
`=1

1(` ∈ T ) ·
∑

τ∈EAn(`)

|Eτ |(R(S`,µµµ(`))−R(S`,µµµ(τ)))],

(b)

≤ E[
L∑
`=1

∑
τ∈EAn(`)

∆R`,τ ]

(C.11)

where inequality (a) follows from the fact Sτ is the optimal assortment for the

sampled parameters µµµ(τ) and inequality (b) follows from the observation that the

expected length of the τ th epoch conditioned on event S = Sτ is 1 + V (Sτ ). Following

the approach of bounding Reg2(T,v), we analyze the first term, Reg1(T,v) in two

scenarios, one when A` is true and another when Ac` is true. More specifically,

E
(∑

τ∈EAn(`) ∆R`,τ

)
K + 1

=
E[
∑

τ∈EAn(`) ∆R`,τ · 1(A`−1) + ∆R`,τ · 1(Ac`−1)]

K + 1
,

(a)

≤ E[|EAn(`)| · 1(A`−1)] + ∆R`,τ · 1(Ac`−1)],

(b)

≤ E[|EAn(`)| · 1(A`−1)] + E[1(Ac`−1) ·
∑

τ∈EAn(`)

∑
i∈S`

|µi(`)− µi(τ)|],

(c)

≤ E[|EAn(`)| · 1(A`−1)] + E

1(Ac`−1) ·
∑

τ∈EAn(`)

∑
i∈S`

|µi(`)− vi|+ |µi(τ)− vi|

 ,
(C.12)
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where inequality (a) follows from the fact that R(S`,µµµ(`)) and R(S`,µµµ(τ)) are both

bounded by one and V (Sτ ) ≤ K, inequality (b) follows from Lemma 2.3 and inequality

(c) follows from the triangle inequality.

Following the approach of Bounding Reg2(T,v), specifically along the lines of

(C.7) and Corollary C.1, we can show that

1(Ac`−1) · |µi(`)− vi| ≤ C1

√
vi log TK

ni(`)
+

log TK

ni(`)
.

Since τ ≥ ` we have ni(`) ≤ ni(τ). Therefore, from (C.11), (C.12) and Lemma A.1

we obtain the following inequality.

Reg1(T,v) ≤ E

[∑
`∈T

|EAn(`)|
∑
i∈S`

(
C1

√
vi log TK

ni(`)
+ C2

log TK

ni(`)

)]
, (C.13)

for some constants C1 and C2. If |EAn(.)| is not a random variable and constant, then

bounding the above inequality is similar to bounding Reg1(T,v) (see (C.8)). In the

remainder of this section, we will show how to utilize Lemma 3.6 to bound Reg1(T,v).

From Cauchy-Schwarz inequality, we have

E

[∑
`∈T

∑
i∈S`

|EAn(`)|C1

√
vi log TK

ni(`)

]
≤ C1

∑
`

∑
i∈S`

E1/2
[
|EAn(`)|2

]
· E1/2

[
vi log TK

ni(`)

]
,

E

[∑
`∈T

∑
i∈S`

|EAn(`)|C2
log TK

ni(`)

]
≤ C2

∑
`

∑
i∈S`

E1/2
[
|EAn(`)|2

]
E1/2

[
log2 TK

n2
i (`)

]
.

Therefore from Lemma 3.6 for some absolute constant C, we have,

Reg1(T,v) ≤ C

K

(∑
`

∑
i∈S`

E1/2

[
vi log TK

ni(`)

]
+
∑
`

∑
i∈S`

E1/2

[
log2 TK

n2
i (`)

])
,

≤C
K

√√√√TKE

[∑
`

∑
i∈S`

vi log TK

ni(`)

]
+

√√√√TKE

[∑
`

∑
i∈S`

log2 TK

n2
i (`)

] ,

(C.14)

where the last inequality follows Cauchy-Schwarz inequality. Since vi ≤ 1 for all i,

we have, ∑
`

∑
i∈S`

vi log TK

ni(`)
≤

N∑
i=1

Ti∑
ni(`)=1

log TK

ni(`)
≤ N log TK · log T,
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and

∑
`

∑
i∈S`

log2 TK

n2
i (`)

=
N∑
i=1

Ti∑
ni(`)=1

log2 TK

ni(`)
≤ 4N log2 TK,

Therefore by substituting preceeding two inequalities in (C.14), we obtain that

Reg1(T,v) ≤ C

√
NT

K
,

for some constant C. The result follows from this inequality and (C.10).
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Appendix D

Thompson Sampling Approach for Attribute Based

Learning

First, we introduce some notation which we will use throughout this section and

establish some strutural results that will play a key role in proving

D.1 Notation and Key Structural Results

For the rest of this section, we will use the following notations.

1.

Mt
∆
=

t−1∑
τ=1

∑
i∈Sτ

xix
′
i (D.1)

2. For any v ∈ Rn and i ∈ S, let

pS(vi)
∆
=

evi

1 +
∑

j∈S e
vj
,

gt(θ)
∆
=

t−1∑
τ=1

∑
i∈Sτ

pSτ (θ · xi) · xi.
(D.2)

3. Let 1i (t) be the indicator random variable corresponding to the event that item

i has been clicked at time t.

4. Let θtMLE be the MLE estimate of θ∗ at time t. From the first order conditions

we have,
t−1∑
τ=1

∑
i∈Sτ

pSτ (θ
t
MLE · xi)xi =

t−1∑
τ=1

∑
i∈Sτ

1i(τ) (D.3)
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5.

ητ
∆
=
∑
i∈Sτ

(pSτ (θ∗ · xi)− 1(τ)) · xi,

ξt
∆
= gt(θ∗)− gt(θtMLE).

(D.4)

6. Let Fτ be the filtration (history) associated with the policy upto epoch τ . Note

that by definition of choice model, ητ is a martingale adapted to (Fτ ).

7. From (D.3), we have,

ξt =
t−1∑
τ=1

ητ (D.5)

8.

ṽti = exp
(
θtMLE · xi + α · θtmax‖xi‖H−1

t

)
,

v̂ti = exp
(
θtMLE · xi

)
,

vi = exp (θ∗ · xi) .

(D.6)

9. Following (??), we define the analysis epoch.

T =
{
t : ṽti(t) ≥ vi for all i ∈ S∗

}
,

succ(τ) = min{τ̄ ∈ T : τ̄ > τ}

EAn(t) = {τ : τ ∈ (t, succ(t))} for all t ∈ T .

(D.7)

D.1.1 Key Technical Lemmas

In the following result, we show that the inner product of any real valued vector ρ

and the martingale ητ is bounded.

Lemma D.1. For any ρ ∈ Rd, |ρ · ητ | <
√

2
∑

i∈Sτ (ρ · xi)2.

Proof. By definition of ητ , we have

|ρ · ητ |2 = |
∑
i∈Sτ

ρ · xi (pSτ (θ∗ · xi)− 1 ( i is clicked at time τ )) |2.

From Cauchy-Schwartz inequality, it follows that,

|ρ · ητ |2 ≤
∑
i∈Sτ

(ρ · xi)2
∑
i∈Sτ

(pSτ (θ∗ · xi)− 1i(τ))2 .
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We have for any non-negative numbers a and b, we have (a − b)2 ≤ a2 + b2. Noting

that pSτ (.) and 1(.) are non-negative numbers, we have,

|ρ · ητ |2 ≤
∑
i∈Sτ

(ρ · xi)2

(∑
i∈Sτ

p2
Sτ (θ∗ · xi) +

∑
i∈Sτ

1i(τ)

)
.

Since at most one item can be clicked, we have
∑

i∈Sτ 1 (i is clicked at time τ) ≤ 1

and therefore we have,

|ρ · ητ |2 ≤
∑
i∈Sτ

(ρ · xi)2

(∑
i∈Sτ

p2
Sτ (θ∗ · xi) + 1

)
.

