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Abstract

This thesis presents efficient algorithms that give optiorahear-optimal solutions for problems
with non-linear objective functions that arise in discrentinuous and robust optimization.

First, we present a general framework for designing appration schemes for combinatorial
optimization problems in which the objective function isartbination of more than one function.
Examples of such problems include those in which the objedtinction is a product or ratio of
two or more linear functions, parallel machine schedulingbfems with the makespan objective,
robust versions of weighted multi-objective optimizatiproblems, and assortment optimization
problems with logit choice models. For many of these proklewe give the first fully polynomial
time approximation scheme using our framework.

Next, we present approximation schemes for optimizing lheragjeneral class of non-linear
functions of low rank over a polytope. In contrast to exigtnesults in the literature, our approx-
imation scheme does not require the assumption of quasiaway of the objective function. For
the special case of minimizing a quasi-concave functiorowtiank, we give an alternative algo-
rithm which always returns a solution which is an extremenpof the polytope. This algorithm
can also be used for combinatorial optimization problemgmhhe objective is to minimize a
guasi-concave function of low rank. We also give complefityoretic results with regards to the
inapproximability of minimizing a concave function over alytope.

Finally, we consider the problem of appointment schedulregrobust optimization framework.
The appointment scheduling problem arises in many senpegations, for example health care.
For each job, we are given its minimum and maximum possibéz@ion times. The objective
is to find an appointment schedule for which the cost in thestwoaise scenario of the realization
of the processing times of the jobs is minimized. We preseglbbal balancing heuristic, which
gives an easy to compute closed form optimal schedule wheniriderage costs of the jobs are
non-decreasing. In addition, for the case where we have é¢hébility of changing the order of
execution of the jobs, we give simple heuristics to find a fogdimal sequence of the jobs.

Thesis Supervisor: Andreas S. Schulz
Title: Patrick J. McGovern (1959) Professor of Management
and Professor of Mathematics of Operations Research
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Chapter 1

Introduction

1.1 Motivation

Optimization is ubiquitous in the field of engineering andnagement today. Optimization prob-
lems arise in diverse areas such as production and mantifagteervice operations, health care,
revenue management, transportation, among others. A ggimpan array of optimization prob-
lems that arise in practise can be found in the survey bookdrgttind Pardalos (1995). Because
of their importance, optimization problems have been esttefy studied - both from a theoretical
point of view as well as their practical implementation.

An optimization problem has two parts: the first is thigective functiorthat we are trying to
optimize. For example, it can correspond to minimizing tbet@f a given production schedule,
or it could be maximizing the revenue of an airline companfe Bbther is the set of constraints
which define the permissible solutions for the optimizatmoblem, also called théeasible set
For a given optimization problem, the main theoretical ¢joas of interest is: Can this problem be
solvedexactlyin an efficientmanner? While the meaning of the exactness aspect of thigigue
is fairly obvious, there are well-accepted theoreticalomst of efficiency as well. The most com-
monly used concept of efficiency for algorithms is that fomaeg class of problems, the number of
computational steps required to solve the problem shoula ppelynomial in the input size of the
problem. A well known class of optimization problems thah @ solved exactly in polynomial
time arelinear programming problemsn which the objective function is linear and the feasible
set is a polyhedron. Linear programming problems belong tmoge general class of optimiza-
tion problem, callecconvex optimization problems which the objective function as well as the

feasible set are convex. Convex optimization problems kaveral nice properties, which can be
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exploited to design polynomial time algorithms for solvihgse problems almost exactly (Nesterov
and Nemirovskii 1961).
However, in real life there are several aspects of optintagtroblems which make them hard

to solve:

1. The objective function or the feasible set can be non-convexn this case, the neat prop-
erties associated with the convex optimization problenssl@st. Moreover, such problems
can havdocal optima which means that there might be solutions which are goodadcal
region around the solution, but are worse-off thayiadbal optimumwhich is the best solution

among all the solutions in the feasible set.

2. The feasible set may be discreteln many optimization problems, the variables take only
discrete values. Because the set of solutions is no moretagous set, finding an optimal
solution in this discrete set (which in many cases is hug&jmgaan exhaustive search of all

the solutions an impractical proposition) becomes difficul

3. The parameters of the optimization problem may be uncertain This can arise due to
two main reasons. Firstly, the process of gathering datthéoproblem may be noisy, which
can lead to uncertainties in the parameters of the optiioizairoblem. Secondly, the pa-
rameter itself may have inherent randomness. As an exaqbsjder the generic problem
of scheduling patients in a health care facility. The timehepatient needs for treatment is
random, and this must be taken into account when solvingriasimal schedule for this

problem.

Unfortunately, it turns out that for many problems with omenwre of the nasty aspects men-
tioned above, there may not be efficient algorithms for sigthem exactly. In fact, the existence of
efficient algorithms for these problems is closely relatethe P versus NP question in complexity
theory, which is a well known open problem (Garey and Johri®#B). Therefore, we need to
relax the exactness and/or the efficiency criteria and despgcialized algorithm for solving such

optimization problems. This is what we attempt in this thesi

1.2 Contributions of this Thesis

In this thesis, we look at a gamut of optimization problemthwaine or more of the features men-

tioned above and develop algorithms for solving such prable
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Chapter 2 covers the preliminary topics which are subsdtyuased in the rest of the thesis.
Included in this chapter is the notion approximation algorithmsin which we relax the exactness
condition on the algorithms by specifying that the algaritmust return a solution which is within
a given factor of the optimal solution, and that it must becedfit. We also define the notion of

approximation schemes and multi-objective optimizatiothis chapter.

In Chapter 3, we present a general framework for designipgopmation schemes for combi-
natorial optimization problems in which the objective ftinn is a combination of more than one
function. Examples of such problems include those in whigh dbjective function is a product
or ratio of two or more linear functions, parallel machinéeduling problems with the makespan
objective, robust versions of weighted multi-objectivdimjization problems, and assortment op-
timization problems with logit choice models. For many otk problems, we give the first fully

polynomial time approximation scheme using our framework.

In Chapter 4, we present approximation schemes for optigiai rather general class of non-
linear functions of low rank over a polytope. The main cdnttion of this chapter is that unlike
the existing results in the literature, our approximatichesne does not require the assumption
of quasi-concavity of the objective function. For the spéciase of minimizing a quasi-concave
function of low-rank, we give an alternative algorithm whialways returns a solution which is
an extreme point of the polytope. This algorithm can also sedifor combinatorial optimization
problems where the objective is to minimize a quasi-condametion of low rank. We also give
complexity-theoretic results with regards to the inappr@bility of minimizing a concave function
over a polytope.

In Chapter 5, we look at the problem of appointment schedulivhich arises in many service
operations, for example health care. In this problem, thie ctzallenge is to deal with the uncertain
processing times of the jobs. The traditional approach @literature to deal with uncertainty
is by formulating the problem as a stochastic program. Hewestochastic models are usually
complicated and computationally intensive to solve. Intcst, we look at this problem in a robust
optimization framework, and derive a simple closed-fornfuson for the optimal duration that
should be assigned to each job. Moreover, for the case whehave the flexibility of changing the
order of execution of the jobs, we give simple heuristicsrid & near-optimal sequence of the jobs

as well.

A list of problems studied in Chapters 3 to 5 is given belowisTig not an exhaustive list; its

aim is to give the reader a flavor of the optimization problehag we tackle in this thesis.
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Max-min resource allocation problemt Santa Claus has to distribute a number of gifts among
children on Christmas Day. A gift cannot be divided amongertban one child, and the happiness
of a child is the sum of the happiness derived from the indiaidyifts given to that child. Santa
wants to be fair to all the children, so he wants to distritibgegifts in such a manner so as to max-
imize the happiness of the least happy child. How shouldeBlaand out the gifts to the children?
(Chapter 3)

Minimum makespan scheduling problems A user wants to perform multiple queries on a parallel
database system. Each query uses multiple resources owves, $er example multiple cores of a
processor, memory, hard disks, etc. The performance ofyistera is governed by the “weakest
link” in the database system - that is, the resource with tagimum load on it. How should the
gueries be assigned to the servers so as to minimize the fotedottleneck resource? (Chapter

3)

Assortment optimization problems A cellphone company has to decide what kind of handsets
it should display in its showroom. In its inventory the compdnas many handsets, ranging from
the cheap ones with no advanced features, to more costht pimames with Internet and e-mail
facilities, and the really expensive ones with 4G netwoakgé memory and faster processors. If
the showroom displays only the cheap handsets, it may tuay awstomers looking to buy the
smart phones. If it displays only the advanced handsetsmess with limited budget may not be
interested in buying them. The showroom cannot displayhallghones because it has a limited
capacity. What assortment of the cellphones should the relomw offer so as to maximize its sales

revenue? (Chapter 3)

Multiplicative programming problems : Suppose | have to drive from my home in Albany Street
in Cambridge to the Logan airport. Naturally, | want to take shortest path possible, but in order
to avoid traffic, | would also like to take a path which has as fetersections as possible. One
way to trade-off between these two objectives is to find a gathminimizes the product of the the
length of the path and the total number of intersections ahphath. How do | find such a path?

(Chapter 3 and 4)

Mean-risk minimization problems: In the problem mentioned above, the speed at which | can
drive on a street is uncertain, since it depends on the trafiiclitions. Suppose that | know the
average time it takes to cover a street, and | also have imfitom about the variance of the time

taken. An alternative way to choose a path would be to find b thett minimizes the sum of the
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average time and the standard deviation of the time takenve t the destination. How can | find
a path that provides a reasonable trade-off between thagedime and the standard deviation?
(Chapter 4)

Appointment scheduling problem A hospital manager needs to schedule surgeries for oatpati
in an operation room of the hospital. The time a surgery vaiket is uncertain. However, the
manager needs to plan in advance the time slot that shoulddignad to each surgery. If the
manager assigns a large interval for a surgery, then itéylithat the surgery will finish early and
the operation room will be left underutilized till the nexirgery commences. On the other hand,
if the manger assigns a small duration for the surgery, thevilli likely overshoot its deadline,
thereby delaying the next surgery and causing inconveaiémthe patients as well as the medical
staff. How much duration should the manager assign to eageiguto achieve the right trade-off
between these two scenarios? Moreover, if it is possibléémge the order in which the surgeries

are performed, then what should be the sequence of the magdChapter 5)

Table 1.1 gives a classification of the problems accordinghether the objective function is
linear or non-convex, the underlying feasible set is digcog continuous, and whether the param-
eters of the problem are uncertain. Note that although alptioblems given in this table have a
discrete feasible set, in some cases (for example, mahiplie programming problems) we also
look at the corresponding problem with a continuous feasdatt. It turns out that algorithms for
the continuous case are more efficient and much simpler apareah to the corresponding discrete
case (and in some cases, the algorithm can be used for thetdisase as well), hence the reason

for considering the continuous case separately.

Problems Non-convexity | Discreteness| Uncertainty
Max-min resource allocation
Makespan scheduling
Assortment optimization
Multiplicative programming
Mean-risk minimization
Appointment scheduling

N ENENEN
SNENENENENEN

Table 1.1: Classification of the problems studied in thisihe
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1.3 Reading this Thesis

The material of this thesis should be accessible to anyotieanbasic knowledge of optimization,
particularly in linear programming and to some extent in boratorial optimization. Chapter 2
covers some of the basic concepts used in the rest of theethaptpart from that, Chapters 3 to 5
can be read independently of each other. Instead of disgud® existing literature for the specific
problems and the improvements achieved with respect toutrerd state of the art in this chapter,
we defer those materials to the later chapters. For the nmolgsirious reader willing to take a

challenge, at the end of each chapter we present a few prshidch still remain open.

1.4 Bibliographic Information

Chapter 1 is based on work done in collaboration with And®aSchulz. An extended abstract
of this work has appeared as Mittal and Schulz (2008); a glurersion is currently under review.
Chapter 2 is also joint work with Andreas S. Schulz and isdgrpased on the technical report Mit-
tal and Schulz (2010). Chapter 3 is joint work with Sebas8éilter. An extended abstract of this

work has appeared as Mittal and Stiller (2011).
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Chapter 2

Preliminaries

In this chapter, we discuss some of the basic concepts thidiemised in the subsequent chapters

of this thesis.

2.1 Approximation Algorithms and Approximation Schemes

An instancer of a single-objective optimization problehh is given by an objective functioff :
X — Ry, whereX is some subset &". In this thesis, we consider problems in which eitheis
a polytope whose concise description is known to us (in terifimear inequalities, or a separation
oracle), orX is a discrete set for which a concise description of its cemdl is known.

If the problemlII is NP-hard, then it is unlikely that there is an algorithm e¥hreturns an
optimal solution for every instanceof II, and has a running time which is polynomial in the input
size of the problem. In that case, one usually looks for amaqmation algorithm for the problem,

which is defined below.

Definition 2.1.1 For a minimization (resp. maximization) probleify an a-approximation algo-
rithmfor a > 1 (resp.« < 1) is an algorithmA which, given any instance of the problem returns
a solutionz? € X such thatf (z2) < - f(x%) (resp. f(z2) > a- f(z%)), wherez* is an optimal

solution to the problem instanee The running time of the algorithr is polynomial in the input

size of the problem.

For certain problems, itis possible to get an approximagigorithm for any factory arbitrarily

close to one. Such a family of algorithms is called an appnation scheme, and is defined below.
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Definition 2.1.2 For a minimization (resp. maximization) probldi a polynomial time approxi-
mation scheme (PTAS3 a family of algorithms parametrized lysuch that for alle > 0, there is
an algorithmA, which is a(1+-¢)-approximation algorithm (resp.1—e¢)-approximation algorithm)

for the problem, and whose running time is polynomial in tifui size of the problem.
A stronger notion of an approximation scheme is a fully polyal time approximation scheme.

Definition 2.1.3 For a minimization (resp. maximization) probldi a fully polynomial time ap-
proximation scheme (FPTA® a family of algorithms parametrized lysuch that for alle > 0,
there is an algorithmA, which is a(1 + ¢)-approximation algorithm (resp(1 — ¢)-approximation
algorithm) for the problem, and whose running time is polyin in the input size of the problem,

as well as inl/e.

Theoretically speaking, the existence of an FPTAS for anhisiét optimization problem is in

some sense the strongest possible result one can get farahem.

2.2 Preliminaries on Multi-objective optimization

An instancer of a multi-objective optimization probleii is given by a set ok functionsfy, . . ., fx.
Eachf; : X — R, is defined over the same set of feasible solutiotisHere, X is some subset
of R™ (more specifically, we will consider the case wh&nor the convex hull ofX is a polytope
whose concise description is known to us), @nd significantly smaller than. Let || denote the
binary-encoding size of the instance Assume that eacl takes values in the range:, M|, where

m, M > 0. We first define the Pareto-optimal frontier for multi-olijee optimization problems.

Definition 2.2.1 Let ©# be an instance of a multi-objective minimization problenhe Pareto-
optimal frontier denoted byP(r), is a set of solutiong: € X, such that for eachx € P(r),

there is nax’ € X such thatf;(z") < f;(x) for all ¢ with strict inequality for at least one

In other words P (7) consists of all the undominated solutionsfJfare all linear functions and
the feasible seK is a polytope, then the set of function valugs(x), ..., fr(z)) forxz € X isa
polytope inR*. ThenP(r) in this case is the set of points on the “lower” boundary d fiolytope.

For continuous multi-objective minimization problems,ganeral,P(7) may have infinitely
many points, and so we need a more compact representatitre éfareto-optimal frontier. One

such way is to use the convex Pareto-optimal frontier, whieimition is given below.
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fa(z)

((A+e)f1(=),
o | (I+e)f2(x))

(f1(z), f2(2)))

fi(z)

Figure 2-1: Figure illustrating the concept of Pareto4mgti front (shown by the thick boundary)
and approximate Pareto-optimal front (shown as solid bfamkts) for two objectives.

Definition 2.2.2 Let 7 be an instance of a multi-objective minimization problemhe Tonvex

Pareto-optimal setlenoted by’ P(r), is the set of extreme points @fnv(P()).

