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Abstract

This thesis presents efficient algorithms that give optimalor near-optimal solutions for problems
with non-linear objective functions that arise in discrete, continuous and robust optimization.

First, we present a general framework for designing approximation schemes for combinatorial
optimization problems in which the objective function is a combination of more than one function.
Examples of such problems include those in which the objective function is a product or ratio of
two or more linear functions, parallel machine scheduling problems with the makespan objective,
robust versions of weighted multi-objective optimizationproblems, and assortment optimization
problems with logit choice models. For many of these problems, we give the first fully polynomial
time approximation scheme using our framework.

Next, we present approximation schemes for optimizing a rather general class of non-linear
functions of low rank over a polytope. In contrast to existing results in the literature, our approx-
imation scheme does not require the assumption of quasi-concavity of the objective function. For
the special case of minimizing a quasi-concave function of low-rank, we give an alternative algo-
rithm which always returns a solution which is an extreme point of the polytope. This algorithm
can also be used for combinatorial optimization problems where the objective is to minimize a
quasi-concave function of low rank. We also give complexity-theoretic results with regards to the
inapproximability of minimizing a concave function over a polytope.

Finally, we consider the problem of appointment schedulingin a robust optimization framework.
The appointment scheduling problem arises in many service operations, for example health care.
For each job, we are given its minimum and maximum possible execution times. The objective
is to find an appointment schedule for which the cost in the worst case scenario of the realization
of the processing times of the jobs is minimized. We present aglobal balancing heuristic, which
gives an easy to compute closed form optimal schedule when the underage costs of the jobs are
non-decreasing. In addition, for the case where we have the flexibility of changing the order of
execution of the jobs, we give simple heuristics to find a near-optimal sequence of the jobs.

Thesis Supervisor: Andreas S. Schulz
Title: Patrick J. McGovern (1959) Professor of Management
and Professor of Mathematics of Operations Research
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Chapter 1

Introduction

1.1 Motivation

Optimization is ubiquitous in the field of engineering and management today. Optimization prob-

lems arise in diverse areas such as production and manufacturing, service operations, health care,

revenue management, transportation, among others. A glimpse of an array of optimization prob-

lems that arise in practise can be found in the survey book by Horst and Pardalos (1995). Because

of their importance, optimization problems have been extensively studied - both from a theoretical

point of view as well as their practical implementation.

An optimization problem has two parts: the first is theobjective functionthat we are trying to

optimize. For example, it can correspond to minimizing the cost of a given production schedule,

or it could be maximizing the revenue of an airline company. The other is the set of constraints

which define the permissible solutions for the optimizationproblem, also called thefeasible set.

For a given optimization problem, the main theoretical questions of interest is: Can this problem be

solvedexactlyin anefficientmanner? While the meaning of the exactness aspect of this question

is fairly obvious, there are well-accepted theoretical notions of efficiency as well. The most com-

monly used concept of efficiency for algorithms is that for a given class of problems, the number of

computational steps required to solve the problem should bea polynomial in the input size of the

problem. A well known class of optimization problems that can be solved exactly in polynomial

time arelinear programming problems, in which the objective function is linear and the feasible

set is a polyhedron. Linear programming problems belong to amore general class of optimiza-

tion problem, calledconvex optimization problems, in which the objective function as well as the

feasible set are convex. Convex optimization problems haveseveral nice properties, which can be
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exploited to design polynomial time algorithms for solvingthese problems almost exactly (Nesterov

and Nemirovskii 1961).

However, in real life there are several aspects of optimization problems which make them hard

to solve:

1. The objective function or the feasible set can be non-convex. In this case, the neat prop-

erties associated with the convex optimization problems are lost. Moreover, such problems

can havelocal optima, which means that there might be solutions which are good in alocal

region around the solution, but are worse-off than aglobal optimum, which is the best solution

among all the solutions in the feasible set.

2. The feasible set may be discrete.In many optimization problems, the variables take only

discrete values. Because the set of solutions is no more a continuous set, finding an optimal

solution in this discrete set (which in many cases is huge, making an exhaustive search of all

the solutions an impractical proposition) becomes difficult.

3. The parameters of the optimization problem may be uncertain. This can arise due to

two main reasons. Firstly, the process of gathering data forthe problem may be noisy, which

can lead to uncertainties in the parameters of the optimization problem. Secondly, the pa-

rameter itself may have inherent randomness. As an example,consider the generic problem

of scheduling patients in a health care facility. The time each patient needs for treatment is

random, and this must be taken into account when solving for an optimal schedule for this

problem.

Unfortunately, it turns out that for many problems with one or more of the nasty aspects men-

tioned above, there may not be efficient algorithms for solving them exactly. In fact, the existence of

efficient algorithms for these problems is closely related to the P versus NP question in complexity

theory, which is a well known open problem (Garey and Johnson1979). Therefore, we need to

relax the exactness and/or the efficiency criteria and design specialized algorithm for solving such

optimization problems. This is what we attempt in this thesis.

1.2 Contributions of this Thesis

In this thesis, we look at a gamut of optimization problems with one or more of the features men-

tioned above and develop algorithms for solving such problems.
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Chapter 2 covers the preliminary topics which are subsequently used in the rest of the thesis.

Included in this chapter is the notion ofapproximation algorithms, in which we relax the exactness

condition on the algorithms by specifying that the algorithm must return a solution which is within

a given factor of the optimal solution, and that it must be efficient. We also define the notion of

approximation schemes and multi-objective optimization in this chapter.

In Chapter 3, we present a general framework for designing approximation schemes for combi-

natorial optimization problems in which the objective function is a combination of more than one

function. Examples of such problems include those in which the objective function is a product

or ratio of two or more linear functions, parallel machine scheduling problems with the makespan

objective, robust versions of weighted multi-objective optimization problems, and assortment op-

timization problems with logit choice models. For many of these problems, we give the first fully

polynomial time approximation scheme using our framework.

In Chapter 4, we present approximation schemes for optimizing a rather general class of non-

linear functions of low rank over a polytope. The main contribution of this chapter is that unlike

the existing results in the literature, our approximation scheme does not require the assumption

of quasi-concavity of the objective function. For the special case of minimizing a quasi-concave

function of low-rank, we give an alternative algorithm which always returns a solution which is

an extreme point of the polytope. This algorithm can also be used for combinatorial optimization

problems where the objective is to minimize a quasi-concavefunction of low rank. We also give

complexity-theoretic results with regards to the inapproximability of minimizing a concave function

over a polytope.

In Chapter 5, we look at the problem of appointment scheduling, which arises in many service

operations, for example health care. In this problem, the main challenge is to deal with the uncertain

processing times of the jobs. The traditional approach in the literature to deal with uncertainty

is by formulating the problem as a stochastic program. However, stochastic models are usually

complicated and computationally intensive to solve. In contrast, we look at this problem in a robust

optimization framework, and derive a simple closed-form solution for the optimal duration that

should be assigned to each job. Moreover, for the case where we have the flexibility of changing the

order of execution of the jobs, we give simple heuristics to find a near-optimal sequence of the jobs

as well.

A list of problems studied in Chapters 3 to 5 is given below. This is not an exhaustive list; its

aim is to give the reader a flavor of the optimization problemsthat we tackle in this thesis.
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Max-min resource allocation problem: Santa Claus has to distribute a number of gifts among

children on Christmas Day. A gift cannot be divided among more than one child, and the happiness

of a child is the sum of the happiness derived from the individual gifts given to that child. Santa

wants to be fair to all the children, so he wants to distributethe gifts in such a manner so as to max-

imize the happiness of the least happy child. How should Santa hand out the gifts to the children?

(Chapter 3)

Minimum makespan scheduling problems: A user wants to perform multiple queries on a parallel

database system. Each query uses multiple resources on a server, for example multiple cores of a

processor, memory, hard disks, etc. The performance of the system is governed by the “weakest

link” in the database system - that is, the resource with the maximum load on it. How should the

queries be assigned to the servers so as to minimize the load on the bottleneck resource? (Chapter

3)

Assortment optimization problems: A cellphone company has to decide what kind of handsets

it should display in its showroom. In its inventory the company has many handsets, ranging from

the cheap ones with no advanced features, to more costly smart phones with Internet and e-mail

facilities, and the really expensive ones with 4G network, large memory and faster processors. If

the showroom displays only the cheap handsets, it may turn away customers looking to buy the

smart phones. If it displays only the advanced handsets, customers with limited budget may not be

interested in buying them. The showroom cannot display all the phones because it has a limited

capacity. What assortment of the cellphones should the showroom offer so as to maximize its sales

revenue? (Chapter 3)

Multiplicative programming problems : Suppose I have to drive from my home in Albany Street

in Cambridge to the Logan airport. Naturally, I want to take the shortest path possible, but in order

to avoid traffic, I would also like to take a path which has as few intersections as possible. One

way to trade-off between these two objectives is to find a paththat minimizes the product of the the

length of the path and the total number of intersections on that path. How do I find such a path?

(Chapter 3 and 4)

Mean-risk minimization problems: In the problem mentioned above, the speed at which I can

drive on a street is uncertain, since it depends on the trafficconditions. Suppose that I know the

average time it takes to cover a street, and I also have information about the variance of the time

taken. An alternative way to choose a path would be to find a path that minimizes the sum of the
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average time and the standard deviation of the time taken to drive to the destination. How can I find

a path that provides a reasonable trade-off between the average time and the standard deviation?

(Chapter 4)

Appointment scheduling problem: A hospital manager needs to schedule surgeries for outpatients

in an operation room of the hospital. The time a surgery will take is uncertain. However, the

manager needs to plan in advance the time slot that should be assigned to each surgery. If the

manager assigns a large interval for a surgery, then it is likely that the surgery will finish early and

the operation room will be left underutilized till the next surgery commences. On the other hand,

if the manger assigns a small duration for the surgery, then it will likely overshoot its deadline,

thereby delaying the next surgery and causing inconvenience to the patients as well as the medical

staff. How much duration should the manager assign to each surgery to achieve the right trade-off

between these two scenarios? Moreover, if it is possible to change the order in which the surgeries

are performed, then what should be the sequence of the surgeries? (Chapter 5)

Table 1.1 gives a classification of the problems according towhether the objective function is

linear or non-convex, the underlying feasible set is discrete or continuous, and whether the param-

eters of the problem are uncertain. Note that although all the problems given in this table have a

discrete feasible set, in some cases (for example, multiplicative programming problems) we also

look at the corresponding problem with a continuous feasible set. It turns out that algorithms for

the continuous case are more efficient and much simpler as compared to the corresponding discrete

case (and in some cases, the algorithm can be used for the discrete case as well), hence the reason

for considering the continuous case separately.

Problems Non-convexity Discreteness Uncertainty
Max-min resource allocation X

Makespan scheduling X

Assortment optimization X X

Multiplicative programming X X

Mean-risk minimization X X X

Appointment scheduling X X X

Table 1.1: Classification of the problems studied in this thesis.
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1.3 Reading this Thesis

The material of this thesis should be accessible to anyone with a basic knowledge of optimization,

particularly in linear programming and to some extent in combinatorial optimization. Chapter 2

covers some of the basic concepts used in the rest of the chapters. Apart from that, Chapters 3 to 5

can be read independently of each other. Instead of discussing the existing literature for the specific

problems and the improvements achieved with respect to the current state of the art in this chapter,

we defer those materials to the later chapters. For the more industrious reader willing to take a

challenge, at the end of each chapter we present a few problems which still remain open.

1.4 Bibliographic Information

Chapter 1 is based on work done in collaboration with AndreasS. Schulz. An extended abstract

of this work has appeared as Mittal and Schulz (2008); a journal version is currently under review.

Chapter 2 is also joint work with Andreas S. Schulz and is largely based on the technical report Mit-

tal and Schulz (2010). Chapter 3 is joint work with SebastianStiller. An extended abstract of this

work has appeared as Mittal and Stiller (2011).
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Chapter 2

Preliminaries

In this chapter, we discuss some of the basic concepts that will be used in the subsequent chapters

of this thesis.

2.1 Approximation Algorithms and Approximation Schemes

An instanceπ of a single-objective optimization problemΠ is given by an objective functionf :

X → R+, whereX is some subset ofRn. In this thesis, we consider problems in which eitherX is

a polytope whose concise description is known to us (in termsof linear inequalities, or a separation

oracle), orX is a discrete set for which a concise description of its convex hull is known.

If the problemΠ is NP-hard, then it is unlikely that there is an algorithm which returns an

optimal solution for every instanceπ of Π, and has a running time which is polynomial in the input

size of the problem. In that case, one usually looks for an approximation algorithm for the problem,

which is defined below.

Definition 2.1.1 For a minimization (resp. maximization) problemΠ, an α-approximation algo-

rithm for α > 1 (resp.α < 1) is an algorithmA which, given any instanceπ of the problem returns

a solutionxAπ ∈ X such thatf(xAπ ) ≤ α · f(x∗π) (resp.f(xAπ ) ≥ α · f(x∗π)), wherex∗π is an optimal

solution to the problem instanceπ. The running time of the algorithmA is polynomial in the input

size of the problem.

For certain problems, it is possible to get an approximationalgorithm for any factorα arbitrarily

close to one. Such a family of algorithms is called an approximation scheme, and is defined below.
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Definition 2.1.2 For a minimization (resp. maximization) problemΠ, a polynomial time approxi-

mation scheme (PTAS)is a family of algorithms parametrized byǫ such that for allǫ > 0, there is

an algorithmAǫ which is a(1+ǫ)-approximation algorithm (resp.(1−ǫ)-approximation algorithm)

for the problem, and whose running time is polynomial in the input size of the problem.

A stronger notion of an approximation scheme is a fully polynomial time approximation scheme.

Definition 2.1.3 For a minimization (resp. maximization) problemΠ, a fully polynomial time ap-

proximation scheme (FPTAS)is a family of algorithms parametrized byǫ such that for allǫ > 0,

there is an algorithmAǫ which is a(1 + ǫ)-approximation algorithm (resp.(1 − ǫ)-approximation

algorithm) for the problem, and whose running time is polynomial in the input size of the problem,

as well as in1/ǫ.

Theoretically speaking, the existence of an FPTAS for an NP-hard optimization problem is in

some sense the strongest possible result one can get for thatproblem.

2.2 Preliminaries on Multi-objective optimization

An instanceπ of a multi-objective optimization problemΠ is given by a set ofk functionsf1, . . . , fk.

Eachfi : X → R+ is defined over the same set of feasible solutions,X. Here,X is some subset

of Rn (more specifically, we will consider the case whenX or the convex hull ofX is a polytope

whose concise description is known to us), andk is significantly smaller thann. Let |π| denote the

binary-encoding size of the instanceπ. Assume that eachfi takes values in the range[m,M ], where

m,M > 0. We first define the Pareto-optimal frontier for multi-objective optimization problems.

Definition 2.2.1 Let π be an instance of a multi-objective minimization problem. The Pareto-

optimal frontier, denoted byP (π), is a set of solutionsx ∈ X, such that for eachx ∈ P (π),

there is nox′ ∈ X such thatfi(x′) ≤ fi(x) for all i with strict inequality for at least onei.

In other words,P (π) consists of all the undominated solutions. Iffi are all linear functions and

the feasible setX is a polytope, then the set of function values(f1(x), . . . , fk(x)) for x ∈ X is a

polytope inRk. ThenP (π) in this case is the set of points on the “lower” boundary of this polytope.

For continuous multi-objective minimization problems, ingeneral,P (π) may have infinitely

many points, and so we need a more compact representation of the Pareto-optimal frontier. One

such way is to use the convex Pareto-optimal frontier, whosedefinition is given below.
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f1(x)

f2(x)

((1+ǫ)f1(x),

(1+ǫ)f2(x))
f(x′)

(f1(x),f2(x)))

Figure 2-1: Figure illustrating the concept of Pareto-optimal front (shown by the thick boundary)
and approximate Pareto-optimal front (shown as solid blackpoints) for two objectives.

Definition 2.2.2 Let π be an instance of a multi-objective minimization problem. The convex

Pareto-optimal set, denoted byCP (π), is the set of extreme points ofconv(P (π)).

In many cases, it may not be tractable to computeP (π) or evenCP (π). For example, determin-

ing whether a point belongs to the Pareto-optimal frontier for the two-objective shortest path prob-

lem is NP-hard (Hansen 1979). Also, the number of undominated solutions for the two-objective

shortest path can be exponential in the input size of the problem. This means thatCP (π) can have

exponentially many points, as the shortest path problem canbe formulated as a min-cost flow prob-

lem, which has a linear programming formulation. This necessitates the idea of using an approxi-

mation of the Pareto-optimal frontier. One such notion of anapproximate Pareto-optimal frontier is

as follows. It is illustrated in Figure 2-1

Definition 2.2.3 Letπ be an instance of a multi-objective minimization problem. For ǫ > 0, an ǫ-

approximate Pareto-optimal frontier, denoted byPǫ(π), is a set of solutions, such that for allx ∈ X,

there isx′ ∈ Pǫ(π) such thatfi(x′) ≤ (1 + ǫ)fi(x), for all i.

Similar to the notion of an approximate Pareto-optimal frontier, we need to have a notion of an

approximate convex Pareto-optimal frontier, defined below. The concept of convex Pareto-optimal

set and approximate Pareto-optimal set is illustrated in Figure 2-2.

Definition 2.2.4 Let π be an instance of a multi-objective minimization problem. For ǫ > 0, an

ǫ-approximate Pareto-optimal set, denoted byCPǫ(π), is a set of solutions such that for anyx ∈ X,

there isx′ in conv(CPǫ(π)) such thatfi(x′) ≤ (1 + ǫ)fi(x), for all i.
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f1(x)

f2(x)

((1+ǫ)f1(x),(1+ǫ)f2(x))

(f1(x),f2(x))

Figure 2-2: Figure illustrating the concept of convex Pareto-optimal frontCP (shown by solid
black points) and approximate convex Pareto-optimal frontCPǫ (shown by solid gray points) for
two objectives. The dashed lines represent the lower envelope of the convex hull ofCPǫ

In the rest of the paper, whenever we refer to an (approximate) Pareto-optimal frontier or its

convex counterpart, we mutually refer to both its set of solutions and their vectors of objective

function values. Even thoughP (π) may contain exponentially many (or even uncountably many)

solution points, there is always an approximate Pareto-optimal frontier that has polynomially many

elements, providedk is fixed. The following theorem gives one possible way to construct such an

approximate Pareto-optimal frontier in polynomial time. We give a proof of this theorem here, as

the details will be needed for designing the approximation schemes in the later chapters.

Theorem 2.2.5 (Papadimitriou and Yannakakis (2000))Let k be fixed, and letǫ, ǫ′ > 0 be such

that (1 − ǫ′)(1 + ǫ)1/2 = 1. One can determine aPǫ(π) in time polynomial in|π| and1/ǫ if the

following ‘gap problem’ can be solved in polynomial-time: Given ak-vector of values(v1, . . . , vk),

either

(i) return a solutionx ∈ X such thatfi(x) ≤ vi for all i = 1, . . . , k, or

(ii) assert that there is nox ∈ X such thatfi(x) ≤ (1− ǫ′)vi for all i = 1, . . . , k.

Proof. Suppose we can solve the gap problem in polynomial time. An approximate Pareto-optimal

frontier can then be constructed as follows. Consider the hypercube inRk of possible function

values given by{(v1, . . . , vk) : m ≤ vi ≤ M for all i}. We divide this hypercube into smaller

hypercubes, such that in each dimension, the ratio of successive divisions is equal to1 + ǫ′′, where

ǫ′′ =
√
1 + ǫ− 1. For each corner point of all such smaller hypercubes, we solve the gap problem.

Among all solutions returned by solving the gap problems, wekeep only those solutions that are
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not Pareto-dominated by any other solution. This is the required Pǫ(π). To see this, it suffices to

prove that every pointx∗ ∈ P (π) is approximately dominated by some point inPǫ(π). For such a

solution pointx∗, there is a corner pointv = (v1, . . . , vk) of some hypercube such thatfi(x∗) ≤
vi ≤ (1 + ǫ′′)fi(x∗) for i = 1, . . . , k. Consider the solution of the gap problem fory = (1 + ǫ′′)v.