Noting that pSτ (.) is non-negative, we have
∑

i∈Sτ p
2
Sτ

(θ·xi) ≤
(∑

i∈Sτ pSτ (θ · xi)
)2 ≤ 1

and therefore it follows that,

|ρ · ητ |2 ≤ 2
∑
i∈Sτ

(ρ · xi)2 .

We follow the approach of [22] and use the following facts to derive concentration

properties of the MLE etimate. We refer the reader to Exercise 2.4 of [48] and

Corollary 2.2 of [19] for the proof of these facts.

Fact D.1. For any filtration (Fk; k ≥ 0) and real valued martingale ηk adapted to

(Fk). If |ηk| ≤ B, then we have E [eγηk |Fk−1] ≤ e
γ2B2

2 .

Fact D.2. If A and B are random variables such that

E
[
exp

{
γA− γ2

2
B2

}]
≤ 1 for all γ ∈ R.

Then, for any δ ≥
√

2 and y > 0,

P

(
|A| ≥ δ

√
(B2 + y)

(
1 +

1

2
log

(
B2

y
+ 1

)))
≤ exp

(
−δ

2

2

)
.

In the following result, we establish a sub-gaussian property for the inner product

of any real valued vector ρ and the martingale ητ .
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Corollary D.1. For any ρ ∈ Rd, we have for any τ ,

E [eγρ·ητ |Fτ−1] ≤ eγ
2ρ·xi . (D.8)

E
[
exp

(
γρ · ξτ − γ2‖ρ‖2

Mt

)]
≤ 1. (D.9)

Proof. From Lemma D.1, we have that ρ · ητ is a martingale bounded by√
2
∑

i∈Sτ (ρ · xi)2 and therefore from Fact D.2 we have the first result.

Now we will prove the second result. From the law of conditional expectations, we

have

E
[
exp

(
γρ · ξτ − γ2‖ρ‖2

Mt

)]
= E

(
E
[
exp

(
γρ · ξτ − γ2‖ρ‖2

Mt

)∣∣Ft−1

])
= E

(
E

[
exp

(
t−1∑
τ=1

γ

(
ρ · ητ −

∑
i∈Sτ

(ρ · xi)2

))∣∣∣∣∣Ft−1

])

= E

exp

[
t−2∑
τ=1

γ

(
ρ · ητ −

∑
i∈Sτ

(ρ · xi)2

)]
· E

exp

ρ · ηt−1 −
∑
i∈St−1

(ρ · xi)2

∣∣∣∣∣∣Ft−1

 .

From (D.8), we have

E
[
exp

(
γρ · ξτ − γ2‖ρ‖2

Mt

)]
≤ E

(
exp

[
t−2∑
τ=1

γ

(
ρ · ητ −

∑
i∈Sτ

(ρ · xi)2

)])
.

...

≤ E

(
exp

[
γ

(
ρ · η1 −

∑
i∈S1

(ρ · xi)2

)])
≤ 1.

Claim D.1. For any θ and θ̂ and any assortment S, we have,∣∣∣pS (θ · xi)− pS
(
θ̂ · xi

)∣∣∣ ≤ 5
∑
i∈S

∣∣∣(θ − θ̂) · xi∣∣∣ .
Proof. From triangle inequality we have,∣∣pS (θ∗ · xi)− pS

(
θtMLE · xi

)∣∣
≤
∑
i∈S

∣∣∣∣∣∣
(
eθ·xi − eθ̂·xi

)
+
∑

j∈S e
(θ·xj+θ̂·xi) − e(θ̂·xj+θ·xi)

(1 +
∑

j∈S e
θ·xj)(1 +

∑
j∈S e

θ̂·xj)

∣∣∣∣∣∣ ,
≤

∑
i∈S

∣∣∣eθ·xi − eθ̂·xi∣∣∣+
∑

i∈S
∑

j∈S

∣∣∣e(θ·xj+θ̂·xi) − e(θ̂·xj+θ·xi)∣∣∣
(1 +

∑
j∈S e

θ·xj)(1 +
∑

j∈S e
θ̂·xj)

.

179



For any x < 0, we have 1− ex ≤ x. Therefore, for any x, y, it follows that |ex− ey| ≤

max{ex, ey}|x− y|. Using this fact,

∣∣pS (θ∗ · xi)− pS
(
θtMLE · xi

)∣∣ ≤∑
i∈S

max{eθ·xi , eθ̂·xi}
∣∣∣(θ − θ̂) · xi∣∣∣

(1 +
∑

j∈S e
θ·xj)(1 +

∑
j∈S e

θ̂·xj)
,

+

∑
i∈S
∑

j∈S max
{
e(θ̂·xj+θ·xi), e(θ̂·xi+θ·xj)

}(∣∣∣(θ − θ̂) · xi∣∣∣+
∣∣∣(θ − θ̂) · xj∣∣∣)

(1 +
∑

j∈S e
θ·xj)(1 +

∑
j∈S e

θ̂·xj)
.

Using the fact that

max{eθ·xi , eθ̂·xi} ≤ (1 +
∑
j∈S

eθ·xj)(1 +
∑
j∈S

eθ̂·xj)

∑
j∈S

max{eθ·xi+θ̂·xj , eθ̂·xi+θ·xj} ≤ 2(1 +
∑
j∈S

eθ·xj)(1 +
∑
j∈S

eθ̂·xj),

we will have, ∣∣∣pS (θ · xi)− pS
(
θ̂ · xi

)∣∣∣ ≤ 5
∑
i∈S

∣∣∣(θ − θ̂) · xi∣∣∣ .

We adapt the following result from [22].

Lemma D.2. Let t0 ≥ d+ 1. Then,

T∑
t=t0

∑
i∈St

min{‖xi‖2
M−1
t
, 1} ≤ 2d log

(
c2
xKT

λ0

)

Proof. Enumerate the vectors {xi}i∈St,t=1,··· ,T as y1, · · · , yp, where p =
∑T

t=1 |St|. Let

M̂` =
∑`−1

τ=1 yτy
T
τ . Furthermore, let t̂0 be such that

det
(
M̂t̂0

)
= det(Mt0).

Since yτy
T
τ is a positive semi-definite matrix for any τ we have,

T∑
t=t0

∑
i∈St

min{‖xi‖2
M−1
t
, 1} ≤

p∑
`=t̂0

min{‖y‖2
M̂−1
t
, 1} (D.10)
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We will now focus on bounding the right hand side of (D.10). By definition of M̂`+1,

we have

det(M̂`+1) = det(M̂` + y`y
T
`+1) = det(M̂`)

(
I + M̂

−1/2
` y` ·

(
M̂
−1/2
` y`

)′)
= det(M̂`)

(
1 + ‖y`‖M̂−1

`

)
= det(M̂t̂0

)

p∏
`=t̂0

(
1 + ‖y‖M̂−1

`

)
,

where the last line follows from the fact that 1+‖y`‖2
M̂`

is an eigenvalue of the matrix

I+M̂
−1/2
` y` ·

(
M̂
−1/2
` y`

)′
and that all other eigenvalues are equal to one. Thus, using

the fact that x ≤ 2 log (1 + x) which holds for any 0 ≤ x ≤ 1, we have∑
`=t̂0

min{‖y‖2
M̂−1
t
, 1} ≤ 2

p∑
`=t̂0

log
(
‖y‖2

M̂−1
t

+ 1
)

= 2 log

p∏
`=t̂0

(
‖y‖2

M̂−1
t

+ 1
)

= 2 log

(
det(M̂p)

det(M̂t0)

)
= 2 log

(
det(MT )

det(Mt0)

)
.