In many cases, it may not be tractable to comgite) or evenC P(r). For example, determin-
ing whether a point belongs to the Pareto-optimal frontierttie two-objective shortest path prob-
lem is NP-hard (Hansen 1979). Also, the number of undomihatdutions for the two-objective
shortest path can be exponential in the input size of thel@mbThis means that' P(7) can have
exponentially many points, as the shortest path problenbedormulated as a min-cost flow prob-
lem, which has a linear programming formulation. This neitates the idea of using an approxi-
mation of the Pareto-optimal frontier. One such notion ohpproximate Pareto-optimal frontier is

as follows. Itis illustrated in Figure 2-1

Definition 2.2.3 Letw be an instance of a multi-objective minimization probleror &> 0, ane-
approximate Pareto-optimal frontjetenoted by, (7), is a set of solutions, such that for alle X,

there isz’ € P.() such thatf;(2’) < (1 +¢€) f;(x), for all 4.

Similar to the notion of an approximate Pareto-optimal fiemywe need to have a notion of an
approximate convex Pareto-optimal frontier, defined belbiae concept of convex Pareto-optimal

set and approximate Pareto-optimal set is illustrated gurei 2-2.

Definition 2.2.4 Let = be an instance of a multi-objective minimization problenor &> 0, an
e-approximate Pareto-optimal seenoted by’ P, (), is a set of solutions such that for amye X,

there isz’ in conv(C P.()) such thatf;(z') < (1 + €) fi(z), for all i.
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L(1+e) f2())

fi(z)

Figure 2-2: Figure illustrating the concept of convex Raugptimal frontC' P (shown by solid
black points) and approximate convex Pareto-optimal froft (shown by solid gray points) for
two objectives. The dashed lines represent the lower epgalbthe convex hull of P,

In the rest of the paper, whenever we refer to an (approxiniaeeto-optimal frontier or its
convex counterpart, we mutually refer to both its set of Sohs and their vectors of objective
function values. Even thougR(7) may contain exponentially many (or even uncountably many)
solution points, there is always an approximate Paretwpgptfrontier that has polynomially many
elements, provided is fixed. The following theorem gives one possible way to trogs such an
approximate Pareto-optimal frontier in polynomial timee\§lve a proof of this theorem here, as

the details will be needed for designing the approximatidreses in the later chapters.

Theorem 2.2.5 (Papadimitriou and Yannakakis (2000))Let k be fixed, and let, ¢’ > 0 be such

that (1 — €)(1 + €)%/ = 1. One can determine &.(r) in time polynomial injz| and 1/ if the

following ‘gap problem’ can be solved in polynomial-timeivén ak-vector of valueguv, . . ., vg),
either
(i) return a solutionz € X such thatf;(z) <wv; foralli=1,... k, or

(i) assert that there is no € X such thatf;(z) < (1 —€)vy; foralli =1,... k.

Proof. Suppose we can solve the gap problem in polynomial time. Anegmate Pareto-optimal
frontier can then be constructed as follows. Consider theelgube inR* of possible function
values given by{(v1,...,v) : m < v; < M forall i}. We divide this hypercube into smaller
hypercubes, such that in each dimension, the ratio of ssizeedivisions is equal td + ", where
¢” = /1 + e — 1. For each corner point of all such smaller hypercubes, weegble gap problem.

Among all solutions returned by solving the gap problems kegp only those solutions that are
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not Pareto-dominated by any other solution. This is theiredW’ (7). To see this, it suffices to
prove that every point* € P(w) is approximately dominated by some pointin(r). For such a
solution pointz*, there is a corner point = (v, ..., v;) of some hypercube such that{z*) <
v; < (1+€")fi(x*) fori =1,..., k. Consider the solution of the gap problem foe= (1 + €”)wv.
For the pointy, the algorithm for solving the gap problem cannot assérbécause the point*
satisfiesf;(z*) < (1 — €')y; for all i. Therefore, the algorithm must return a solutidrsatisfying
filx) < y; < (1 + e fi(z*) for all i. Thus,z* is approximately dominated hy', and hence
by some point inP.(r) as well. Since we need to solve the gap problemdoéflog (M /m)/e)¥)

points, this can be done in polynomial time. O

We will refer to the above theorem as the gap theorem. Solfirggap problem will be the
key to designing the approximation schemes in the latertehsap For the case wherg(x) are
continuous linear functions, the gap problem can be solgatywa linear program. For the discrete

case, however, solving the gap problem requires more €feet Chapter 3 for more details).

Further Reading

The standard reference on NP-hardness is Garey and Joht809).( For readers interested in
approximation algorithms, the book by Williamson and She(®011) is an excellent text. An
extensive discussion on computing approximate Paretmapfronts for multi-objective combi-
natorial optimization problems can be found in Safer andnddl995a), Safer and Orlin (1995b)
and Safer, Orlin, and Dror (2004).
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Chapter 3

Approximation Schemes for

Combinatorial Optimization Problems

3.1 Introduction

In many combinatorial optimization problems, the objeetiunction is a combination of more than
one function. For example, consider the problem of findingansing tree in a grap&y = (V, E)
with two edge weightg; andc,, wherec; may correspond to the failure probability of the edges,
andc, to the cost of the edges. The objective is to find a spannirggiiref the graph for which
c1(T) - co(T) is minimized (Kuno 1999; Kern and Woeginger 2007). In thisijem, the objective
function is a combination of two linear objective functioosmbined together using the product

function.

Another example of a problem whose objective function sotEsimore than one function is the
max-min resource allocation problem (Asadpour and Saldé7R Here, there are several resources
which have to be distributed among agents. The utility oheagent is the sum of the utilities of
the resources assigned to the agent. The objective is tamzexihe utility of the agent with the
lowest utility. In this problem, one can look at the utility each agent as a separate objective
function. Thus, the objective function of the problem is antination of the objective functions of

the individual agents using the minimum function.

This chapter presents a unified approach for solving contdnilad optimization problems in
which the objective function is a combination of more thare dbut a fixed number) of objective

functions. Usually, these problems turn out to be NP-hard siow that under very general condi-
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tions, we can obtain FPTASes for such problems. Our teclerigiuns out be surprisingly versatile:
it can be applied to a variety of scheduling problems (e.gelated parallel machine scheduling and
vector scheduling), combinatorial optimization problewith a non-linear objective function such
as a product or a ratio of two linear functions, and robussieas of weighted multi-objective opti-
mization problems. We first give examples of some of the @misl for which we can get FPTASes

using our framework.

3.1.1 Examples of Problems

Combinatorial optimization problems with a rational objective: Consider the problem in which

the objective function is a ratio of discrete linear funogo

fl(ac) __agp +a1x1+ ...+ aqgxyg
fg(w) bo +bix1 + ...+ bgry ’
s.t. ze X C{0,1}

minimize g(x) (3.2)

We assume thaf;(z) > 0, fa(z) > 0 for all z € X. In this case, there are two linear objec-
tive functions that have been combined by using the quofierdtion. A well known example is
the computation of a minimum mean cost circulation in graphsgiddo (1979) showed that any
polynomial time algorithm for the corresponding linear adijve problem can be used to obtain
a polynomial time algorithm for the same problem with a nadiloobjective function. Extensions
of this result have been given by Hashizume, Fukushima, iKadad Ibaraki (1987), Billionnet
(2002) and Correa, Fernandes, and Wakabayashi (2010)dmalgproximation algorithms for the
case where the corresponding linear objective problem ih&i. The main idea behind all these
approaches is to convert the problem with a rational oljedtinction to a parametric linear opti-
mization problem, and then perform a binary search on thenpater to get an approximate solution
for the problem. The main drawback of parametric methodsisthey do not generalize to the case
where we have a sum of ratios of linear functions.

In Section 3.7, we give a fairly general sufficient conditfonthe existence of an FPTAS for this
problem. It can be used to obtain an FPTAS, for example, foktrapsack problem with a rational
objective function. In contrast to the methods describavapour algorithm uses a non-parametric
approach to find an approximate solution. One distinct atdgnof our technique is that it easily
generalizes to more general rational functions as wellek@mple the sum of a fixed number of

ratios of linear functions. Such a form often arises in assent optimization in the context of
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retail management, and in Section 3.7.1, we show how toroBfaTASes using our framework for

assortment optimization problems under two different chonodels.

Resource allocation and scheduling problemsThe best known approximation algorithm for the

1
m) , where

m is the number of agents (Asadpour and Saberi 2007). In $e8ibl, we obtain the first FPTAS

general max-min resource allocation problem has an appatdion ratio ofO (

for this problem when the number of agents is fixed.

Scheduling problems can be thought of as an inverse of theres allocation problem, where
we want to assign jobs to machines, and attempt to minimieddad on individual machines.
Corresponding to the max-min resource allocation proble have the problem of scheduling
jobs on unrelated parallel machines to minimize the makegpa. the time at which the last job
finishes its execution). When the number of machimeis fixed, this problem is referred to as the
Rm||Cnax problem. Another objective function that has been coneidi@r the literature is the one
in which the total load on different machines are combing@toer using at}, norm (Azar, Epstein,
Richter, and Woeginger 2004). In Section 3.4.1, we give FPag\for both of these scheduling
problems. It should be noted that approximation schemeth&R||C\,.x problem already exist in
the literature (e.g. Sahni (1976) and Lenstra, Shmoys, andb§ (1990)).

A generalization of thétm||Cy,.x problem is the vector scheduling problem. In this problem, a
job uses multiple resources on each machine, and the olgéstio assign the jobs to the machines
S0 as to minimize the maximum load over all the resourcesefitachines. A practical situation
where such a problem arises is query optimization in pdrddéabase systems (Garofalakis and
loannidis 1996). In this case, a job is a database query,hages multiple resources on a com-
puter - for example, multiple cores of a processor, memamgd klisk etc. A query can be assigned
to any one of the multiple servers in the database systente $iire overall performance of a sys-
tem is governed by the resource with the maximum load, thectilsg is to minimize over all the
resources, the maximum load. Chekuri and Khanna (2004)eggR&AS for the problem when the
number of resources on each machine is fixed. Moreover, thigyconsider the case where each
job has the same requirement for a particular resource dhealinachines. In Section 3.4.2, we
show that when both the number of machines and resourcexatleite can get an FPTAS for the

problem, even when each job can use different amounts obanes on different machines.

Combinatorial optimization problems with a product objective: For the product versions of the

31



minimum spanning tree problem and the shortestpath problem, Kern and Woeginger (2007)
and Goyal, Genc-Kaya, and Ravi (2011) give an FPTAS. Bothelmethods are based on linear
programming techniques, and do not generalize to the caseewte have more than two func-

tions in the product. Moreover, their techniques do notraxti® the case where the corresponding

problem with a linear objective function is NP-hard.

In Section 3.5.3 of this chapter, we give FPTASes for the pcodersion of thes-t path prob-
lem and the spanning tree problem using our framework. A tiguatage of our method is that it
easily generalizes to the case where the objective funiiamproduct of a fixed number of linear
functions. It can also be used to design approximation sebdor the product version of certain

NP-hard problems, such as the knapsack problem.

Robust weighted multi-objective optimization problems: Consider once again the spanning tree
problem with two cost functions; andc, on the edges, as given in the introduction. One way to
combine the two costs is to find a spanning tféerhich minimizes the weighted sumy ¢, (7)) +
waco(T') for some positive weights; and we. However, in many cases it is not clear a-priori
which weights should be used to combine the two objectivesalfernative is to allow the weights

w = (wy,wsy) to take values in a sél/, and find a spanning tree that minimizes the cost of the
weighted objective for the worst case scenario weight insiigl C R%r. This ensures a fair
trade-off of the two cost functions. More generally, we ddasthe following robust version of a

weighted multi-objective optimization problem:

minimizeg(x) = max w? f(x), zeX C{0,1} (3.2)
we
Here, f(x) = (fi(x),..., fm(z)) is a vector ofm function values and’ C R™ is a compact

convex weight set. For the spanning tree problem and theéestgrath problem, the above robust

version is NP-hard even for the case of two objectives.

The robust version of weighted multi-objective optimipatiproblems has been studied by Hu
and Mehrotra (2010) for the case when edghs a continuous function. For discrete optimization
problems, this formulation is a generalization of the raldiscrete optimization model with a fixed
number of scenarios (see e.g. Kouvelis and Yu (1997)). Tioblem is NP-hard, but admits an
FPTAS for the robust version of many problems when the nunobescenarios is fixed (Aissi,

Bazgan, and Vanderpooten 2007). In Section 3.6, we gerertidis result and show that we can
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get FPTASes for the robust version of weighted multi-olyecoptimization problems when the
number of objectives is fixed, for the case of the spannirg preblem, the shortest path problem

and the knapsack problem.

3.1.2 Related Work

There are two well known general methods for obtaining axgpration schemes for combinatorial
optimization problems. In the first method, the input parerseof the problem are rounded and
then dynamic programming is applied on the modified instaadmd an approximate solution for
the original problem. This idea has been extensively uséddapproximation schemes for a num-
ber of machine scheduling problems (e.g. Sahni (1976), Witt@nd Sahni (1976), Hochbaum and
Shmoys (1987), Lenstra, Shmoys, and Tardos (1990)). Tk otathod is shrinking the state space
of the dynamic programs that solve the problem in pseudgrpohial time. This idea was first used
by Ibarra and Kim (1975) to obtain an approximation schemmelfe knapsack problem. Woegin-
ger (2000) gives a very general framework where such dyngnaoigrams can be converted to an
FPTAS, and using this framework he derives FPTASes for aégeheduling problems. Another
example is the work of Halman, Klabjan, Mostagir, Orlin, &ichchi-Levi (2009), who adopt the

same methodology to get FPTASes for inventory managemebtgms.

3.1.3 Overview of Our Framework

We present a general framework which we use to design FPTRS#se problems given in Sec-
tion 3.1.1. The main idea behind this framework is to treaheabjective function as a separate
objective, and compute the approximate Pareto-optimat frorresponding to these objective func-
tions. It is possible to get an approximate Pareto-optimwadtffor many combinatorial optimization
problems under the general condition that the correspgrigixact” problem is solvable in pseudo-
polynomial time. The exact problem, for example, for thespag tree problem is, given a vector of
non-negative integer edge weightand a non-negative integéf, does there exist a spanning tiEée
such that(T') = K? For many combinatorial optimization problems (e.g. thensing tree prob-
lem, the shortest path problem, and the knapsack problezr®xict problem can indeed be solved
in pseudo-polynomial time. For the resource allocationsoiebduling problems, the exact problem
is a variant of the partition problem, and we show that it sbaolvable in pseudo-polynomial time.

Our framework works in the following three stages:
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1. Show that the optimal solution of the problem lies on Bageto-optimal frontof the corre-

sponding multi-objective optimization problem.

2. Show that there is at least one solution in #pproximate Pareto-optimal frorwhich is an

approximate solution of the given optimization problem.

3. To construct the approximate Pareto-optimal front, imyngases it is sufficient to solve the

exact problentorresponding to the original optimization problem in paolynomial time.

In Section 3.2, we first show how to solve the gap problem tsttant an approximate Pareto-
optimal front for a multi-objective discrete optimizatipmoblem. We then give our general frame-
work for designing FPTAS for combinatorial optimizatioroptems in which several objective func-
tions are combined into one, and state the conditions ndeddae framework to work in the main
theorem of this chapter in Section 3.3. Subsequently, wisalEPTASes for the problems men-

tioned in Section 3.1.1 as corollaries to the main theorem.

3.2 Solving the Gap Problem for the Discrete Case

From Theorem 2.2.5, we know that it suffices to solve the gaplpm to compute an approxi-
mate Pareto-optimal front. We give a procedure here forisglthe gap problem with respect to
minimization problems, but it can be extended to maximaaproblems as well (see Section 3.7).
We restrict our attention to the case whgnC {0, 1}¢, since many combinatorial optimization
problems can be framed ag1-integer programming problems. Further, we consider firdgec-
tive functions; that isf;(z) = 2?21 a;jxj, and eachy;; is a non-negative integer. Suppose we
want to solve the gap problem for the-vector (vq,...,v,,). Letr = [d/€']. We first define a
“truncated” objective function. For all = 1,...,d, if for somei, a;; > v;, we setr; = 0, and
drop the variabler; from each of the objective functions. LEtbe the index set of the remaining
variables. Thus, the coefficients in each objective fumctice now less than or equaldn Next, we
define a new objective functioff(v) = >y a;;z;, wherea;; = [a;;r/v;]. In the new objective
function, the maximum value of a coefficient is newrForx € X, by Lemma 3.8.1 (see appendix)

the following two statements hold.
o If f/(z) <r, thenf;(x) < v;.
o If fi(z) <wi(1—¢),thenf/(x) <r.
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Therefore, to solve the gap problem, it suffices to findvag X such thatf/(z) < r, fori =
1,...,m, or assert that no suahexists. Since all the coefficients §f(x) are non-negative integers,
there are" + 1 ways in whichf/(z) < r can be satisfied. Hence there éret 1) ways overall in
which all inequalitiesf/(x) < r can be simultaneously satisfied. Suppose we want to findrié the
isanz € X such thatf/(z) = b; fori = 1,...,m. This is equivalent to finding am such that
S M () = Y, My, whereM = dr + 1 is a number greater than the maximum
value thatf/(z) can take.