For the pointy, the algorithm for solving the gap problem cannot assert (ii) because the pointx∗

satisfiesfi(x∗) ≤ (1 − ǫ′)yi for all i. Therefore, the algorithm must return a solutionx′ satisfying

fi(x
′) ≤ yi ≤ (1 + ǫ)fi(x

∗) for all i. Thus,x∗ is approximately dominated byx′, and hence

by some point inPǫ(π) as well. Since we need to solve the gap problem forO((log (M/m)/ǫ)k)

points, this can be done in polynomial time. ⊓⊔

We will refer to the above theorem as the gap theorem. Solvingthe gap problem will be the

key to designing the approximation schemes in the later chapters. For the case wherefi(x) are

continuous linear functions, the gap problem can be solved using a linear program. For the discrete

case, however, solving the gap problem requires more effort(see Chapter 3 for more details).

Further Reading

The standard reference on NP-hardness is Garey and Johnson (1979). For readers interested in

approximation algorithms, the book by Williamson and Shmoys (2011) is an excellent text. An

extensive discussion on computing approximate Pareto-optimal fronts for multi-objective combi-

natorial optimization problems can be found in Safer and Orlin (1995a), Safer and Orlin (1995b)

and Safer, Orlin, and Dror (2004).
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Chapter 3

Approximation Schemes for

Combinatorial Optimization Problems

3.1 Introduction

In many combinatorial optimization problems, the objective function is a combination of more than

one function. For example, consider the problem of finding a spanning tree in a graphG = (V,E)

with two edge weightsc1 andc2, wherec1 may correspond to the failure probability of the edges,

andc2 to the cost of the edges. The objective is to find a spanning tree T of the graph for which

c1(T ) · c2(T ) is minimized (Kuno 1999; Kern and Woeginger 2007). In this problem, the objective

function is a combination of two linear objective functionscombined together using the product

function.

Another example of a problem whose objective function subsumes more than one function is the

max-min resource allocation problem (Asadpour and Saberi 2007). Here, there are several resources

which have to be distributed among agents. The utility of each agent is the sum of the utilities of

the resources assigned to the agent. The objective is to maximize the utility of the agent with the

lowest utility. In this problem, one can look at the utility of each agent as a separate objective

function. Thus, the objective function of the problem is a combination of the objective functions of

the individual agents using the minimum function.

This chapter presents a unified approach for solving combinatorial optimization problems in

which the objective function is a combination of more than one (but a fixed number) of objective

functions. Usually, these problems turn out to be NP-hard. We show that under very general condi-
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tions, we can obtain FPTASes for such problems. Our technique turns out be surprisingly versatile:

it can be applied to a variety of scheduling problems (e.g. unrelated parallel machine scheduling and

vector scheduling), combinatorial optimization problemswith a non-linear objective function such

as a product or a ratio of two linear functions, and robust versions of weighted multi-objective opti-

mization problems. We first give examples of some of the problems for which we can get FPTASes

using our framework.

3.1.1 Examples of Problems

Combinatorial optimization problems with a rational objective: Consider the problem in which

the objective function is a ratio of discrete linear functions:

minimizeg(x) =
f1(x)

f2(x)
=

a0 + a1x1 + . . .+ adxd
b0 + b1x1 + . . .+ bdxd

, (3.1)

s.t. x ∈ X ⊆ {0, 1}d.

We assume thatf1(x) > 0, f2(x) > 0 for all x ∈ X. In this case, there are two linear objec-

tive functions that have been combined by using the quotientfunction. A well known example is

the computation of a minimum mean cost circulation in graphs. Megiddo (1979) showed that any

polynomial time algorithm for the corresponding linear objective problem can be used to obtain

a polynomial time algorithm for the same problem with a rational objective function. Extensions

of this result have been given by Hashizume, Fukushima, Katoh, and Ibaraki (1987), Billionnet

(2002) and Correa, Fernandes, and Wakabayashi (2010) to obtain approximation algorithms for the

case where the corresponding linear objective problem is NP-hard. The main idea behind all these

approaches is to convert the problem with a rational objective function to a parametric linear opti-

mization problem, and then perform a binary search on the parameter to get an approximate solution

for the problem. The main drawback of parametric methods is that they do not generalize to the case

where we have a sum of ratios of linear functions.

In Section 3.7, we give a fairly general sufficient conditionfor the existence of an FPTAS for this

problem. It can be used to obtain an FPTAS, for example, for the knapsack problem with a rational

objective function. In contrast to the methods described above, our algorithm uses a non-parametric

approach to find an approximate solution. One distinct advantage of our technique is that it easily

generalizes to more general rational functions as well, forexample the sum of a fixed number of

ratios of linear functions. Such a form often arises in assortment optimization in the context of

30



retail management, and in Section 3.7.1, we show how to obtain FPTASes using our framework for

assortment optimization problems under two different choice models.

Resource allocation and scheduling problems:The best known approximation algorithm for the

general max-min resource allocation problem has an approximation ratio ofO
(

1√
m log3 m

)

, where

m is the number of agents (Asadpour and Saberi 2007). In Section 3.4.1, we obtain the first FPTAS

for this problem when the number of agents is fixed.

Scheduling problems can be thought of as an inverse of the resource allocation problem, where

we want to assign jobs to machines, and attempt to minimize the load on individual machines.

Corresponding to the max-min resource allocation problem,we have the problem of scheduling

jobs on unrelated parallel machines to minimize the makespan (i.e. the time at which the last job

finishes its execution). When the number of machinesm is fixed, this problem is referred to as the

Rm||Cmax problem. Another objective function that has been considered in the literature is the one

in which the total load on different machines are combined together using anlp norm (Azar, Epstein,

Richter, and Woeginger 2004). In Section 3.4.1, we give FPTASes for both of these scheduling

problems. It should be noted that approximation schemes fortheR||Cmax problem already exist in

the literature (e.g. Sahni (1976) and Lenstra, Shmoys, and Tardos (1990)).

A generalization of theRm||Cmax problem is the vector scheduling problem. In this problem, a

job uses multiple resources on each machine, and the objective is to assign the jobs to the machines

so as to minimize the maximum load over all the resources of the machines. A practical situation

where such a problem arises is query optimization in parallel database systems (Garofalakis and

Ioannidis 1996). In this case, a job is a database query, which uses multiple resources on a com-

puter - for example, multiple cores of a processor, memory, hard disk etc. A query can be assigned

to any one of the multiple servers in the database system. Since the overall performance of a sys-

tem is governed by the resource with the maximum load, the objective is to minimize over all the

resources, the maximum load. Chekuri and Khanna (2004) givea PTAS for the problem when the

number of resources on each machine is fixed. Moreover, they only consider the case where each

job has the same requirement for a particular resource on allthe machines. In Section 3.4.2, we

show that when both the number of machines and resources are fixed, we can get an FPTAS for the

problem, even when each job can use different amounts of a resource on different machines.

Combinatorial optimization problems with a product object ive: For the product versions of the
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minimum spanning tree problem and the shortests-t path problem, Kern and Woeginger (2007)

and Goyal, Genc-Kaya, and Ravi (2011) give an FPTAS. Both these methods are based on linear

programming techniques, and do not generalize to the case where we have more than two func-

tions in the product. Moreover, their techniques do not extend to the case where the corresponding

problem with a linear objective function is NP-hard.

In Section 3.5.3 of this chapter, we give FPTASes for the product version of thes-t path prob-

lem and the spanning tree problem using our framework. A big advantage of our method is that it

easily generalizes to the case where the objective functionis a product of a fixed number of linear

functions. It can also be used to design approximation schemes for the product version of certain

NP-hard problems, such as the knapsack problem.

Robust weighted multi-objective optimization problems:Consider once again the spanning tree

problem with two cost functionsc1 andc2 on the edges, as given in the introduction. One way to

combine the two costs is to find a spanning treeT which minimizes the weighted sumw1c1(T ) +

w2c2(T ) for some positive weightsw1 andw2. However, in many cases it is not clear a-priori

which weights should be used to combine the two objectives. An alternative is to allow the weights

w = (w1, w2) to take values in a setW , and find a spanning tree that minimizes the cost of the

weighted objective for the worst case scenario weight in thesetW ⊆ R
2
+. This ensures a fair

trade-off of the two cost functions. More generally, we consider the following robust version of a

weighted multi-objective optimization problem:

minimizeg(x) = max
w∈W

wT f(x), x ∈ X ⊆ {0, 1}d. (3.2)

Here,f(x) = (f1(x), . . . , fm(x)) is a vector ofm function values andW ⊆ R
m is a compact

convex weight set. For the spanning tree problem and the shortest path problem, the above robust

version is NP-hard even for the case of two objectives.

The robust version of weighted multi-objective optimization problems has been studied by Hu

and Mehrotra (2010) for the case when eachfi is a continuous function. For discrete optimization

problems, this formulation is a generalization of the robust discrete optimization model with a fixed

number of scenarios (see e.g. Kouvelis and Yu (1997)). This problem is NP-hard, but admits an

FPTAS for the robust version of many problems when the numberof scenarios is fixed (Aissi,

Bazgan, and Vanderpooten 2007). In Section 3.6, we generalize this result and show that we can
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get FPTASes for the robust version of weighted multi-objective optimization problems when the

number of objectives is fixed, for the case of the spanning tree problem, the shortest path problem

and the knapsack problem.

3.1.2 Related Work

There are two well known general methods for obtaining approximation schemes for combinatorial

optimization problems. In the first method, the input parameters of the problem are rounded and

then dynamic programming is applied on the modified instanceto find an approximate solution for

the original problem. This idea has been extensively used tofind approximation schemes for a num-

ber of machine scheduling problems (e.g. Sahni (1976), Horowitz and Sahni (1976), Hochbaum and

Shmoys (1987), Lenstra, Shmoys, and Tardos (1990)). The other method is shrinking the state space

of the dynamic programs that solve the problem in pseudo-polynomial time. This idea was first used

by Ibarra and Kim (1975) to obtain an approximation scheme for the knapsack problem. Woegin-

ger (2000) gives a very general framework where such dynamicprograms can be converted to an

FPTAS, and using this framework he derives FPTASes for several scheduling problems. Another

example is the work of Halman, Klabjan, Mostagir, Orlin, andSimchi-Levi (2009), who adopt the

same methodology to get FPTASes for inventory management problems.

3.1.3 Overview of Our Framework

We present a general framework which we use to design FPTASesfor the problems given in Sec-

tion 3.1.1. The main idea behind this framework is to treat each objective function as a separate

objective, and compute the approximate Pareto-optimal front corresponding to these objective func-

tions. It is possible to get an approximate Pareto-optimal front for many combinatorial optimization

problems under the general condition that the corresponding “exact” problem is solvable in pseudo-

polynomial time. The exact problem, for example, for the spanning tree problem is, given a vector of

non-negative integer edge weightsc and a non-negative integerK, does there exist a spanning treeT

such thatc(T ) = K? For many combinatorial optimization problems (e.g. the spanning tree prob-

lem, the shortest path problem, and the knapsack problem) the exact problem can indeed be solved

in pseudo-polynomial time. For the resource allocation andscheduling problems, the exact problem

is a variant of the partition problem, and we show that it is also solvable in pseudo-polynomial time.

Our framework works in the following three stages:
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1. Show that the optimal solution of the problem lies on thePareto-optimal frontof the corre-

sponding multi-objective optimization problem.

2. Show that there is at least one solution in theapproximate Pareto-optimal frontwhich is an

approximate solution of the given optimization problem.

3. To construct the approximate Pareto-optimal front, in many cases it is sufficient to solve the

exact problemcorresponding to the original optimization problem in pseudo-polynomial time.

In Section 3.2, we first show how to solve the gap problem to construct an approximate Pareto-

optimal front for a multi-objective discrete optimizationproblem. We then give our general frame-

work for designing FPTAS for combinatorial optimization problems in which several objective func-

tions are combined into one, and state the conditions neededfor the framework to work in the main

theorem of this chapter in Section 3.3. Subsequently, we derive FPTASes for the problems men-

tioned in Section 3.1.1 as corollaries to the main theorem.

3.2 Solving the Gap Problem for the Discrete Case

From Theorem 2.2.5, we know that it suffices to solve the gap problem to compute an approxi-

mate Pareto-optimal front. We give a procedure here for solving the gap problem with respect to

minimization problems, but it can be extended to maximization problems as well (see Section 3.7).

We restrict our attention to the case whenX ⊆ {0, 1}d, since many combinatorial optimization

problems can be framed as0/1-integer programming problems. Further, we consider linear objec-

tive functions; that is,fi(x) =
∑d

j=1 aijxj , and eachaij is a non-negative integer. Suppose we

want to solve the gap problem for them-vector(v1, . . . , vm). Let r = ⌈d/ǫ′⌉. We first define a

“truncated” objective function. For allj = 1, . . . , d, if for somei, aij > vi, we setxj = 0, and

drop the variablexj from each of the objective functions. LetV be the index set of the remaining

variables. Thus, the coefficients in each objective function are now less than or equal tovi. Next, we

define a new objective functionf ′
i(x) =

∑

j∈V a′ijxj , wherea′ij = ⌈aijr/vi⌉. In the new objective

function, the maximum value of a coefficient is nowr. Forx ∈ X, by Lemma 3.8.1 (see appendix)

the following two statements hold.

• If f ′
i(x) ≤ r, thenfi(x) ≤ vi.

• If fi(x) ≤ vi(1− ǫ′), thenf ′
i(x) ≤ r.
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Therefore, to solve the gap problem, it suffices to find anx ∈ X such thatf ′
i(x) ≤ r, for i =

1, . . . ,m, or assert that no suchx exists. Since all the coefficients off ′
i(x) are non-negative integers,

there arer + 1 ways in whichf ′
i(x) ≤ r can be satisfied. Hence there are(r + 1)m ways overall in

which all inequalitiesf ′
i(x) ≤ r can be simultaneously satisfied. Suppose we want to find if there

is anx ∈ X such thatf ′
i(x) = bi for i = 1, . . . ,m. This is equivalent to finding anx such that

∑m
i=1M

i−1f ′
i(x) =

∑m
i=1 M

i−1bi, whereM = dr + 1 is a number greater than the maximum

value thatf ′
i(x) can take.

Given an instanceπ of a multi-objective linear optimization problem over a discrete setX ⊆
{0, 1}d, the exact version of the problem is: Given a non-negative integerC and a vector(c1, . . . , cd) ∈
Z
d
+, does there exist a solutionx ∈ X such that

∑d
j=1 cjxj = C? The following theorem estab-

lishes the connection between solving the exact problem andthe construction of an approximate

Pareto-optimal front.

Theorem 3.2.1 Suppose we can solve the exact version of the problem in pseudo-polynomial time,

then there is an FPTAS for computing the approximate Pareto-optimal curvePǫ(π).

Proof. The gap problem can be solved by making at most(r+1)m calls to the pseudo-polynomial

time algorithm for the exact problem, and the input to each call has numerical values of order

O((d2/ǫ)m+1). Therefore, all calls to the algorithm take polynomial time, hence the gap problem

can be solved in polynomial time. The theorem now follows from Theorem 2.2.5. ⊓⊔

3.3 The General Formulation of the FPTAS

In this section, we present a general formulation of the FPTAS based on the ideas given in Sec-

tion 2.2. We then show how this general framework can be adapted to obtain FPTASes for the

problems given in Section 3.1.1.

Let f1, . . . , fm, for m fixed, be functions which satisfy the conditions given in thebeginning of

Section 2.2. Leth : Rm
+ → R+ be any function that satisfies the following two conditions.

1. h(y) ≤ h(y′) for all y, y′ ∈ R
m
+ such thatyi ≤ y′i for all i = 1, . . . ,m, and

2. h(λy) ≤ λch(y) for all y ∈ R
m
+ andλ > 1, for some fixedc > 0.

In particular,h includes all thelp norms (withc = 1), and the product of a fixed number (say,k) of

linear functions (withc = k). We denote byf(x) the vector(f1(x), . . . , fm(x)).

35



Consider the following general optimization problem:

minimizeg(x) = h(f(x)), x ∈ X. (3.3)

We show that if we can solve the corresponding exact problem (with a singe linear objective

function) in polynomial time, then there is an FPTAS to solvethis general optimization problem as

well. Also, even though we state all our results for minimization problems, there is a straightforward

extension of the method to maximization problems as well.

Lemma 3.3.1 There is at least one optimal solutionx∗ to (3.3)such thatx∗ ∈ P (π).

Proof. Let x̂ be an optimal solution of (3.3). Supposex̂ /∈ P (π). Then there existsx∗ ∈ P (π)

such thatfi(x∗) ≤ fi(x̂) for i = 1, . . . ,m. By Property 1 ofh(x), h(f(x∗)) ≤ h(f(x̂)). Thusx∗

minimizes the functiong and is inP (π). ⊓⊔

Lemma 3.3.2 Let ǫ̂ = (1 + ǫ)1/c − 1. Let x̂ be a solution inPǫ̂(π) that minimizesg(x) over all the

pointsx ∈ Pǫ̂(π). Thenx̂ is a (1+ ǫ)-approximate solution of(3.3); that is,g(x̂) is at most(1 + ǫ)

times the value of an optimal solution to(3.3).

Proof. Let x∗ be an optimal solution of (3.3) that is inP (π). By the definition of anǫ-approximate

Pareto-optimal frontier, there existsx′ ∈ Pǫ̂(π) such thatfi(x′) ≤ (1 + ǫ̂)fi(x
∗), for all i =

1, . . . ,m. Therefore,

g(x′) = h(f1(x
′), . . . , fm(x′)) ≤ h((1 + ǫ̂)f1(x

∗), . . . , (1 + ǫ̂)fm(x∗))

≤ (1 + ǫ̂)ch(f1(x
∗), . . . , fm(x∗)) = (1 + ǫ)g(x∗),

where the first inequality follows from Property 1 and the second inequality follows from Property

2 of h. Sincex̂ is a minimizer ofg(x) over all the solutions inPǫ̂(π), g(x̂) ≤ g(x′) ≤ (1+ ǫ)g(x∗).

⊓⊔

From these two lemmata and Theorem 3.2.1, we get the main theorem of this chapter regarding

the existence of an FPTAS for solving (3.3).

Theorem 3.3.3 Suppose the exact problem corresponding to the functions given in (3.3) can be

solved in pseudo-polynomial time. Then there is an FPTAS forsolving the general optimization

problem(3.3)whenm is fixed.
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The FPTAS can now be summarized as follows.

1. Sub-divide the space of objective function values[2−p(|π|), 2p(|π|)]m into hypercubes, such

that in each dimension, the ratio of two successive divisions is 1 + ǫ′′, whereǫ′′ = (1 +

ǫ)1/2c − 1.

2. For each corner of the hypercubes, solve the corresponding gap problem, and keep only the

set of non-dominated solutions obtained from solving each of the gap problems.

3. Among all the solutions in the non-dominated front, return the one with the minimum function

value.

Finally, we establish the running time of the above algorithm.

Lemma 3.3.4 The running time of the algorithm is polynomial in|π| and1/ǫ.

Proof. There areO((p(|π|)ǫ )m) corner points for which we need to solve the gap problem. Solving

each gap problem requires calling the algorithm for solvingthe exact problemO(rm) times, which

is O((dǫ )
m). The magnitude of the largest number input to the algorithm for the exact problem is

O((d
2

ǫ )
m+1). Hence the running time of the algorithm isO((p(|π|)d

ǫ2
) · PP ((d

2

ǫ )
m+1,m, d)), where

PP (M,m, d) is the running time of the pseudo-polynomial time algorithmfor the exact problem

with maximum magnitude of an input number equal toM . ⊓⊔

3.4 FPTAS for Scheduling and Resource Allocation Problems

Using the framework presented in Section 3.3, we give FPTASes for the max-min resource alloca-

tion problem, theRm||Cmax problem and the vector scheduling problem.

3.4.1 TheRm||Cmax Problem and the Max-Min Resource Allocation Problem

Recall theRm| |Cmax scheduling problem defined in the introduction. There arem machines and

n jobs, and the processing time of jobk on machinei is pik. The objective is to schedule the jobs

to minimize the makespan. The max-min resource allocation problem is similar to this scheduling

problem, except that the objective here is to maximize the minimum completion time over all the

machines. Observe that this corresponds toh being thel∞-norm with c = 1 in the formulation

given by (3.3).
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We first give an integer programming formulation for the two problems. Letxik be the variable

which is 1 if job k is assigned to machinei, 0 otherwise. Them objective functions in this case

(corresponding to each agent/machine) are given byfi(x) =
∑n

k=1 pikxik, and the setX is given

by

m
∑

i=1

xik = 1 for k = 1, . . . n, (3.4a)

xik ∈ {0, 1} for i = 1, . . . ,m, k = 1, . . . , n. (3.4b)

The exact version for both the problems is this: Given an integerC, does there exist a0/1-vector

x such that
∑n

k=1

∑m
j=1 cjkxjk = C, subject to the constraints (3.4a) and (3.4b)? The following

lemma establishes that the exact problem can be solve in pseudo-polynomial time.