Note that the trace of Mt is upper bounded by Ktc2
x. Then, since the trace of the

positive definite matrix Mt is equal to the sum of its eigenvalues and det(Mt) is the

product of its eigen values, we have det(Mt) ≤ (ktc2
x)
d. In addition, det(Mt0) ≥ λd0

since t0 ≥ d+ 1. Thus,

T∑
t=t0

∑
i∈St

min{‖xi‖2
M−1
t
, 1} ≤ 2d log

(
Kc2

xT

λ0

)
.

Corollary D.2. Let t0 ≥ d+ 1. Then,

T∑
t=t0

∑
i∈St

min{‖xi‖M−1
t
, 1} ≤ 2d log

(
Kc2

xT

λ0

)
Proof. Using the Cauchy-Schwarz inequality and Lemma D.2, we have

T∑
t=t0

∑
i∈St

min{‖xi‖M−1
t
, 1} ≤

√
KT

√√√√ T∑
t=t0

∑
i∈St

min{‖xi‖2
M−1
t

, 1} ≤

√
2dKT log

(
Kc2

xT

λ0

)
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D.2 Concentration Bounds

Lemma D.3. For any δ > 0, we have

P
(
‖ξt‖M−1

t
≥ 12

√
d log δd

)
≤ 1

d8δ8
.

Proof. Let δ = 4
√
d log td, St be such that S2

t = Mt and ei be the ith unit vector (i.e.,

for all j 6= i, eij = 0 and eii = 1). Noting that ‖ξt‖2
M−1
t

=
∑d

i=1 ξ
TS−1

t eie
T
i S
−1
t ξt, we

have,

P
(
‖ξt‖2

M−1
t
≥ 3dδ2

)
= P

[
d∑
i=1

ξTt S
−1
t eie

T
i S
−1
t ξt ≥ 9dδ2

]
,

≤ P

(
d⋃
i=1

{
ξTt S

−1
t eie

T
i S
−1
t ξt ≥ 9δ2

})
,

≤
d∑
i=1

P
({
ξTt S

−1
t eie

T
i S
−1
t ξt ≥ 9δ2

})
,

=
d∑
i=1

P
(∣∣ξTt S−1

t ei
∣∣ ≥ 3δ

)
.

(D.11)

Let ρi = S−1
t ei. From Corollary D.1 it follows that random variables A = ρi · ξt and

B = ‖ρi‖2
M−1
t

satisfy the conditions of Fact D.2. Using the fact ‖ρi‖2
M−1
t

= 1 and

substituting y = 2 in Fact D.2, we have,

P
(∣∣ξTt S−1

t ei
∣∣ ≥ 3δ

)
≤ 1

d7t8
.

The result follows from the above inequality and (D.11).

Now we will prove the finite time concentration bounds for the MLE estimate,

θtMLE of Algorithm 9. However, these bounds depend on the problem parameters.

Specifically, we prove that,

Lemma D.4. For any δ > 0, we have,

P

(∣∣pSτ (θ∗ · xi)− pSτ
(
θtMLE · xi

)∣∣ > 60
√
d log δKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
})
≤ 1

K7d7δ8
.
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Proof. We will follow the proof steps of [22]. From Fundamental Theorem of Calculus,

we have

ξt = gt(θ∗)− gt(θtMLE) = Gt(θ∗ − θtMLE),

where

Gt =

∫ 1

0

∇(sθ∗ + (1− s)θtMLE)ds.

From Claim D.1, we have

∣∣pSτ (θ∗ · xi)− pSτ
(
θtMLE · xi

)∣∣ ≤ min

{
5
∑
i∈S

|(θ∗ − θtMLE) · xi|, 1

}
,

≤ min

{
5
∑
i∈S

|G−1
t ξt · xi|, 1

}

≤ min

{
5
∑
i∈S

‖ξt‖G−1
t
‖xi‖G−1

t
, 1

}
.

We have ∇gt(θ) =
∑t−1

τ=1

∑
i∈Sτ xix

′
i

·
pSτ (θ · xi). By Assumption 4.2, for any θ ∈ Θ and

i, we have
·
pSτ (θ · xi) ≥ cµ. Therefore, we have Gt ≥ cµMt and it follows that,

∣∣pSτ (θ∗ · xi)− pSτ
(
θtMLE · xi

)∣∣ ≤ min

{
5

cµ

∑
i∈Sτ

‖ξt‖M−1
t
‖xi‖M−1

t
, 1

}
.

If 5
cµ

∑
i∈Sτ ‖ξt‖M−1

t
‖xi‖M−1

t
≥ 1, then the result is trivial since the probability of the

event under consideration is zero. Therefore, we focus on the case when

5

cµ

∑
i∈Sτ

‖ξt‖M−1
t
‖xi‖M−1

t
< 1.

Therefore, we have,

P

(∣∣pSτ (θ∗ · xi)− pSτ
(
θtMLE · xi

)∣∣ > 60

cµ

∑
i∈Sτ

√
d log δKd · ‖xi‖M−1

t

)

≤ P

(∑
i∈Sτ

‖ξt‖M−1
t
‖xi‖M−1

t
>

12

cµ

∑
i∈Sτ

√
d log δKd · ‖xi‖M−1

t
,

)

≤
∑
i∈Sτ

P
(
‖ξt‖M−1

t
‖xi‖M−1

t
>

12

cµ

√
d log δKd · ‖xi‖M−1

t

)
.

The result follows from the above result and Lemma D.3
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Lemma D.5. For any t ≤ T , we have for any r > 0,

Pr
(
|θtmax| > 4

√
log rK

)
≤ 1

r4K3
.

Proof. By definition we have θtmax = max
j=1,··· ,K

{θ(j)(t)}. Therefore, from union bound,

we have,

Pr

(
K⋃
j=1

{
θj(t) > 2

√
logmk

})
≤

K∑
j=1

Pr
(
θj(t) > 4

√
log rK

)
.

The result follows from the above inequality and the following anti-concentration

bound for the normal random variable θ(j)(t) (see formula 7.1.13 in [1]).

1

4
√
π
· e−7z2/2 < Pr

(
|θ(j)(t)| > z

)
≤ 1

2
e−z

2/2.

Corollary D.3. For any assortment S and time t,

E
(∣∣pS (ṽti)− pS (v̂ti)∣∣) ≤ 5

√
log TK

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}
.

Proof. From Claim D.1, we have

∣∣pS (ṽti)− pS (v̂ti)∣∣ ≤ min

{
5
∑
i∈S

∣∣log(ṽti)− log(v̂ti)
∣∣ , 1} ,

= min

{
5
∑
i∈S

|θtmax| · ‖xi‖H−1
t
, 1

}
,

≤ min

{
5

cµ

∑
i∈S

|θtmax| · ‖xi‖M−1
t
, 1

}
,

(D.12)

where the last inequality follows from Assumption 4.2. In Lemma D.5, we show that

for any r > 0,Pr
(
|θtmax| > 4

√
log rK

)
≤ 1

r4K3 . Therefore it follows that,

Pr

(∣∣pS (ṽti)− pS (v̂ti)∣∣ > min

{
5

cµ

√
log rK

∑
i∈S

‖xi‖M−1
t
, 1

})
≤ 1

r4K3
. (D.13)

If 5
cµ

∑
i∈Sτ
√

log rK‖xi‖M−1
t
≥ 1, then the result is trivial since the probability

of the event under consideration is zero. Therefore, we focus on the case when

5
cµ

∑
i∈Sτ
√

log rK‖xi‖M−1
t
< 1.
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Let X = |pS (ṽti)− pS (v̂ti)| and y = 5
cµ

∑
i∈S ‖xi‖M−1

t
Since X is a non-negative

random variable, we have

E(X) =

∫ ∞
0

Pr {X ≥ x} dx,

=

∫ y
√

log rK

0

Pr {X ≥ x} dx+

∫ ∞
y
√

log rK

Pr {X ≥ x} dx,

≤ y
√

log rK +
∞∑
r=T

∫ y
√

log (r+1)K

y(t)
√

log rK

Pr {X ≥ x} dx,

a

≤ y
√

log TK +
∞∑
r=T

N
√

log (rK + 1)−N
√

log rK

r4K3
,

≤ 5

cµ

∑
i∈St

‖xi‖M−1
t

√
log TK

(D.14)

where the inequality (a) follows from (D.13).