Given an instancer of a multi-objective linear optimization problem over aatste setX C
{0,1}%, the exact version of the problem is: Given a non-negatiegerC and a vectofcy, . .., cq) €
74, does there exist a solution € X such thatzz'l:1 cjr; = C? The following theorem estab-
lishes the connection between solving the exact problemtlamaonstruction of an approximate

Pareto-optimal front.

Theorem 3.2.1 Suppose we can solve the exact version of the problem in pgmbkghomial time,

then there is an FPTAS for computing the approximate Paoptonal curveP, (7).

Proof. The gap problem can be solved by making at ngest 1)™ calls to the pseudo-polynomial
time algorithm for the exact problem, and the input to eadhtas numerical values of order
O((d?/e)™*1). Therefore, all calls to the algorithm take polynomial tirhence the gap problem

can be solved in polynomial time. The theorem now followsrfréheorem 2.2.5. O

3.3 The General Formulation of the FPTAS

In this section, we present a general formulation of the FPBased on the ideas given in Sec-
tion 2.2. We then show how this general framework can be adafat obtain FPTASes for the
problems given in Section 3.1.1.

Let f1,..., fin, for m fixed, be functions which satisfy the conditions given in lieginning of

Section 2.2. Let : R — R be any function that satisfies the following two conditions.
1. h(y) < h(y') forall y,y" € R such thaty; < y; foralli =1,...,m, and
2. h(Ay) < X°h(y) for all y € R and\ > 1, for some fixed: > 0.

In particular,h includes all the,, norms (withc = 1), and the product of a fixed number (s&y,of

linear functions (withc = k). We denote byf () the vector(fi(x), ..., fm(z)).
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Consider the following general optimization problem:
minimizeg(z) = h(f(z)), z€X. (3.3)

We show that if we can solve the corresponding exact probigithh @ singe linear objective
function) in polynomial time, then there is an FPTAS to sdhis general optimization problem as
well. Also, even though we state all our results for minimi@aproblems, there is a straightforward

extension of the method to maximization problems as well.
Lemma 3.3.1 There is at least one optimal solutiari to (3.3) such thatz* € P(x).

Proof. Letz be an optimal solution of (3.3). Suppose¢ P(w). Then there exists* € P(r)
such thatf;(z*) < fi(z) fori = 1,...,m. By Property 1 ofi(z), h(f(z*)) < h(f(Z)). Thusz*

minimizes the functiory and is inP (). 0

Lemma 3.3.2 Leté = (1 +¢)'/¢ — 1. Let be a solution inP;(r) that minimizes(x) over all the
pointsz € P:(r). Thenz is a(1 + €)-approximate solution of3.3); that is, g(Z) is at most(1 + ¢)

times the value of an optimal solution {&.3).

Proof. Letz* be an optimal solution of (3.3) that is iA(x). By the definition of are-approximate
Pareto-optimal frontier, there exisis € P;(w) such thatf;(z') < (1 + €)f;(z*), for all i =

1,...,m. Therefore,

9(@’) = h(fi(@), ..., fm(a"))

IN

h((l + é)fl(x*)v T (1 + é)fm(l'*))
< (A +h(fr(z%),. .., fm(2")) = (1 +€)g(a7),

A

where the first inequality follows from Property 1 and theasetinequality follows from Property
2 of h. Sincez is a minimizer ofg(x) over all the solutions iP:(7), g(z) < g(z') < (1+¢€)g(x*).

O

From these two lemmata and Theorem 3.2.1, we get the mairetieaf this chapter regarding

the existence of an FPTAS for solving (3.3).

Theorem 3.3.3 Suppose the exact problem corresponding to the functiorengn (3.3) can be
solved in pseudo-polynomial time. Then there is an FPTASdbiring the general optimization

problem(3.3) whenm: is fixed.
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The FPTAS can now be summarized as follows.

1. Sub-divide the space of objective function val(@s(7) 2r(7D]™ into hypercubes, such

that in each dimension, the ratio of two successive divisisnl + ¢”, wheree’ = (1 +

6)1/20 —1.

2. For each corner of the hypercubes, solve the corresppm@ip problem, and keep only the

set of non-dominated solutions obtained from solving ed¢hengap problems.

3. Among all the solutions in the non-dominated front, netilne one with the minimum function

value.
Finally, we establish the running time of the above alganith
Lemma 3.3.4 The running time of the algorithm is polynomialjin and 1/e.

Proof. There areD(( (W)) ) corner points for which we need to solve the gap problem. iBglv
each gap problem requires calling the algorithm for solthrgexact problen® () times, which
is O((g)m) The magnitude of the largest number input to the algoritbnttie exact problem is
O((£)™+1). Hence the running time of the algorithmdx (252 "r‘ ) - PP((£)™ 1 m, d)), where
PP(M,m,d) is the running time of the pseudo-polynomial time algoritfonthe exact problem

with maximum magnitude of an input number equalifo O

3.4 FPTAS for Scheduling and Resource Allocation Problems

Using the framework presented in Section 3.3, we give FPE4&ethe max-min resource alloca-

tion problem, theRm||Cyax problem and the vector scheduling problem.

3.4.1 TheRm||C,,.. Problem and the Max-Min Resource Allocation Problem

Recall theRm/||Chax Scheduling problem defined in the introduction. Thererarmachines and
n jobs, and the processing time of jébon machine is p;.. The objective is to schedule the jobs
to minimize the makespan. The max-min resource allocatioblpm is similar to this scheduling
problem, except that the objective here is to maximize th@mmm completion time over all the
machines. Observe that this corresponds toeing thel,.-norm with¢ = 1 in the formulation

given by (3.3).
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We first give an integer programming formulation for the twolgems. Letz;; be the variable
which is 1 if job & is assigned to maching 0 otherwise. Then objective functions in this case
(corresponding to each agent/machine) are giverf;by) = > ;_, pirzix, and the sefX is given

by

ay =1 fork=1,...n, (3.4a)

xg € {0,1} fori=1,...,m, k=1,...,n. (3.4b)

The exact version for both the problems is this: Given argieit€’, does there exist@/ 1-vector
z such thatd Sy, >0, ¢jpaj, = C, subject to the constraints (3.4a) and (3.4b)? The follgwin

lemma establishes that the exact problem can be solve inlpgslynomial time.

Lemma 3.4.1 The exact problem for the max-min resource allocation moband theRm||Cyax

problem can be solved in pseudo-polynomial time.

Proof. The exact problem can be viewed as a reachability problendireated graph. The graph
is an(n + 1)-partite directed graph; let us denote the partitions af thgraph by, ..., V,. The
partition V5 has only one node, labeled ag, (the source node), all other partitions havet 1
nodes. The nodes ivj for 1 <+ < n are labeled as; o, ..., v; c. The arcs in the digraph are from
nodes inV; to nodes inV;;; only, for0 < i < n — 1. Forallc € {c1+1,...,cm,i+1}, thereis
an arc fromv; ; 10 v, 11 j4., if 7+ ¢ < C. Then there is a solution to the exact version if and only
if there is a directed path from the source nedg to the nodev, ¢. Finding such a path can be
accomplished by doing a depth-first search from the n@de The corresponding solution for the
exact problem (if it exists) can be obtained using the patindicby the depth-first search algorithm.
0

Therefore, we obtain FPTASes for both the:||Cy,,.x problem as well as the max-min resource
allocation problem. For the max-min resource allocatiopbfgm with a fixed number of agents,
we give the first FPTAS, though approximation schemes folRH€,,.x problem already exist in
the literature (e.g. Sahni (1976) and Lenstra, Shmoys, ando§ (1990)). Further, Theorem 3.3.3
implies that we get an FPTAS even when the objectives foewdfit agents/machines are combined

together using any norm. We therefore have the followingltamy to Theorem 3.3.3.

Corollary 3.4.2 There is an FPTAS for the max-min resource allocation probgth a fixed num-
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ber of agents. Further, we also get an FPTAS for the min-msgueee allocation problem with a
fixed number of agents and the unrelated parallel machinblpro when the objectives for different

agents/machines are combined by some norm.

3.4.2 The Vector Scheduling Problem

The vector scheduling problem is a generalization of Be||Cy,.x problem. In this problem,
each job required resources for execution on each machine. Babnsumes an amoupf, of a
resourcej on machine. SupposeJ; is the set of jobs assigned to machinérhus the total usage
of resourcej on maching is ), ;. p,.. The objective is to minimize over all the machineand

all the resourceg, the value) _, ;. pl,.. We assume that bothandm are fixed.

Similar to theRm/||Cpax problem, letr;; be a variable that i$ if job % is assigned to machine
i, 0 otherwise. In this case, we have a totalrofl functions andf;;(z) = Ezzlpgkxik, for
i=1,...mandj =1,...,d. Themd objective function are combined together usingithenorm
in this problem. The underlying set of constraints is thesagiven by (3.4a)-(3.4b). Therefore,
the exact algorithm for thém||Cy,.x problem works for the vector scheduling problem as well,
and since we have a fixed number of objective functions, wamg&PTAS for the vector scheduling

problem as well. Hence we have the following corollary to dieen 3.3.3.

Corollary 3.4.3 There is an FPTAS for the vector scheduling problem whenuhser of machines
as well as the number of resources are fixed, even for the chea ®ach job can use a different

amount of a particular resource on different machines.

3.5 FPTAS for Minimizing the Product of Two Linear Objective Func-

tions

In this section, we give a general framework for designingA&%es for problems in which the
objective is to minimize the product of two linear cost fuans. We then apply this technique to
some product combinatorial optimization problems on gsajpind then extend it to the case where

the objective function is a product of a fixed number of linfeerctions.
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3.5.1 Formulation of the FPTAS

Consider the following optimization problem.
minimizeg(x) = fi(z) - f2(x), xz e X, (3.5)

where f; : X — 7, are linear functions an& C {0,1}%. In our general formulation given
by (3.3), the corresponding functidnfor this case i%i(y1, y2) = y1y2, and soc = 2. Thus, if we
can construct an approximate Pareto-optimal frontfidr:) and f>(z) in polynomial time, we will
be able to design an FPTAS for the product optimization @bl Therefore, we get the following

corollary to Theorem 3.3.3.

Corollary 3.5.1 There is an FPTAS for the problem given 8y5) if the following exact problem
can be solved in pseudo-polynomial time: Giyen ..., cq) € Zi and K € Z., does there exist

z € X such thaty % | ciz; = K?

3.5.2 FPTAS for Some Problems with the Product Objective Fuetion

Using the above theorem, we now construct FPTASes for des@mzbinatorial optimization prob-

lems involving the product of two objective functions.

1. Spanning tree problem: In this case, the exact problem is: given a graph= (V, E)
with cost functionc : £ — Z, and a positive integek’, does there exist a spanning tree
T C E whose cost is equal to exactly? Barahona and Pulleyblank (1987) give@((n? +
p?)p? log p) algorithm for solving the exact problem, wherés the number of vertices in the
graph ant = n - max, (¢(e)). Thus we have an FPTAS for the spanning tree problem with

the product of two cost functions as the objective.

2. Shortest s-t path problem: The exact problem in this case is: given a gréph= (V. E),
verticess,t € V, a distance functio@ : £ — Z, and an integelk, is there ans-t path
with length equal to exactly¢? Note that for the shortest path problem, the exact problem
is strongly NP-complete, since it includes the Hamiltongeath problem as a special case.
To circumvent this issue, we relax the original problem tat thf finding a walk (in which
a vertex can be visited more than once) between the vertiGasd ¢ that minimizes the
product objective. The optimal solution of the relaxed peabwill have the same objective

function value as that of an optimal solution of the origipabblem, since any-t walk can
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be truncated to get astt path. Therefore, it suffices to get an approximate solutortte

relaxed problem.

The corresponding exagtt walk problem is: Does there exist aft walk in the graph whose
length is equal to exactly a given numhi§re 7, ? Since we are dealing with non-negative
weights, this problem can be solved@r{mnK) time by dynamic programming, whereis

the number of vertices ang is the number of edges in the graph. If the solution given by
the algorithm is a walk instead of a path, we remove the cyfetea the walk to get a path.
Hence we obtain an FPTAS for the shortestpath problem with the product of two distance

functions as the objective.

3. Knapsack problem: The exact problem for the knapsack problem is: given d sétitems
with profitp : I — Z,, sizes : I — 7, and a capacity constraint, does there exist a subset
of I satisfying the capacity constraint and having total prof#atly equal to a given integer
K? Again, this exact problem can be solved(MnK) time by dynamic programming,
wheren is the number of objects. Therefore we get an FPTAS for thdymoversion of the

knapsack problem.

4. Minimum cost flow problem: The problem we have is: given a directed grapk= (V, A),
verticess,t € V, an amount of flowl € Z, to send froms to ¢, capacitiesu : A — Z,
and two cost functions;, cs : A — Z, find a feasibles-t flow «x of total amount/ such that
c1(z) - ea(z) is minimized. The minimum cost flow problem is different frahe above two
problems, since it can be formulated as a linear prograrteadsof an integer linear program.
In this case, the gap problem as stated in Theorem 2.2.5 caolm directly using linear
programming. Therefore we obtain an FPTAS for the minimuist iow problem with the

product objective function as well.

Note that in this case, the approximate solution that weinltay not necessarily be integral.
This is because when we solve the gap problem, we introdutstreints of the forny;(z) <

(1 — €')v; corresponding to each of the two objectives, in additiorh®ftow conservation
and capacity constraints. This means that the constraimhag not be totally unimodular,

and hence the solution obtained can possibly be non-integra

A big advantage of our method is that it can be used to get aro=jppation scheme for the
product version of an optimization problem even if the aradiproblem is NP-hard, for example in

the case of the knapsack problem, whereas previously mxistethods cannot handle this case.
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3.5.3 Products of More Than Two Linear Objective Functions

Another advantage of our technique over existing methodddsigning FPTASes for product op-
timization problems (Kern and Woeginger 2007; Goyal, GKaga, and Ravi 2011) is that it can
be easily extended to the case where the objective fundi@ngroduct of more than two linear
functions, as long as the total number of functions involirethe product is a constant. Consider

the following generalization of the problem given by (3.5).
minimizeg(z) = fi(z) - fa(x) - ... - fi(2), xz € X, (3.6)

wheref; : X — Z. are linear functions, foi = 1,...,m, X C {0,1}? andm is a fixed number.
This again fits into our framework given by (3.3), with= m. Thus our technique yields an FPTAS
for the problem given by (3.6) as well. We have thereforeldisiaed the following corollary to
Theorem 3.3.3.

Corollary 3.5.2 There is an FPTAS for the problem given(By6)if m is fixed and if the following
exact problem can be solved in pseudo-polynomial time: 1{ve . .., c,) € Zi andK € Z,

does there exist € X such thatzl?l:1 cir; = K?

3.6 FPTASes for Robust Weighted Multi-Objective Optimizaton Prob-

lems

Consider the following robust version of a weighted mublijextive optimization problem given
by Hu and Mehrotra (2010):

minimizeg(x) = max w? f(x), zeX C {01} (3.7)
we
Here, f(xz) = (fi(z),..., fm(x)) € R is a vector ofm function values\W C Wy, where

Wp={w € R} :wy + ... +w, = 1} (i.e. the weights are non-negative and they sum up to one)
andW is a compact convex set. We assume that we can optimize a fumgaion over the setl
in polynomial time; this ensures that the functigfx) can be computed efficiently. Examples of

some of the forms that the weight 3é&t can take are as follows:

1. Simplex weight setV = W; = {w € R} : w1 + ... + wy, = 1}.
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2. Ellipsoidal weight setW = {w € Wy : (w — )T S~ (w — @) < 42}, wherew,~ > 0, and

S'is am x m positive semi-definite matrix.

3. Box weight setiV = {w € Wy : ||w|| < k}, wherek > 0.

In particular, the model with the simplex weight set can besidered to be a generalization
of the robust optimization model with a fixed number of scesarThe robust optimization with a

fixed number of scenarios has the following form.
minimize h(x) = {max }ch, reX C{0,1}% (3.8)
CECL,..,Cm

The connection between the problems given by (3.7) and iBe®tablished in the following lemma.