Lemma 3.4.1 The exact problem for the max-min resource allocation problem and theRm||Cmax

problem can be solved in pseudo-polynomial time.

Proof. The exact problem can be viewed as a reachability problem in adirected graph. The graph

is an(n + 1)-partite directed graph; let us denote the partitions of this digraph byV0, . . . , Vn. The

partition V0 has only one node, labeled asv0,0 (the source node), all other partitions haveC + 1

nodes. The nodes inVi for 1 ≤ i ≤ n are labeled asvi,0, . . . , vi,C . The arcs in the digraph are from

nodes inVi to nodes inVi+1 only, for 0 ≤ i ≤ n − 1. For all c ∈ {c1,i+1, . . . , cm,i+1}, there is

an arc fromvi,j to vi+1,j+c, if j + c ≤ C. Then there is a solution to the exact version if and only

if there is a directed path from the source nodev0,0 to the nodevn,C . Finding such a path can be

accomplished by doing a depth-first search from the nodev0,0. The corresponding solution for the

exact problem (if it exists) can be obtained using the path found by the depth-first search algorithm.

⊓⊔

Therefore, we obtain FPTASes for both theRm||Cmax problem as well as the max-min resource

allocation problem. For the max-min resource allocation problem with a fixed number of agents,

we give the first FPTAS, though approximation schemes for theR||Cmax problem already exist in

the literature (e.g. Sahni (1976) and Lenstra, Shmoys, and Tardos (1990)). Further, Theorem 3.3.3

implies that we get an FPTAS even when the objectives for different agents/machines are combined

together using any norm. We therefore have the following corollary to Theorem 3.3.3.

Corollary 3.4.2 There is an FPTAS for the max-min resource allocation problem with a fixed num-
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ber of agents. Further, we also get an FPTAS for the min-max resource allocation problem with a

fixed number of agents and the unrelated parallel machine problem when the objectives for different

agents/machines are combined by some norm.

3.4.2 The Vector Scheduling Problem

The vector scheduling problem is a generalization of theRm||Cmax problem. In this problem,

each job requiresd resources for execution on each machine. Jobk consumes an amountpjik of a

resourcej on machinei. SupposeJi is the set of jobs assigned to machinei. Thus the total usage

of resourcej on machinei is
∑

k∈Ji p
j
ik. The objective is to minimize over all the machinesi and

all the resourcesj, the value
∑

k∈Ji p
j
ik. We assume that bothd andm are fixed.

Similar to theRm||Cmax problem, letxik be a variable that is1 if job k is assigned to machine

i, 0 otherwise. In this case, we have a total ofmd functions andfij(x) =
∑n

k=1 p
j
ikxik, for

i = 1, . . . m andj = 1, . . . , d. Themd objective function are combined together using thel∞ norm

in this problem. The underlying set of constraints is the same as given by (3.4a)-(3.4b). Therefore,

the exact algorithm for theRm||Cmax problem works for the vector scheduling problem as well,

and since we have a fixed number of objective functions, we getan FPTAS for the vector scheduling

problem as well. Hence we have the following corollary to Theorem 3.3.3.

Corollary 3.4.3 There is an FPTAS for the vector scheduling problem when the number of machines

as well as the number of resources are fixed, even for the case when each job can use a different

amount of a particular resource on different machines.

3.5 FPTAS for Minimizing the Product of Two Linear Objective Func-

tions

In this section, we give a general framework for designing FPTASes for problems in which the

objective is to minimize the product of two linear cost functions. We then apply this technique to

some product combinatorial optimization problems on graphs, and then extend it to the case where

the objective function is a product of a fixed number of linearfunctions.
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3.5.1 Formulation of the FPTAS

Consider the following optimization problem.

minimizeg(x) = f1(x) · f2(x), x ∈ X, (3.5)

wherefi : X → Z+ are linear functions andX ⊆ {0, 1}d. In our general formulation given

by (3.3), the corresponding functionh for this case ish(y1, y2) = y1y2, and soc = 2. Thus, if we

can construct an approximate Pareto-optimal front forf1(x) andf2(x) in polynomial time, we will

be able to design an FPTAS for the product optimization problem. Therefore, we get the following

corollary to Theorem 3.3.3.

Corollary 3.5.1 There is an FPTAS for the problem given by(3.5) if the following exact problem

can be solved in pseudo-polynomial time: Given(c1, . . . , cd) ∈ Z
d
+ andK ∈ Z+, does there exist

x ∈ X such that
∑d

i=1 cixi = K?

3.5.2 FPTAS for Some Problems with the Product Objective Function

Using the above theorem, we now construct FPTASes for several combinatorial optimization prob-

lems involving the product of two objective functions.

1. Spanning tree problem: In this case, the exact problem is: given a graphG = (V,E)

with cost functionc : E → Z+ and a positive integerK, does there exist a spanning tree

T ⊆ E whose cost is equal to exactlyk? Barahona and Pulleyblank (1987) give anO((n3 +

p2)p2 log p) algorithm for solving the exact problem, wheren is the number of vertices in the

graph andp = n ·maxe (c(e)). Thus we have an FPTAS for the spanning tree problem with

the product of two cost functions as the objective.

2. Shortest s-t path problem: The exact problem in this case is: given a graphG = (V,E),

verticess, t ∈ V , a distance functiond : E → Z+ and an integerK, is there ans-t path

with length equal to exactlyK? Note that for the shortest path problem, the exact problem

is strongly NP-complete, since it includes the Hamiltonianpath problem as a special case.

To circumvent this issue, we relax the original problem to that of finding a walk (in which

a vertex can be visited more than once) between the verticess and t that minimizes the

product objective. The optimal solution of the relaxed problem will have the same objective

function value as that of an optimal solution of the originalproblem, since anys-t walk can
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be truncated to get ans-t path. Therefore, it suffices to get an approximate solution for the

relaxed problem.

The corresponding exacts-t walk problem is: Does there exist ans-t walk in the graph whose

length is equal to exactly a given numberK ∈ Z+? Since we are dealing with non-negative

weights, this problem can be solved inO(mnK) time by dynamic programming, wheren is

the number of vertices andm is the number of edges in the graph. If the solution given by

the algorithm is a walk instead of a path, we remove the cyclesfrom the walk to get a path.

Hence we obtain an FPTAS for the shortests-t path problem with the product of two distance

functions as the objective.

3. Knapsack problem: The exact problem for the knapsack problem is: given a setI of items

with profit p : I → Z+, sizes : I → Z+ and a capacity constraintC, does there exist a subset

of I satisfying the capacity constraint and having total profit exactly equal to a given integer

K? Again, this exact problem can be solved inO(nK) time by dynamic programming,

wheren is the number of objects. Therefore we get an FPTAS for the product version of the

knapsack problem.

4. Minimum cost flow problem: The problem we have is: given a directed graphG = (V,A),

verticess, t ∈ V , an amount of flowd ∈ Z+ to send froms to t, capacitiesu : A → Z+,

and two cost functionsc1, c2 : A→ Z+, find a feasibles-t flow x of total amountd such that

c1(x) · c2(x) is minimized. The minimum cost flow problem is different fromthe above two

problems, since it can be formulated as a linear program, instead of an integer linear program.

In this case, the gap problem as stated in Theorem 2.2.5 can besolved directly using linear

programming. Therefore we obtain an FPTAS for the minimum cost flow problem with the

product objective function as well.

Note that in this case, the approximate solution that we obtain may not necessarily be integral.

This is because when we solve the gap problem, we introduce constraints of the formfi(x) ≤
(1 − ǫ′)vi corresponding to each of the two objectives, in addition to the flow conservation

and capacity constraints. This means that the constraint set may not be totally unimodular,

and hence the solution obtained can possibly be non-integral.

A big advantage of our method is that it can be used to get an approximation scheme for the

product version of an optimization problem even if the original problem is NP-hard, for example in

the case of the knapsack problem, whereas previously existing methods cannot handle this case.
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3.5.3 Products of More Than Two Linear Objective Functions

Another advantage of our technique over existing methods for designing FPTASes for product op-

timization problems (Kern and Woeginger 2007; Goyal, Genc-Kaya, and Ravi 2011) is that it can

be easily extended to the case where the objective function is a product of more than two linear

functions, as long as the total number of functions involvedin the product is a constant. Consider

the following generalization of the problem given by (3.5).

minimizeg(x) = f1(x) · f2(x) · . . . · fm(x), x ∈ X, (3.6)

wherefi : X → Z+ are linear functions, fori = 1, . . . ,m, X ⊆ {0, 1}d andm is a fixed number.

This again fits into our framework given by (3.3), withc = m. Thus our technique yields an FPTAS

for the problem given by (3.6) as well. We have therefore established the following corollary to

Theorem 3.3.3.

Corollary 3.5.2 There is an FPTAS for the problem given by(3.6) if m is fixed and if the following

exact problem can be solved in pseudo-polynomial time: Given (c1, . . . , cd) ∈ Z
d
+ andK ∈ Z+,

does there existx ∈ X such that
∑d

i=1 cixi = K?

3.6 FPTASes for Robust Weighted Multi-Objective Optimization Prob-

lems

Consider the following robust version of a weighted multi-objective optimization problem given

by Hu and Mehrotra (2010):

minimizeg(x) = max
w∈W

wT f(x), x ∈ X ⊆ {0, 1}d. (3.7)

Here,f(x) = (f1(x), . . . , fm(x)) ∈ R
m
+ is a vector ofm function values,W ⊆ Wf , where

Wf = {w ∈ R
m
+ : w1 + . . .+ wm = 1} (i.e. the weights are non-negative and they sum up to one)

andW is a compact convex set. We assume that we can optimize a linear function over the setW

in polynomial time; this ensures that the functiong(x) can be computed efficiently. Examples of

some of the forms that the weight setW can take are as follows:

1. Simplex weight set:W = Wf = {w ∈ R
m
+ : w1 + . . .+ wm = 1}.

42



2. Ellipsoidal weight set:W = {w ∈Wf : (w− ŵ)TS−1(w− ŵ) ≤ γ2}, whereŵ, γ > 0, and

S is am×m positive semi-definite matrix.

3. Box weight set:W = {w ∈Wf : ||w||∞ ≤ k}, wherek > 0.

In particular, the model with the simplex weight set can be considered to be a generalization

of the robust optimization model with a fixed number of scenarios. The robust optimization with a

fixed number of scenarios has the following form.

minimizeh(x) = max
c∈{c1,...,cm}

cTx, x ∈ X ⊆ {0, 1}d. (3.8)

The connection between the problems given by (3.7) and (3.8)is established in the following lemma.

Lemma 3.6.1 The problem given by(3.8) is equivalent to the problem given by(3.7)whenfi(x) =

cTi x for i = 1, . . . ,m and the weight set is the simplex weight setWf .

Proof. For a given solutionx ∈ X, its objective function valueh(x) in the formulation (3.8) is

given by

h(x) = max{cTx : c ∈ {c1, . . . , cm}}

= max{cTx : c ∈ conv({c1, . . . , cm})}

= max{w1c
T
1 x+ . . . +wmcTmx : w ∈Wf}

= max{wT f(x) : w ∈Wf}

= g(x),

whereg(x) is the objective function value in the formulation given by (3.7), conv({c1, . . . , cm})
denotes the convex hull of them pointsc1, . . . , cm andfi(x) = cTi x for i = 1, . . . ,m. This estab-

lishes the equivalence between the optimization problem given by (3.7) with the simplex weight set

and the optimization problem given by (3.8). ⊓⊔

Using this observation, we establish the NP-hardness of theoptimization problem given by (3.7).

Lemma 3.6.2 The optimization problem given by(3.7) is NP-hard for the shortest path problem

and the spanning tree problem.
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Proof. The following 2-scenario robust optimization problem is known to be NP-hard for the

shortest path problem and the spanning tree problem (Kouvelis and Yu 1997):

minimizeh(x) = max
c∈{c1,c2}

cTx, x ∈ X ⊆ {0, 1}d. (3.9)

Problem (3.9) is equivalent to the form given by (3.7) withf1(x) = cT1 x, f2(x) = cT2 x and

W = {(w1, w2) ∈ R
2
+ : w1 + w2 = 1}. Therefore the optimization problem given by (3.7) is also

NP-hard in general. ⊓⊔

Next, we establish that whenm, the number of objectives, is fixed, the optimization problem

given by (3.7) admits an FPTAS.

Lemma 3.6.3 There is an optimal solution to(3.7) that lies onP (π), the Pareto-optimal frontier of

them functionsf1(x), . . . , fm(x).

Proof. Letx∗ be the optimal solution to the problem given by (3.7). Supposex∗ is not on the Pareto-

optimal front. By definition, there existŝx ∈ P (π) such thatfi(x̂) ≤ fi(x
∗) for i = 1, . . . ,m. Let

ŵ ∈W be the weight vector which maximizeswT f(x̂). Then,

g(x̂) = ŵT f(x̂)

≤ ŵT f(x∗)

≤ max
w∈W

wT f(x∗) = g(x∗).

Hencex̂ minimizesg(x) and lies on the Pareto-optimal frontier. ⊓⊔

Lemma 3.6.4 There is a solution̂x onPǫ(π) that is a(1+ ǫ)-approximate solution of the optimiza-

tion problem(3.7).

Proof. Let x∗ be the optimal solution to the problem given by (3.7). By definition of Pǫ(π), there

existsx̂ ∈ Pǫ(π) such thatfi(x̂) ≤ (1 + ǫ)fi(x
∗) for i = 1, . . . ,m. Let ŵ ∈ W be the weight

which maximizeswT f(x̂). Therefore,

g(x̂) = ŵT f(x̂)

≤ (1 + ǫ)ŵT f(x∗)

≤ (1 + ǫ) max
w∈W

wT f(x∗) = (1 + ǫ)g(x∗).
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Thereforex̂ is a(1 + ǫ) approximate solution to the problem given by (3.7). ⊓⊔

Together with the above two lemmata, we get the following corollary to Theorem 3.3.3, which

establishes the existence of FPTASes for the robust versionof the shortest path problem, the span-

ning tree problem and the knapsack problem.

Corollary 3.6.5 There is an FPTAS for the problem given by(3.7)whenm is fixed if the following

exact problem can be solved in pseudo-polynomial time: Given (c1, . . . , cd) ∈ Z
d
+ andK ∈ Z+,

does there existx ∈ X such that
∑d

i=1 cixi = K?

3.7 FPTASes for Problems with Rational Objective Functions

In this section, we consider combinatorial optimization problems involving a ratio of two linear

objectives as given in the introduction:

minimizeg(x) =
f1(x)

f2(x)
=

a0 + a1x1 + . . .+ adxd
b0 + b1x1 + . . .+ bdxd

(3.10)

s.t. x ∈ X ⊆ {0, 1}d.

We assume thatf1(x) > 0, f2(x) > 0 for all x ∈ X. The situation here is different from the

problems we have considered previously, since in this case we are attempting to minimizef1, while

simultaneously maximizingf2. Therefore we cannot use Theorem 3.3.3 directly for obtaining an

FPTAS. We need to modify the definition of the Pareto-optimalfront and the approximate Pareto-

optimal front for this problem, and re-state the gap theoremfor the modified definition. We first

give the appropriate definition of the Pareto-optimal and the approximate Pareto-optimal front for

this problem.

Definition 3.7.1 Consider the problem given by(3.10). For this problem, thePareto-optimal fron-

tier P (π) is the set of all pointsx for which there is nox′ such thatf1(x′) ≤ f1(x) andf2(x′) ≥
f2(x) with strict inequality for at least one of them.

Definition 3.7.2 For the problem given by(3.10), for ǫ > 0, anapproximate Pareto-optimal frontier

Pǫ(π) is a set of solutions such that for allx ∈ X, there isx′ ∈ Pǫ(π) such thatf1(x′) ≤ (1 +

ǫ)f1(x) andf2(x′) ≥ f2(x)/(1 + ǫ).

We now state the modified gap theorem for this problem. The proof of this theorem is same as

the one for Theorem 2.2.5, so we omit it.

45



Theorem 3.7.3 (Modified gap theorem)Let ǫ, ǫ′1, ǫ
′
2 > 0 be such that(1− ǫ′1)(1 + ǫ)1/2 = 1 and

(1+ ǫ′2) = (1+ ǫ)1/2. One can determine aPǫ(π) in time polynomial in|π| and1/ǫ if the following

‘gap problem’ can be solved in polynomial time: Given a vector of values(v,w), either

(i) return a solutionx ∈ X such thatf1(x) ≤ v andf2(x) ≥ w, or

(ii) assert that there is nox ∈ X such thatf1(x) ≤ (1− ǫ′1)v andf2(x) ≥ (1 + ǫ′2)w.

It is easy to see that Lemma 3.3.1 holds in this case, with the modified definition of the Pareto-

optimal front. The analog of Lemma 3.3.2 is given below.

Lemma 3.7.4 Let Pǫ(π) denote the approximate Pareto-optimal front of the functions f1 and f2

corresponding to minimizingf1 and maximizingf2. Let x̂ be the solution inPǫ(π) that minimizes

g(x) over all pointsx ∈ Pǫ(π). Thenx̂ is a (1 + ǫ)2-approximate solution for(3.10).

Proof. Letx∗ be an optimal solution of (3.10) that is inP (π). By the definition of anǫ-approximate

Pareto-optimal frontier, there existsx′ ∈ Pǫ(π) such thatf1(x′) ≤ (1 + ǫ)f1(x
∗) andf2(x′) ≥

(1 + ǫ)−1f2(x
∗). Therefore,

g(x′) ≤ (1 + ǫ)f1(x
∗)

(1 + ǫ)−1f2(x∗)
= (1 + ǫ)2g(x∗).

Sincex̂ is a minimizer ofg(x) over all the solutions inPǫ(π), g(x̂) ≤ g(x′) ≤ (1+ ǫ)2g(x∗). ⊓⊔

The following theorem is an analog of Theorem 3.3.3 for this case.

Theorem 3.7.5 There is an FPTAS for the problem given by(3.10) if the following exact problem

can be solved in pseudo-polynomial time: Given(c1, . . . , cd) ∈ Z
d
+ andK ∈ Z+, does there exist

x ∈ X such that
∑d

i=1 cixi = K?

We give a proof of this theorem here, as it involves both maximization and minimization of the

underlying objective functions.

Proof. From Theorem 3.7.3, it suffices to give a polynomial time algorithm to solve the gap

problem. Suppose we want to solve the gap problem for the2-vector(v1, v2). Let r1 = ⌈d/ǫ′1⌉.
We first define a “truncated” objective function. For allj = 1, . . . , d, if for somej, aj > v1, we

setxj = 0, and drop the variablexj from each of the objective functions. LetV be the index set

of the remaining variables. Thus, the remaining coefficients in f1 are now less than or equal tov1.

Next, we define a new objective functionf ′
1(x) =

∑

j∈V a′jxj, wherea′j = ⌈ajr1/v1⌉. In the new
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objective function, the maximum value of a coefficient is nowr1. Forx ∈ X, the following two

statements hold by Lemma 3.8.1.

• If f ′
1(x) ≤ r1, thenf1(x) ≤ v1.

• If f1(x) ≤ v1(1− ǫ′1), thenf ′
1(x) ≤ r1.

For f2, we do the following. Letr2 = ⌊d/ǫ′2⌋. Let f ′
2(x) =

∑

j∈V b′jxj , whereb′j =

min(r2, ⌊bjr2/v2⌋). So inf ′
2, all the coefficients are no more thanr2. The following two state-

ments hold by Lemma 3.8.2.

• If f ′
2(x) ≥ r2 thenf2(x) ≥ v2.

• If f2(x) ≥ (1 + ǫ′2)v2 thenf ′
2(x) ≥ r2.