D.3 Anti-Concentration Property: Bounding the

Length of the Analysis Epoch

Here, we prove that the expected length (and higher moments) of the analysis epoch

(see D.7) is bounded by a constant. Specifically, we have the following result.

Lemma D.6. Let EAn be the group of consecutive epochs between an optimistic epoch t

and the next optimistic epoch t̂, excluding the epochs t and t̂. Then, for any p ∈ [1, 2],

we have,

E1/p
[
|EAn(t)|

]
≤ e12

K
+ 301/p.

Proof. For notational brevity, we introduce some notation.

Notation.

� r = b(q + 1)1/pc, z =
√

log (rk + 1), and for each i = 1, · · · , N ,

σ̂i(t) =
60
√
d log d

cµ
‖xi‖H−1

t

185



� Define events,

At =
{
pSτ
(
ṽti
)
≥ pSτ

(
v̂ti
)

+ zσ̂i(t) for all i ∈ S∗
}
,

Bt =
{
pSτ
(
v̂ti
)

+ zσ̂i(t) ≥ pSτ (vi) for all i ∈ S∗
}
,

Bt =
t+r⋂

τ=t+1

Bτ .

(D.15)

We have,

Pr
{∣∣EAn(t)∣∣p < q + 1

}
= Pr {|E(t)| ≤ r} .

By definition, length of the analysis epoch, EAn(t) less than r, implies that one of the

algorithm epochs from t+ 1, · · · , t+ r is optimistic. Hence we have,

Pr
{∣∣EAn(t)∣∣ < r

}
= Pr

({
{ṽτi ≥ vi for all i ∈ S∗} for some τ ∈ (t, t+ r]

})
,

≥ Pr
({
{ṽτi ≥ v̂τi + zσ̂i(t) ≥ vi for all i ∈ S∗} for some τ ∈ (t, t+ r]

})
.

From (D.15), we have,

Pr
{∣∣EAn(t)∣∣ < r

}
≥ Pr

(
t+r⋃

τ=t+1

Aτ ∩Bτ

)
,

= 1− Pr

(
t+r⋂

τ=t+1

Acτ ∪Bc
τ

)
.

(D.16)

We will now focus on the term, Pr

(
t+r⋂

τ=t+1

Acτ ∪Bc
τ

)
,

Pr

(
t+r⋂

τ=t+1

Acτ ∪Bc
τ

)
= Pr

({
t+r⋂

τ=t+1

Acτ ∪Bc
τ

}
∩ Bτ

)
+ Pr

({
t+r⋂

τ=t+1

Acτ ∪Bc
τ

}
∩ Bcτ

)
,

≤ Pr

(
t+r⋂

τ=t+1

Acτ

)
+ Pr(Bcτ ),

≤ Pr

(
t+r⋂

τ=t+1

Acτ

)
+

τ+r∑
t=τ+1

Pr(Bc
τ ),

(D.17)

where the inequality follows from union bound. Note that,

Pr(Bc
τ ) = Pr

(⋃
i∈S∗

{
v̂ti + zσ̂i(τ) < vi

})
,

≤
∑
i∈S∗

Pr
(
v̂ti + zσ̂i(τ) < vi

)
.

(D.18)
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Noting that
√
d log d · log rK ≥ log (drK). Noting that ‖xi‖H−1

t
≥ ‖xi‖M−1

t
, we

substitute δ = rK in Lemma D.4 to obtain,

Pr
(
v̂ti + zσ̂i(t) < vi

)
≤ 1

(dK)7r8
. (D.19)

From (D.18) and (D.19), we obtain,

Pr(Bc
τ ) ≤

1

(dK)7r8
, and

τ+r∑
t=τ+1

Pr(Bc
t ) ≤

1

(drK)7
.

(D.20)

We will now use the tail bounds for Gaussian random variables to bound the probability

Pr(Act). For any Gaussian random variable, Z with mean µ and standard deviation

σ, we have,

Pr(Z > µ+ xσ) ≥ 1√
2π

x

x2 + 1
e−x

2/2.

Noting that ex is a monotonic function, by construction of µ
(j)
i (t) in Algorithm 9. We

have,

Pr

(
t+r⋂

τ=t+1

Acτ

)
= Pr

(
θ(j)(t) ≤ z for all t ∈ (τ, τ + r] and for all j = 1, · · · , K

)
.

Since θ(j)(t), j = 1, · · · , K, t = τ + 1, · · · , τ + r are independently sampled from the

distribution, N (0, 1), we have,

Pr

{
τ+r⋂
t=τ+1

Act

}
≤

[
1−

(
1√
2π

√
log (rK + 1)

log (rK + 1) + 1
· 1√

rK + 1

)]rK

≤ exp

(
− r1/2

√
2π

2
√

log (rK + 1)

4 log (rK + 1) + 1

)

≤ 1

(rK)2.2
for any r ≥ e12

K
.

(D.21)

From (D.16), (D.17), (D.20) and (D.21), we have that,

Pr
{∣∣EAn(t)∣∣ < r

}
≥ 1− 1

(rK)2.1
− 1

(rK)2.2
for any r ≥ e12

K
.
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From definition r ≥ (q + 1)1/p − 1, we obtain

Pr
{∣∣EAn(t)∣∣p < q + 1

}
≥ 1− 1

(q + 1)2.1/p − 1
− 1

(q + 1)2.2/p − 1
for any q ≥

(
e12

K
+ 1

)p
.

Therefore, we have,

E
[∣∣EAn(t)∣∣p] =

∞∑
q=0

Pr {|E(τ)|p ≥ t} ,

≤
(
e12

K
+ 1

)p
+

∞∑
q= e12p

Kp

Pr {|E(t)|p ≥ t} ,

≤ e12p +
∞∑

q= e12p

Kp

1

t2.1/p
+

1

t2.2/p
≤
(
e12

K
+ 1

)p
+ 30.

The result follows from the above inequality.

D.4 Proof of Theorem 4.1

Notations. For the sake of brevity, we introduce some notations.

� For any t, τ ≤ T , define ∆Rt and ∆Rt,τ in the following manner

∆Rt
∆
=
[
R(St, ṽ̃ṽv

t)−R(St,v)
]

∆Rt,τ
∆
=
[
R(St, ṽ

tṽtṽt)−R(St, ṽ̃ṽv
τ )
]

� Let A0 denote the complete set Ω and for all t = 1, . . . , T , define events At as

At =

{∣∣pSt (θtMLE · xi
)
− pSt (θ∗ · xi)

∣∣ > 60
√
d log tKd

cµ

∑
i∈St

‖xi‖M−1
t

for some i

}

� Â =
⋃t
τ=1Aτ

Reg(T, θ∗) : = E

[
T∑
t=1

(R(S∗,v)−R(St,v))

]

=
T∑
t=1

E
[
R(S∗,v)−R(St, ṽ

t)
]

︸ ︷︷ ︸
Reg1(T,v)

+
T∑
t=1

E
[
R(St, ṽ

t)−R(St,v)
]

︸ ︷︷ ︸
Reg2(T,v)

.
(D.22)
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We will complete the proof by bounding the two terms in (D.22). We first focus on

bounding Reg2(T,v).