Lemma 3.6.1 The problem given b§B.8)is equivalent to the problem given 8.7)whenf;(x) =

cFxfori=1,...,m and the weight set is the simplex weight 186t

Proof. For a given solutionc € X, its objective function valué(z) in the formulation (3.8) is

given by
h(z) = max{c'z:ce{ci,...,cm}}

= max{c'z:ceccom{cy,...,cm})}

= max{wiclz+ ... +wpcha:w e Wy}

= max{w’ f(z):w e W;}

= g(z),
whereg(x) is the objective function value in the formulation given I3/7), con{{ci,...,cn})
denotes the convex hull of the pointscy, ..., ¢, and fi(z) = ¢z fori = 1,...,m. This estab-

lishes the equivalence between the optimization problemngby (3.7) with the simplex weight set

and the optimization problem given by (3.8). O

Using this observation, we establish the NP-hardness affitimization problem given by (3.7).

Lemma 3.6.2 The optimization problem given [§8.7) is NP-hard for the shortest path problem

and the spanning tree problem.
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Proof. The following 2-scenario robust optimization problem isowm to be NP-hard for the

shortest path problem and the spanning tree problem (Kisuaetl Yu 1997):

minimize h(z) = rFax }ch, ze X C{0,1} (3.9)
cEqC1,C2

Problem (3.9) is equivalent to the form given by (3.7) wit{z) = cl, fo(z) = cl'z and
W = {(w1,w2) € R : wy + wy = 1}. Therefore the optimization problem given by (3.7) is also

NP-hard in general. O

Next, we establish that when, the number of objectives, is fixed, the optimization prable

given by (3.7) admits an FPTAS.

Lemma 3.6.3 There is an optimal solution t8.7)that lies onP(r), the Pareto-optimal frontier of

them functionsfi(x), ..., fm(z).

Proof. Letx* be the optimal solution to the problem given by (3.7). Suppdds not on the Pareto-
optimal front. By definition, there exists € P(r) such thatf;() < f;(«*) fori =1,...,m. Let

w € W be the weight vector which maximizes' f(2). Then,

g(@) = @' f(2)

< ' f(z")
< maxw! f(z*) = g(z¥).
< maxw f(z%) = g(z¥)
Hencez minimizesg(z) and lies on the Pareto-optimal frontier. 0

Lemma 3.6.4 There is a solutiort: on P, () that is a(1 + €)-approximate solution of the optimiza-

tion problem(3.7).

Proof. Letz* be the optimal solution to the problem given by (3.7). By dé&én of P.(r), there
existsz € P.(m) such thatf;(z) < (1 +¢)fi(z*) fori = 1,...,m. Letw € W be the weight

which maximizesw” f (). Therefore,

g(@) = w'f(2)



Thereforez is a(1 + €) approximate solution to the problem given by (3.7). O

Together with the above two lemmata, we get the followingpttary to Theorem 3.3.3, which
establishes the existence of FPTASes for the robust vedditite shortest path problem, the span-

ning tree problem and the knapsack problem.

Corollary 3.6.5 There is an FPTAS for the problem given(By7) whenm is fixed if the following
exact problem can be solved in pseudo-polynomial time: 1G{ve, . .., cq) € Zi andK € Z,

does there exist € X such thath:1 cir; = K?

3.7 FPTASes for Problems with Rational Objective Functions

In this section, we consider combinatorial optimizatiolmlgems involving a ratio of two linear

objectives as given in the introduction:

fl(ac) o +a1x1 + ...+ agxyg
fg(w) N bo +bix1 + ...+ bgry
s.t. ze X C{0,1}

minimize g(x) (3.10)

We assume thaf;(z) > 0, fo(z) > 0 for all z € X. The situation here is different from the
problems we have considered previously, since in this casarevattempting to minimizg,, while
simultaneously maximizings,. Therefore we cannot use Theorem 3.3.3 directly for obigirin
FPTAS. We need to modify the definition of the Pareto-optifmaht and the approximate Pareto-
optimal front for this problem, and re-state the gap theofenthe modified definition. We first
give the appropriate definition of the Pareto-optimal areldpproximate Pareto-optimal front for

this problem.

Definition 3.7.1 Consider the problem given §8.10) For this problem, thé®areto-optimal fron-
tier P(7) is the set of all points: for which there is nar’ such thatf;(z’) < fi(z) and fo(2') >

fa(x) with strict inequality for at least one of them.

Definition 3.7.2 For the problem given b§B.10), for ¢ > 0, anapproximate Pareto-optimal frontier

P.(m) is a set of solutions such that for all € X, there isz’ € P.(w) such thatf;(z') < (1 +

€)f1(z) and fa(z') > fa(x)/(1 +e).

We now state the modified gap theorem for this problem. Thefmbthis theorem is same as

the one for Theorem 2.2.5, so we omit it.
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Theorem 3.7.3 (Modified gap theorem)Lete, €}, €, > 0 be such thatl — ¢})(1 + €)'/? = 1 and
(1+¢€,) = (1+¢€)/2. One can determine B.(r) in time polynomial injx| and1/e if the following
‘gap problem’ can be solved in polynomial time: Given a vedfovalues(v, w), either

(i) return a solutionz € X such thatf;(z) < v and fa(z) > w, or

(ii) assert that there is no € X such thatf;(z) < (1 — €})v and fa(z) > (1 + €5)w.

It is easy to see that Lemma 3.3.1 holds in this case, with thdifiad definition of the Pareto-

optimal front. The analog of Lemma 3.3.2 is given below.

Lemma 3.7.4 Let P.(w) denote the approximate Pareto-optimal front of the funig; and f
corresponding to minimizing; and maximizingf,. Let be the solution inP.(7) that minimizes

g(x) over all pointsz € P.(r). Theng is a (1 + ¢)?-approximate solution fo(3.10)

Proof. Letz* be an optimal solution of (3.10) that is ia(). By the definition of ar-approximate
Pareto-optimal frontier, there exist$ € P.(r) such thatf(z') < (1 + €)fi(z*) and fa(2') >
(1 + €)= fo(z*). Therefore,

(1+¢e)fi(z")
(L+ )7t fa(z*)

g(a’) < = (1 +¢)°g(z").

Sinces is a minimizer ofg(x) over all the solutions i (), g(2) < g(2') < (1+¢)2g(z*). O
The following theorem is an analog of Theorem 3.3.3 for tlaisec

Theorem 3.7.5 There is an FPTAS for the problem given (By10)if the following exact problem
can be solved in pseudo-polynomial time: Giyen ..., cq) € Zi and K € Z., does there exist

x € X such thath:1 cr; = K?

We give a proof of this theorem here, as it involves both mization and minimization of the
underlying objective functions.
Proof. From Theorem 3.7.3, it suffices to give a polynomial time &t to solve the gap
problem. Suppose we want to solve the gap problem foRtector (v1,v2). Letry = [d/€)].
We first define a “truncated” objective function. For gl= 1,...,d, if for somej, a; > v, we
setx; = 0, and drop the variable; from each of the objective functions. LEtbe the index set
of the remaining variables. Thus, the remaining coefficiemtf; are now less than or equal 1.

Next, we define a new objective functigfij(z) = .y, ajz;, wherea; = [a;r1/v1]. In the new
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objective function, the maximum value of a coefficient is naw Forx € X, the following two

statements hold by Lemma 3.8.1.
o If fi(x) <11, thenfi(z) < vi.
o If fi(z) <wvi(l—€),thenfi(z) <ry.

For fa, we do the following. Lets = |d/ey]. Let fi(z) = > .oy bix;, whered =

jev yj
min(rg, bjre/v2]). Soin f5, all the coefficients are no more thap. The following two state-

ments hold by Lemma 3.8.2.
o If f5(z) > ra thenfa(z) > vo.
o If fo(x) > (14 €))va thenfi(z) > ro.

Therefore, to solve the gap problem, it suffices to findvag X such thatf](z) < r; and
f4(z) > ro, or assert that no such exists. There are; + 1 ways in whichf{(z) < r can be
satisfied, and there are at most/ ways in whichf}(z) > r, can be satisfied. Hence there are
O(r1r2d) ways overall in which both the inequalities can be simultarsty satisfied. Suppose we
want to find if there is an € X such thatf!/(z) = b; for i = 1, 2. This is equivalent to finding an
such thatf{(z) + M fi(xz) = by + Mbe, whereM = d - max(ry,r9) + 1 is a number greater than
the maximum value thaf/(z) can take, fori = 1, 2. Hence, if we have a pseudo-polynomial time

algorithm for solving the exact problem, we can solve the g@ablem in polynomial time. O

This theorem implies than we can use our framework to get arABPfor example, for the
knapsack problem with a fractional objective. In fact, in® hard to see that the method can be
extended to functiong having the formf; fo/ f3 f4, or f1/ fa+ f3/ f4 as well. Aslong as the number

of functions is fixed, we will get an FPTAS for the problem wgspur framework.

3.7.1 FPTAS for Assortment Optimization Problems

The problem of minimizing a sum-of-ratios form often arisesassortment optimization in the
context of retail management. In this section, we obtain&%¥E for two models of the assortment
optimization problem: the mixture of logits choice modetiahe nested logit choice model.

In the assortment optimization problem with the mixtureagfils choice model, we have a set
of n products indexed bW = {1,...,n} andm customer classes indexed by= {1,...,m}.

The demand of a customer in a customer classC' is modeled using multinomial logit choice
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model with parameter&v;o, vi1, . . ., Vin) € ]Ri’}fl. v;o denotes the preference of the customer for
purchasing no item, and;; is the preference of the customer to purchase progluet/V. If an
assortmentS C N is offered to a customer in the classs C, the probability that the customer
purchases a produgte NN is given by
Uz’j
pij(S) =4 viot 2_kes Vik
0 otherwise

1€ 8,

The profit corresponding to the purchase of an iteis w;. Therefore the total profit from

customer class € C when an assortmett C N is offered to the customer is given by

2 jes Wivij
fil8) = D _pig(S)wj = ——=——"—.
jze;g vio + 2 jes Vij
Let \; denote the fraction of the customers in claswhere) ..~ A; = 1. The optimization

problem is to find an assortmeSitthat maximizes the objective function

() = > Nifil9).
ieC
Thus, in this case the objective function is a sunmofatios. This problem is NP-hard even
when there are onlyn = 2 customer classes, but admits a PTAGuis fixed (Rusmevichientong,
Shmoys, and Topaloglu 2010). Using our framework, we camgé&tPTAS for the case when is
fixed as follows. Letr; be the variable which i$ if productj € N is offered in an assortmen,

otherwise. The objective function igz) = > .~ fi1(z)/ fiz(z), where
falz) = XD wjvizj,
j=1
fio(x) = wvip+ szjéﬂj-
j=1

There are no constraints in this problem. The exact prolfetims case is, given a vectore Z'
and a non-negative integéf, does there exist € {0,1}" such thad_"_, c;z; = C? This is the
subset-sum problem which can be solved in pseudo-polyndima by dynamic programming.
Hence we get an FPTAS for the assortment optimization pnoléh the mixture of logits choice

model. We therefore have the following corollary to Theor2@.5.
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Corollary 3.7.6 The assortment optimization problem with the mixture oft$oghoice model ad-

mits an FPTAS when the number of customer classes is fixed.

In the mixture of logits choice model, the likelihood of clsomy between two alternative prod-
ucts is independent of the assortment offered to the custofies may not necessarily be true in
practice. An alternative model which takes care of this aalgris the nested logit choice model.
In this model, there aré&' partitions of the product se¥ given by Hy, ..., Hg, whereG is fixed.
Assuming that there is only one class of customers, the piliyathat a customer purchases a

product; € N when offered an assortmeftC N is given by

1

J — - -
p;i(S) = <leg,;msvl) 1+ Z < Z Ul)

k=1 [leHiNS

if j € Hy, N S for somey,

0 otherwise

Here,0 < a4, < 1forallg =1,...,G andy; € Z>q foralll € N. In this model, the likelihood
of choosing between two products is independent of the tssat offered if they are in the same
partition, but depends on the assortment if they are in miffepartitions. The probability of not
purchasing any product jg(S) = 1/(1 + Zle(zleHmS vy) k),

In the capacitated version of this problem, we also have atcaint Zies ¢ < C, where
¢ € Z>( corresponds to the capacity taken up by the prodaodC' € Z, corresponds to the total
capacity available. The objective is to find an assortntetitat maximizes jes p;j(S)w; subject
to the capacity constraint. Rusmevichientong, Shen, amgo8t (2009) show that this problem is
NP-hard, but admits a PTAS whéhis fixed. They also prove that to get an approximate solution

of this problem, it suffices to find an approximate solutionh#f following sum-of-ratios problem:

G
. y
maximize  g(S1,...,5:) = ) %

c

s.t. ZZC[ < C,

=1 lESi
S;CH;, foralli=1,...,G.

Here,u; € Z>( foralll € N. Letx; be the indicator variable which isif an item! € N is selected,
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0 otherwise. The objective function igx) = 2?:1 fa(z)/(fia(x))™, where

fa(z) = Zulfﬂh

leH;
fio() = ) v
leH;

Moreover, if S; = (), then we coun® for the termf;; (z)/( fi2(z))® in the objective function.
Note that the denominator in each of the ratios in the thislera is non-linear. However, because
each exponenty; is upper-bounded by, we can still use our framework to get an FPTAS for
this problem. First, we choose sorheof the G setsS, ..., S to be non-empty and the rest of
the sets to be empty. Since there &eroups, we will need to do thiz“ times to cover all the

possible cases. This does not affect the polynomial runtimg of our algorithm a<7 is fixed.

Once we choose thg sets, says;,,...,S;, to be non-empty, we construct the Pareto-optimal
frontier corresponding to maximizing thelinear functionsf;,,. .., fi,1 and minimizing thek
linear functionsf; o, ..., fi.2. To ensure that each of tilesetsS; , ..., .S;, is non-empty, we set

the lower bound for the numerator function correspondintihése groups to bewhen solving the

gap problem (see the proof of Theorem 2.2.5). The underlg@gf constraints is given by

Zcm <C,

leN
1‘16{0,1}, leN.

This is the knapsack constraint, and the correspondingt ggrablem can be solved in pseudo-
polynomial time by dynamic programming. Hence we get an FP1# the assortment optimiza-
tion problem in the nested logit choice model with capacitystraints. We therefore have the

following corollary to Theorem 3.7.5.

Corollary 3.7.7 The capacitated assortment optimization problem withategigit choice model

admits an FPTAS when the number of partitiaghef the set of product#/ is fixed.

3.8 Conclusion

The main contribution of this chapter is a novel frameworkdesigning approximation schemes
for combinatorial optimization problems in which sevenahétions are combined into one objec-

tive. Using this framework, we design FPTASes for problemisirg in scheduling and resource
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allocation, combinatorial optimization problems with #iaaal or a product objective function and
robust weighted multi-objective optimization problemsyvéh the versatility of our technique, we

believe that it will be applicable to many other combinabdptimization problems as well.

Appendix

Lemma 3.8.1 Supposef (z) = Y0_ a;z;, 0 < a; < v, z; € {0,1} andr = [d/e]. Let
fl(x) = Z? | @i, wherea); = [a;r/v]. Then,

1. If f/(z) <r, thenf(z) < w.
2. If f(z) <wv(l —¢), thenf'(z) <r
Proof.

1. Givenf’(z) <,

d d
9= o= 3 <15 [y L <o
j=1 j=1 j=1
2. Sincef(z) <wv(1 —e),
d
Z% < r(l—e).

Rounding up each of thé numbers on the left hand side, we get

> (%]

< r(l—e¢) +d
7j=1
, d
= flo) < r—He+d
< r

Lemma 3.8.2 Supposef (z) = Z?zl bjz;, 0 <bj <v,z; €{0,1} andr = [d/e]. Let f'(z) =
> bixj, whereb; = min(r, [b;jr/v]). Then,

1. If f/(z) > r, thenf(z) > v.
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2. If f(z) > (14 €)v, thenf'(z) > r
Proof.