Therefore, to solve the gap problem, it suffices to find anx ∈ X such thatf ′
1(x) ≤ r1 and

f ′
2(x) ≥ r2, or assert that no suchx exists. There arer1 + 1 ways in whichf ′

1(x) ≤ r1 can be

satisfied, and there are at mostr2d ways in whichf ′
2(x) ≥ r2 can be satisfied. Hence there are

O(r1r2d) ways overall in which both the inequalities can be simultaneously satisfied. Suppose we

want to find if there is anx ∈ X such thatf ′
i(x) = bi for i = 1, 2. This is equivalent to finding anx

such thatf ′
1(x) +Mf ′

2(x) = b1 +Mb2, whereM = d ·max(r1, r2) + 1 is a number greater than

the maximum value thatf ′
i(x) can take, fori = 1, 2. Hence, if we have a pseudo-polynomial time

algorithm for solving the exact problem, we can solve the gapproblem in polynomial time. ⊓⊔

This theorem implies than we can use our framework to get an FPTAS, for example, for the

knapsack problem with a fractional objective. In fact, it isnot hard to see that the method can be

extended to functionsg having the formf1f2/f3f4, orf1/f2+f3/f4 as well. As long as the number

of functions is fixed, we will get an FPTAS for the problem using our framework.

3.7.1 FPTAS for Assortment Optimization Problems

The problem of minimizing a sum-of-ratios form often arisesin assortment optimization in the

context of retail management. In this section, we obtain FPTASes for two models of the assortment

optimization problem: the mixture of logits choice model and the nested logit choice model.

In the assortment optimization problem with the mixture of logits choice model, we have a set

of n products indexed byN = {1, . . . , n} andm customer classes indexed byC = {1, . . . ,m}.
The demand of a customer in a customer classi ∈ C is modeled using multinomial logit choice
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model with parameters(vi0, vi1, . . . , vin) ∈ R
n+1
+ . vi0 denotes the preference of the customer for

purchasing no item, andvij is the preference of the customer to purchase productj ∈ N . If an

assortmentS ⊆ N is offered to a customer in the classi ∈ C, the probability that the customer

purchases a productj ∈ N is given by

pij(S) =











vij
vi0 +

∑

k∈S vik
i ∈ S,

0 otherwise.

The profit corresponding to the purchase of an itemj is wj . Therefore the total profit from

customer classi ∈ C when an assortmentS ⊆ N is offered to the customer is given by

fi(S) =
∑

j∈S
pij(S)wj =

∑

j∈S wjvij

vi0 +
∑

j∈S vij
.

Let λi denote the fraction of the customers in classi, where
∑

i∈C λi = 1. The optimization

problem is to find an assortmentS that maximizes the objective function

g(S) =
∑

i∈C
λifi(S).

Thus, in this case the objective function is a sum ofm ratios. This problem is NP-hard even

when there are onlym = 2 customer classes, but admits a PTAS ifm is fixed (Rusmevichientong,

Shmoys, and Topaloglu 2010). Using our framework, we can getan FPTAS for the case whenm is

fixed as follows. Letxj be the variable which is1 if product j ∈ N is offered in an assortment,0

otherwise. The objective function isg(x) =
∑m

i=1 fi1(x)/fi2(x), where

fi1(x) = λi

n
∑

j=1

wjvijxj,

fi2(x) = vi0 +
n
∑

j=1

vijxj.

There are no constraints in this problem. The exact problem in this case is, given a vectorc ∈ Z
n
+

and a non-negative integerC, does there existx ∈ {0, 1}n such that
∑n

j=1 cjxj = C? This is the

subset-sum problem which can be solved in pseudo-polynomial time by dynamic programming.

Hence we get an FPTAS for the assortment optimization problem with the mixture of logits choice

model. We therefore have the following corollary to Theorem2.2.5.
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Corollary 3.7.6 The assortment optimization problem with the mixture of logits choice model ad-

mits an FPTAS when the number of customer classes is fixed.

In the mixture of logits choice model, the likelihood of choosing between two alternative prod-

ucts is independent of the assortment offered to the customer. This may not necessarily be true in

practice. An alternative model which takes care of this anomaly is the nested logit choice model.

In this model, there areG partitions of the product setN given byH1, . . . ,HG, whereG is fixed.

Assuming that there is only one class of customers, the probability that a customer purchases a

productj ∈ N when offered an assortmentS ⊆ N is given by

pj(S) =























vj
(

∑

l∈Hg∩S
vl

)αg · 1

1 +

G
∑

k=1

(

∑

l∈Hk∩S
vl

)1−αk

if j ∈ Hg ∩ S for someg,

0 otherwise.

Here,0 ≤ αg ≤ 1 for all g = 1, . . . , G andvl ∈ Z≥0 for all l ∈ N . In this model, the likelihood

of choosing between two products is independent of the assortment offered if they are in the same

partition, but depends on the assortment if they are in different partitions. The probability of not

purchasing any product isp0(S) = 1/(1 +
∑G

k=1(
∑

l∈Hk∩S vl)
1−αk).

In the capacitated version of this problem, we also have a constraint
∑

i∈S ci ≤ C, where

ci ∈ Z≥0 corresponds to the capacity taken up by the producti andC ∈ Z+ corresponds to the total

capacity available. The objective is to find an assortmentS that maximizes
∑

j∈S pj(S)wj subject

to the capacity constraint. Rusmevichientong, Shen, and Shmoys (2009) show that this problem is

NP-hard, but admits a PTAS whenG is fixed. They also prove that to get an approximate solution

of this problem, it suffices to find an approximate solution ofthe following sum-of-ratios problem:

maximize g(S1, . . . , SG) =
G
∑

i=1

∑

l∈Si
ul

(
∑

l∈Si
vl)αi

s.t.
G
∑

i=1

∑

l∈Si

cl ≤ C,

Si ⊆ Hi, for all i = 1, . . . , G.

Here,ul ∈ Z≥0 for all l ∈ N . Letxl be the indicator variable which is1 if an iteml ∈ N is selected,
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0 otherwise. The objective function isg(x) =
∑G

i=1 fi1(x)/(fi2(x))
αi , where

fi1(x) =
∑

l∈Hi

ulxl,

fi2(x) =
∑

l∈Hi

vlxl.

Moreover, ifSi = ∅, then we count0 for the termfi1(x)/(fi2(x))
αi in the objective function.

Note that the denominator in each of the ratios in the this problem is non-linear. However, because

each exponentαi is upper-bounded by1, we can still use our framework to get an FPTAS for

this problem. First, we choose somek of theG setsS1, . . . , SG to be non-empty and the rest of

the sets to be empty. Since there areG groups, we will need to do this2G times to cover all the

possible cases. This does not affect the polynomial runningtime of our algorithm asG is fixed.

Once we choose thek sets, saySi1 , . . . , Sik to be non-empty, we construct the Pareto-optimal

frontier corresponding to maximizing thek linear functionsfi11, . . . , fik1 and minimizing thek

linear functionsfi12, . . . , fik2. To ensure that each of thek setsSi1 , . . . , Sik is non-empty, we set

the lower bound for the numerator function corresponding tothese groups to be1 when solving the

gap problem (see the proof of Theorem 2.2.5). The underlyingset of constraints is given by

∑

l∈N
clxl ≤ C,

xl ∈ {0, 1}, l ∈ N.

This is the knapsack constraint, and the corresponding exact problem can be solved in pseudo-

polynomial time by dynamic programming. Hence we get an FPTAS for the assortment optimiza-

tion problem in the nested logit choice model with capacity constraints. We therefore have the

following corollary to Theorem 3.7.5.

Corollary 3.7.7 The capacitated assortment optimization problem with nested logit choice model

admits an FPTAS when the number of partitionsG of the set of productsN is fixed.

3.8 Conclusion

The main contribution of this chapter is a novel framework for designing approximation schemes

for combinatorial optimization problems in which several functions are combined into one objec-

tive. Using this framework, we design FPTASes for problems arising in scheduling and resource
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allocation, combinatorial optimization problems with a rational or a product objective function and

robust weighted multi-objective optimization problems. Given the versatility of our technique, we

believe that it will be applicable to many other combinatorial optimization problems as well.

Appendix

Lemma 3.8.1 Supposef(x) =
∑d

j=1 ajxj, 0 ≤ aj ≤ v, xj ∈ {0, 1} and r = ⌈d/ǫ⌉. Let

f ′(x) =
∑d

j=1 a
′
jxj, wherea′j = ⌈ajr/v⌉. Then,

1. If f ′(x) ≤ r, thenf(x) ≤ v.

2. If f(x) ≤ v(1− ǫ), thenf ′(x) ≤ r.

Proof.

1. Givenf ′(x) ≤ r,

f(x) =

d
∑

j=1

ajxj =
v

r

d
∑

j=1

ajr

v
xj ≤

v

r

d
∑

j=1

⌈ajr

v

⌉

xj =
v

r
f ′(x) ≤ v.

2. Sincef(x) ≤ v(1 − ǫ),

d
∑

j=1

ajr

v
xj ≤ r(1− ǫ).

Rounding up each of thed numbers on the left hand side, we get

d
∑

j=1

⌈ajr

v

⌉

xj ≤ r(1− ǫ) + d

⇒ f ′(x) ≤ r −
⌈

d

ǫ

⌉

ǫ+ d

≤ r.

⊓⊔

Lemma 3.8.2 Supposef(x) =
∑d

j=1 bjxj, 0 ≤ bj ≤ v, xj ∈ {0, 1} andr = ⌈d/ǫ⌉. Letf ′(x) =
∑

b′jxj, whereb′j = min(r, ⌊bjr/v⌋). Then,

1. If f ′(x) ≥ r, thenf(x) ≥ v.
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2. If f(x) ≥ (1 + ǫ)v, thenf ′(x) ≥ r.

Proof.

1. Givenf ′(x) ≥ r,

f(x) =
d

∑

j=1

bjxj =
v

r

d
∑

j=1

bjr

v
xj ≥

v

r

r
∑

j=1

⌊

bjr

v

⌋

xj =
v

r

r
∑

j=1

b′jxj ≥
v

r
f ′(x) ≥ v.

2. LetV be the index of all the variablesxj such thatxj = 1. Supposej ∈ V andb′j = r. Then

clearlyf ′(x) ≥ r. Now assume that for allj ∈ V , b′j = ⌊bjr/v⌋. Then,

∑

j∈V

bjr

v
xj ≥ (1 + ǫ)r.

Rounding down each of the numbers on the left hand side and together with the assumption

thatb′j = ⌊bjr/v⌋, we get

∑

j∈V

⌊

bjr

v

⌋

xj ≥ (1 + ǫ)r − d

⇒ f ′(x) ≥ r + ǫ

⌈

d

ǫ

⌉

− d

≥ r.

⊓⊔
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Chapter 4

Approximation Schemes for Optimizing

a Class of Low-Rank Functions Over a

Polytope

4.1 Introduction

Non-convex optimization problems are an important class ofoptimization problems that arise in

many practical situations (see e.g. Horst and Pardalos (1995) for a survey). However, unlike their

convex counterpart for which efficient polynomial time algorithms are known (see e.g. Nesterov and

Nemirovskii (1961)), non-convex optimization problems have proved to be much more intractable.

A major impediment to efficiently solving non-convex optimization problems is the existence of

multiple local optima in such problems; thus any algorithm which seeks to find a globally optimal

solution (or a solution close to a global optimum) must avoidgetting stuck in local optima.

In this chapter, we focus on optimizing a special class of non-convex functions, called low-rank

functions, over a polytope. Informally speaking, a function has low rank if it depends only on a few

linear combinations of the input variables. We present FPTASes for optimizing a very general class

of low-rank functions over a polytope. Recall from Section 2.1 that an FPTAS for a minimization

(resp. maximization) problem is a family of algorithms suchthat for all ǫ > 0 there is a(1 + ǫ)-

approximation (resp.(1− ǫ)-approximation) algorithm for the problem, and the runningtime of the

algorithm is polynomial in the input size of the problem, as well as in1/ǫ.

Throughout this chapter, we use the following definition of alow-rank non-linear function, given
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by Kelner and Nikolova (2007).

Definition 4.1.1 A functionf : Rn → R is said to be ofrankk, if there existk linearly independent

vectorsa1, . . . , ak ∈ R
n and a functiong : Rk → R such thatf(x) = g(aT1 x, . . . , a

T
k x).

The optimization problem we are attempting to solve is

min f(x) = g(aT1 x, . . . , a
T
k x)

s.t. x ∈ P.

Here,P is a polytope, andg is a continuous function (this guarantees that a minimum exists).

We assume that the optimal value of this program is strictly positive; this is necessary for the notion

of approximation considered here to be valid. Recent work onoptimization problems of this kind

has focused on the special case wheng is quasi-concave (see e.g. Porembski (2004), Kelner and

Nikolova (2007), Goyal and Ravi (2009)); all of these works exploit the fact that the minimum of

a quasi-concave function over a polytope is always attainedat an extreme point of the polytope

(see e.g. Bertsekas, Nedić, and Ozdaglar (2003)). In contrast, our approximation scheme does not

require the assumption of quasi-concavity.

In general, non-linear programming problems of this form are known to be NP-hard. Pardalos

and Vavasis (1991) proved that minimizing a quadratic function f(x) = cTx + 1
2x

TQx, where

the HessianQ has just one non-zero eigenvalue which is negative (and hence f(x) is a function of

rank two), over a polytope is NP-hard. Subsequently, Matsui(1996) proved that minimizing the

product of two strictly positive linear functions over a polytope is NP-hard. Both these hardness

results imply that minimizing a rank two function over a polytope is NP-hard. In fact, as we show

in Section 4.5, the optimum value of the problem stated abovecannot be approximated to within

any factor unless P = NP. Therefore, we will need some extra assumptions on the properties of the

functiong to obtain an approximation scheme for the optimization problem (see Section 4.2.1).

We mention a few classes of non-convex optimization problems that we tackle in this chapter.

1. Multiplicative programming problems: In this case,g has the formg(y1, . . . , yk) =
∏k

i=1 yi. It is known that such a functiong is quasi-concave (Konno and Kuno 1992), and

therefore its minimum is attained at an extreme point of the polytope. Multiplicative objec-

tive functions also arise in combinatorial optimization problems. For example, consider the

shortest path problem on a graphG = (V,E) with two edge weightsa : E → Z+ and
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b : E → Z+. In the context of navigation systems, Kuno (1999) discusses the shortest path

problem with the objective functiona(P ) · b(P ) (whereP is the chosen path), wherea corre-

sponds to the edge lengths, andb corresponds to the number of intersections at each edge in

the graph. A similar problem is considered by Kern and Woeginger (2007) as well.

2. Low rank bi-linear forms: Bi-linear functions have the formg(x1, . . . , xk, y1, . . . , yk) =
∑k

i=1 xi · yi. Such functions do not even possess the generalized convexity properties, such

as quasi-concavity or quasi-convexity (Al-Khayyal and Falk 1983). Bi-linear programming

problems are of two kinds:separable, in which x andy are disjunctively constrained, and

non-separable, in whichx andy appear together in a constraint. A separable bi-linear func-

tion has the neat property that its optimum over a polytope isattained at an extreme point

of the polytope, and this fact has been exploited for solvingsuch problems (see e.g. Konno

(1976)). The non-separable case is harder, and it requires considerably more effort for solving

the optimization problem (Sherali and Alameddine 1992). Inthis chapter, we investigate the

particular case when the number of bi-linear terms,k, is fixed.

3. Sum-of-ratios optimization: Sum-of-ratios functions have the form

g(x1, . . . , xk, y1, . . . , yk) =
∑k

i=1 xi/yi. Even for the case of the sum of a linear

term and a ratio of two linear terms, the function can have many local optima (Schaible

1977). Further, Matsui (1996) has shown that optimizing functions of this form over a

polytope is an NP-hard problem. Problems of this form arise,for example, in multi-stage

stochastic shipping problems where the objective is to maximize the profit earned per unit

time (Falk and Palocsay 1992). For more applications, see the survey paper by Schaible and

Shi (2003) and the references therein.

There are other functions which do not fall into any of the categories above, but for which our

framework is applicable; an example is aggregate utility functions (Eisenberg 1961).

Before proceeding further, we state the computational model we are assuming for our algorith-

mic results to hold:

• The vectorsa1, . . . , ak are known to us (i.e. they are part of the input).

• We are given a polynomial time oracle to compute the functiong.

• For the polytopeP , we have a polynomial time separation oracle.
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Our results: The main contributions of this chapter are as follows.

1. FPTAS for minimizing low rank functions over a polytope: We give an FPTAS for mini-

mizing a low-rank functionf over a polytope under very general conditions (Section 4.2.1).

Even though we present our results only for the case of minimization, the method has a

straightforward extension for maximization problems as well. The running time of our ap-

proximation scheme is exponential ink, but polynomial in1/ǫ and all other input parameters.

Our algorithm relies on deciding feasibility of a polynomial number of linear programs. We

emphasize here that this FPTAS does not require quasi-concavity of the functionf . To the best

of our knowledge, this is the first FPTAS for general non-quasi-concave minimization/non-

quasi-convex maximization problems. We then derive approximation schemes for three cat-

egories of non-linear programming problems: multiplicative programming (Section 4.3.1),

low-rank bi-linear programming (Section 4.3.2) and sum-of-ratios optimization (Section 4.3.3).

2. Minimizing quasi-concave functions:For the specific case of quasi-concave minimization,

we give an alternative algorithm which returns an approximate solution which is also an

extreme point of the polytopeP (Section 4.4). Again, this algorithm relies on solving a

polynomial number of linear programs, and it can be extendedto the case of quasi-convex

maximization over a polytope. As an application of our technique, we show that we can get

an FPTAS for combinatorial optimization problems in which the objective is a product of a

fixed number of linear functions, provided a complete description of the convex hull of the

feasible points in terms of linear inequalities is known. For example, this technique can be

used to get an FPTAS for the product version and the mean-riskminimization version of the

spanning tree problem and the shortest path problem.

3. Hardness of approximation result: We show that unless P = NP, it is not possible to approx-

imate the minimum of a positive valued concave function overa polytope to within any factor,

even if the polytope is the unit hypercube (Section 4.5). This improves upon theΩ(log n) in-

approximability result given by Kelner and Nikolova (2007). We first show a similar result

for unconstrained minimization of a supermodular set function. Then by using an approxi-

mation preserving reduction from supermodular function minimization to minimization of its

continuous extension over a unit hypercube, we get the desired result. The hardness result for

supermodular function minimization is in contrast with therelated problem of submodular

function maximization which admits a constant factor approximation algorithm (Feige, Mir-
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rokni, and Vondrák 2007). We also give a stronger hardness of approximation result, namely

that it is not possible to approximate the minimum of a concave quadratic function (even with

just one negative eigenvalue in the Hessian) over a polytopeto within any factor, unless P =

NP.

The philosophy behind the approximation scheme is to viewg as an objective function that

combines several objectives (aT1 x, . . . , a
T
k x in this case) into one. Therefore the idea is to con-

sider the original single-objective optimization problemas a multiple-objective optimization prob-

lem. We first construct anapproximatePareto-optimal front corresponding to thek linear functions

aT1 x, . . . , a
T
k x, and then choose the best solution from this approximate Pareto set corresponding to

our objective function as the approximate solution. Constructing the exact Pareto-optimal front for

linear functions, in general, is NP-hard, but an approximate Pareto-optimal front can be computed

in polynomial time providedk is fixed (Section 2.2). Once we construct an approximate Pareto set,

it is possible to compute an approximate solution for a largeclass of functionsg (see Section 4.2 for

more details).

Related work: An exhaustive reference on algorithms for non-linear programming can be found

in Horst and Pardalos (1995). The case of optimizing low-rank non-linear functions is discussed

extensively by Konno, Thach, and Tuy (1996). Konno, Gao, andSaitoh (1998) give cutting plane

and tabu search algorithms for minimizing low-rank concavequadratic functions. A more recent

work by Porembski (2004) deals with minimizing low-rank quasi-concave functions using cutting

plane methods. The methods employed in both papers are heuristic, with no theoretical analysis

of the running time of the algorithms, or performance guarantee of the solutions obtained. Vavasis

(1992) gives an approximation scheme for low-rank quadratic optimization problems (i.e. the case

where the Hessian has only a few non-zero eigenvalues.) However, Vavasis uses a different notion

of approximation algorithm than the one we use in this chapter.

A more theoretical investigation of low-rank quasi-concave minimization was done by Kelner

and Nikolova (2007), who give an expected polynomial-time smoothed algorithm for this class of

functions over integral polytopes with polynomially many facets. They also give a randomized

fully-polynomial time approximation scheme for minimizing a low-rank quasi-concave function

over a polynomially bounded polytope (i.e. one in which thel1-norm of every point contained in the

polytope is bounded by a polynomial inn, the dimension of the input space), provided a lower bound

on the minimum of the quasi-concave function is known a-priori, and the objective function satisfies
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a Lipschitz condition. Further, they show that it is NP-hardto approximate the general quasi-

concave minimization problem by a ratio better thanΩ(log n) unless P = NP. More recently, Goyal

and Ravi (2009) give an FPTAS for minimizing a class of low-rank quasi-concave functions over

convex sets. The particular class of low-rank quasi-concave functions which can be optimized using

this technique is similar to the one which we deal with in our chapter. Approximation algorithms

for minimizing a non-linear function over a polytope without the quasi-concavity assumption have

not been studied in the literature so far.