Bounding Reg2(T,v): We have the second term in (D.22) reformulated as

Reg2(T,v) = E

{
T∑
t=1

∆Rt

}
. (D.23)

Noting that At is a “low probability” event, we analyze the Regret in two scenarios,

one when At is true and another when Act is true. More specifically,

E (∆Rt) = E
[
∆Rt · 1(At−1) + ∆Rt · 1(Act−1)

]
,

Using the fact that R(St, ṽ
t) and R(St,v) are both bounded by one, we have

E (∆Rt) ≤ Pr(At−1) + E
[
∆Rt · 1(Act−1)

]
.

Substituting δ = t in Lemma D.4, we obtain that Pr(At−1) ≤ 1
K7d7t8

. Therefore, it

follows that,

E {∆Rt} ≤
1

t2
+ E

[
∆Rt · 1(Act−1)

]
. (D.24)

From triangle inequality, we have,

∣∣R(St, ṽ
t)−R(St,v)

∣∣ ≤∑
i∈St

∣∣pSt(ṽti)− pSt(vi)∣∣
Hence, it follows that,

E
[
∆Rt · 1(Act−1)

]
≤ E

[∑
i∈St

∣∣pSt(ṽti)− pSt(vi)∣∣ · 1(Act−1)

]
.

From triangle inequality, we have

E
[
∆Rt · 1(Act−1)

]
≤ E

[∑
i∈St

∣∣pSt(ṽti)− pSt(v̂ti)∣∣ · 1(Act−1)

]

+ E

[∑
i∈St

∣∣pSt(v̂ti)− pSt(vi)∣∣ · 1(Act−1)

]
,
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and from the definition of the event Act−1, it follows that,

E
[
∆Rt · 1(Act−1)

]
≤ E

[∑
i∈St

∣∣pSt(ṽti)− pSt(v̂ti)∣∣
]

+
60
√
d log tKd

cµ
E

[∑
i∈St

min
{
‖xi‖M−1

t
, 1
}]

.

(D.25)

From Corollary D.1, we have

E

[∑
i∈St

∣∣pSt(ṽti)− pSt(v̂ti)∣∣
]
≤ 5
√

log TK

cµ
E

[∑
i∈St

min
{
‖xi‖M−1

t
, 1
}]

.

From (D.23), (D.24) and (D.25), we have,

Reg2(T,v) ≤ 65
√
d log dTK

cµ
E

(
T∑
t=1

∑
i∈St

min
{
‖xi‖M−1

t
, 1
})

.

From Corollary D.2, we have

Reg2(T,v) ≤ 130d
1

cµ

√
log

(
c2
xKT

λ0

)
TK log d log TK (D.26)

We will now focus on the first term in (D.22).

Bounding Reg1(T,v): Recall, T is the set of optimistic epoch and the sanalysis

epoch EAn(t) is the set of non-optimistic epochs between tth epoch and the subsequent

optimistic epoch. Therefore, we can reformulate Reg1(T,v) as,

Reg1(T,v) = E

 T∑
t=1

1(t ∈ T ) ·
∑

τ∈EAn(t)

(R(S∗,v)−R(Sτ , ṽ̃ṽv
τ ))

 .
Note that for any τ , by algorithm design we have that Sτ is the optimal set when the

MNL parameters are given by ṽτ , i.e.,

R(Sτ , ṽ
τ) ≥ R(St, ṽ

τ ).

Similarly, we have R(St, ṽ
t) ≥ R(S∗, ṽt). Furthermore, since t is an optimistic epoch,

from the restricted monotonicity property (see Lemma 2.3), we have R(S∗, ṽt) ≥

R(S∗,v). Hence, for any t ∈ T , we have

R(St, ṽ
t) ≥ R(S∗,v).
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Therefore, it follows that,

Reg1(T,v) ≤ E

 T∑
t=1

1(t ∈ T ) ·
∑

τ∈EAn(t)

∆Rt,τ

 . (D.27)

Following the approach of bounding Reg2(T,v), we analyze the first term, Reg1(T,v)

in two scenarios, one when Ât is true and another when Âct is true. More specifically,

E

 ∑
τ∈EAn(t)

∆Rt,τ

 = E

 ∑
τ∈EAn(t)

∆Rt,τ · 1(At−1) + ∆Rt,τ · 1(Act−1)

 .
From triangle inequality, we have,∣∣R(St, ṽ

t)−R(St,v
τ )
∣∣ =

∣∣R(St, ṽ
t)−R(St,v) +R(St,v)−R(St, ṽ

τ )
∣∣

≤
∑
i∈St

(∣∣pSt(ṽti)− pSt(vi)∣∣+ |pSt(ṽτi )− pSt(vi)|
)

Hence, it follows that,

E
[
∆Rt,τ · 1(Âct−1)

]
≤ E

[∑
i∈St

∣∣pSt(ṽti)− pSt(vi)∣∣ · 1(Âct−1)

]

+ E

[∑
i∈St

|pSt(v̂τi )− pSt(vi)| · 1(Âct−1)

]
.

Using the fact that R(St, ṽ
t) and R(St, ṽ̃ṽv

τ ) are bounded by one, we have

E (∆Rt,τ ) ≤ E

[
1(Ât−1) +

∑
i∈St

(∣∣pSt(ṽti)− pSt(vi)∣∣+ |pSt(v̂τi )− pSt(vi)|
)
· 1(Âct−1)

]
(D.28)

From Corollary D.1, we have

E

[∑
i∈St

∣∣pSt(ṽti)− pSt(v̂ti)∣∣
]
≤ 5
√

log TK

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}
,

and by definition of the set 1
(
Ât−1

)
, we have

E

[∑
i∈St

∣∣pSt(ṽti)− pSt(vi)∣∣
]
≤ 60

√
d log tKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}
.

Therefore from the above two inequalities, it follows that,
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E

[∑
i∈St

∣∣pSt(ṽti)− pSt(vi)∣∣
]
≤ 65

√
d log TKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}
.

Similarly, we have

E

[∑
i∈St

|pSt(ṽτi )− pSt(vi)|

]
≤ 65

√
d log TKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}

≤ 65
√
d log TKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}
,

(D.29)

where the last inequality follows form the fact that τ > t (which implies Mt ≤ Mτ ).

Substituting (D.29) in (D.28), we have,

E

 ∑
τ∈EAn(t)

∆Rt,τ

 ≤ E
[
|EAn(t)| · 1(Ât−1)

]

+ E

[
130|EAn(t)|

√
d log TKd

cµ

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}]

.

(D.30)

Now we will focus on the first term in the above inequality. From Cauchy-Schwarz

inequality, we have,

E
[
|EAn(t)| · 1(Ât−1)

]
≤ E1/2

(
|EAn(t)|2

)
· Pr1/2

(
Ât−1

)
,

Substituting δ = t in Lemma D.4 and using union bound, we obtain that

Pr(Ât−1) ≤ 1

K7d7t7
.

In Lemma D.6, we show that

E1/2
[∣∣EAn(τ)

∣∣2] ≤ e12

K
+ 301/2.

Therefore, from the above three inequalities, it follows that,

E

[
T∑
t=1

|EAn(t)| · I(At−1)

]
≤ e13

K
. (D.31)

Now focusing on the second term in (D.30). We have,

E

[∑
t∈T

|EAn(t)| ·
∑
i∈St

min
{
‖xi‖M−1

t
, 1
}]
≤ E

[∑
t∈T

∑
i∈St

|EAn(t)|min
{
‖xi‖M−1

t
, 1
}]

(D.32)
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From Cauchy-Schwartz inequality, we have

E

(∑
t∈T

∑
i∈St

|EAn(t)|min
{
‖xi‖M−1

t
, 1
})

≤ E

√∑
t∈T

∑
i∈St

|EAn(t)|2 ·
∑
t∈T

∑
i∈St

min
{
‖xi‖M−1

t
, 1
}2


≤ E

√∑
t∈T

∑
i∈St

|EAn(t)|2 ·
∑
t∈T

∑
i∈St

min
{
‖xi‖2

M−1
t

, 1
}

(D.33)

From Jensen’s inequality, for any two random variables X,Y, we have

E(X · Y ) ≤ E1/2(X2)E1/2(Y 2).