1. Givenf’(z) > r,

%IG

d d r
=3 b= 3 2 13 | B a2 > >
j=1 =1 j=1

2. LetV be the index of all the variables; such thatr; = 1. Supposg < V andb;- =r. Then

clearly f'(x) > r. Now assume that for ajl € V', o/, = [b;r/v]. Then,

Rounding down each of the numbers on the left hand side ardhegwith the assumption

thatb’, = [b;r/v], we get

ZV);—TJ% > (I+¢r—d
JeEV
= fllx) > r—i—erﬂ—d
> T
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Chapter 4

Approximation Schemes for Optimizing
a Class of Low-Rank Functions Over a

Polytope

4.1 Introduction

Non-convex optimization problems are an important claseptimization problems that arise in
many practical situations (see e.g. Horst and Pardalo$]18® a survey). However, unlike their
convex counterpart for which efficient polynomial time aitfuns are known (see e.g. Nesterov and
Nemirovskii (1961)), non-convex optimization problemséaroved to be much more intractable.
A major impediment to efficiently solving non-convex opteaiion problems is the existence of
multiple local optima in such problems; thus any algorithimick seeks to find a globally optimal
solution (or a solution close to a global optimum) must awgetting stuck in local optima.

In this chapter, we focus on optimizing a special class ofcmmvex functions, called low-rank
functions, over a polytope. Informally speaking, a funeti@as low rank if it depends only on a few
linear combinations of the input variables. We present FBag\for optimizing a very general class
of low-rank functions over a polytope. Recall from Sectioh that an FPTAS for a minimization
(resp. maximization) problem is a family of algorithms sukht for alle > 0 there is a1 + ¢)-
approximation (resp(1 — €)-approximation) algorithm for the problem, and the runrtinge of the

algorithm is polynomial in the input size of the problem, aaslhas in1/e.

Throughout this chapter, we use the following definition twva-rank non-linear function, given
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by Kelner and Nikolova (2007).

Definition 4.1.1 A functionf : R™ — R is said to be ofrankk, if there exist linearly independent

vectorsay, . .., ax € R™ and a functiory : R* — R such thatf (z) = g(af z,...,a} ).

The optimization problem we are attempting to solve is

min f(x)=glalz, ... alz)

s.t. z € P.

Here, P is a polytope, and is a continuous function (this guarantees that a minimurstgxi
We assume that the optimal value of this program is striatlsitive; this is necessary for the notion
of approximation considered here to be valid. Recent workmtimization problems of this kind
has focused on the special case whes quasi-concave (see e.g. Porembski (2004), Kelner and
Nikolova (2007), Goyal and Ravi (2009)); all of these workgleit the fact that the minimum of
a quasi-concave function over a polytope is always attaategh extreme point of the polytope
(see e.g. Bertsekas, Nedi¢, and Ozdaglar (2003)). Ina&sttour approximation scheme does not
require the assumption of quasi-concavity.

In general, non-linear programming problems of this form lanown to be NP-hard. Pardalos
and Vavasis (1991) proved that minimizing a quadratic fioncf (z) = ¢’z + 127Qx, where
the Hessiarf) has just one non-zero eigenvalue which is negative (andehgfg is a function of
rank two), over a polytope is NP-hard. Subsequently, Mgts@96) proved that minimizing the
product of two strictly positive linear functions over a ylpe is NP-hard. Both these hardness
results imply that minimizing a rank two function over a polye is NP-hard. In fact, as we show
in Section 4.5, the optimum value of the problem stated alvawvmot be approximated to within
any factor unless P = NP. Therefore, we will need some exsanagtions on the properties of the
function g to obtain an approximation scheme for the optimization [@ob(see Section 4.2.1).

We mention a few classes of hon-convex optimization problémat we tackle in this chapter.

1. Multiplicative programming problems: In this case,g has the formg(yi,...,yx) =
Hle y;. Itis known that such a function is quasi-concave (Konno and Kuno 1992), and
therefore its minimum is attained at an extreme point of thigtppe. Multiplicative objec-
tive functions also arise in combinatorial optimizatiorlplems. For example, consider the

shortest path problem on a graph = (V, E) with two edge weights: : £ — Z, and
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b: E — Z,. In the context of navigation systems, Kuno (1999) discaigise shortest path
problem with the objective functiom(P) - b(P) (whereP is the chosen path), whegecorre-
sponds to the edge lengths, a@ndorresponds to the number of intersections at each edge in

the graph. A similar problem is considered by Kern and Woggir{2007) as well.

2. Low rank bi-linear forms: Bi-linear functions have the form(z1,..., 2k, y1,...,yx) =
Ele x; - y;- Such functions do not even possess the generalized congegperties, such
as quasi-concavity or quasi-convexity (Al-Khayyal andkB983). Bi-linear programming
problems are of two kindsseparable in which x andy are disjunctively constrained, and
non-separablein which z andy appear together in a constraint. A separable bi-linear-func
tion has the neat property that its optimum over a polytop&ttained at an extreme point
of the polytope, and this fact has been exploited for sohaagh problems (see e.g. Konno
(1976)). The non-separable case is harder, and it requiresderably more effort for solving
the optimization problem (Sherali and Alameddine 1992)thla chapter, we investigate the

particular case when the number of bi-linear teriss fixed.

3. Sum-of-ratios  optimization: Sum-of-ratios  functions have the form
91, Ty YLy YR) = Zle x;/y;. Even for the case of the sum of a linear
term and a ratio of two linear terms, the function can haveyrianal optima (Schaible
1977). Further, Matsui (1996) has shown that optimizingcfioms of this form over a
polytope is an NP-hard problem. Problems of this form arfisegxample, in multi-stage
stochastic shipping problems where the objective is to mepd the profit earned per unit
time (Falk and Palocsay 1992). For more applications, sesuhvey paper by Schaible and
Shi (2003) and the references therein.

There are other functions which do not fall into any of theegaties above, but for which our
framework is applicable; an example is aggregate utilitycfions (Eisenberg 1961).
Before proceeding further, we state the computational inedeare assuming for our algorith-

mic results to hold:
e The vectorsiy, ..., a; are known to us (i.e. they are part of the input).
e We are given a polynomial time oracle to compute the funcgion

e For the polytopeP, we have a polynomial time separation oracle.
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Our results: The main contributions of this chapter are as follows.

1. FPTAS for minimizing low rank functions over a polytope: We give an FPTAS for mini-
mizing a low-rank functionf over a polytope under very general conditions (Sectiorl.2.
Even though we present our results only for the case of maatiun, the method has a
straightforward extension for maximization problems a#l.wehe running time of our ap-
proximation scheme is exponentialknbut polynomial inl /e and all other input parameters.
Our algorithm relies on deciding feasibility of a polynotmmber of linear programs. We
emphasize here that this FPTAS does not require quasi~abnoathe functionf. To the best
of our knowledge, this is the first FPTAS for general non-gjgagcave minimization/non-
quasi-convex maximization problems. We then derive agpration schemes for three cat-
egories of non-linear programming problems: multiplicatprogramming (Section 4.3.1),

low-rank bi-linear programming (Section 4.3.2) and sunratfos optimization (Section 4.3.3).

2. Minimizing quasi-concave functions: For the specific case of quasi-concave minimization,
we give an alternative algorithm which returns an approx@rsolution which is also an
extreme point of the polytop® (Section 4.4). Again, this algorithm relies on solving a
polynomial number of linear programs, and it can be exteridatie case of quasi-convex
maximization over a polytope. As an application of our tegha, we show that we can get
an FPTAS for combinatorial optimization problems in whible tobjective is a product of a
fixed number of linear functions, provided a complete desiom of the convex hull of the
feasible points in terms of linear inequalities is known.r Egample, this technique can be
used to get an FPTAS for the product version and the mearmiisiknization version of the

spanning tree problem and the shortest path problem.

3. Hardness of approximation result: We show that unless P = NP, it is not possible to approx-
imate the minimum of a positive valued concave function eveolytope to within any factor,
even if the polytope is the unit hypercube (Section 4.5)sTiiproves upon th@(log n) in-
approximability result given by Kelner and Nikolova (200%)e first show a similar result
for unconstrained minimization of a supermodular set fimnct Then by using an approxi-
mation preserving reduction from supermodular functionimization to minimization of its
continuous extension over a unit hypercube, we get theatbsisult. The hardness result for
supermodular function minimization is in contrast with tie¢ated problem of submodular

function maximization which admits a constant factor agpration algorithm (Feige, Mir-
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rokni, and Vondrak 2007). We also give a stronger hardneapmroximation result, namely
that it is not possible to approximate the minimum of a coea@vadratic function (even with
just one negative eigenvalue in the Hessian) over a polytmméthin any factor, unless P =
NP.

The philosophy behind the approximation scheme is to Weas an objective function that
combines several objectives?(z,...,alz in this case) into one. Therefore the idea is to con-
sider the original single-objective optimization problasa multiple-objective optimization prob-
lem. We first construct aapproximatePareto-optimal front corresponding to thdéinear functions
alw, ... ,a{m, and then choose the best solution from this approximatet®aet corresponding to
our objective function as the approximate solution. Carting the exact Pareto-optimal front for
linear functions, in general, is NP-hard, but an approxardreto-optimal front can be computed
in polynomial time provided: is fixed (Section 2.2). Once we construct an approximatet®ass,
it is possible to compute an approximate solution for a latgses of functiong (see Section 4.2 for

more details).

Related work: An exhaustive reference on algorithms for non-linear progning can be found
in Horst and Pardalos (1995). The case of optimizing lovkmaon-linear functions is discussed
extensively by Konno, Thach, and Tuy (1996). Konno, Gao, @aitoh (1998) give cutting plane
and tabu search algorithms for minimizing low-rank concguadratic functions. A more recent
work by Porembski (2004) deals with minimizing low-rank giieoncave functions using cutting
plane methods. The methods employed in both papers arestiguwith no theoretical analysis
of the running time of the algorithms, or performance guegarf the solutions obtained. Vavasis
(1992) gives an approximation scheme for low-rank quacli@gtiimization problems (i.e. the case
where the Hessian has only a few non-zero eigenvalues.) WHowéavasis uses a different notion
of approximation algorithm than the one we use in this chlrapte

A more theoretical investigation of low-rank quasi-coreaminimization was done by Kelner
and Nikolova (2007), who give an expected polynomial-timeethed algorithm for this class of
functions over integral polytopes with polynomially margcéts. They also give a randomized
fully-polynomial time approximation scheme for minimigira low-rank quasi-concave function
over a polynomially bounded polytope (i.e. one in which&#fzaorm of every point contained in the
polytope is bounded by a polynomialsin the dimension of the input space), provided a lower bound

on the minimum of the quasi-concave function is known a#rand the objective function satisfies
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a Lipschitz condition. Further, they show that it is NP-h&odapproximate the general quasi-
concave minimization problem by a ratio better ti§&flog ) unless P = NP. More recently, Goyal
and Ravi (2009) give an FPTAS for minimizing a class of lowkauasi-concave functions over
convex sets. The particular class of low-rank quasi-coméamctions which can be optimized using
this technique is similar to the one which we deal with in coagter. Approximation algorithms

for minimizing a non-linear function over a polytope withidhe quasi-concavity assumption have

not been studied in the literature so far.

Konno and Kuno (1992) propose a parametric simplex algoritbr minimizing the product
of two linear functions over a polytope. Benson and Boge®{)9jive a heuristic algorithm for
solving the more general linear multiplicative programgnproblem, in which the objective func-
tion can be a product of more than two linear functions. Suartéicles for solving multiplicative
programming problems can be found in the books by Horst amtbaRes (1995) and Konno, Thach,
and Tuy (1996). For the case of combinatorial optimizatioobfems with a product of two linear
functions, Kern and Woeginger (2007) and Goyal, Genc-Kayal Ravi (2011) give an FPTAS
when the description of the convex hull of the feasible sohd in terms of linear inequalities is
known. However, the results in both the papers do not gdmertd the case when the objective
function is a product of more than two linear functions. Imirast, our results easily generalize to

this case as well.

For separable bi-linear programming problems, Konno (19ji&s a cutting plane algorithm
that returns an approximate locally optimal solution. Atd¢yal and Falk (1983) handle the non-
separable case using branch-and-bound, and they showigtdialgorithm is guaranteed to con-
verge to a globally optimal solution of the optimization plem. Another method for solving
the non-separable case is the reformulation-linearizatgehnique due to Sherali and Alameddine
(1992). This technique is similar to the lift-and-projecttimod for solving mixed integer programs:
The algorithm first generates valid quadratic constraiptsaking pairwise products of the con-
straints, then linearizes both the valid quadratic coimgsaand the bi-linear term to obtain a lower
bounding linear program, and finally uses branch-and-bdarsblve the resulting reformulation.
Minimizing bi-linear functions of low-rank using a parametsimplex algorithm is discussed in the
book by Konno, Thach, and Tuy (1996), however their algarithorks for the separable case only.
From a theoretical point of view, an advantage of our teamjgs compared to most of the existing
algorithms in the literature, is that it works equally wedt both separable as well as non-separable

bi-linear programming problems.
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A good reference for algorithms for solving the sum-ofgatoptimization problem is the sur-
vey paper by Schaible and Shi (2003). Almost all the existiflggprithms for optimizing the sum
of ratios of linear functions are heuristic, with no prowablbunds on the running time of the algo-
rithm, nor on the quality of the solution obtained. A comma@pi@ach for solving these problems
is to linearize the objective function by introducing a paeder for each ratio in the objective (see
e.g. Falk and Palocsay (1992)). In contrast, our algoritbesdiot need to parametrize the objective
function. We give the first FPTAS for this problem, when thentner of ratios is fixed. Our algo-
rithm is especially suited for the case where the numbertafs#gs small, but each ratio depends on

several variables.

4.2 The Approximation Scheme

Recall the optimization problem given in Section 4.1.

min flx) = g(a{x, e ,azx) (4.2)

S.t. z € P.

We further assume that the following conditions are satisfie

1. g(y) < g(y') forally,y’ € RX suchthay; <y} foralli=1,...,k,
2. g(\y) < Xeg(y) for all y € R%, X\ > 1 and some constaat and

3. aiTac > 0fori=1,...,k over the given polytope.

There are a number of functiogswhich satisfy conditions 1 and 2, for example thenorms
(with ¢ = 1), bi-linear functions (withc = 2) and the product of a constant number (sdyof
linear functions (withc = p). Armed with Theorem 2.2.5, we now present an approximation
scheme for the problem given by (4.1) under these assunsptitie denote the termy = by fi(z),
fori = 1,..., k. We first establish a connection between optimal (resp. cxppate) solutions
of (4.1) and the (resp. approximate) Pareto-optimal fidt) (resp. P.(w)) of the multi-objective
optimization problemr with objectivesfy, ..., fi over the same polytope.

Before proceeding, we emphasize that the above conditrensod absolutely essential to derive

an FPTAS for the general problem given by (4.1). Conditionayrappear to be restrictive, but it
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can be relaxed, provided that there is at least one optinai®o of (4.1) which lies on the Pareto-
optimal front of the functions? =, . .. ,a{m. For example, the sum-of-ratios form does not satisfy
this condition, but still we can get an FPTAS for problemshi$ form (see Section 4.3.3).

4.2.1 Formulation of the FPTAS

Lemma 4.2.1 There is at least one optimal solutiari to (4.1) such thatz* € P(x).

Proof. Let Z be an optimal solution of (4.1). Suppose¢ P(w). Then there existg* €
P(7) such thatf;(z*) < f;(z) fori = 1,... k. By Property 1 ofg, g(fi(z*),..., fr(z*))

IA

g(f1(2),..., fr(z)). Thusz* minimizes the functiory and is inP (). O

Lemma 4.2.2 Let & be a solution inP () that minimizesf (x) over all pointsz € P,.(x). Thenz
is a (1 + ¢)°-approximate solution of4.1), that is, f(z) is at most(1 + €) times the value of an

optimal solution tq4.1).

Proof. Letz* be an optimal solution of (4.1) that is iR(7). By the definition ofe-approximate
Pareto-optimal front, there exist$ € P.(r) such thatf;(z’) < (1 +¢€)f;(2*), foralli =1,... k.

Therefore,

IA

f@) = g(fi(@),..., fu(@) g(M+e)fr(z"), ..., (1 + ) fr(z"))

(1 +e)%(fi(z"), ... fu(z") = 1+ )°f(z7),

IN

where the first inequality follows from Property 1 and thesetinequality follows from Property 2
of g. Sincez is a minimizer off () over all the solutions itP. (), f(z) < f(z') < (14 ¢€)¢f(x").

O

Recall from Theorem 2.2.5 that it is possible to constigtr) in polynomial time if the gap
problem corresponding to the functions f1, ..., fr can be solved in polynomial time. When
the functionsf; are all linear, the gap problem corresponds to checkingehsilfility of a linear
program, which can be solved in polynomial time. Hence weagetpproximation scheme for

solving the problem given by (4.1). This is captured in theofeing theorem.