Konno and Kuno (1992) propose a parametric simplex algorithm for minimizing the product

of two linear functions over a polytope. Benson and Boger (1997) give a heuristic algorithm for

solving the more general linear multiplicative programming problem, in which the objective func-

tion can be a product of more than two linear functions. Survey articles for solving multiplicative

programming problems can be found in the books by Horst and Pardalos (1995) and Konno, Thach,

and Tuy (1996). For the case of combinatorial optimization problems with a product of two linear

functions, Kern and Woeginger (2007) and Goyal, Genc-Kaya,and Ravi (2011) give an FPTAS

when the description of the convex hull of the feasible solutions in terms of linear inequalities is

known. However, the results in both the papers do not generalize to the case when the objective

function is a product of more than two linear functions. In contrast, our results easily generalize to

this case as well.

For separable bi-linear programming problems, Konno (1976) gives a cutting plane algorithm

that returns an approximate locally optimal solution. Al-Khayyal and Falk (1983) handle the non-

separable case using branch-and-bound, and they showed that their algorithm is guaranteed to con-

verge to a globally optimal solution of the optimization problem. Another method for solving

the non-separable case is the reformulation-linearization technique due to Sherali and Alameddine

(1992). This technique is similar to the lift-and-project method for solving mixed integer programs:

The algorithm first generates valid quadratic constraints by taking pairwise products of the con-

straints, then linearizes both the valid quadratic constraints and the bi-linear term to obtain a lower

bounding linear program, and finally uses branch-and-boundto solve the resulting reformulation.

Minimizing bi-linear functions of low-rank using a parametric simplex algorithm is discussed in the

book by Konno, Thach, and Tuy (1996), however their algorithm works for the separable case only.

From a theoretical point of view, an advantage of our technique, as compared to most of the existing

algorithms in the literature, is that it works equally well for both separable as well as non-separable

bi-linear programming problems.
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A good reference for algorithms for solving the sum-of-ratios optimization problem is the sur-

vey paper by Schaible and Shi (2003). Almost all the existingalgorithms for optimizing the sum

of ratios of linear functions are heuristic, with no provable bounds on the running time of the algo-

rithm, nor on the quality of the solution obtained. A common approach for solving these problems

is to linearize the objective function by introducing a parameter for each ratio in the objective (see

e.g. Falk and Palocsay (1992)). In contrast, our algorithm does not need to parametrize the objective

function. We give the first FPTAS for this problem, when the number of ratios is fixed. Our algo-

rithm is especially suited for the case where the number of ratios is small, but each ratio depends on

several variables.

4.2 The Approximation Scheme

Recall the optimization problem given in Section 4.1.

min f(x) = g(aT1 x, . . . , a
T
k x) (4.1)

s.t. x ∈ P.

We further assume that the following conditions are satisfied:

1. g(y) ≤ g(y′) for all y, y′ ∈ R
k
+ such thatyi ≤ y′i for all i = 1, . . . , k,

2. g(λy) ≤ λcg(y) for all y ∈ R
k
+, λ > 1 and some constantc, and

3. aTi x > 0 for i = 1, . . . , k over the given polytope.

There are a number of functionsg which satisfy conditions 1 and 2, for example thelp norms

(with c = 1), bi-linear functions (withc = 2) and the product of a constant number (sayp) of

linear functions (withc = p). Armed with Theorem 2.2.5, we now present an approximation

scheme for the problem given by (4.1) under these assumptions. We denote the termaTi x by fi(x),

for i = 1, . . . , k. We first establish a connection between optimal (resp. approximate) solutions

of (4.1) and the (resp. approximate) Pareto-optimal frontP (π) (resp.Pǫ(π)) of the multi-objective

optimization problemπ with objectivesf1, . . . , fk over the same polytope.

Before proceeding, we emphasize that the above conditions are not absolutely essential to derive

an FPTAS for the general problem given by (4.1). Condition 1 may appear to be restrictive, but it
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can be relaxed, provided that there is at least one optimal solution of (4.1) which lies on the Pareto-

optimal front of the functionsaT1 x, . . . , a
T
k x. For example, the sum-of-ratios form does not satisfy

this condition, but still we can get an FPTAS for problems of this form (see Section 4.3.3).

4.2.1 Formulation of the FPTAS

Lemma 4.2.1 There is at least one optimal solutionx∗ to (4.1)such thatx∗ ∈ P (π).

Proof. Let x̂ be an optimal solution of (4.1). Supposêx /∈ P (π). Then there existsx∗ ∈
P (π) such thatfi(x∗) ≤ fi(x̂) for i = 1, . . . , k. By Property 1 ofg, g(f1(x∗), . . . , fk(x∗)) ≤
g(f1(x̂), . . . , fk(x̂)). Thusx∗ minimizes the functiong and is inP (π). ⊓⊔

Lemma 4.2.2 Let x̂ be a solution inPǫ(π) that minimizesf(x) over all pointsx ∈ Pǫ(π). Thenx̂

is a (1 + ǫ)c-approximate solution of(4.1); that is, f(x̂) is at most(1 + ǫ)c times the value of an

optimal solution to(4.1).

Proof. Let x∗ be an optimal solution of (4.1) that is inP (π). By the definition ofǫ-approximate

Pareto-optimal front, there existsx′ ∈ Pǫ(π) such thatfi(x′) ≤ (1 + ǫ)fi(x
∗), for all i = 1, . . . , k.

Therefore,

f(x′) = g(f1(x
′), . . . , fk(x

′)) ≤ g((1 + ǫ)f1(x
∗), . . . , (1 + ǫ)fk(x

∗))

≤ (1 + ǫ)cg(f1(x
∗), . . . , fk(x

∗)) = (1 + ǫ)cf(x∗),

where the first inequality follows from Property 1 and the second inequality follows from Property 2

of g. Sincex̂ is a minimizer off(x) over all the solutions inPǫ(π), f(x̂) ≤ f(x′) ≤ (1+ ǫ)cf(x∗).

⊓⊔

Recall from Theorem 2.2.5 that it is possible to constructPǫ(π) in polynomial time if the gap

problem corresponding to thek functionsf1, . . . , fk can be solved in polynomial time. When

the functionsfi are all linear, the gap problem corresponds to checking the feasibility of a linear

program, which can be solved in polynomial time. Hence we getan approximation scheme for

solving the problem given by (4.1). This is captured in the following theorem.

Theorem 4.2.3 The gap problem corresponding to the multi-objective version of the problem given

by (4.1) can be solved in polynomial time. Therefore, there exists anFPTAS for solving(4.1),

assuming Conditions 1-3 are satisfied.
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Proof. Solving the gap problem corresponds to checking the feasibility of the following linear

program:

aTi x ≤ (1− ǫ′)vi, for i = 1, . . . , k, (4.2a)

x ∈ P. (4.2b)

If this linear program has a feasible solution, then any feasible solution to this LP gives us the

required answer to question (i). Otherwise, we can answer question (ii) in the affirmative. The

feasibility of the linear program can be checked in polynomial time under the assumption that we

have a polynomial time separation oracle for the polytopeP (Grötschel, Lovász, and Schrijver

1988). The existence of the FPTAS follows from Lemma 4.2.1 and Lemma 4.2.2. ⊓⊔

4.2.2 Outline of the FPTAS

The FPTAS given above can be summarized as follows.

1. Sub-divide the space of objective function values[m,M ]k into hypercubes, such that in each

dimension, the ratio of two successive divisions is1 + ǫ′′, whereǫ′′ = (1 + ǫ)1/2c − 1.

2. For each corner of the hypercubes, solve the gap problem asfollows, and keep only the set of

non-dominated solutions obtained from solving each of the gap problems.

(a) Check the feasibility of the LP given by (4.2a)-(4.2b).

(b) If this LP is infeasible, do nothing. If feasible, then include the feasible point of the LP

in the set of possible candidates for points in the approximate Pareto-optimal front.

3. Among the non-dominated points computed in Step 2, pick the point which gives the least

value of the functionf , and return it as an approximate solution to the given optimization

problem.

The running time of the algorithm isO
(

( log (M/m)
ǫ )k · LP (n, |π|)

)

, whereLP (n, |π|) is the

time taken to check the feasibility of a linear program inn variables and input size of|π| bits. This

is polynomial in the input size of the problem providedk is fixed. Therefore when the rank of the

input function is a constant, we get an FPTAS for the problem given by (4.1).
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4.3 Applications of the Approximation Scheme

Using the general formulation given in Section 4.2.1, we nowgive approximation schemes for three

categories of optimization problems: multiplicative programming, low-rank bi-linear programming

and sum-of-ratios optimization.

4.3.1 Multiplicative Programming Problems

Consider the following multiplicative programming problem for a fixedk:

min f(x) = (aT1 x) · (aT2 x) · . . . · (aTk x) (4.3)

s.t. x ∈ P.

We assume thataTi x > 0, for i = 1, . . . , k, over the given polytopeP . In our general formula-

tion, this corresponds tog(y1, . . . , yk) =
∏k

i=1 yi with c = k. f(x) has rank at mostk in this case.

Thus, we get the following corollary to Theorem 4.2.3.

Corollary 4.3.1 Consider the optimization problem given by(4.3), and suppose thatk is fixed.

Then the problem admits an FPTAS ifaTi x > 0 for i = 1, . . . , k over the given polytopeP .

It should be noted that the functionf given above is quasi-concave, and so it is possible to get

an FPTAS for the optimization problem given by (4.3) which always returns an extreme point of the

polytopeP as an approximate solution (see Section 4.4).

4.3.2 Low Rank Bi-Linear Programming Problems

Consider a bi-linear programming problem of the following form for a fixedk.

min f(x, y) = cTx+ dT y +

k
∑

i=1

(aTi x) · (bTi y) (4.4)

s.t. Ax+By ≤ h.

wherec, ai ∈ R
m, d, bi ∈ R

n, A ∈ R
l×m, B ∈ R

l×n andh ∈ R
l. f(x, y) has rank at most2k + 1.

We have the following corollary to Theorem 4.2.3.
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Corollary 4.3.2 Consider the optimization problem given by(4.4), and suppose thatk is fixed.

Then the problem admits an FPTAS ifcTx > 0, dT y > 0 andaTi x > 0, bTi y > 0 for i = 1, . . . , k

over the given polytopeAx+By ≤ h.

It should be noted that our method works both in the separablecase (i.e. whenx andy do not

have a joint constraint) as well as in the non-separable case(i.e. whenx andy appear together in

a linear constraint). For the case of separable bi-linear programming problems, the optimum value

of the minimization problem is attained at an extreme point of the polytope, just as in the case of

quasi-concave minimization problems. For such problems, it is possible to obtain an approximate

solution which is also an extreme point of the polytope, using the algorithm given in Section 4.4.

4.3.3 Sum-of-Ratios Optimization

Consider the optimization of the following rational function over a polytope.

min f(x) =

k
∑

i=1

fi(x)

gi(x)
(4.5)

s.t. x ∈ P.

Here,f1, . . . , fk andg1, . . . , gk are linear functions whose values are positive over the polytopeP ,

andk is a fixed number. This problem does not fall into the framework given in Section 4.1 (the

function combiningf1, . . . , fk, g1, . . . , gk does not necessarily satisfy Property 1). However, it is

still possible to use our framework to find an approximate solution to this optimization problem. Let

hi(x) = fi(x)/gi(x) for i = 1, . . . , k. We first show that it is possible to construct an approximate

Pareto-optimal front of the functionshi(x) in polynomial time.

Lemma 4.3.3 It is possible to construct an approximate Pareto-optimal front Pǫ(π) of thek func-

tionshi(x) = fi(x)/gi(x) in time polynomial in|π| and1/ǫ, for all ǫ > 0.

Proof. From Theorem 2.2.5, it suffices to show that we can solve the gap problem corresponding

to thek functionshi(x) in polynomial time. Solving the gap problem corresponds to checking the

feasibility of the following system:

hi(x) ≤ (1− ǫ′)vi, for i = 1, . . . , k,

x ∈ P.
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Each constrainthi(x) ≤ (1− ǫ′)vi is equivalent tofi(x) ≤ (1− ǫ′)vi · gi(x), which is a linear con-

straint asfi(x) andgi(x) are linear functions. Hence solving the gap problem reducesto checking

the feasibility of a linear program, which can be done in polynomial time under the assumption that

we have a polynomial time separation oracle for the polytopeP . ⊓⊔

The corresponding versions of Lemma 3.3.1 and Lemma 3.3.2 for the sum-of-ratios minimiza-

tion problem are given below.

Lemma 4.3.4 There is at least one optimal solutionx∗ to (4.5)such thatx∗ is inP (π), the Pareto-

optimal front of the functionsh1(x), . . . , hk(x).

Proof. Supposêx is an optimal solution of the problem andx̂ /∈ P (π). Then there existsx∗ ∈ P (π)

such thathi(x∗) ≤ hi(x̂) for all i = 1, . . . , k. Thenf(x∗) =
∑k

i=1 hi(x
∗) ≤∑k

i=1 hi(x̂) ≤ f(x̂).

Thusx∗ minimizes the functionf and is inP (π). ⊓⊔

Lemma 4.3.5 Let x̂ be a solution inPǫ(π) that minimizesf(x) over all pointsx ∈ Pǫ(π). Thenx̂

is a (1 + ǫ)-approximate solution of the problem(4.5).

Proof. Letx∗ be an optimal solution of (4.5) that is inP (π). By definition, there existsx′ ∈ Pǫ(π)

such thathi(x′) ≤ (1 + ǫ)hi(x
∗), for all i = 1, . . . , k. Therefore,

f(x′) =
k

∑

i=1

hi(x
′) ≤

k
∑

i=1

(1 + ǫ)hi(x
∗) ≤ (1 + ǫ)f(x∗).

Sincex̂ is a minimizer off(x) over all the solutions inPǫ(x), f(x̂) ≤ f(x′) ≤ (1 + ǫ)f(x∗). ⊓⊔

The existence of an FPTAS for problem (4.5) now follows from Lemma 4.3.4 and Lemma 4.3.5.

We therefore have the following corollary.

Corollary 4.3.6 Consider the problem given by(4.5), and suppose thatk is fixed. Then the problem

admits an FPTAS iffi(x) > 0, gi(x) > 0 over the given polytopeP .

4.4 The Special Case of Minimizing Quasi-Concave Functions

The algorithm given in Section 4.2 may not necessarily return an extreme point of the polytopeP

as an approximate solution of the optimization problem given by (4.1). However, in certain cases

it is desirable that the approximate solution we obtain is also an extreme point of the polytope.
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For example, supposeP describes the convex hull of all the feasible solutions of a combinatorial

optimization problem, such as the spanning tree problem. Then an algorithm that returns an extreme

point of P as an approximate solution can be used directly to get an approximate solution for the

combinatorial optimization problem with a non-linear objective function as well. In this section, we

demonstrate such an algorithm for the case when the objective function is a quasi-concave function,

which we define below.

Definition 4.4.1 A functionf : Rn → R is quasi-concave if for allλ ∈ R, the setSλ = {x ∈ R
n :

f(x) ≥ λ} is convex.

It is a well known result that the minimum of a quasi-concave function over a polytope is attained

at an extreme point of the polytope (see e.g. Bertsekas, Nedić, and Ozdaglar (2003)). In fact, for this

case, it is also possible to get an approximate solution of the problem which is an extreme point of

the polytope, a result already given by Goyal and Ravi (2009). We can get a similar result using our

framework, by employing a different algorithm that uses theconcept of approximate convex Pareto

set, instead of approximate Pareto-optimal front. Recall the definition of an approximate convex

Pareto-optimal front from Section 2.2.

Definition 4.4.2 Let π be an instance of a multi-objective minimization problem. For ǫ > 0, an

ǫ-approximate convex Pareto-optimal set, denoted byCPǫ(π), is a set of solutions, such that for all

x ∈ X, there isx′ ∈ conv(CPǫ(π)) such thatfi(x′) ≤ (1 + ǫ)fi(x), for all i.

Before giving an algorithm for computing a particular approximate convex Pareto-optimal set,

we first give some intuition about the structure of the convexPareto-optimal set. The Pareto-optimal

front P (π) corresponds to the solutions of the weighted linear programmin
∑k

i=1wifi(x) over the

polytopeP , for all weight vectorsw ∈ R
k
≥0. The solution points in the convex Pareto-optimal set

CP (π) are the extreme point solutions of these linear programs. Thus one way to obtain a convex

Pareto-optimal set would be to obtain the optimal extreme points of the weighted linear program

for all non-negative weightsw. The idea behind the algorithm for finding an approximate convex

Pareto-optimal setCPǫ(π) is to choose a polynomial number of such weight vectors, and obtain the

corresponding extreme point solutions for the weighted linear programs.

The algorithm for computingCPǫ is presented below. Without any loss of generality, for this

section we assume thatm = 1/M . For a positive integerN , let [N ] denote the set{1, . . . , N}. In

steps2−3, we compute the weight setW (U), which is a union ofk setsWj(U) for j = 1, . . . , k. In
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eachWj(U), thejth component is fixed atU , and the other components vary from1 to U . In steps

4− 7 we compute the weight setR(M), which again is a union ofk setsRj(M) for j = 1, . . . , k.

In eachRj(M), thejth component is fixed at1, while the other components take values in the set

{20, 21, . . . , 22⌈log2 M⌉}. In steps7 − 11 of the algorithm, thek objective functions are combined

together using the two weight sets, andCPǫ is then obtained by computing optimal extreme points

for all such weighted objective functions over the polytopeP .

1. U ←
⌈

2(k−1)
ǫ

⌉

.

2. Forj = 1, . . . , k, Wj(U)← [U ]j−1 × {U} × [U ]k−j.

3. W (U)← ∪kj=1Wj(U).

4. S(M)← {20, 21, . . . , 22⌈log2M⌉}.

5. Forj = 1, . . . , k, Rj(M)← (S(M))j−1 × {1} × (S(M))k−j .

6. R(M)← ∪kj=1Rj(M).

7. CPǫ ← ∅.

8. For eachr ∈ R(M) do

9. For eachw ∈W (U) do

10. q ← optimal basic feasible solution for{min
∑k

i=1 riwi(a
T
i x) : x ∈ P}.

11. CPǫ ← CPǫ ∪ {q}.

12. ReturnCPǫ.

Theorem 4.4.3 (Diakonikolas and Yannakakis (2008))The above algorithm yields an approxi-

mate convex Pareto-optimal frontCPǫ corresponding to thek linear functionsaTi x, i = 1, . . . , k,

subject to the constraintsx ∈ P .

A sketch of the proof of this theorem is given below for the sake of completeness.

Proof. Let us call a positive valued vector(v1, . . . , vk) α-balanced if for anyi, j ∈ {1, . . . , k},
vi/vj ≤ α. A solutionx is U -enabled, if it is the optimal solution of the linear programfor the

objectivemin
∑k

i=1 wia
T
i x over the polytopeP , wherew ∈ W (U) (Recall from Section 4.4 that
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W (U) = ∪kj=1Wj(U), whereWj(U) = [U ]j−1 × {U} × [U ]k−j). Let all theU -enabled solutions

beq1, . . . , ql, wherel is the number of all such solutions.

Lemma 4.4.4 (Diakonikolas and Yannakakis (2008))Let ǫ > 0. Suppose thats is on the Pareto-

optimal front of thek objectivesaT1 x, . . . , a
T
k x and is2-balanced, but notU -enabled. Then there is

a convex combination ofU -enabled solutions, says′, such thats′i ≤ (1 + ǫ)si for i = 1, . . . , k.

Proof. Suppose there is no convex combination of theU -enabled solutions that is within a factor

of 1 + ǫ from s in all the components. This implies that the following linear program is infeasible.

l
∑

j=1

λjq
j ≤ (1 + ǫ)s,

l
∑

j=1

λj = 1,

λ1, . . . , λl ≥ 0.

By Farkas’ lemma, there existw1, . . . , wk andv which satisfy the following inequalities.

w · qj + v ≥ 0, j = 1, . . . , l,

(1 + ǫ)w · s+ v < 0,

w ∈ R
k
+.