Therefore substituting

X =

√∑
t∈T

∑
i∈St

|EAn(t)|2,

Y =

√∑
t∈T

∑
i∈St

(
‖xi‖2

M−1
t

+ 1
)
,

we have,

E

(∑
t∈T

∑
i∈St

|EAn(t)|min
{
‖xi‖M−1

t
, 1
})

≤
√
KE1/2

(∑
t∈T

|EAn(t)|2
)
· E1/2

(∑
t∈T

∑
i∈St

min
{
‖xi‖2

M−1
t
, 1
})

.

From Lemma D.6, it follows that for some constant C,

E

(∑
t∈T

∑
i∈St

|EAn(t)|min
{
‖xi‖M−1

t
, 1
})
≤ C
√
KTE1/2

(∑
t∈T

∑
i∈St

min
{
‖xi‖2

M−1
t
, 1
})

.

From Lemma D.2, we have

Reg1(T,v) ≤ C

√
d log

(
c2
xKT

λ0

)
TK (D.34)

The result follows from (D.34) and (D.26).
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Appendix E

Static Assortment Optimization

E.1 Proof of Lemma 5.1

Proof. Consider any extreme point, (p, p0) of P . Note that there must be n + 1

linearly independent and active constraints. Let

S0 = {i | pi = 0}, S1 = {i | pi = p0},

T = {i |
n∑
j=1

aijpj = bip0}

k = |S0|+ |S1|+ |T |.

(E.1)

We claim that k ≥ n. This follows as we have |S0| + |S1| linearly independent and

active constraints from the constraint set S0 ∪ S1, |T | active constraints from the

constraint set T and one active constraint from the constraint
∑n

i=0 vipi = 1. Hence

the total number of linearly independent and active constraints at (p, p0) is at most

k + 1.

Without loss of generality we can assume that k = n; since k > n implies that

|S0|+ |S1|+ |T |+ 1 > n+ 1, making some constraints in T redundant. Let

Bp =



A(T ) −b(T )

I(S0) 0

I(S1) −e

v′ v0


, Bx =


A(T )

I(S0)

I(S1)

 , bx =


b(T )

0

e

 , (E.2)

Note that Bp is the basis matrix corresponding to the extreme point (p, p0). Hence,

Bp is full rank. For the sake of contradiction, assume that Bx is not full rank. There
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there exists λλλ ∈ Rn,λλλ 6= 0 such that λλλ′Bx = 0, then we have[
λλλ′ 0

]
Bp =

[
λλλ′Bx −λλλ′bx

]
=

[
0 −λλλ′bx

]
,

which implies [
λλλ′ 0

]
Bp

p

p0

 = −p0λλλ
′bx,

Since Bp is a full rank, we have λλλ′bx 6= 0 and p0 6= 0, contradicting that,

Bp

p

p0

 =

0

1

 .
Hence, Bx is a full rank and x = p/p0 is a basic feasible solution in Q corresponding

to the basis matrix Bx.

Conversely, consider x, any extreme point of Q. Let

p0 =
1

v0 + v′x
, p = p0x.

Clearly (p, p0) ∈ P . We define the quantities S0, S1, T, k as in (E.1) and Bp,Bx,bx

as in (E.2). Using similar arguments, we can assume k = n without loss of generality.

Since x is a basic feasible solution corresponding to the basis Bx, Bx is full rank.

For the sake of contradiction, suppose Bp is not full rank. Then there exists

λλλ ∈ Rn+1,λλλ 6= 0 such that λλλ′Bp = 0. Therefore,

λλλ′Bp

p

p0

 = 0

which implies

(λλλ([n]))′(Bxp + p0bx) + λn+1(v′p + v0p0) = 0.

Since Bxx = bx, we have Bxp + p0bx = 0 and λn+1 = 0. Note that, λλλ′Bp = 0 and

λλλ′Bp =

[
λλλ([n])′Bx + λn+1v

′ λλλ([n])′bx + λn+1v0

]
Therefore λλλ([n])′Bx = 0, contradicting the fact that Bx is full rank. Hence, Bp is a

full rank matrix and (p, p0) is the basic feasible solution corresponding to the basis

matrix Bp. This completes the proof.
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E.2 Proof of Theorem 5.2

Proof. Let (p∗, p∗0) be an optimal solution to (5.7). Let S = {i ≥ 1 | p∗i > 0}. In

Steps 3-6 of the algorithm we consider all the solutions that have strictly less than⌊
`
ε

⌋
. Hence, without loss of generality assume that |S| ≥

⌊
`

ε

⌋
and S = {1, 2, . . . , k}

for some k ≥
⌊
`
ε

⌋
and ak ≤ ak−1 ≤ · · · ≤ a1. Also, let S1 = {1, 2, . . . , k∗} where

k∗ =
⌊
`
ε

⌋
.

Note that p∗1 = p∗2 = · · · = p∗k = p∗0. Therefore,

akp
∗
k ≤ ak−1p

∗
k−1 ≤ · · · ≤ a1p

∗
1,

which implies

ak∗+1p
∗
k∗+1 <

ε

`
R∗.

Now consider a feasible point of (5.7), (p1, p10) defined as

p10 =
1

v0 +
∑

i∈S1
vi
, p1i =

 p10 if i ∈ S1

0 otherwise.

implying p∗1i < p1i for all i ∈ S1. and since (p1, p10) is a feasible point to (5.7), it

follows that ∑
i∈S1

aip1i =
n∑
i=1

aip1i < R∗ which implies
∑
i∈S1

aip
∗
1i ≤ R∗

By construction of zLP(1), we must also have p∗1i = 0 for every i > k∗ and ak∗ ≤ ai,

implying

aip
∗
1i < ak∗p

∗
k∗ <

ε

`
R∗ for all i > k∗.

Observe that zLP(1) ≥ R∗ and the variables i in the extreme point (p∗1, p
∗
10) that can

be fractional are i > k∗. Therefore, aip
∗
1i < (ε · R∗)/` for all i ∈ F(p∗1, p

∗
10). Thus by

Lemma 5.1, it follows that
∑

i∈F(p∗) aip
∗
i (1) < εR∗, which implies

(1− ε)R∗ ≤ zLP(1)− εR∗ <
n∑
i=0

aip̂i(1).
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E.3 Proof of Theorem 5.3

Proof. Davis et al. [18] show that if instance I has a partition (U1, U2) such that∑
j∈U1

cj =
∑
j∈U2

cj = T,

then, the assortment (S1 = {1}, S2 = U1) has expected revenue of (T + 2) · (2T + 1).

Furthermore, they show if there is an assortment (S1, S2) such that Π(S1, S2) ≥

(T + 2)(2T + 1), then instance I has a partition (S2, [n] \S2). We complete the proof

by establishing that for any

ε <
2T + 1

(6T + 3) (3T + 2)2 ,

if there exists an assortment (S1, S2) such that Π(S1, S2) ≥ (T + 2)(2T + 1)− ε, then

we have that
∑

i∈S2
ci = T . Davis et al. [18] show that S1 = {1} for maximizing

Π(S1, S2). Suppose there exists (S1, S2) such that Π(S1, S2) ≥ (T + 2)(2T + 1) − ε.