Theorem 4.2.3 The gap problem corresponding to the multi-objective wersif the problem given
by (4.1) can be solved in polynomial time. Therefore, there exist&BMAS for solving(4.1),

assuming Conditions 1-3 are satisfied.
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Proof. Solving the gap problem corresponds to checking the fddgibif the following linear

program:

aiTw < (1—€yw, for i=1,... k, (4.2a)

z € P (4.2b)

If this linear program has a feasible solution, then anyibdassolution to this LP gives us the
required answer to question (i). Otherwise, we can answest@n (ii) in the affirmative. The

feasibility of the linear program can be checked in polyranime under the assumption that we
have a polynomial time separation oracle for the polytéh€Grotschel, Lovasz, and Schrijver

1988). The existence of the FPTAS follows from Lemma 4.2d laemma 4.2.2. O

4.2.2 Outline of the FPTAS

The FPTAS given above can be summarized as follows.

1. Sub-divide the space of objective function val{res M ]* into hypercubes, such that in each

dimension, the ratio of two successive divisions is €”, wheree” = (1 + €)1/2¢ — 1.

2. For each corner of the hypercubes, solve the gap probldati@ss, and keep only the set of

non-dominated solutions obtained from solving each of q@mroblems.

(a) Check the feasibility of the LP given by (4.2a)-(4.2b).

(b) If this LP is infeasible, do nothing. If feasible, thercinde the feasible point of the LP

in the set of possible candidates for points in the approteérRareto-optimal front.

3. Among the non-dominated points computed in Step 2, piekpthint which gives the least
value of the functionf, and return it as an approximate solution to the given ogtton

problem.

The running time of the algorithm i@((w)k - LP(n,|n|)), where LP(n, |r|) is the
time taken to check the feasibility of a linear programnimariables and input size ¢f| bits. This
is polynomial in the input size of the problem providkds fixed. Therefore when the rank of the

input function is a constant, we get an FPTAS for the problarargby (4.1).
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4.3 Applications of the Approximation Scheme

Using the general formulation given in Section 4.2.1, we goxe approximation schemes for three
categories of optimization problems: multiplicative praxgpming, low-rank bi-linear programming

and sum-of-ratios optimization.

4.3.1 Multiplicative Programming Problems

Consider the following multiplicative programming probidor a fixedk:

min  f(z) = (alz)-(az) ...  (alx) (4.3)
S.t. z € P.
We assume that! = > 0, fori = 1,..., k, over the given polytopé. In our general formula-
tion, this corresponds t@(y1,...,yx) = Hle y; With ¢ = k. f(x) has rank at most in this case.

Thus, we get the following corollary to Theorem 4.2.3.

Corollary 4.3.1 Consider the optimization problem given (4.3), and suppose that is fixed.
Then the problem admits an FPTASffz > 0 fori = 1,..., k over the given polytop&.

It should be noted that the functighgiven above is quasi-concave, and so it is possible to get
an FPTAS for the optimization problem given by (4.3) whiclay}s returns an extreme point of the

polytope P as an approximate solution (see Section 4.4).

4.3.2 Low Rank Bi-Linear Programming Problems

Consider a bi-linear programming problem of the followigrh for a fixedk.

k
min  f(z,y) =Tz +dTy+> (af ) (b]y) (4.4)
i=1
s.t. Ax + By < h.

wherec, a; € R™, d, b; € R, A € R>*™, B ¢ R*™ andh € R, f(x,y) has rank at mostk + 1.

We have the following corollary to Theorem 4.2.3.
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Corollary 4.3.2 Consider the optimization problem given B4.4), and suppose that is fixed.
Then the problem admits an FPTASHr > 0, d"y > 0 andal > > 0,7y > 0fori =1,...,k
over the given polytopdz + By < h.

It should be noted that our method works both in the separase (i.e. when: andy do not
have a joint constraint) as well as in the non-separable @&sewvhenz andy appear together in
a linear constraint). For the case of separable bi-lineagnamming problems, the optimum value
of the minimization problem is attained at an extreme pofrthe polytope, just as in the case of
guasi-concave minimization problems. For such probleiris,possible to obtain an approximate

solution which is also an extreme point of the polytope, gishre algorithm given in Section 4.4.

4.3.3 Sum-of-Ratios Optimization

Consider the optimization of the following rational furarii over a polytope.

min flx) = Zk: fil@) (4.5)
= 9i(@) '
S.t. z € P.
Here, f1,..., fr andgy, ..., gi are linear functions whose values are positive over thetppé/P,

andk is a fixed number. This problem does not fall into the framdwgiven in Section 4.1 (the
function combiningfi, ..., f&, 91, - - ., gr does not necessarily satisfy Property 1). However, it is
still possible to use our framework to find an approximatetsoh to this optimization problem. Let
hi(z) = fi(x)/gi(z) fori = 1,..., k. We first show that it is possible to construct an approximate

Pareto-optimal front of the functioris (x) in polynomial time.

Lemma 4.3.3 It is possible to construct an approximate Pareto-optimahf P.(7) of thek func-

tionsh;(z) = fi(x)/gi(x) in time polynomial in7| and1/e, for all € > 0.

Proof. From Theorem 2.2.5, it suffices to show that we can solve tpegygablem corresponding
to thek functionsh;(x) in polynomial time. Solving the gap problem correspondshecking the

feasibility of the following system:

hi(z) < (1—¢€), fori=1,....k,

r € P

63



Each constraink;(z) < (1 — €')v; is equivalent tof;(z) < (1 — € )v; - g;(x), which is a linear con-
straint asf;(x) andg; (z) are linear functions. Hence solving the gap problem redtewebkecking
the feasibility of a linear program, which can be done in polyial time under the assumption that

we have a polynomial time separation oracle for the polytBpe O

The corresponding versions of Lemma 3.3.1 and Lemma 3.8Aéosum-of-ratios minimiza-

tion problem are given below.

Lemma 4.3.4 There is at least one optimal solutiari to (4.5) such thatz* is in P(r), the Pareto-

optimal front of the functions; (z),. .., hi(z).

Proof. Suppose: is an optimal solution of the problem adZ P (7). Then there exists* € P ()
such thath;(z*) < h;(2) foralli = 1,...,k. Thenf(z*) = 3K hi(a*) < 2K hi() < f(&).

Thusz* minimizes the functiory and is inP (). O

Lemma 4.3.5 Letz be a solution inP () that minimizesf (x) over all pointsz € P(x). Thenz

is a (1 + ¢)-approximate solution of the proble(4.5).

Proof. Letz* be an optimal solution of (4.5) that is (7). By definition, there exists’ € P, ()
such thath;(z') < (1 + €)h;(x*), foralli =1,..., k. Therefore,
k k
Fa) =) hi(a) <Y (1 +Ohia™) < 1+ f ().
=1 i=1
Sincez is a minimizer off (x) over all the solutions iP.(x), f(z) < f(2') < (1 4+¢€)f(z*). O
The existence of an FPTAS for problem (4.5) now follows froemma 4.3.4 and Lemma 4.3.5.

We therefore have the following corollary.

Corollary 4.3.6 Consider the problem given I%.5), and suppose thatis fixed. Then the problem
admits an FPTAS if;(z) > 0, g;(z) > 0 over the given polytop#.

4.4  The Special Case of Minimizing Quasi-Concave Functions

The algorithm given in Section 4.2 may not necessarily retur extreme point of the polytope
as an approximate solution of the optimization problem mjilbg (4.1). However, in certain cases

it is desirable that the approximate solution we obtain $® an extreme point of the polytope.
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For example, supposE describes the convex hull of all the feasible solutions ocbmlginatorial
optimization problem, such as the spanning tree probleren®m algorithm that returns an extreme
point of P as an approximate solution can be used directly to get arorippaite solution for the
combinatorial optimization problem with a non-linear atijee function as well. In this section, we
demonstrate such an algorithm for the case when the olgdcinction is a quasi-concave function,

which we define below.

Definition 4.4.1 A functionf : R" — R is quasi-concave if for alh € R, the setS) = {z € R™:

f(x) > A} is convex.

Itis a well known result that the minimum of a quasi-concawaction over a polytope is attained
at an extreme point of the polytope (see e.g. BertsekastNalil Ozdaglar (2003)). In fact, for this
case, it is also possible to get an approximate solutioneptbblem which is an extreme point of
the polytope, a result already given by Goyal and Ravi (2008 can get a similar result using our
framework, by employing a different algorithm that usesabacept of approximate convex Pareto
set, instead of approximate Pareto-optimal front. Retaldefinition of an approximate convex

Pareto-optimal front from Section 2.2.

Definition 4.4.2 Let r be an instance of a multi-objective minimization problenor &> 0, an
e-approximate convex Pareto-optimal,sggnoted by’ P, (), is a set of solutions, such that for all

x € X, there isz’ € conv(CP,.(m)) such thatf;(z') < (1 + €) fi(z), for all 4.

Before giving an algorithm for computing a particular appneate convex Pareto-optimal set,
we first give some intuition about the structure of the corRareto-optimal set. The Pareto-optimal
front P(7) corresponds to the solutions of the weighted linear progrﬁmzf:l w; fi(x) over the
polytope P, for all weight vectoraw € R’;O. The solution points in the convex Pareto-optimal set
CP(r) are the extreme point solutions of these linear programss Dine way to obtain a convex
Pareto-optimal set would be to obtain the optimal extrematpmf the weighted linear program
for all non-negative weights. The idea behind the algorithm for finding an approximatevegn
Pareto-optimal sef' P, () is to choose a polynomial number of such weight vectors, &taimthe
corresponding extreme point solutions for the weighteddirprograms.

The algorithm for computing”’ P. is presented below. Without any loss of generality, for this
section we assume that = 1/M. For a positive integeN, let [N] denote the sefl, ..., N}. In
steps2 — 3, we compute the weight s&t (U), which is a union of: setsiW;(U) forj = 1,..., k. In
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eachW;(U), the jth component is fixed dt’, and the other components vary frdnto U. In steps

4 — 7 we compute the weight sét(M ), which again is a union of setsR;(M) for j = 1,... k.

In eachR;(M), the jth component is fixed &, while the other components take values in the set
{20 21, 22Me2 MY |n steps7 — 11 of the algorithm, the: objective functions are combined
together using the two weight sets, afi@, is then obtained by computing optimal extreme points

for all such weighted objective functions over the polytdpe

LU ¢ [

2. Forj=1,....,k,W;(U) < [UJ~t x {U} x [U)F.

3. W(U) « Uk_ W;(U).

4, S(M) < {20,21, ... 22[leg2MTY

5. Forj =1,...,k Rj(M) < (S(M))?=1 x {1} x (S(M))*7.
6. R(M) « Us_ | Rj(M).

7. CP. 0.

8. Foreachr € R(M) do

9. For eachv € W(U) do
10. q + optimal basic feasible solution fdmin >>%_, r;w;(a’z) : 2 € P}.
11. CP, « CP.U{q).

12. ReturnCP..

Theorem 4.4.3 (Diakonikolas and Yannakakis (2008))The above algorithm yields an approxi-
mate convex Pareto-optimal froatP. corresponding to thé linear functionsa! z, i = 1,...k,

subject to the constraints € P.

A sketch of the proof of this theorem is given below for theesakcompleteness.
Proof. Let us call a positive valued vectdr,, . ..,v;) a-balanced if for anyi,j € {1,...,k},
v;/v; < a. A solutionz is U-enabled, if it is the optimal solution of the linear progréon the

objectivemin Ele w;al z over the polytopeP, wherew € W (U) (Recall from Section 4.4 that
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W(U) = Ub_,W;(U), whereW;(U) = [UJ~! x {U} x [U]*77). Let all theU-enabled solutions

beq',...,q', wherel is the number of all such solutions.

Lemma 4.4.4 (Diakonikolas and Yannakakis (2008))Lete > 0. Suppose that is on the Pareto-
optimal front of thek objectivesu? =, . .., a} x and is2-balanced, but not/-enabled. Then there is

a convex combination @f-enabled solutions, say, such thats, < (1 +¢)s; fori =1,... k.

Proof. Suppose there is no convex combination of thenabled solutions that is within a factor

of 1 + e from s in all the components. This implies that the following lin@aogram is infeasible.

l

> g < (1+0)s,
j=1
l

da=1,

j=1
)\1,...,)\[20.

By Farkas’ lemma, there exist;, . . . , w andv which satisfy the following inequalities.

w-¢ +v>0, j=1,...,1,
I+ew-s+v<0,

k
w € RY.
This can be simplified to the following set of inequalities.

w-¢ >1+ew-s foralj=1,....1,

k
w e RY.

Thus, in order to obtain a contradiction to our assumptiat tthere is no convex combination of the
U-enabled solutions that is within a factbr- € from s in all the components, it will be sufficient
to show that fomnyw & R’i, there is @ such thatw - ¢/ < (1 + €)w - s, which is what we will do
in the rest of this proof.

Letw € }R’i be an arbitrary weight vector. Without loss of generalitye @an assume that
the maximum value of a component of vectois U (this can be achieved by suitably scaling the

components ofv). Letw* be the weight vector given by’ = [w;| fori = 1,... k. Clearly,
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w* € W(U). Letg* be the optimal solution for the objectivain Zle w;.kaiTx over the polytope
P, theng* is U-enabled. We will show that - ¢* < (1 + €)w - s, thus achieving the desired

contradiction.

Let ¢ be such thatv; = U. By our choice ofw*, each component ab* — w is at mostl.
Therefore,

(w* —w)- s < Z $i <2(k—1)s; < eUsy < e(w - s),
i€lk]\{t}

where the second inequality follows from the fact thag 2-balanced, the third inequality follows
from our choice of/ = [2(k—1)/¢], and the last inequality follows from the fact that< £ (w-s)
(as each component af is at mostl/, by assumption). Therefore, from this chain of inequaditie
we get

w* s < (I+ew-s.

Also, ¢* is the optimal solution for the objectivain Zle wial r, therefore
w*-g¢* <w"-s.

Therefore, we get

w-¢" <w' ¢ <w s < (1+ew-s.

This establishes the desired contradiction, and comple&egroof of the lemma. O

Using the above lemma, we can now prove the theorem. CoraimyePareto-optimal solution

s = (s1,...,5). The maximum ratio between any two components isfat most\/2. Therefore,
for somer € R(M), all the components in the vector; si, ..., rsy) are within a factor o of
each other. Note thdtsq,...,7r,sk) is on the Pareto-optimal front of the weightedbjectives

ralx,... ,rka{x. The algorithm of Section 4.4 comput&senabled solutions for these weighted
k objectives for all- € R(M). The above lemma implies that there is a convex combinatidineo
U-enabled solutions for the weighted objective functioms, $ such that;s; < (1 + €)r;s;, for

i = 1,...,k. Equivalently,s; < (1 + €)s;, implying that the solutiors is indeed approximately

dominated by some convex combination of the solutions metiby the algorithm. O

For quasi-concave functions, it suffices to consider ondyghints inC' P, () computed using

this algorithm to solve the problem given by (4.1). It shobkInoted that the following theorem
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holds specifically for the” P.(w) computing using the above algorithm, and not for any anljitra

CP.(r).

Theorem 4.4.5 Consider the optimization problem given @41). If f is a quasi-concave func-
tion and satisfies Conditions 1-3 given in Section 4.2, tinensetC' P, obtained using the above

algorithm contains g1 + ¢)“-approximate solution to the optimization problem.

Proof. The lower envelope of the convex hull 6fP. is an approximate Pareto-optimal front. By
Lemma 4.2.2, the approximate Pareto-optimal front costaisolution that i§1 + ¢)“-approximate.
Therefore, to find an approximate solution of the optim@aproblem, it suffices to find a minimum
of the functiong overconv(C P.). Sincef is a quasi-concave functions a quasi-concave function
as well. Therefore, the minimum gfoverconv(C F,) is attained at an extreme point@fnv(CF,),
which is inC'P,. Since any point irC' P, is an extreme point of the polytope (as all the points in
C P. are obtained by solving a linear program over the polytBes given in the above algorithm),

the theorem follows. O

The overall running time of the algorithm@(kz(w)k -LP(n,|x|)), whereLP(n, |r|)
is the time taken to find an optimal extreme point of a lineagpam inn variables andr| bit-size
input. We now discuss a couple of applications of this athamifor combinatorial optimization

problems.