This can be simplified to the following set of inequalities.

w · qj > (1 + ǫ)w · s for all j = 1, . . . , l,

w ∈ R
k
+.

Thus, in order to obtain a contradiction to our assumption that there is no convex combination of the

U -enabled solutions that is within a factor1 + ǫ from s in all the components, it will be sufficient

to show that foranyw ∈ R
k
+, there is aj such thatw · qj ≤ (1 + ǫ)w · s, which is what we will do

in the rest of this proof.

Let w ∈ R
k
+ be an arbitrary weight vector. Without loss of generality, we can assume that

the maximum value of a component of vectorw is U (this can be achieved by suitably scaling the

components ofw). Let w∗ be the weight vector given byw∗
i = ⌈wi⌉ for i = 1, . . . , k. Clearly,

67



w∗ ∈ W (U). Let q∗ be the optimal solution for the objectivemin
∑k

i=1w
∗
i a

T
i x over the polytope

P , thenq∗ is U -enabled. We will show thatw · q∗ ≤ (1 + ǫ)w · s, thus achieving the desired

contradiction.

Let t be such thatw∗
t = U . By our choice ofw∗, each component ofw∗ − w is at most1.

Therefore,

(w∗ − w) · s ≤
∑

i∈[k]\{t}
si ≤ 2(k − 1)st ≤ ǫUst ≤ ǫ(w · s),

where the second inequality follows from the fact thats is 2-balanced, the third inequality follows

from our choice ofU = ⌈2(k−1)/ǫ⌉, and the last inequality follows from the fact thatst ≤ 1
U (w ·s)

(as each component ofw is at mostU , by assumption). Therefore, from this chain of inequalities,

we get

w∗ · s ≤ (1 + ǫ)w · s.

Also, q∗ is the optimal solution for the objectivemin
∑k

i=1 w
∗
i a

T
i x, therefore

w∗ · q∗ ≤ w∗ · s.

Therefore, we get

w · q∗ ≤ w∗ · q∗ ≤ w∗ · s ≤ (1 + ǫ)w · s.

This establishes the desired contradiction, and completesthe proof of the lemma. ⊓⊔

Using the above lemma, we can now prove the theorem. Considerany Pareto-optimal solution

s = (s1, . . . , sk). The maximum ratio between any two components ofs is at mostM2. Therefore,

for somer ∈ R(M), all the components in the vector(r1s1, . . . , rksk) are within a factor of2 of

each other. Note that(r1s1, . . . , rksk) is on the Pareto-optimal front of the weightedk objectives

r1a
T
1 x, . . . , rka

T
k x. The algorithm of Section 4.4 computesU -enabled solutions for these weighted

k objectives for allr ∈ R(M). The above lemma implies that there is a convex combination of the

U -enabled solutions for the weighted objective functions, say s′ such thatris′i ≤ (1 + ǫ)risi, for

i = 1, . . . , k. Equivalently,s′i ≤ (1 + ǫ)si, implying that the solutions is indeed approximately

dominated by some convex combination of the solutions returned by the algorithm. ⊓⊔

For quasi-concave functions, it suffices to consider only the points inCPǫ(π) computed using

this algorithm to solve the problem given by (4.1). It shouldbe noted that the following theorem
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holds specifically for theCPǫ(π) computing using the above algorithm, and not for any arbitrary

CPǫ(π).

Theorem 4.4.5 Consider the optimization problem given by(4.1). If f is a quasi-concave func-

tion and satisfies Conditions 1-3 given in Section 4.2, then the setCPǫ obtained using the above

algorithm contains a(1 + ǫ)c-approximate solution to the optimization problem.

Proof. The lower envelope of the convex hull ofCPǫ is an approximate Pareto-optimal front. By

Lemma 4.2.2, the approximate Pareto-optimal front contains a solution that is(1+ǫ)c-approximate.

Therefore, to find an approximate solution of the optimization problem, it suffices to find a minimum

of the functiong overconv(CPǫ). Sincef is a quasi-concave function,g is a quasi-concave function

as well. Therefore, the minimum ofg overconv(CPǫ) is attained at an extreme point ofconv(CPǫ),

which is inCPǫ. Since any point inCPǫ is an extreme point of the polytopeP (as all the points in

CPǫ are obtained by solving a linear program over the polytopeP as given in the above algorithm),

the theorem follows. ⊓⊔

The overall running time of the algorithm isO
(

k2( (k−1) logM
ǫ )k ·LP (n, |π|)

)

, whereLP (n, |π|)
is the time taken to find an optimal extreme point of a linear program inn variables and|π| bit-size

input. We now discuss a couple of applications of this algorithm for combinatorial optimization

problems.

4.4.1 Multiplicative Programming Problems in Combinatorial Optimization

Since the above algorithm always returns an extreme point asan approximate solution, we can use

the algorithm to design approximation algorithms for combinatorial optimization problems where

a complete description of the convex hull of the feasible setin terms of linear inequalities or a

separation oracle is known. For example, consider the following optimization problem.

min f(x) = f1(x) · f2(x) · . . . · fk(x) (4.6)

s.t. x ∈ X ⊆ {0, 1}n.

Since the product ofk linear functions is a quasi-concave function (Konno and Kuno 1992;

Benson and Boger 1997), we can use the above algorithm to get an approximate solution of this

problem by minimizing the product function over the polytopeP = conv(X). The FPTAS always
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returns an extreme point ofP as an approximate solution, which is guaranteed to be integral. We

therefore have the following theorem.

Theorem 4.4.6 Consider the optimization problem given by(4.6), and assume that a complete

description ofP = conv(X) (or the dominant ofP ) is known in terms of linear inequalities or a

polynomial time separation oracle. Then ifk is fixed, the problem admits an FPTAS.

Our FPTAS is both simple in description as well as easily generalizable to the case where we

have more than two terms in the product, in contrast to the existing results in the literature (Kern

and Woeginger 2007; Goyal, Genc-Kaya, and Ravi 2011; Goyal and Ravi 2009).

4.4.2 Mean-risk Minimization in Combinatorial Optimizati on

Another category of problems for which this framework is applicable is mean-risk minimization

problems that arise in stochastic combinatorial optimization (Atamtürk and Narayanan 2008; Nikolova

2010). Letf(x) = cTx, c ∈ R
n be the objective function of a combinatorial optimization problem,

where as usualx ∈ X ⊆ {0, 1}n. Suppose that the coefficientsc are mutually independent random

variables. Let the vectorµ ∈ R
n
+ denote the mean of the random variables, andτ ∈ R

n
+ the vector

of variance of the random variables. For a given solution vector x, the average cost of the solution

is µTx and the variance isτTx. One way to achieve a trade-off between the mean and the variance

of the solution is to consider the following optimization problem.

min f(x) = µTx+ c
√
τTx (4.7)

s.t. x ∈ X ⊆ {0, 1}n.

Here,c ≥ 0 is a parameter that captures the trade-off between the mean and the variance of

the solution. In this case,f(x) is a concave function of rank two. If we have a concise description

of P = conv(X), then we can use the above algorithm to get an FPTAS for the problem. This is

captured in the following theorem.

Theorem 4.4.7 Consider the optimization problem given by(4.7), and assume that a complete

description ofP = conv(X) (or the dominant ofP ) is known in terms of linear inequalities or a

polynomial time separation oracle. Then the problem admitsan FPTAS.
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Again, although an FPTAS for this problem is known (Nikolova2010), our FPTAS has the

advantage of being conceptually simpler than the existing methods.

4.5 Inapproximability of Minimizing a Concave Function over a Poly-

tope

In this section, we show that it is not possible to approximate the minimum of a concave function

over a unit hypercube to within any factor, unless P = NP. First, we establish the inapproximability

of supermodular function minimization.

Definition 4.5.1 Given a finite setS, a functionf : 2S → R is said to besupermodularif it satisfies

the following condition:

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ), for all X,Y ⊆ S.

Definition 4.5.2 A set functionf : 2S → R is submodularif −f is supermodular.

In some sense, supermodularity is the discrete analog of concavity, which is illustrated by the

continuous extension of a set function given by Lovász (1983). Supposef is a set function defined

on the subsets ofS, where|S| = n. Then the continuous extension̂f : Rn
+ → R of f is given as

follows:

1. f̂(x) = f(X), wherex is the0/1 incidence vector ofX ⊆ S.

2. For any otherx, there exists a unique representation ofx of the formx =
∑k

i=1 λiai, where

λi > 0, andai are0/1 vectors satisfyinga1 ≤ a2 ≤ . . . ≤ ak. Then f̂(x) is given by

f̂(x) =
∑k

i=1 λif(Ai), whereai is the incidence vector ofAi ⊆ S.

The following theorem establishes a direct connection betweenf andf̂ .

Theorem 4.5.3 (Lov́asz (1983))f is a supermodular (resp. submodular) function if and only ifits

continuous extension̂f is concave (resp. convex).

We first give a hardness result for supermodular function minimization.

Theorem 4.5.4 Let f : 2S → Z+ be a supermodular function defined over the subsets ofS. Then

it is not possible to approximate the minimum off to within any factor, unless P = NP.
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Proof. The proof is by reduction from the E4-Set splitting problem (Håstad 2001). The E4-Set

splitting problem is this: given a ground setV , and a collectionC of subsetsSi ⊂ V of size exactly

4, find a partitionV1 andV2 of V so as to maximize the number of subsetsSi such that bothSi ∩V1

andSi ∩ V2 are non-empty. Letg : 2V → Z be the function such thatg(V ′) is equal to the number

of subsetsSi satisfyingV ′ ∩ Si 6= ∅ and(V \ V ′) ∩ Si 6= ∅ . Theng is a submodular function

(g is just the extension of the cut function to hypergraphs), and therefore the functionf defined by

f(V ′) = |C| − g(V ′) + ǫ is supermodular, whereǫ > 0. Clearly,f is a positive valued function.

Håstad (2001) has shown that it is NP-hard to distinguish between the following two instances

of E4-Set splitting:

1. There is a setV ′ which splits all the subsetsSi, and

2. No subset ofV splits more than a fraction(7/8 + η) of the setsSi, for anyη > 0.

For the first case, the minimum value off is ǫ, whereas for the second case, the minimum is at

least(18 − η)|C|. Therefore, if we had anα-approximation algorithm for supermodular function

minimization, the algorithm would return a set for the first case with value at mostǫα. Sinceǫ

is arbitrary, we can always chooseǫ so thatǫα < (18 − η)|C|, and hence it will be possible to

distinguish between the two instances. We get a contradiction, therefore the hardness result follows.

⊓⊔

Using this result, we now establish the hardness of minimizing a concave function over a0/1

polytope.

Theorem 4.5.5 It is not possible to approximate the minimum of a positive valued concave function

f over a polytope to within any factor, even if the polytope is the unit hypercube, unless P = NP.

Proof. Kelner and Nikolova (2007) have given an approximation preserving reduction from min-

imization of a supermodular functionf to minimization of its continuous extension̂f over the

0/1-hypercube. Thus anyγ-approximation algorithm for the latter will imply aγ-approximation

algorithm for the former as well. This implies that minimizing a positive valued concave function

over a0/1-polytope cannot be approximated to within any factor, unless P = NP. ⊓⊔

In fact, a similar hardness of approximation result can be obtained for minimizing a concave

quadratic function of rank 2 over a polytope. Pardalos and Vavasis (1991) show the NP-hardness

of minimizing a rank 2 concave quadratic function over a polytope by reducing the independent
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set problem to the concave quadratic minimization problem.In their reduction, if a graph has an

independent set of a given sizek, then the minimum value of the quadratic function is0, otherwise

the minimum value is a large positive number. This gives the same hardness of approximation result

for minimizing a rank 2 quadratic concave function over a polytope.

The two inapproximability results show that in order to get an FPTAS for minimizing a non-

convex function over a polytope, we need not only the low-rank property of the objective function,

but also additional conditions, such as Property 1 of the function g given in Section 4.2.1.

4.6 Open Problems

We have presented two different ways of obtaining an FPTAS for combinatorial optimization prob-

lems with the product objective function (Section 3.5 and Section 4.3.1). Interestingly, it is not

known for several combinatorial optimization problems (for example, for the spanning tree problem

and the shortest path problem) whether the minimization problem with a product objective func-

tion is NP-hard, even if there are only two functions in the product. Kern and Woeginger (2007)

conjecture that this problem should be solvable in polynomial time, though no such algorithm has

been proposed for this problem yet. On the other hand, the product version of the spanning tree

problem and the shortest path problem where the objective isto maximize the product, are NP-hard.

Resolving the computational complexity of the product minimization problem remains open.
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Chapter 5

Robust Appointment Scheduling

5.1 Introduction

In this chapter, we study the problem of appointment scheduling in a robust optimization frame-

work. The appointment scheduling problem arises in many service operations where customers are

served sequentially in a facility, the service times of the customers are uncertain and one needs to

assign time slots for serving the customers in advance. A practical setting where this problem arises

is in health care services. Modern health care involves the usage of several high cost devices and

facilities such as MRI installations, CT scanners and operation rooms. For these facilities, appoint-

ment scheduling is vital to ensure a high utilization of the resources as well as a high quality of

service (Cayirli and Veral 2003). For example, consider theproblem of scheduling surgeries for

outpatients in an operation room at a hospital. The information about which surgeries are to be per-

formed on a particular day is known in advance. However, the time needed to perform each surgery

can vary. The hospital manager needs to decide in advance thetime at which a particular surgery

is scheduled to start, and how much duration to assign to thatsurgery. If the manager assigns a

small time interval for a surgery, then it is likely that the realized time of the surgery will exceed its

assigned duration, thus delaying the next surgery. The inconvenience and costs resulting from the

delay of both the patients and the staff constitute theoveragecost of that surgery. If on the other

hand, the hospital manager assigns an excessively long interval for a surgery, then the surgery may

end early and the operation room will be left idle till the next surgery commences. In that case,

the hospital incursunderagecost, which corresponds to the under-utilization of the resources in the

operation room. Therefore, an appointment schedule shouldachieve the right trade-off between the

underage and the overage costs.
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A few other service operations where the appointment scheduling problem arises are:

1. Sabria and Daganzo (1989) analyze the operations at a seaport where ships have to be served

sequentially in a given order and the time slots for servicing the ships are computed in ad-

vance.

2. In certain serial production systems, the lead times at each of the production stages is stochas-

tic. For each stage, we need to compute the planned lead time.There is an inventory holding

cost at each stage corresponding to the job at that stage completing early, a tardiness cost

corresponding to the job finishing late and a backlogging cast at the end stage for not meeting

demand at the scheduled time. The objective is to minimize the average sum of these three

costs (Elhafsi 2002).

3. In many project scheduling problems where the duration ofeach activity is stochastic, one

needs to compute a gate for each activity, that is the time before which a project cannot start.

There is a cost associated with a particular activity starting later than its scheduled gate, and

also a cost if an activity finishes earlier than the gate of thesuccessor activity (Bendavid and

Golany 2009).

In the rest of this chapter, we will refer to any task or customer that needs to be scheduled as a job,

and the service provider as a facility.

Existing models in the literature for the appointment scheduling problem include queueing mod-

els (Wang 1993; Wang 1999), continuous stochastic models (Denton and Gupta 2003; Robinson and

Chen 2003; Kandoorp and Koole 2007) and discrete stochasticmodels (Begen and Queyranne 2011;

Begen, Levi, and Queyranne 2008). In the stochastic models,the processing times of the jobs are

assumed to be independent random variables, and the objective is to find an appointment schedule

that minimizes the expected cost. In all these models, one assumes complete knowledge about the

distribution of the processing times of the jobs. However, in many service settings the distributions

may not be known accurately, limiting the utility of the stochastic models. There might not be suffi-

cient historical data of the processing times of the jobs to get a reasonable estimate of the probability

distributions. Furthermore, because the cost function in the stochastic model is the expectation of a

non-linear function of several random variables, the computational cost of finding an optimal sched-

ule is significantly high. As a consequence, the methods employed to solve the problem are usually

based on heuristics with no provable bounds on the running time of the algorithm nor on the per-

formance guarantee of the solutions. Many other methods require the use of advanced techniques
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such as Monte-Carlo simulations or submodular function minimization. Such techniques may not

necessarily be practical in many situations.

The drawbacks of the stochastic models mentioned above are not limited to the appointment

scheduling problem alone, but are encountered in many problems where stochastic programming is

used. Robust optimization is an alternative framework to deal with the drawbacks arising in stochas-

tic programming. In robust optimization, the uncertainty in the input parameters are handled using

uncertainty intervals instead of random variables (see e.g. Ben-Tal and Nemirovski (2002), Bertsi-

mas and Sim (2004)). Robust optimization models have been shown to be much more tractable as

compared to the corresponding stochastic optimization models. For example, a closely related appli-

cation of robust optimization is finding optimal policies for inventory management problems (Bert-

simas and Thiele 2006).

Our Contributions : The contributions of this chapter can be summarized as follows.

1. Robust formulation of the problem: We propose to look at the appointment scheduling

problem in a robust optimization framework. For each job we only need the following in-

formation: the minimum and the maximum possible time the jobwill take to complete, the

underage cost if the job finishes early, and the overage cost if the job finishes late. The ob-

jective in the robust model is to find a schedule for which the cost in the worst case scenario

of the realized processing times of the jobs is minimized (Section 5.2.1). We establish cer-

tain analytical properties of the robust model, which we usesubsequently to find an optimal

solution of the robust appointment scheduling problem.

2. Analysis of global balancing heuristic: We propose an intuitive heuristic for scheduling jobs

called global balancing heuristic (Section 5.3). This heuristic aims to balance the maximum

possible underage cost due to a job with the maximum possibleoverage cost due to that

job. We show that this heuristic is in fact optimal when the underage cost for the jobs in

the sequence are non-decreasing. The biggest advantage of this heuristic is that it gives a

simple, easy to compute closed form solution for the optimalduration assigned to each job.

Computational results show that for typical instances of the appointment scheduling problem,

the average cost of a robust optimal schedule is within20% of the average cost of a stochastic

optimal solution (Section 5.3.3).

3. Analysis of the worst case scenarios: For the above mentioned special case of the appoint-

ment scheduling problem, we establish the worst case scenarios for the schedule given by the
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global balancing heuristic. Even though the set of realizedprocessing times of the jobs is

infinite, we show that there are only a finite number of worst case scenarios that the optimal

solution needs to balance between. The worst case scenariosprovide further insight into the

structure of the optimal solution (Section 5.3.2).

4. Ordering problem : Inspired from single machine scheduling problems, we present two non-

linear programming formulations for the ordering problem.Using the insights obtained from

the formulations, we present a simple heuristic which givesa near-optimal order of the jobs

(Section 5.4).

Related Work: An overview of the appointment scheduling problem is givenin the review paper

by Cayirli and Veral (2003). The existing literature on appointment scheduling can be roughly di-

vided into three categories: queueing models, stochastic optimization models and stochastic models

which use notions of discrete convexity, for example, submodular functions over an integer lattice.

We discuss the relevant literature for all the three models below.

Wang (1993) proposes a queueing model for the problem, in which the processing times of the

jobs are assumed to be independent and identically distributed random variables with exponential

distribution. Both static and dynamic problems (i.e. the case when all the information about the

jobs is not known in advance) are considered in this model, and an optimal schedule is obtained by

solving a set of non-linear equations. In Wang (1999), the model is generalized to the case where the

jobs can have different mean processing times. For this model, he shows that the optimal sequence

of the execution of the jobs is to process them in the increasing order of their mean processing times.

Denton and Gupta (2003) formulate the problem as a two-stagestochastic linear program, and

then use a sequential bounding algorithm to solve the corresponding stochastic optimization prob-

lem. They also give general upper bounds on the cost of a schedule which does not depend on the

particular distribution of the processing times or the costparameters of the jobs. Robinson and Chen

(2003) use a Monte Carlo integration technique to compute near-optimal solutions for the appoint-

ment scheduling problem. They show that an optimal schedulehas a “dome shaped” structure. That

is, the allowances for the assigned durations for the jobs first increase, and then decrease steadily

for jobs in the end of the sequence. They also give heuristicswhich approximate this dome shaped

structure of the optimal schedule. Green, Savin, and Wang (2006) consider the problem of outpatient

appointment scheduling in which serving emergency patients is also permitted. They formulate the

problem as a dynamic stochastic control problem and establish properties of an optimal policy for
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real-time scheduling and capacity allocation. Yet anotherway of computing an appointment sched-

ule is using local search by Kandoorp and Koole (2007), who show that a local search algorithm

converges to an optimal schedule. Gupta (2007) considers the problem of optimally sequencing two

jobs, and establishes the optimality of an ordering when a stochastic dominance condition holds for

the distribution of the processing durations of the two jobs.