Then

2(T + 3)(2T + 1)
√
T + 1 + (T + 1)(2T + 1)

∑
j∈S2

cj√
1+

∑
j∈S2

cj√
1 +

∑
j∈S2

cj +
√

2 + 2(2T + 1)
≥ (T + 2)(2T + 1)− ε

dividing by (2T + 1) on both sides, we have

2(T + 3)
√
T + 1 + (T + 1)

∑
j∈S2

cj√
1+

∑
j∈S2

cj√
1 +

∑
j∈S2

cj +
√

2 + 2(2T + 1)
≥ (T + 2)− ε

2T + 1

which implies,

2(T + 3)
√
T + 1

√
1 +

∑
j∈S2

cj + (T + 1)

(∑
j∈S2

cj

)

≥ 2(T + 2)
√
T + 1

√
1 +

∑
j∈S2

cj + (T + 2)

(
1 +

∑
j∈S2

cj

)

− ε

2T + 1
·

1 +
∑
j∈S2

cj + 2
√
T + 1

√
1 +

∑
j∈S2

cj

,
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Hence we have,

ε

2T + 1
·

1 +
∑
j∈S2

cj + 2
√
T + 1

√
1 +

∑
j∈S2

cj


≥ −2

√
T + 1

√
1 +

∑
j∈S2

cj + (T + 1) +

(
1 +

∑
j∈S2

cj

)
,

which implies

ε ≥
(2T + 1) ·

(√
T + 1−

√
1 +

∑
j∈S2

cj

)2

1 +
∑

j∈S2
cj + 2

√
T + 1

√
1 +

∑
j∈S2

cj

>
(2T + 1) ·

(√
T + 1−

√
1 +

∑
j∈S2

cj

)2

6T + 3

The inequality follows from the fact that 1 +
∑

j∈S2
cj ≤ 2T + 1 and

√
T + 1 <

√
2T + 1. Now multiplying with

(√
T + 1 +

√
1 +

∑
j∈S2

cj

)2

in the numerator and

denominator of right hand side of the above expression, we have the following inequality

ε >
(2T + 1) ·

(
T −

∑
j∈S2

cj

)2

(6T + 3)
(√

T + 1 +
√

1 +
∑

j∈S2
cj

)2

>
(2T + 1) ·

(
T −

∑
j∈S2

cj

)2

(6T + 3) (T + 1 + 2T + 1)2

Note that if
∑

j∈S2
cj 6= T , then since cj are integers, we have that

ε >
2T + 1

(6T + 3) (3T + 2)2 ,

contradicting the hypothesis that ε < 2T+1
(6T+3)(3T+2)2

. Hence, we have for any ε <

2T+1
(6T+3)(3T+2)2

, Π(S1, S2) ≥ (T + 2)(2T + 1)− ε implies that
∑

i∈S2
ci = T .

E.4 Computing the ε-convex Pareto set

We now describe a polynomial (in n and 1
ε
) time algorithm to compute the CPε.

Before proceeding further, let us try and understand the Pareto set P(π).
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Definition E.1. A Pareto set, denoted by Pi(π), is a set of solutions x ∈ Pi such

that for all x ∈ Pi, there is no x′ ∈ Pi such that

gi1(x′) ≥ gi1(x) & gi2(x′) ≤ gi2(x)

The Pareto set corresponds to the optimal solutions of the weighted linear program

maxw1gi1(x) − w2gi2(x) over the polytope Pi, for all weight vectors w1, w2 ∈ R+.

Since, we are maximizing a linear function over the polytope Pi, the optimal solutions

will be extreme points of Pi, which in our case will be feasible to our combinatorial

optimization problem (5.19). It is easy to see that the Pareto set Pi(π) contains the

optimal solution to the sub-problem (5.19). However, computing a Pareto set may be

computationally infeasible. Therefore, we compute the ε-convex Pareto set in hope

of finding an approximate optimal solution.

The idea behind the algorithm for finding an ε-convex Pareto set CPε is to choose

a polynomial number of such weight vectors ({w1, w2}) and obtain the corresponding

extreme point solutions for the weighted linear programs. We present the algorithm

for evaluating the ε-convex Pareto set below and later establish the correctness of

the algorithm. In steps 3-4 of the algorithm, we fix the weight set (possible choices

for w1, w2) by enforcing the max{w1, w2} = U , for some pre-decided U . Let M be

such that,
1

M
≤ gi1(x) ≤ M and

1

M
≤ gi2(x) ≤ M . In steps 5-7, we choose another

weight set R(M), which scales the linear functions gi1, gi2 appropriately so that we

can compute the ε-convex Pareto set CPε. (see the proof of correctness for better

understanding)

The following theorem due to [21] establishes the correctness of the above algorithm.

We present the proof specifically to our context for the sake of completeness.

Theorem E.1 (Diakonikolas and Yannakakis (2008)). The above algorithm
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Algorithm 12 Computing ε-convex Pareto sets for the sub-problem (5.19)

1: Choose ε1 > 0 such that 1− ε1 =
1

1 + ε

2: U ←
⌈

2

ε1

⌉
, let [U ] = {1, 2, · · · , U}

3: W1(U)← {U} × [U ] , W2(U)← [U ]× {U}
4: W (U) = W1(U) ∪W2(U)
5: S(M)← {20, 21, · · · , 22dlog2Me}
6: R1(M)← {1} × S(M) , R2(M)← S(M)× {1}
7: R(M) = R1(M) ∪R2(M)
8: CPε ← φ
9: for each r ∈ R(M) do do

10: for each w ∈ W (U) do do
11: x∗ ← optimal extreme point for {max r1w1gi1(x) − r2w2gi2(x) : Aix ≤

bi, 0 ≤ x ≤ 1}
12: end for
13: end for
14: CPε ← CPε ∪ {x∗}
15: Return CPε

yields an ε-convex Pareto set CPε, i.e. ∀ x ∈ Pi, ∃ x′ ∈ Conv(CPε) such that

gi1(x′) ≥ gi1(x)

1 + ε

gi2(x′) ≤ (1 + ε)gi2(x)

Proof. Proof Let Q(U) denote the set of extreme points generated by the above

algorithm and also let the set of optimal extreme points generated by the above

algorithm be x1, · · · ,xl, where l is the total number of unique solutions obtained

during the above algorithm.

Lemma E.1 (Diakonikolas and Yannakakis(2008)). Suppose that x is in the

Pareto-set Pi(π) such that gi1(x) ≤ 2gi2(x) and gi2(x) ≤ 2gi1(x) and x 6∈ Q(U), then

there exists a x′ ∈ Conv(Q(U)), such that

gi1(x′) ≥ (1− ε1)gi1(x)

gi2(x′) ≤ (1 + ε1)gi2(x)
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Proof. Proof Suppose there is no x′ ∈ Conv(Q(U)) such that

gi1(x′) ≥ (1− ε1)gi1(x) & gi2(x′) ≤ (1 + ε1)gi2(x)

then the following linear program is infeasible:

l∑
j=1

λjgi1(xj) ≥ (1− ε1)gi1(x)

l∑
j=1

λjgi2(xj) ≤ (1 + ε1)gi2(x)

l∑
j=1

λj = 1

λ1, λ2, · · · ,λl ≥ 0

By Farka’s lemma, there exists w1, w2 and v which satisfy the following inequalities,

w1gi1(xj)− w2gi2(xj) + v ≤ 0 ∀ j = 1, · · · , l

w1(1− ε1)gi1(x)− w2(1 + ε1)gi2(x) + v > 0

w1, w2 ≥ 0

which implies that w1, w2 ≥ 0 and

w1gi1(xj)− w2gi2(xj) < w1(1− ε1)gi1(x)− w2(1 + ε1)gi2(x) ∀ j = 1, · · · , l

To establish contradiction to the assumption that there is no such x′, it suffices

to show that there exists a j such that w1gi1(xj) − w2gi2(xj) ≥ w1(1 − ε1)gi1(x) −

w2(1 + ε1)gi2(x).