4.4.1 Multiplicative Programming Problems in Combinatorial Optimization

Since the above algorithm always returns an extreme poiah @pproximate solution, we can use
the algorithm to design approximation algorithms for conalbdrial optimization problems where
a complete description of the convex hull of the feasibleisdgtrms of linear inequalities or a

separation oracle is known. For example, consider theviotig optimization problem.

min  f(z) = fi(z) - fa(z) ... - ful@) (4.6)
st. zeXC{o,1}".

Since the product ok linear functions is a quasi-concave function (Konno and «Ka892;
Benson and Boger 1997), we can use the above algorithm tonggp@oximate solution of this

problem by minimizing the product function over the polyap = conv(X). The FPTAS always
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returns an extreme point @ as an approximate solution, which is guaranteed to be @iteyve

therefore have the following theorem.

Theorem 4.4.6 Consider the optimization problem given B4.6), and assume that a complete
description ofP = conv(X) (or the dominant ofP) is known in terms of linear inequalities or a

polynomial time separation oracle. Therkifs fixed, the problem admits an FPTAS.

Our FPTAS is both simple in description as well as easily gaimable to the case where we
have more than two terms in the product, in contrast to thstiegi results in the literature (Kern

and Woeginger 2007; Goyal, Genc-Kaya, and Ravi 2011; GayaRavi 2009).

4.4.2 Mean-risk Minimization in Combinatorial Optimizati on

Another category of problems for which this framework is laggble is mean-risk minimization
problems that arise in stochastic combinatorial optinnratAtamtirk and Narayanan 2008; Nikolova
2010). Letf(z) = ¢z, c € R" be the objective function of a combinatorial optimizatiaotgem,
where as usuat € X C {0,1}". Suppose that the coefficientare mutually independent random
variables. Let the vectqr € R’} denote the mean of the random variables, ar@lR’} the vector

of variance of the random variables. For a given solutiortarec, the average cost of the solution
is u”'z and the variance is” z. One way to achieve a trade-off between the mean and thenaria

of the solution is to consider the following optimizatioroptem.

min  f(z)=plz+cVrla 4.7)

st ze€XC{0,1}"

Here,c > 0 is a parameter that captures the trade-off between the nmehtha variance of
the solution. In this case,(z) is a concave function of rank two. If we have a concise desorip
of P = conv(X), then we can use the above algorithm to get an FPTAS for tHagmo This is

captured in the following theorem.

Theorem 4.4.7 Consider the optimization problem given B4.7), and assume that a complete
description ofP = conv(X) (or the dominant ofP) is known in terms of linear inequalities or a

polynomial time separation oracle. Then the problem admit&PTAS.
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Again, although an FPTAS for this problem is known (Nikold2@10), our FPTAS has the

advantage of being conceptually simpler than the existiathous.

4.5 Inapproximability of Minimizing a Concave Function over a Poly-

tope

In this section, we show that it is not possible to approxartae minimum of a concave function
over a unit hypercube to within any factor, unless P = NPtFive establish the inapproximability

of supermodular function minimization.

Definition 4.5.1 Given a finite sef, a functionf : 2° — R is said to besupermodulaif it satisfies

the following condition:
fXUY)+ f(XNnY)> f(X)+ f(Y), foral X,Y CS.

Definition 4.5.2 A set functionf : 2° — R is submodulaif — f is supermodular.

In some sense, supermodularity is the discrete analog afwiiy, which is illustrated by the
continuous extension of a set function given by Lovasz 8)98uppos¢ is a set function defined
on the subsets of, where|S| = n. Then the continuous extensi(fn: R — R of f is given as

follows:
1. f(z) = f(X), wherez is the0/1 incidence vector of C S.

2. For any other, there exists a unique representatiorzadf the formx = Zle A;a;, Where
A; > 0, anda; are0/1 vectors satisfyingy < a» < ... < aj. Thenf(z) is given by

flz) = Zle Aif(A;), whereq; is the incidence vector o; C S.
The following theorem establishes a direct connection betvf and f.

Theorem 4.5.3 (Lo\asz (1983)) f is a supermodular (resp. submodular) function if and onlysif

continuous extensiof’n is concave (resp. convex).
We first give a hardness result for supermodular functiorimmization.

Theorem 4.5.4 Let f : 2° — Z. be a supermodular function defined over the subsefs dhen

it is not possible to approximate the minimumyfab within any factor, unless P = NP.
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Proof. The proof is by reduction from the E4-Set splitting problefagtad 2001). The E4-Set
splitting problem is this: given a ground déf and a collectiorC' of subsetsS; C V of size exactly
4, find a partitionV; andV; of V' so as to maximize the number of subsgtsuch that botts; N 14
andsS; NV, are non-empty. Leg : 2 — Z be the function such thai(V’) is equal to the number
of subsetsS; satisfyingV’ NS; # @ and(V \ V/)N S; # 0. Theng is a submodular function
(g is just the extension of the cut function to hypergraphsd, therefore the functiorf defined by
f(V")y =|C| — g(V') + e is supermodular, where> 0. Clearly, f is a positive valued function.

Hastad (2001) has shown that it is NP-hard to distinguigtvéen the following two instances
of E4-Set splitting:

1. There is a se”’ which splits all the subsets;, and
2. No subset of/ splits more than a fractio(v /8 + n) of the setsS;, for anyn > 0.

For the first case, the minimum value ¢fis ¢, whereas for the second case, the minimum is at
Ieast(% —n)|C|. Therefore, if we had an-approximation algorithm for supermodular function
minimization, the algorithm would return a set for the firase with value at mosin. Sincee

is arbitrary, we can always chooseso thatea < ( — 1)|C|, and hence it will be possible to
distinguish between the two instances. We get a contradictiherefore the hardness result follows.

O

Using this result, we now establish the hardness of minmgiz concave function over®'1

polytope.

Theorem 4.5.5Itis not possible to approximate the minimum of a positiMea concave function

f over a polytope to within any factor, even if the polytopénhes tinit hypercube, unless P = NP.

Proof. Kelner and Nikolova (2007) have given an approximation gnéag reduction from min-
imization of a supermodular functiofi to minimization of its continuous extensiofl over the
0/1-hypercube. Thus any-approximation algorithm for the latter will imply @-approximation
algorithm for the former as well. This implies that mininrigi a positive valued concave function

over a0/1-polytope cannot be approximated to within any factor, sslé = NP. O

In fact, a similar hardness of approximation result can binbd for minimizing a concave
quadratic function of rank 2 over a polytope. Pardalos andh¥ia (1991) show the NP-hardness

of minimizing a rank 2 concave quadratic function over a tapg by reducing the independent
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set problem to the concave quadratic minimization problémtheir reduction, if a graph has an
independent set of a given sizethen the minimum value of the quadratic functior)j®therwise
the minimum value is a large positive number. This gives #meshardness of approximation result
for minimizing a rank 2 quadratic concave function over ayppe.

The two inapproximability results show that in order to getRPTAS for minimizing a non-
convex function over a polytope, we need not only the lovnknaroperty of the objective function,

but also additional conditions, such as Property 1 of thetfan g given in Section 4.2.1.

4.6 Open Problems

We have presented two different ways of obtaining an FPTA8dmbinatorial optimization prob-
lems with the product objective function (Section 3.5 andti®e 4.3.1). Interestingly, it is not
known for several combinatorial optimization problems @gample, for the spanning tree problem
and the shortest path problem) whether the minimizatiomlpro with a product objective func-
tion is NP-hard, even if there are only two functions in theduct. Kern and Woeginger (2007)
conjecture that this problem should be solvable in polyr@btiine, though no such algorithm has
been proposed for this problem yet. On the other hand, théuptoversion of the spanning tree
problem and the shortest path problem where the objectieenimximize the product, are NP-hard.

Resolving the computational complexity of the product miiziation problem remains open.
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Chapter 5

Robust Appointment Scheduling

5.1 Introduction

In this chapter, we study the problem of appointment scliegluh a robust optimization frame-
work. The appointment scheduling problem arises in manyigepperations where customers are
served sequentially in a facility, the service times of thetomers are uncertain and one needs to
assign time slots for serving the customers in advance. &iped setting where this problem arises
is in health care services. Modern health care involves sagel of several high cost devices and
facilities such as MR installations, CT scanners and dmeraooms. For these facilities, appoint-
ment scheduling is vital to ensure a high utilization of teeaurces as well as a high quality of
service (Cayirli and Veral 2003). For example, considerphablem of scheduling surgeries for
outpatients in an operation room at a hospital. The infoienaibout which surgeries are to be per-
formed on a particular day is known in advance. However,ithe heeded to perform each surgery
can vary. The hospital manager needs to decide in advandarbet which a particular surgery
is scheduled to start, and how much duration to assign tostivgery. If the manager assigns a
small time interval for a surgery, then it is likely that theatized time of the surgery will exceed its
assigned duration, thus delaying the next surgery. Theniruence and costs resulting from the
delay of both the patients and the staff constitutedheragecost of that surgery. If on the other
hand, the hospital manager assigns an excessively longahfer a surgery, then the surgery may
end early and the operation room will be left idle till the hexrgery commences. In that case,
the hospital incursinderagecost, which corresponds to the under-utilization of theueses in the
operation room. Therefore, an appointment schedule stamhigdve the right trade-off between the

underage and the overage costs.
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A few other service operations where the appointment sdimgdproblem arises are:

1. Sabria and Daganzo (1989) analyze the operations at arsedpere ships have to be served
sequentially in a given order and the time slots for sergdime ships are computed in ad-

vance.

2. In certain serial production systems, the lead timesdit ebthe production stages is stochas-
tic. For each stage, we need to compute the planned lead Tineee is an inventory holding
cost at each stage corresponding to the job at that stagelemmgpearly, a tardiness cost
corresponding to the job finishing late and a backlogging atethe end stage for not meeting
demand at the scheduled time. The objective is to minimieeatlerage sum of these three

costs (Elhafsi 2002).

3. In many project scheduling problems where the duratiosash activity is stochastic, one
needs to compute a gate for each activity, that is the timeréefvhich a project cannot start.
There is a cost associated with a particular activity stgrtater than its scheduled gate, and
also a cost if an activity finishes earlier than the gate ofstixessor activity (Bendavid and

Golany 2009).

In the rest of this chapter, we will refer to any task or custothat needs to be scheduled as a job,
and the service provider as a facility.

Existing models in the literature for the appointment sctied problem include queueing mod-
els (Wang 1993; Wang 1999), continuous stochastic modestfin and Gupta 2003; Robinson and
Chen 2003; Kandoorp and Koole 2007) and discrete stochastiels (Begen and Queyranne 2011,
Begen, Levi, and Queyranne 2008). In the stochastic mothedgprocessing times of the jobs are
assumed to be independent random variables, and the objéxto find an appointment schedule
that minimizes the expected cost. In all these models, osgnass complete knowledge about the
distribution of the processing times of the jobs. Howewemiany service settings the distributions
may not be known accurately, limiting the utility of the dtastic models. There might not be suffi-
cient historical data of the processing times of the jobstageasonable estimate of the probability
distributions. Furthermore, because the cost functiohémstochastic model is the expectation of a
non-linear function of several random variables, the caatinnal cost of finding an optimal sched-
ule is significantly high. As a consequence, the methods&mglto solve the problem are usually
based on heuristics with no provable bounds on the runnimg &f the algorithm nor on the per-

formance guarantee of the solutions. Many other methodsreethe use of advanced techniques
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such as Monte-Carlo simulations or submodular functionimiiration. Such techniques may not
necessarily be practical in many situations.

The drawbacks of the stochastic models mentioned abovecadimited to the appointment
scheduling problem alone, but are encountered in many gmbivhere stochastic programming is
used. Robust optimization is an alternative framework & deth the drawbacks arising in stochas-
tic programming. In robust optimization, the uncertaintythe input parameters are handled using
uncertainty intervals instead of random variables (seeBeg-Tal and Nemirovski (2002), Bertsi-
mas and Sim (2004)). Robust optimization models have beanrsto be much more tractable as
compared to the corresponding stochastic optimizationaetsodror example, a closely related appli-
cation of robust optimization is finding optimal policies faventory management problems (Bert-

simas and Thiele 2006).

Our Contributions : The contributions of this chapter can be summarized agvisll

1. Robust formulation of the problem: We propose to look at the appointment scheduling
problem in a robust optimization framework. For each job wéymeed the following in-
formation: the minimum and the maximum possible time thevidlbtake to complete, the
underage cost if the job finishes early, and the overage ttw job finishes late. The ob-
jective in the robust model is to find a schedule for which thst én the worst case scenario
of the realized processing times of the jobs is minimizect(iBe 5.2.1). We establish cer-
tain analytical properties of the robust model, which we siggsequently to find an optimal

solution of the robust appointment scheduling problem.

2. Analysis of global balancing heuristic We propose an intuitive heuristic for scheduling jobs
called global balancing heuristic (Section 5.3). This Fsieraims to balance the maximum
possible underage cost due to a job with the maximum possideage cost due to that
job. We show that this heuristic is in fact optimal when thelemrage cost for the jobs in
the sequence are non-decreasing. The biggest advantabis tietristic is that it gives a
simple, easy to compute closed form solution for the optidumhtion assigned to each job.
Computational results show that for typical instances efghpointment scheduling problem,
the average cost of a robust optimal schedule is wizhifd of the average cost of a stochastic

optimal solution (Section 5.3.3).

3. Analysis of the worst case scenariod-or the above mentioned special case of the appoint-

ment scheduling problem, we establish the worst case dosrfar the schedule given by the
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global balancing heuristic. Even though the set of realgextessing times of the jobs is
infinite, we show that there are only a finite number of worsecscenarios that the optimal
solution needs to balance between. The worst case scepavidde further insight into the

structure of the optimal solution (Section 5.3.2).

4. Ordering problem: Inspired from single machine scheduling problems, wegretsvo non-
linear programming formulations for the ordering probldusing the insights obtained from
the formulations, we present a simple heuristic which gave®ar-optimal order of the jobs

(Section 5.4).

Related Work: An overview of the appointment scheduling problem is giuethe review paper
by Cayirli and Veral (2003). The existing literature on ajppment scheduling can be roughly di-
vided into three categories: gqueueing models, stochastimization models and stochastic models
which use notions of discrete convexity, for example, suthmher functions over an integer lattice.
We discuss the relevant literature for all the three modelsvia

Wang (1993) proposes a queueing model for the problem, intwthie processing times of the
jobs are assumed to be independent and identically digtdbiandom variables with exponential
distribution. Both static and dynamic problems (i.e. theecavhen all the information about the
jobs is not known in advance) are considered in this model aanoptimal schedule is obtained by
solving a set of non-linear equations. In Wang (1999), thdehis generalized to the case where the
jobs can have different mean processing times. For this hbdehows that the optimal sequence
of the execution of the jobs is to process them in the incngasider of their mean processing times.

Denton and Gupta (2003) formulate the problem as a two-sttgphastic linear program, and
then use a sequential bounding algorithm to solve the quureing stochastic optimization prob-
lem. They also give general upper bounds on the cost of a siehadhich does not depend on the
particular distribution of the processing times or the gastimeters of the jobs. Robinson and Chen
(2003) use a Monte Carlo integration technique to compuae-aptimal solutions for the appoint-
ment scheduling problem. They show that an optimal schdthgea “dome shaped” structure. That
is, the allowances for the assigned durations for the jobsificrease, and then decrease steadily
for jobs in the end of the sequence. They also give heurigtiish approximate this dome shaped
structure of the optimal schedule. Green, Savin, and Wab@g)2consider the problem of outpatient
appointment scheduling in which serving emergency patisnlso permitted. They formulate the

problem as a dynamic stochastic control problem and estaplioperties of an optimal policy for
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real-time scheduling and capacity allocation. Yet anottey of computing an appointment sched-
ule is using local search by Kandoorp and Koole (2007), whawsthat a local search algorithm
converges to an optimal schedule. Gupta (2007) considengrtblem of optimally sequencing two
jobs, and establishes the optimality of an ordering whewehsistic dominance condition holds for
the distribution of the processing durations of the two jobs

In a recent paper, Begen and Queyranne (2011) show that keprocessing times of the
jobs are discrete random variables with finite integer stppben there is an optimal schedule
which is integral (i.e. the assigned starting times of thesjbave integer values in the optimal
solution). They also show that under very general conditidine cost function with respect to an
integer appointment schedule is submodular. An optimaltswl can then be found using well
known algorithms for submodular function minimizationglelwata (2008), Orlin (2009)). The
running time of their algorithm i€ (np2 . 10g Pmax ), Wheren is the number of jobs angl,. is
the largest integer in the support of the processing timeiloligions of the jobs. This idea has also
been extended to a get a near-optimal schedule for a datndriedel (Begen, Levi, and Queyranne
2008), where the processing time distributions of the jobsiat known in advance, but instead one

uses the past data on the realized processing times of thég@mproximate the distributions.