In a recent paper, Begen and Queyranne (2011) show that when the processing times of the

jobs are discrete random variables with finite integer support, then there is an optimal schedule

which is integral (i.e. the assigned starting times of the jobs have integer values in the optimal

solution). They also show that under very general conditions, the cost function with respect to an

integer appointment schedule is submodular. An optimal solution can then be found using well

known algorithms for submodular function minimization (e.g. Iwata (2008), Orlin (2009)). The

running time of their algorithm isO(n9p2max log pmax), wheren is the number of jobs andpmax is

the largest integer in the support of the processing time distributions of the jobs. This idea has also

been extended to a get a near-optimal schedule for a data driven model (Begen, Levi, and Queyranne

2008), where the processing time distributions of the jobs are not known in advance, but instead one

uses the past data on the realized processing times of the jobs to approximate the distributions.

5.2 Model Description

There aren jobs indexed by1, . . . , n which are to be scheduled in this order on a single facility. The

processing time of jobi is Pi; Pi can be a random variable or an uncertainty interval. An appoint-

ment schedule is given by ann + 1 vectorA = (A1, . . . , An+1), whereAi is the scheduled start

time of jobi. Job1 is always assumed to start at timeA1 = 0, andAn+1 denotes the scheduled end

time of jobn. Alternatively, an appointment schedule can also be given by ann vector(a1, . . . , an),

whereai is the assigned duration for jobi. That is,ai = Ai+1 − Ai. In this chapter, whenever we

refer to an appointment schedule, we mutually refer to both the vector of the scheduled start times

of the jobs and the vector of the assigned durations for the jobs.

The jobs are processed as follows. Jobi can be started only at timeAi or later. Letpi be the

realized processing time of jobi, andCi the completion time of jobi under this realization. If

Ci ≤ Ai+1, then jobi + 1 is started at timeAi+1, otherwise jobi is started at timeCi. Therefore

Ci is given by

Ci = max(Ai, Ci−1) + pi. (5.1)
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If job i finishes beforeAi+1, it incurs an underage cost ofui(Ai+1 − Ci) and we say that

job i is underaged. On the other hand, if it finishes afterAi+1, the job incurs an overage cost of

oi(Ci − Ai+1) and we say that jobi is overaged. The total cost of the schedule for a realization

P = (p1, . . . , pn) of the processing times of the jobs is given by

F (A,P ) =

n
∑

i=1

max(ui(Ai+1 − Ci), oi(Ci −Ai+1)). (5.2)

In the stochastic formulation of the problem, the processing duration of jobi is assumed to be a

random variablePi whose distribution is known. The cost of a schedule is thenEP [F (A,P )], and

the objective is to find an appointment scheduleA that minimizes the expected cost.

5.2.1 The Robust Model

In the robust version of the problem, for each jobi we are given its minimum possible processing

time p
i

and its maximum possible processing timepi. The realized processing time of the job is

assumed to be in the interval[p
i
, pi]. We use∆i to denotepi − p

i
, the length of the uncertainty

interval of jobi. Let P = (p1, . . . , pn) be a vector of the realized processing time of then given

jobs, andP denote the set
∏n

i=1[pi, pi]. Given an appointment scheduleA = (A1, . . . , An) for the

n jobs, the cost of this schedule is given by

F (A) = sup
P∈P

F (A,P ). (5.3)

In other words, the cost of a given schedule is the worst-casescenario cost among all the possible

realizations of the processing time of the jobs. We first showthat for a given appointment schedule,

there is a worst case scenario for which the supremum in equation (5.3) is actually attained.

Lemma 5.2.1 For a given appointment vectorA, there existsP ∈ P such thatF (A,P ) = F (A).

Proof. The functionF (A,P ) is a continuous function inP (Begen and Queyranne 2011), and

F (A) is the supremum ofF (A,P ) with respect toP over the compact setP. Therefore there must

exist aP ∈ P such thatF (A,P ) = F (A). ⊓⊔

The above lemma implies that thesup in the equation (5.3) can be replaced bymax. This helps in

establishing thatF (A) is a continuous function with respect toA, as shown in the following lemma.

Lemma 5.2.2 F (A) is a continuous function inA.
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Proof. From the previous lemma,

F (A) = max
P∈P

n
∑

i=1

max(ui(Ai+1 − Ci), oi(Ci −Ai+1)). (5.4)

All the terms in the summation are themselves bounded continuous piecewise linear functions in

A, and hence taking the maximum of the summation with respect to P ensures thatF (A) is a

continuous function with respect toA. ⊓⊔

Next, we show that for a given problem instance, there alwaysexists an optimal solution.

Lemma 5.2.3 There exists an appointment vectorA∗ such that for any other appointment vector

A, F (A∗) ≤ F (A).

Proof. Consider the setK = [A,A] ⊆ R
n+1, whereA = (A1, . . . , An+1) andA = (A1, . . . , An+1).

A1 = A1 = 0, and for any2 ≤ i ≤ n,Ai =
∑

j<i pi andAi =
∑

j<i pi. If A /∈ K, then there exists

A′ ∈ K such that forany realizationP of the processing times of the jobs,F (A′, P ) ≤ F (A,P ),

and thereforeF (A′) ≤ F (A) (Begen and Queyranne 2011). Thus, without loss of generality, we

can restrict the set of appointment vector to the compact setK. SinceF (A) is a continuous function

in A by Lemma 5.2.2, therefore its minimum must be attained at some pointA∗ in the compact set

K. ⊓⊔

5.3 The Global Balancing Heuristic

In the appointment scheduling problem, for each job there are two conflicting costs: one is the

underage cost that the job can incur if it finishes early and the other is the overage cost that the

job (and possibly the jobs following it) can incur if this jobfinishes late. The intuition behind the

global balancing heuristic is to find an appointment schedule that balances between these two costs

causeddue to each job. The cost balancing idea is inspired from similarcost balancing policies

used previously in inventory management problems (Levi, P´al, Roundy, and Shmoys 2007; Levi,

Roundy, Shmoys, and Truong 2008).

Let us denote the schedule generated by this heuristic asAG. Suppose jobi is overaged, then

the overage of jobi causes overage cost to be incurred not only on jobi, but possibly on all the

subsequent jobs as well. The maximum possible overage due tojob i on itself and all the subsequent

jobs ispi−aGi . Thus the maximum overage costdueto job i is (
∑n

k=i ok)(pi−aGi ). The maximum
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possible underage cost due to jobi is ui(a
G
i − p

i
). Equating the two costs, we get

aGi =
uipi + o≥ipi

ui + o≥i
, (5.5)

whereo≥i =
∑n

k=i ok. The following lemma gives an upper bound on the cost of this schedule.

Lemma 5.3.1 An upper bound on the cost of the scheduleAG is given by

F (AG) ≤
n
∑

i=1

uio≥i∆i

ui + o≥i
.

Proof. The maximum possible underage cost of jobi is ui(a
G
i − p

i
), and the maximum possible

overage cost due to jobi on itself and the subsequent jobs iso≥i(pi− aGi ). Therefore the maximum

possible cost due to jobi has an upper bound

Fi(A
G) ≤ max(ui(a

G
i − p

i
), o≥i(pi − aGi )) ≤

uio≥i∆i

ui + o≥i
.

The second inequality holds because from (5.5), it follows that ui(aGi − p
i
) = o≥i(pi − aGi ) =

uio≥i∆i/(ui + o≥i).

Hence an upper bound on the cost of the scheduleAG is

F (AG) ≤
n
∑

i=1

uio≥i∆i

ui + o≥i
.

⊓⊔

5.3.1 Analysis of the Global Balancing Heuristic

In this section, we analyze the special case when the underage cost of all the jobs is the same.

For this case, we show that the global balancing heuristic gives an optimal schedule, and the result

holds for the more general case when the underage costs of thejobs are non-decreasing. Before

proceeding, we define some terminologies which we use in the rest of the chapter. For a given

scenario of realized processing times of the jobs, we say that job i is of max-length if its realized

processing time ispi, and it is of min-length if its realized processing time isp
i
.

We first give upper and lower bounds on the assigned duration of a job in an optimal schedule

when the underage cost of all the jobs are equal. These boundshold for an optimal appointment

schedule for both the stochastic as well as the robust model.
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Lemma 5.3.2 If all the jobs have the same underage cost, then for an optimal appointment schedule

A, p
i
≤ ai ≤ pi.

Proof. The first part of the inequality was proved by Begen and Queyranne (2011). For the second

part, assume on the contrary that in an optimal solutionA, for job i the assigned duration is greater

thanpi. Let δ = Ai+1−Ai− pi. By assumption,δ > 0. We claim that for anyδ′ < δ, changingAi

toAi + δ′ does not increase the cost in any scenario. There are two cases to consider:

Case 1: Jobi− 1 is underaged. In this scenario, jobi is underaged as well. IfAi is changed to

Ai + δ′, then the overage cost of jobi− 1 increases, but the underage cost of jobi decreases by the

same amount. This is true as long asδ′ < δ.

Case 2: Jobi− 1 is overaged. LetCi−1 be the completion time of jobi− 1. ThenCi−1 > Ai.

If Ci−1 − Ai ≥ δ′, then increasingAi to Ai + δ′ only decreases the overage cost of jobi − 1, and

changes nothing else. IfCi−1 − Ai < δ′, then after increasingAi to Ai + δ′, job i − 1 becomes

underaged. However, jobi remains underaged as well, therefore any increase in the underage cost

of job i− 1 is neutralized by the decrease in the underage cost of jobi. The net effect is decrease in

the overall cost, as the overage cost that jobi − 1 was incurring in the earlier schedule is no more

there in the new schedule.

Thus, in either case, the cost in every realized scenario either remains the same, or decreases

upon increasingAi. This contradicts the assumption that the given scheduleA is optimal. Hence

the statement of the lemma holds. ⊓⊔

In fact, the above lemma holds for the more general case whenui is non-decreasing ini, that

is ui ≤ ui+1 for all i = 1, . . . , n − 1. However, it does not hold for the most general case. For

example, consider the following instance of the appointment scheduling problem. There are two

jobs, withu1 = 100, o1 = 1, u2 = 1, o2 = 100, p
1
= p

2
= 8 andp1 = p2 = 10. The optimal

appointment schedule for this instance isA1 = 0, A2 = 8, A3 = 19.98 with cost3.96. Thus the

assigned duration for job2 in this example isA3 −A2 = 11.98, which is greater thanp2.

Next, we show that the in an optimal robust appointment schedule, the upper bound for the

optimal assigned duration is in fact stronger than the one given above. This bound will be used

subsequently in establishing a lower bound on the cost of an appointment schedule. For the sake

of simplicity, we prove our results for the special case whenui = u for all the jobs, however the

results hold for the more general case of non-decreasingui’s as well.
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Lemma 5.3.3 SupposeA is an optimum appointment schedule for a given instance ofn jobs. Then

for each jobi,

u(ai − p
i
) ≤ o≥i(pi − ai),

for eachi = 1, . . . , n.

Proof. Suppose, on the contrary, the optimal solution satisfiesu(ai − p
i
) > o≥i(pi − ai) for some

job i. Consider the solution with the appointment scheduleA′, whereA′
i = Ai + ǫ andA′

j = Aj,

for all otherj. We choose a value ofǫ small enough so that for the new scheduleA′, the relation

u(a′i − p
i
) > o≥i(pi − a′i) is still satisfied, andai − ǫ > p

i
. For a given realizationP of the

processing times of the jobs, there are two cases to consider:

Case 1:Jobi − 1 is overaged in scheduleA′. Then jobi − 1 remains overaged in scheduleA

as well. Clearly, for this caseF (A′, P ) < F (A,P ), as the overage cost of jobi − 1 is lower in

scheduleA′, and all other costs remain the same.

Case 2:Jobi − 1 is underaged in scheduleA′. This means that jobi starts at timeA′
i in A′.

Consider the scenarioP ′ in whichp′i = p
i
, andp′j = pj for all other jobsj. Since we assumed that

u(a′i−p
i
) > o≥i(pi−a′i), thereforeF (A′, P ) < F (A′, P ′). This is because if jobi is overaged, the

maximum possible increase in cost iso≥i(pi − a′i), hence having jobi of min-length gives a higher

cost. However, for the scenarioP ′, F (A,P ′) ≥ F (A′, P ′), as the increase in the underage cost of

job i − 1 in scheduleA′ is compensated by the decrease in the underage cost of jobi. Therefore

we getF (A′, P ) < F (A′, P ′) ≤ F (A,P ′) ≤ F (A), hence the cost ofA′ in scenarioP does not

exceed the cost of the scheduleA.

Therefore scheduleA′ has a lower cost than the cost ofA in any realized scenario, a contradic-

tion. Hence, for the optimal solution, we must haveu(ai − p
i
) ≤ o≥i(pi − ai). ⊓⊔

Using the above lemma, we now prove a lower bound on the cost ofan optimal appointment

schedule.

Lemma 5.3.4 Let A be an optimal appointment schedule for a given instance ofn jobs. If the

underage cost of all the jobs is equal tou, then a lower bound on the cost of the scheduleA is given

by

F (A) ≥
n
∑

i=1

uo≥i∆i

u+ o≥i
.

Proof. Consider a scenarioP of the realized processing times of the jobs in whichpi = pi, that is

each job is of max length in the scenarioP . From Lemma 5.3.3,ai ≤ (up
i
+o≥ipi)/(u+o≥i). The
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contribution of jobi in the overage of itself and the subsequent jobs ispi−ai, which in the scenario

P is at leastu∆i/(u + o≥i). Therefore, the contribution of overage cost of jobi in scenarioP has

a lower bound given by

Fi(A,P ) ≥ uo≥i∆i

u+ o≥i
.

Hence a lower bound on the cost of the scheduleA is

F (A) ≥ F (A,P ) ≥
n
∑

i=1

uo≥i∆i

u+ o≥i
.

⊓⊔

Thus, we get the following main theorem of this chapter.

Theorem 5.3.5 The global balancing heuristic gives an optimal solution ofthe robust appointment

scheduling problem when the underage cost of the jobs are equal. The assigned duration to jobi in

the optimal scheduleAG is given by equation(5.5), and the cost of this schedule is given by

F (AG) =
n
∑

i=1

uio≥i∆i

u+ o≥i
. (5.6)

Proof. Follows from Lemma 5.3.1 and Lemma 5.3.4. ⊓⊔

5.3.2 Key Insights

Suppose that jobi is the only job that needs to be scheduled. Then it is easy to see that there are two

worst-case scenarios for jobi: one in which jobi is of min-length, and the other in which the job is

of max-length. The optimal schedule must balance the cost between these two worst-case scenarios

for job i. This yields the optimal assigned duration for jobi as

ai =
uipi + oipi

ui + oi
.

Now suppose that jobi is followed by jobsi+ 1, . . . , n, and underage costs for all the jobs are

equal. Then in the optimal solution,

ai =
uipi + o≥ipi

ui + o≥i
.

Thus o≥i acts as the “effective overage cost” for jobi in this case. Note also that the optimal
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assigned duration to jobi depends only on the cost parameters of the jobs succeeding the jobi, and

not on any of the jobs preceding jobi.

Next, we establish the worst case scenarios for the optimal solution.

Lemma 5.3.6 For a given instance of the appointment scheduling problem with n jobs, let

P 1, . . . , Pn+1 be n + 1 scenarios of realized processing times of the jobs such thatin scenario

P j , the firstj − 1 jobs are all of min-length, and the rest of the jobs are of max-length. Then these

are the worst-case scenarios for the optimal robust scheduleAG.

Proof. Consider the scenarioP j . The firstj−1 jobs in this scenario are all of min-length, therefore

the underage cost due to thesej − 1 jobs is

F 1(AG, P j) =

j−1
∑

i=1

ui(a
G
i − p

i
)

=

j−1
∑

i=1

uio≥i∆i

ui + o≥i
.

On the other hand, the jobsj, . . . , n are all of max-length. Fori = j, . . . , n, the overage of jobi on

itself and the subsequent jobs is(pi − aGi ), leading to an overage cost ofo≥i(pi − aGi ). Hence the

total overage cost due to these jobs is

F 2(AG, P j) =

n
∑

i=j

o≥i(pi − aGi )

=

n
∑

i=j

uio≥i∆i

ui + o≥i
.

Hence, the total cost of the scheduleAG in scenarioP j is

F (AG, P j) = F 1(AG, P i) + F 2(AG, P i) = F (AG).

ThereforeP j is indeed a worst-case scenario for the optimal solutionAG, for j = 1, . . . , n+ 1. ⊓⊔

Essentially, the optimal solution achieves a balance between thesen + 1 worst case scenarios.

Alternatively, another way of deriving the assigned durations to the jobs given by equation (5.5) is

to solve the system of linear equations obtained by equatingthe cost of the schedule in thesen+ 1

worst case scenarios. Figure 5-1 shows the worst case scenarios for the optimal schedule for the
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case of3 jobs.
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Figure 5-1: Worst-case scenarios for an optimal solution for the case of3 jobs.

5.3.3 Computational Results

We perform computational experiments to compare the schedules obtained using our robust model

and stochastic models. We use the discrete stochastic modelof Begen and Queyranne (2011) for

comparison. The aim of this section is to show that for typical instances of the appointment schedul-

ing problem, the average cost of a robust optimal schedule iswithin a reasonable limit of the average

cost of a stochastic optimal schedule.

Distribution of the processing times of jobs: We use the data for service times in an MRI facility

given by Green, Savin, and Wang (2006). The observed mean duration for serving each patient in

this case is48 minutes, with a standard deviation of26 minutes. The distribution of service times

matches closely with that of a Weibull distribution when theparameters of the Weibull distribution

are chosen appropriately. For our computational study, we only consider the case of serving out-

patients, and assume that no inpatients or emergency arrivals are served in the facility. We further

assume that the processing times of all the jobs are independent and identically distributed random

variables.

We use three different distributions in our study: Weibull,Gaussian and Gamma. The mean

and the standard deviation for all the distributions are48 and 26, except for the case when we

study the impact of the standard deviation on the performance of the robust model. For the Weibull

distribution, the shape parameter is kept fixed at1.54 for all the cases (same as that given by Green,
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Savin, and Wang (2006)). The displacement parameter is43.59 and the scale parameter is8.77,

except for the case where we are studying the impact of the standard deviation. The discrete versions

of the distributions are generated over15 discrete supports ranging from10 to 150 using the R

software program. For the Gaussian distribution, the corresponding discrete version is truncated

at the negative tail of the distribution to ensure that the discrete distribution has positive support

values.

Cost parameters: For all the instances, the underage cost and the overage cost are assumed to be

the same for all the jobs. We fix the overage cost to be1. In a typical instance of the appointment

scheduling problem in health care services, the underage cost is much higher than the overage cost.

For our computational experiments, the underage cost of allthe jobs is assumed to be10, except

for the case where we study the impact of the underage cost on the performance. In that case, the

underage cost varies from5 to 25.

Computing the stochastic optimal solution: An optimal solution for the discrete stochastic model

is computed using a local search algorithm (see Appendix). The algorithm is guaranteed to return an

optimal solution, although it may take exponential time to compute an optimal solution. However,

for all the instances of the problem considered below, an implementation of the algorithm returned

an optimal solution in a reasonable amount of time. Since theoptimal schedule in the discrete

stochastic model is integral, its cost can be computed efficiently (Begen and Queyranne 2011).

Uncertainty interval for the robust model : For the robust model, the uncertainty interval for

each job is assumed to be[µ − σ, µ + σ], whereµ is the mean processing time of the job andσ

is the standard deviation of the processing time. The robustmodel gives a schedule which is not

necessarily integral, and its average cost is computed by considering all the possible realizations

of the processing times of the jobs exhaustively. This turnsout to be the main bottleneck in our

computational study. Because of this, the maximum number ofjobs for which the average cost can

be computed in a reasonable amount of time is9. Except for the case where we study the impact of

the number of jobs, the number of jobs for all other cases is fixed at7.