Consider arbitrary w1, w2 ≥ 0, without loss of generality, it can be assumed that

the maximum value of {w1, w2} is U . Let w∗1 = bw1c and w∗2 = dw2e, we clearly

have {w∗1, w∗2} ∈ W (U) and let x∗ be the optimal extreme point for the objective
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maxw∗1gi1(x)−w∗2gi2(x), then x∗ ∈ Q(U) and hence without loss of generality assume

that for some j ≤ l,x∗ = xj. We will now show that

w1gi1(xj)− w2gi2(xj) ≥ w1(1− ε1)gi1(x)− w2(1 + ε1)gi2(x)

Note that w1 − w∗1 ≤ 1 and w∗2 − w2 ≤ 1 and remember that we have enforced by

scaling max{w1, w2} = U , let t ∈ {1, 2} be such that wt = U , we have w∗t = wt and

(w1 − w∗1)gi1(x) + (w∗2 − w2)gi2(x) ≤
∑

k={1,2}/t

gik(xj) ≤ 2git(xj) ≤ ε1Ugit(xj)

≤ ε1(w1gi1(x) + w2gi2(x))

where the second inequality follows from the fact that the assumption that gi1(x) ≤

2gi2(x) and gi2(x) ≤ 2gi1(x), the third inequality follows from our choice of U = d2/ε1e

and the last inequality follows from the fact that Ugit(xj) ≤ w1gi1(x) + w2gi2(x).

Therefore, from this chain of inequalities, we get

w1(1− ε1)gi1(x)− w2(1 + ε1)gi2(x) ≤ w∗1gi1(x)− w∗2gi2(x)

Since xj is the optimal solution for the objective maxw∗1gi1(x)− w∗2gi2(x), we have

w∗1gi1(x)− w∗2gi2(x) ≤ w∗1gi1(xj)− w∗2gi2(xj)

Noting that w∗1 ≤ w1 and w∗2 ≥ w2, we have

w∗1gi1(xj)− w∗2gi2(xj) ≤ w1gi1(xj)− w2gi2(xj)

Combing the above three inequalities, we have the required contradiction.

If the above lemma was true for any x ∈ Pi(π), instead of, for only x ∈ Pi(π) such

that gi1(x) ≤ 2gi2(x) and gi2(x) ≤ 2gi1(x), then the Theorem would have followed

from the Lemma, since Pi(π) contains at least one optimal solution. Consider any

x ∈ P , the ratios gi1(x)/gi2(x) and gi2(x)/gi1(x) are both bounded by M2, hence

there exists {r1, r2} ∈ R(M), such that r1gi1(x) and r2gi2(x) are within a factor of
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2 of each other. Now x belongs to the Pareto-set of the weighted objectives r1gi1(x)

and r2gi2(x) and by the above lemma, there exists a S ′ ∈ Conv(Q(U)) such that

r1gi1(x′) ≥ (1− ε1)r1gi1(x) & r1gi2(x′) ≤ (1 + ε1)r2gi2(x)

=⇒ gi1(x′) ≥ (1− ε1)gi1(x) & gi2(x′) ≤ (1 + ε1)gi2(x)

By definition of ε1, we have 1 − ε1 =
1

1 + ε
, which implies that ε > ε1 and hence we

have

gi1(x′) ≥ gi1(x)

1 + ε
& gi2(x′) ≤ (1 + ε)gi2(x)

�

E.5 Proof of Lemma 5.5

Proof. For the sake of contradiction, assume that

S∗i 6∈ arg max
Si∈Pi

∑
j∈[n]

∑
k∈[`]

vijk(rij − u′)sijk.

and let

Ŝi ∈ arg max
Si∈Pi

∑
j∈[n]

∑
k∈[`]

vijk(rij − u′)sijk.

We claim that the number of products offered in assortment S∗i and Ŝi is same. This

follows by observing that the linear functions fij(u) and fij(u
′) have the same sign

in the interval [up, up+1] for all j ∈ [n]. Without loss of generality assume that the

number of products offered in Ŝi is less than the number of products offered in S∗i.

Therefore, there must exist a product j that is offered in S∗i and not offered in Ŝi.

Hence, we have rij < u′ and rij < u implying that not offering product j in S∗i would

increase the value of ∑
j∈[n]

∑
k∈[`]

vijk(rij − u)s∗ijk,
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contradicting the optimality of S∗i .

Since S∗i and Ŝi offer the same number of products, we have two cases

1. There exists two products j, j′ such that j is offered in S∗i and not offered in Ŝi,

while j′ is offered in Ŝi and not offered in S∗i .

2. Ŝi and S∗i offer the same set of products, but at different display positions.

Consider the first scenario, where there are two products j, j′ such that j is offered

in S∗i and not offered in Ŝi, while j′ is offered in Ŝi and not offered in S∗i . Let k,

k′ be the display slots of products j, j′ in the assortments S∗i and Ŝi respectively.

Therefore, we must have

vijk(rij − u) ≥ vij′k(rij′ − u)

vij′k′(rij′ − u′) ≥ vijk′(rij − u′)

The first inequality follows from the hypothesis that product j is included in S∗i ,

while product j′ is not. Similarly the second inequality folows from the hypothesis

that product j′ is included in Ŝi, while product j is not. From (??) we have that

vijk = vijλik. Hence, we have

vij(rij − u) ≥ vij′(rij′ − u)

vij′(rij′ − u′) ≥ vij(rij − u′),

contradicting the fact that fij(u)− fij′(u) and fij(u
′)− fij′(u′) have the same sign in

the interval [up, up+1].

Consider the second scenario, where the same products are offered in different display

slots in S∗i and Ŝi. For such a scenario to occur, there must be a set of products

whose display positions in the assortment S∗i are shifted in a cyclical fashion from the

display positions in the assortment Ŝi. Without loss of generality, let those products

be indexed 1, · · · , q. Let the display positions of these products in the assortment S∗i

be k1, · · · , kq, then the display positions of these products in the assortment Ŝi will

be k2, · · · , kq, k1 respectively. We have one of the three possibilities,
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� There exists j ∈ {1, · · · , q − 2} such that λikj < λikj+1
and λikj+1

> λikj+2

� λikj < λikj+1
for all j ∈ {1, · · · , q − 1}

� λikj > λikj+1
for all j ∈ {1, · · · , q − 1},

For the first case, consider the following inequalities

vijkj(rij − u) + vi(j+1)kj+1
(ri(j+1) − u) ≥ vijkj+1

(rij − u) + vi(j+1)kj(ri(j+1) − u)

vijkj+1
(rij − u′) + vi(j+1)kj+2

(ri(j+1) − u′) ≥ vijkj+2
(rij − u′) + vi(j+1)kj+1

(ri(j+1) − u′)

The first inequality follows from the hypothesis that in assortment S∗i product j is

displayed in slot kj and product j + 1 is displayed in slot kj+1 and not vice versa.

Similarly, the second inequality follows from the hypothesis that in assortment Ŝi

product j is displayed in slot kj+1 and product j + 1 is displayed in slot kj+2 and not

vice versa. We have that vijk = vijλik. Hence, we have

(λikj − λikj+1
)vij(rij − u) ≥ (λikj − λikj+1

)vi(j+1)(ri(j+1) − u)

(λikj+1
− λikj+2

)vij(rij − u′) ≥ (λikj+1
− λikj+2

)vi(j+1)(ri(j+1) − u′),

which implies

vij(rij − u) ≥ vi(j+1)(ri(j+1) − u)

vi(j+1)(ri(j+1) − u′) ≥ vij(rij − u′),

contradicting the fact that fij(u)− fij′(u) and fij(u
′)− fij′(u′) have the same sign in

the interval [up, up+1]. We can prove a similar contradiction by consider the products

indexed 1, q and considering inequalities corresponding to swapping the display

positions of these products. Hence, we have

S∗i ∈ arg max
Si∈Pi

∑
j∈[n]

∑
k∈[`]

vijk(rij − u′)sijk ∀ u′ ∈ [up, up+1].

�
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