5.3.4 Comparison of Robust Optimal and Stochastic Optimal Schedules

Figure 5-2 shows the assigned durations for the jobs for the optimal robust schedule and the optimal

stochastic schedule for the case of 8 jobs, when the processing times of the jobs have independent

and identically distributed Weibull distributions. The stochastic optimal schedule follows roughly
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a dome like pattern: the assigned durations to the jobs first increase, and then decrease. Such a

form of the stochastic optimal schedule has also been reported before in the literature (Robinson

and Chen 2003). On the other hand, the assigned duration to the jobs in the robust optimal schedule

is steadily decreasing. Such a schedule takes care of the scenario in which the starting jobs may take

a longer time to complete: even if these jobs finish later thantheir assigned deadlines, the impact

on the subsequent jobs is expected to be minimal.

5.3.5 Impact of Various Factors on the Average Cost of the Robust Schedule

For each particular case consider below, we plot the relative performance of the robust optimal

schedule, which is given by(ROB − OPT )/OPT × 100, whereROB is the average cost of the

robust schedule andOPT is the average cost of the stochastic optimal schedule. We compute the

relative performance for the following three cases:

1. Impact of the number of jobs: This is shown in Figure 5-3. For all the three distributions,the

average cost of the robust optimal schedule is within20% of the stochastic optimal schedule

cost. The performance of the robust schedule deteriorates slightly with increase in the number

of the jobs.

2. Impact of the underage cost:This is shown in Figure 5-4. Similar to the previous case, the
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average cost of the robust optimal schedule is within20% of the stochastic optimal schedule

cost, and the performance of the robust schedule deteriorates slightly with increase in the

underage cost of the jobs.

3. Impact of the standard deviation: This is shown in Figure 5-5. Unlike the previous two
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Figure 5-5: Impact of the standard deviation on the relativeperformance of the robust schedule.

cases, the performance of the robust schedule remains steady (and in fact it decreases slightly)

with increase in the standard deviation of the processing times of the jobs.

In all the cases, the average cost of the robust optimal schedule is within20% of the average cost of

the stochastic optimal schedule. This shows that for typical instances of the appointment scheduling

problem, the global balancing heuristic gives easy to compute near-optimal schedules.

5.4 The Ordering Problem

In this section, we look at the case where we also have the flexibility of changing the order in which

the jobs are processed. Using the closed form for the cost of aschedule given by equation (5.6), we

first give two non-linear programming formulations of the ordering problem in which the underlying

set of constraints is a polyhedron. Later, we present a simple heuristic which gives us a near-optimal
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solution for the ordering problem. We only look at the case where all the jobs have the same

underage cost, which we assume, without loss of generality,equal to1.

5.4.1 A Linear Ordering Formulation for the Ordering Proble m

For an ordering of the jobs, we can define a vectorδ with δij equal to1 if job i precedes jobj in a

processing sequence, and0 otherwise (δii = 1 for all the jobsi). With this definition ofδ, the cost

of an ordering can be written as follows.

F (δ) =
n
∑

i=1

∆i
∑n

j=1 δijoj

1 +
∑n

j=1 δijoj
. (5.7)

Let N = {1, . . . , n} denote the set of all jobs. The following set of constraints characterize

exactly those vectorsδ that correspond to a total ordering of the jobs.

δij + δji = 1, for all i, j ∈ N, i 6= j, (5.8a)

δij + δjk + δki ≥ 1, for all i, j, k ∈ N, i 6= j 6= k, (5.8b)

δii = 1, for all i ∈ N, (5.8c)

δij ∈ {0, 1}, for all i, j ∈ N. (5.8d)

We consider a relaxation of this integer optimization problem in whichδij can take any value

between0 and1:

0 ≤ δij ≤ 1, for all i, j ∈ N. (5.9)

Given a fractional solutionδ∗ for the relaxation with the objective function (5.7) and con-

straints (5.8a)-(5.8c), (5.9), we propose a rounding scheme to get an ordering on the jobs. Let

Θ∗
i =

∑n
j=1 δ

∗
ijoj . The jobs are re-numbered so thatΘ∗

1 ≥ Θ∗
2 ≥ . . . ≥ Θ∗

n, and they are executed

in this particular order. For this order, letΘi =
∑n

j=i oj. An upper bound onΘi is given in the

following lemma.

Lemma 5.4.1 (Schulz (1996))For all i = 1, . . . , n, Θi ≤ 2Θ∗
i .

Proof. For any subsetS of the jobs, the following inequality can be derived, similar to that for the
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sum of completion times of jobs in single machine scheduling(Queyranne 1993).1

∑

j∈S
ojΘ

∗
j =

1

2





∑

j∈S
oj





2

+
1

2

∑

j∈S
o2j ≥

1

2





∑

j∈S
oj





2

. (5.10)

UsingS = {i, . . . , n} in the above inequality, we get

Θi =

n
∑

j=i

oj ≤ 2

n
∑

j=i

ojΘ
∗
j/

n
∑

j=i

oj ≤ 2Θ∗
i , (5.11)

where the second inequality follows from the fact thatΘ∗
j ≤ Θ∗

i for j ≥ i, by assumption. ⊓⊔

Lemma 5.4.2 The above algorithm gives an ordering on the jobs whose cost is at most2 times the

cost of the fractional solutionδ∗.

Proof. The rounding scheme ensures that for each jobi,

n
∑

j=1

δ∗ijoj ≤
n
∑

j=i

oj ≤ 2

n
∑

j=1

δ∗ijoj.

Therefore, for each jobi, we get

∑n
j=i oj

1 +
∑n

j=i oj
≤

2
∑n

j=1 δ
∗
ijoj

1 +
∑n

j=1 δ
∗
ijoj

.

Hence the cost of the rounded solution is at most twice that ofδ∗. ⊓⊔

Thus, if the sum-of-fractions problem corresponding to therelaxation of the ordering problem

can be solved exactly in polynomial time, then this heuristic will be a2-approximation algorithm for

the ordering problem. However, the number of fractions in this formulation is equal to the number of

jobs. For a large number of jobs, solving the relaxation exactly will be computationally prohibitive.

We present a more compact formulation of the ordering problem which usesΘ variables instead of

theδ variables in the next section.

1The main difference between the two cases is that in the case of sum of completion times, for each jobi we count
the processing time of the jobs that are executedbeforejob i, whereas in this case we count the overage costs of the jobs
that are executedafter job i. However, the inequality holds for the latter case as well.
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5.4.2 An Exact Formulation of the Ordering Problem

The formulation given in this section is inspired from the completion time indexed formulation for

the single machine scheduling problem with sum of completion time as the objective (Queyranne

1993). Instead of using theδ variables, we directly use theΘ variables in this formulation, which is

given below.

min

n
∑

i=1

∆iΘi

1 + Θi
(5.12a)

s.t.
∑

j∈S
ojΘj ≥

1

2





∑

j∈S
oj





2

+
1

2

∑

j∈S
o2j for all S ⊆ N. (5.12b)

Theorem 5.4.3 The above formulation is an exact formulation of the ordering problem.

Proof. The extreme point of the polyhedral set (5.12b) can be characterized as follows (Queyranne

1993). Letσ : N → N be a permutation of the jobs. That is,σ(i) is theith job in the execution

sequence. Leto≥σ(i) =
∑

j≥i oσ(j). Then(o≥1, . . . , o≥n) is an extreme point of this polyhedron,

and all the extreme points of the polyhedron have this form. The objective function (5.12a) then

corresponds to the cost of the schedule when the jobs are processed in the order given by the per-

mutationσ. Thus each extreme point of the polyhedron (5.12b) corresponds to some ordering of

the jobs.

Moreover, the objective function (5.12a) is a concave function in the variablesΘ. Hence the

optimal solution of the non-linear program (5.12a)-(5.12b) is attained at an extreme point of the

polyhedron. This means that an optimal ordering of the jobs can be found by solving for an optimal

extreme point of this formulation. If(Θ∗
1, . . . ,Θ

∗
n) is an optimal extreme point, then an optimal

ordering of the jobs is given by a permutationσ which satisfiesΘ∗
σ(1) ≥ . . . ≥ Θ∗

σ(n). ⊓⊔

5.4.3 KKT Conditions for Local Optimality

For the above formulation, we look at the KKT conditions for obtaining a necessary condition for a

sequence of jobs to be an optimal sequence. For allS ⊆ N , let f(S) denote the function

f(S) =
1

2





∑

j∈S
oj





2

+
1

2

∑

j∈S
o2j .
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A necessary condition for a sequence of jobs to be an optimal sequence is captured in the

following theorem.

Theorem 5.4.4 For a given instance of the robust appointment scheduling problem, a necessary

condition for the sequence1, . . . , n to be optimal is that the values

∆i/oi
(1 + o≥i)2

must be in increasing order fori = 1, . . . , n.

Proof. The Lagrangian formulation of the optimization problem (5.12a)-(5.12b) is given below.

L(Θ, µ) =

n
∑

i=1

∆iΘi

1 + Θi
−

∑

S⊆N

µS





∑

j∈S
ojΘj − f(S)



 . (5.13)

If Θ = (Θ1, . . . ,Θn) is an optimal solution, then it must satisfy the following KKT condi-

tions (Bertsekas, Nedić, and Ozdaglar 2003).

Stationarity:
∂L

∂Θi
= 0⇒ ∆i

(1 + Θi)2
− oi

∑

S:i∈S
µS = 0, i ∈ N. (5.14a)

Complementary slackness: µS





∑

j∈S
ojΘj − f(S)



 = 0, for all S ⊆ N. (5.14b)

Primal feasibility:
∑

j∈S
ojΘj ≥ f(S), for all S ⊆ N. (5.14c)

Dual feasibility: µS ≥ 0, for all S ⊆ N. (5.14d)

From Theorem 5.4.3, we know that there is a (local) optimal solution which is also an extreme

point of the polyhedral set given by the constraints (5.12b). Therefore we restrict our analysis only to

the extreme point solutions. The extreme point of the polyhedron corresponding to the job sequence

1, . . . , n isΘi = o≥i =
∑n

j=i oj for i = 1, . . . , n. LetSi = {i, i+ 1, . . . , n} for i = 1, . . . , n.

If the overage costs are all positive, then the constraints (5.14c) will be satisfied with equality

for the setsS = Si for all i = 1, . . . , n, and for all other setsS the inequality will be strict.

Therefore, from the complementary slackness conditions (5.14b) we getµS = 0 for all S 6= Si for
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anyi = 1, . . . , n. The stationarity conditions (5.14a) then give

i
∑

j=1

µSj
=

∆i/oi
(1 + o≥i)2

.

Therefore the value of the Lagrange multipliers we get are

µS =



























∆1/o1
1 + o≥1

for S = S1,

∆i/oi
(1 + o≥i)2

− ∆i−1/oi−1

(1 + o≥i−1)2
for S = Si, i = 2, . . . , n,

0 otherwise.

(5.15)

The dual feasibility conditions (5.14d) and (5.15) together imply that a necessary condition for

the sequence1, . . . , n of jobs to be an optimal sequence is that the values

∆i/oi
(1 + o≥i)2

must be in increasing order. ⊓⊔

Note that the KKT conditions give only a necessary conditionfor local optimality. Thus the con-

dition that we obtain above characterizes not only the globally optimal solutions, but also the local

optima (with respect to optimizing the objective function (5.12a) over the polyhedral set (5.12b)).

This means that a sequence of jobs satisfying the above condition may not necessarily be a globally

optimal sequence. This analysis, however, does give us the intuition that scheduling the jobs in

increasing order of∆i/oi ratios may be a reasonable strategy, especially if the overage costs of the

jobs are much smaller as compared to the underage cost. We analyze this particular heuristic in the

next section.

5.4.4 An Approximation Algorithm for the Ordering Problem

In this section, we look at heuristic methods which give us near-optimal solution for the ordering

problem in appointment scheduling. We first show that when the overage costs of the jobs are high

as compared to the underage cost, then any ordering has a costwhich is reasonably close to the cost

of the optimal ordering.

Letσ∗ denote an optimal ordering of the jobs for a given instance ofthe appointment scheduling

problem. For an orderingσ of the jobs,F (σ) denotes the cost of the corresponding optimal robust
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appointment schedule given by (5.6). Byomin, we denote the minimum overage cost among the

overage costs of all the jobs, ando≥1 denotes the sum of the overage costs of all the jobs.

Lemma 5.4.5 Let σ∗ be an optimal ordering of the jobs for a given instance of the appointment

scheduling problem. For any orderingσ,

F (σ) ≤ 1 + omin

omin
· o≥1

1 + o≥1
F (σ∗).

Proof. An upper bound on the cost of the orderingσ is given by

F (σ) =
n
∑

i=1

o≥σ(i)∆i

1 + o≥σ(i)

≤
n
∑

i=1

o≥1∆i

1 + o≥1

=
o≥1

1 + o≥1

n
∑

i=1

∆i.

A lower bound on the cost of the optimal orderingσ∗ is

F (σ∗) =
n
∑

i=1

o≥σ∗(i)∆i

1 + o≥σ(i)

≥
n
∑

i=1

omin∆i

1 + omin

=
omin

1 + omin

n
∑

i=1

∆i.

Taking the ratio of the upper bound to the lower bound we get the statement of the lemma. ⊓⊔

The above lemma shows that when the overage costs are significantly higher compared to the

underage costs, then any ordering has a cost that is quite close to the cost of the optimal ordering.

For example, ifomin = 10, then any ordering is a factor of1.1 within that of the optimal ordering.

We propose a simple heuristic for the ordering problem, which is similar to the Smith’s rule

for finding an optimal schedule for scheduling jobs on a single machine to minimize weighted

completion time.

Smith’s ordering heuristic: Schedule the jobs in the non-decreasing ratio of∆i/oi ratios.

Let the schedule obtained by Smith’s rule beσS . The following lemma holds for this sched-
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ule (Smith 1956).

Lemma 5.4.6 If σS is the ordering given by Smith’s ordering heuristic, then for any orderingσ of

the jobs,
n
∑

i=1

o≥σS(i)∆i ≤
n
∑

i=1

o≥σ(i)∆i.

Proof. Follows from (Smith 1956). ⊓⊔

The idea behind the heuristic is simple: If there is a job witha large uncertainty, then it is better

to execute it in the end, so that if the job is overaged it does not delay the subsequent jobs. Similarly,

if a job has a higher overage cost, then it is better to executeit in the start of the schedule otherwise

the delay due to the lateness of the preceding jobs may lead toa higher overage cost of this job. The

next lemma gives a bound on the performance of this ordering heuristic.

Lemma 5.4.7 For Smith’s ordering heuristic,

F (σS) ≤ 1 + o≥1

1 + omin
F (σ∗).

Proof. The cost of the scheduleσS is

F (σS) =

n
∑

i=1

o≥σS (i)∆i

1 + o≥σS(i)

≤ 1

1 + omin

n
∑

i=1

o≥σS(i)∆i

≤ 1

1 + omin

n
∑

i=1

o≥σ∗(i)∆i

≤ 1 + o≥1

1 + omin

n
∑

i=1

o≥σ∗(i)∆i

1 + o≥σ∗(i)

=
1 + o≥1

1 + omin
F (σ∗),

where the second inequality follows from Lemma 5.4.6. ⊓⊔

The two lemmata together imply the following theorem.

Theorem 5.4.8 The Smith’s ordering heuristic gives amin
(

1+o≥1

1+omin
,

o≥1

1+o≥1
· 1+omin

omin

)

-approximate

solution to the ordering problem.
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Proof. Follows from Lemma 5.4.5 and Lemma 5.4.7. ⊓⊔

Thus, for the case whereo≥1 is not too large compared toomin, Smith’s ordering heuristic gives

a near-optimal ordering of the jobs.

5.5 Conclusion and Future Directions

We have presented a robust optimization framework for the appointment scheduling problem arising

in service operations. The main contribution of this chapter is in demonstrating that there is a neat

closed form for the optimal schedule in the robust model. We also give insights into the structure of

the optimal solution. Furthermore, we propose simple heuristics to get a near-optimal ordering of

the jobs, something which has eluded the stochastic models so far.

We present two problems below related to appointment scheduling that are worth pursuing:

1. Hardness of the appointment scheduling problem: It is well known that the appointment

scheduling problem is quite intractable for the stochasticmodel. Surprisingly, no one has

given a proof of NP-hardness of this problem for for the most general case for any of the

models mentioned in Section 5.1. We believe that at the very least, the problem of finding an

optimal order of the execution of the jobs is NP-hard, both for the stochastic model as well as

for the robust model.

2. Scheduling multiple facilities: So far, in our model we have assumed that the jobs are to

be scheduled on a single facility. In general, there might bemore than one facility where the

jobs can be processed, with possibly different underage/overage cost for different facilities.

In the most general form, the problem will have three components: assigning which jobs are

to processed on which machines, ordering the jobs assigned to each machine in an optimal

sequence, and then computing the optimal duration that should be assigned to each job.

Appendix

A Local Search Algorithm for the Discrete Stochastic Model

The discrete stochastic model of Begen and Queyranne (2011)makes the assumptions that the pro-

cessing durationPi of each jobi is a discrete random variable with integer support. The probability

distributions of the random variables are assumed to be mutually independent. The probability
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mass functions of the distributions are known, and is a part of the input to the problem. Under this

assumption, they prove the following results:

1. There is an integer appointment schedule (i.e. a schedulein which the assigned starting time

of each job is an integer) that is optimal.

2. The cost functionF (A) = EP [F (A,P )] is anL-convex function over the lattice of integer

points. (For more details onL-convex functions, see Murota (2003).)

3. An integer scheduleA minimizing the cost function can be computed in polynomial time by

using a polynomial time algorithm for minimizing a submodular set function.

The algorithm used for minimizing the cost function over an integer lattice is the steepest descent

algorithm (Murota 2003), whose outline is given below. In the rest of this section,IX denotes the

indicator vector ofX ⊆ {1, . . . , n}.

1. LetA be any integer appointment schedule for the given instance.

2. Findǫ ∈ {−1, 1} andX ⊆ {1, . . . , n} that minimizesF (A+ ǫIX).

3. If F (A+ ǫIX) < F (A)

4. A← A+ ǫIX ,

5. Go to step2.

6. ReturnA as the optimal solution.

The key step in the above algorithm is the local search in step2. The functiong(X) =

F (A+IX)−F (A) is a submodular function inX, and hence the function can be minimized in poly-

nomial time by using an efficient algorithm for submodular function minimization (see e.g. Iwata

(2008), Orlin (2009)).

In our implementation, instead of computing the solution that gives the best improvement for

the objective function in each step, we computeany solution that gives an improvement over the

current solution. This modified algorithm is guaranteed to return an optimal solution, however it

is not guaranteed to run in polynomial time. In our computational study, the modified local search

algorithm returned an optimal solution in a reasonable timefor up to14 jobs in an instance.
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Feige, U., V. S. Mirrokni, and J. Vondrák (2007). Maximizing non-monotone submodular func-

tions. In 48th Annual IEEE Symposium on Foundations of Computer Science, Providence,

RI, pp. 461–471.

102



Garey, M. R. and D. S. Johnson (1979).Computers and Intractability: A Guide to the Theory of

NP-completeness. New York, NY: W. H. Freeman.

Garofalakis, M. N. and Y. E. Ioannidis (1996). Multi-dimensional resource scheduling for parallel

queries. InProceedings of the ACM SIGMOD International Conference on Management of

Data, Montreal, Quebec, Canada, pp. 365–376.

Goyal, V., L. Genc-Kaya, and R. Ravi (2011). An FPTAS for minimizing the product of two

non-negative linear cost functions.Mathematical Programming 126, 401–405.

Goyal, V. and R. Ravi (2009). An FPTAS for minimizing a class of quasi-concave functions over

a convex domain. Technical report, Tepper School of Business, Carnegie Mellon University.

Green, L. V., S. Savin, and B. Wang (2006). Managing patient service in a diagnostic medical

facility. Operations Research 54, 11–25.

Grötschel, M., L. Lovász, and A. Schrijver (1988).Geometric Algorithms and Combinatorial

Optimization. Berlin: Springer.

Gupta, D. (2007). Surgical suites’ operations management.Productions and Operations Man-

agement 16, 689–700.

Halman, N., D. Klabjan, M. Mostagir, J. B. Orlin, and D. Simchi-Levi (2009). A fully

polynomial-time approximation scheme for single-item stochastic inventory control with dis-

crete demand.Mathematics of Operations Research 34, 674–685.

Hansen, P. (1979). Bicriterion path problems.Proceedings of the 3rd Conference on Multiple

Criteria Decision Making Theory and Application, 109–127.

Hashizume, S., M. Fukushima, N. Katoh, and T. Ibaraki (1987). Approximation algorithms for

combinatorial fractional programming problems.Mathematical Programming 37, 255–267.
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