5.2 Model Description

There aren jobs indexed by, . . ., n which are to be scheduled in this order on a single facilitye T
processing time of job is P;; P, can be a random variable or an uncertainty interval. An agpoi
ment schedule is given by an+ 1 vectorA = (Ay,..., A,t1), WhereA; is the scheduled start
time of jobi. Job1 is always assumed to start at time = 0, and A,,; denotes the scheduled end
time of jobn. Alternatively, an appointment schedule can also be giyearin vector(ay, ..., ay),
whereq; is the assigned duration for jab That is,a; = A4;,1 — A;. In this chapter, whenever we
refer to an appointment schedule, we mutually refer to boghviector of the scheduled start times
of the jobs and the vector of the assigned durations for the. jo

The jobs are processed as follows. Jatan be started only at timé; or later. Letp; be the
realized processing time of joh and C; the completion time of joli under this realization. If
C; < A;y1, then jobi + 1 is started at timed; 1, otherwise joly is started at time”;. Therefore
C; is given by

C; = max(A;, Ci—1) + p;. (5.1)
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If job 4 finishes befored,;, it incurs an underage cost af(A4;.; — C;) and we say that
job i is underaged On the other hand, if it finishes aftet; ., the job incurs an overage cost of

0;(C; — A;4+1) and we say that job is overaged The total cost of the schedule for a realization

P = (p1,...,pn) of the processing times of the jobs is given by
F(A,P) = max(ui(Ai1 — Ci),0i(Ci — Aisr). (5.2)
=1

In the stochastic formulation of the problem, the proceagsinration of jobi is assumed to be a
random variable’; whose distribution is known. The cost of a schedule is tiefF'(A, P)], and

the objective is to find an appointment scheddléhat minimizes the expected cost.

5.2.1 The Robust Model

In the robust version of the problem, for each jolwe are given its minimum possible processing
time P, and its maximum possible processing time The realized processing time of the job is
assumed to be in the interv@i,@]. We useA; to denotep; — P, the length of the uncertainty
interval of jobi. Let P = (p1,...,p,) be a vector of the realized processing time of thgiven
jobs, andP denote the sef[;_, [p,, p;]. Given an appointment schedule= (A, ..., A,) for the

n jobs, the cost of this schedule is given by

F(A) = ]ilég)?F(A’ P). (5.3)

In other words, the cost of a given schedule is the worst-saseario cost among all the possible
realizations of the processing time of the jobs. We first sttt for a given appointment schedule,

there is a worst case scenario for which the supremum in iequi. 3) is actually attained.
Lemma 5.2.1 For a given appointment vectof, there exists”® € P such thatF'(A, P) = F(A).

Proof. The functionF'(A, P) is a continuous function i® (Begen and Queyranne 2011), and
F(A) is the supremum of'(A, P) with respect taP over the compact s&®. Therefore there must

exist aP € P such thatF'(A, P) = F'(A). O

The above lemma implies that thep in the equation (5.3) can be replacedibyx. This helps in

establishing thakF'(A) is a continuous function with respecty as shown in the following lemma.
Lemma 5.2.2 F(A) is a continuous function id.
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Proof. From the previous lemma,

n

F(A) = IPHEEL%{ max(ui(AHl — CZ), OZ(CZ — Ai+1))- (54)
=1

All the terms in the summation are themselves bounded aomis piecewise linear functions in
A, and hence taking the maximum of the summation with resgeét ensures that'(A) is a

continuous function with respect . O

Next, we show that for a given problem instance, there alveaists an optimal solution.

Lemma 5.2.3 There exists an appointment vectat such that for any other appointment vector

A, F(A*) < F(A).

Proof. Consider the sé€ = [4, A] C R""!, whered = (4,,..., 4, ) andA = (4;,..., A,11).

A, =A;=0,andforany2 <i<n, 4, =5 P, andA; = > i<iPi- If A ¢ K, then there exists

j<i
A" € K such that forany realization P of the processing times of the job8(A’, P) < F(A, P),
and therefore?’(A’) < F(A) (Begen and Queyranne 2011). Thus, without loss of gengralé
can restrict the set of appointment vector to the compadt s8inceF'(A) is a continuous function
in A by Lemma 5.2.2, therefore its minimum must be attained atespontA* in the compact set

K. O

5.3 The Global Balancing Heuristic

In the appointment scheduling problem, for each job theestao conflicting costs: one is the
underage cost that the job can incur if it finishes early arddtner is the overage cost that the
job (and possibly the jobs following it) can incur if this jdimishes late. The intuition behind the
global balancing heuristic is to find an appointment scheethét balances between these two costs
causeddueto each job. The cost balancing idea is inspired from sindtast balancing policies
used previously in inventory management problems (Leal, Roundy, and Shmoys 2007; Levi,
Roundy, Shmoys, and Truong 2008).

Let us denote the schedule generated by this heuristit®asSuppose job is overaged, then
the overage of jols causes overage cost to be incurred not only onijdiut possibly on all the
subsequent jobs as well. The maximum possible overage goie ton itself and all the subsequent

jobs isp, — a$’. Thus the maximum overage cahteto jobi is (3"} _; o) (p; — a$’). The maximum
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possible underage cost due to jois ui(aiG — Qi). Equating the two costs, we get

q WP, +0>ip;

G _ 55
“ Ui + 0> (5-5)

7

whereo>; = >"}'_. 0. The following lemma gives an upper bound on the cost of ttedule.

Lemma 5.3.1 An upper bound on the cost of the scheddfeis given by

AG < uzo>2

Z u; + 0>2
Proof. The maximum possible underage cost of jab ui(aZG — Bz')' and the maximum possible
overage cost due to jaton itself and the subsequent jobis (5; — af’). Therefore the maximum
possible cost due to jobhas an upper bound
Uiozz‘Ai

G G p ¢
Ei(A7) < max(ui(a;” —p,),02i(0; — a;")) < U + 0>

The second inequality holds because from (5.5), it folloet ti;(af" — p,) = 0>i(p; — af) =
’LLZOZZAZ/(UZ + 02@')-

Hence an upper bound on the cost of the sched(igs

F(AS) < ZM

— U + 0>
1=1 =

5.3.1 Analysis of the Global Balancing Heuristic

In this section, we analyze the special case when the urelexagt of all the jobs is the same.
For this case, we show that the global balancing heuristiesgin optimal schedule, and the result
holds for the more general case when the underage costs filthere non-decreasing. Before
proceeding, we define some terminologies which we use indkeaf the chapter. For a given
scenario of realized processing times of the jobs, we sayjdba is of max-length if its realized
processing time ig;, and it is of min-length if its realized processing tim@lis

We first give upper and lower bounds on the assigned durafiarjab in an optimal schedule
when the underage cost of all the jobs are equal. These bdwtdgor an optimal appointment

schedule for both the stochastic as well as the robust model.
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Lemma 5.3.2 If all the jobs have the same underage cost, then for an opap@ointment schedule

Proof. The first part of the inequality was proved by Begen and Quegd2011). For the second
part, assume on the contrary that in an optimal solutlofor job i the assigned duration is greater
thanp,. Letd = A, 11 — A; — p,;. By assumptiond > 0. We claim that for any’ < 4, changing4;
to A; + ¢’ does not increase the cost in any scenario. There are tws tasensider:

Case 1 Jobi — 1 is underaged. In this scenario, jois underaged as well. i; is changed to
A; + &', then the overage cost of jab- 1 increases, but the underage cost of jalecreases by the
same amount. This is true as longfas< 4.

Case 2 Jobi — 1 is overaged. Lef’;_; be the completion time of job— 1. ThenC;_; > A,.
If C;_1 — A; > &, then increasingl; to A; + &’ only decreases the overage cost ofjeb 1, and
changes nothing else. @;_; — A; < ¢, then after increasingl; to A; + ¢, job i — 1 becomes
underaged. However, jabremains underaged as well, therefore any increase in theramel cost
of job i — 1 is neutralized by the decrease in the underage cost af jbbe net effect is decrease in
the overall cost, as the overage cost thatjjeb1 was incurring in the earlier schedule is no more
there in the new schedule.

Thus, in either case, the cost in every realized scenafereiemains the same, or decreases
upon increasingd;. This contradicts the assumption that the given scheduke optimal. Hence

the statement of the lemma holds. O

In fact, the above lemma holds for the more general case whennon-decreasing ii that
isu; < u;qq foralli =1,...,n — 1. However, it does not hold for the most general case. For
example, consider the following instance of the appointnseheduling problem. There are two
jobs, withu; = 100,01 = 1,us = 1,09 = 100,p, = p, =8 andp, = p, = 10. The optimal
appointment schedule for this instancedis = 0, As = 8, A3 = 19.98 with cost3.96. Thus the
assigned duration for jobin this example isd3 — A, = 11.98, which is greater thap,.

Next, we show that the in an optimal robust appointment saleedhe upper bound for the
optimal assigned duration is in fact stronger than the omengabove. This bound will be used
subsequently in establishing a lower bound on the cost ofpaniatment schedule. For the sake
of simplicity, we prove our results for the special case wher= « for all the jobs, however the

results hold for the more general case of non-decreasisas well.
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Lemma 5.3.3 Suppose is an optimum appointment schedule for a given instanegjolbs. Then

for each jobi,

u(a; —p.) < 0>i(p; — ai),

=1
foreachi=1,...,n.

Proof. Suppose, on the contrary, the optimal solution satisfies — p,) > 0>;(p; — a;) for some
job i. Consider the solution with the appointment schedtllewhereA; = A; + e and A’ = A;,
for all otherj. We choose a value efsmall enough so that for the new scheddle the relation
u(a; — p;) > 0>i(p; — aj) is still satisfied, andi; — ¢ > p.. For a given realizatiorP of the
processing times of the jobs, there are two cases to consider

Case 1:Jobi — 1 is overaged in scheduld’. Then jobi — 1 remains overaged in schedule
as well. Clearly, for this casé&'(A’, P) < F(A, P), as the overage cost of jab- 1 is lower in
scheduled’, and all other costs remain the same.

Case 2:Jobi — 1 is underaged in schedul#’. This means that job starts at timeA’ in A’.
Consider the scenariB’ in whichp] = D, andp’; = p; for all other jobs;. Since we assumed that
u(a;—p,) > 0>i(p; —a;), thereforel’(A’, P) < F(A', P'). This is because if jobis overaged, the
maximum possible increase in cosbis;(p; — a;), hence having job of min-length gives a higher
cost. However, for the scenari®, F'(A, P') > F(A’, P'), as the increase in the underage cost of
job i — 1 in scheduled’ is compensated by the decrease in the underage cost af jbierefore
we getF (A, P) < F(A',P") < F(A,P") < F(A), hence the cost oft’ in scenarioP does not
exceed the cost of the schedule

Therefore scheduld’ has a lower cost than the cost.4fin any realized scenario, a contradic-

tion. Hence, for the optimal solution, we must haMe; — p.) < 0>(p; — a;). O

)

Using the above lemma, we now prove a lower bound on the cosh afptimal appointment

schedule.

Lemma 5.3.4 Let A be an optimal appointment schedule for a given instance mfbs. If the

underage cost of all the jobs is equalidpthen a lower bound on the cost of the scheddiis given

by

F(a) > Y ozt

— y+ 0>;
=1 =
Proof. Consider a scenarif® of the realized processing times of the jobs in whi¢gh= p;, that is

each job is of max length in the scenaffo From Lemma 5.3.33; < (up, +0>;p;)/(u+o0>;). The
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contribution of jobi in the overage of itself and the subsequent joljs is a;, which in the scenario
P is at leastuA; /(u + o>;). Therefore, the contribution of overage cost of jah scenarioP has

a lower bound given by
UOZZ'AZ'

Fy(A, P) > .
U+ 0>

Hence a lower bound on the cost of the scheduie

n

F(A) > F(A,P) =)
=1

UOziAi
U+ 0>

Thus, we get the following main theorem of this chapter.

Theorem 5.3.5 The global balancing heuristic gives an optimal solutiorthaf robust appointment
scheduling problem when the underage cost of the jobs am@l.efjhe assigned duration to jokin

the optimal schedulel“ is given by equations.5), and the cost of this schedule is given by

LAY
F(AG) = Y 0= 5.6
(A9) ;u Ton (5.6)
Proof. Follows from Lemma 5.3.1 and Lemma 5.3.4. O

5.3.2 Key Insights

Suppose that jobis the only job that needs to be scheduled. Then it is eas)ettha¢ there are two
worst-case scenarios for jabone in which jobi is of min-length, and the other in which the job is
of max-length. The optimal schedule must balance the castdes these two worst-case scenarios

for job 7. This yields the optimal assigned duration for jodis

uip, + 0ip;
Qy = ——.
Ui + 04
Now suppose that jobis followed by jobsi + 1, ...,n, and underage costs for all the jobs are
equal. Then in the optimal solution,
uip, + 0>ip;
Ay = ———.

Ui + 0>
Thus o>, acts as the “effective overage cost” for jobn this case. Note also that the optimal
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assigned duration to jobdepends only on the cost parameters of the jobs succeedinghth and
not on any of the jobs preceding jeb

Next, we establish the worst case scenarios for the optiahaticn.

Lemma 5.3.6 For a given instance of the appointment scheduling probleith w jobs, let
P, ..., P""! ben + 1 scenarios of realized processing times of the jobs suchithatenario
P7, the firstj — 1 jobs are all of min-length, and the rest of the jobs are of remgth. Then these

are the worst-case scenarios for the optimal robust screedf.

Proof. Consider the scenariB’. The firstj — 1 jobs in this scenario are all of min-length, therefore

the underage cost due to these 1 jobs is

7j—1
FY A% P = Y uiaf —p)
=1
i—1
. JZ: u;0>;A;
P u; + Ozi.

On the other hand, the jolys. .., n are all of max-length. Far= j, ... n, the overage of jobhon
itself and the subsequent jobs(ig — af), leading to an overage cost of;(p; — af’). Hence the

total overage cost due to these jobs is
) n
F2(AY Pl = Zozz‘(@ —af’)
i=j
_ Zn: UiOZiAi
£~ i + 0>
1=7 =
Hence, the total cost of the schedul& in scenarioP’ is
F(A%, P7) = FY(AC, PY) + F2(A%, PY) = F(A%).
ThereforeP’ is indeed a worst-case scenario for the optimal solutiénforj =1,...,n+ 1. O

Essentially, the optimal solution achieves a balance bexvileeser + 1 worst case scenarios.
Alternatively, another way of deriving the assigned dwradi to the jobs given by equation (5.5) is
to solve the system of linear equations obtained by equ#tiegost of the schedule in theser 1

worst case scenarios. Figure 5-1 shows the worst case gxef@rthe optimal schedule for the
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case of3 jobs.

T T ] [w ]
W
Al AQ A,3 A4
by ‘ Dy ‘ P3 ‘
\
Al AQ A,3 A4
Py ‘ D2 | p3 ‘
\ \
A1 Aa A3 Ay
Py | Do | D3 ‘
\ \ \
Ay Az As Ay

Figure 5-1: Worst-case scenarios for an optimal solutiorte case o8 jobs.

5.3.3 Computational Results

We perform computational experiments to compare the sébgdibtained using our robust model
and stochastic models. We use the discrete stochastic mb&elgen and Queyranne (2011) for
comparison. The aim of this section is to show that for tyjgitstances of the appointment schedul-
ing problem, the average cost of a robust optimal schedwé&hsn a reasonable limit of the average

cost of a stochastic optimal schedule.

Distribution of the processing times of jobs We use the data for service times in an MRI facility
given by Green, Savin, and Wang (2006). The observed meatiaurfor serving each patient in
this case ist8 minutes, with a standard deviation 28 minutes. The distribution of service times
matches closely with that of a Weibull distribution when gfeameters of the Weibull distribution
are chosen appropriately. For our computational study, mh consider the case of serving out-
patients, and assume that no inpatients or emergencylarak@aserved in the facility. We further
assume that the processing times of all the jobs are indepéadd identically distributed random
variables.

We use three different distributions in our study: Weib@hussian and Gamma. The mean
and the standard deviation for all the distributions &8eand 26, except for the case when we
study the impact of the standard deviation on the performafthe robust model. For the Weibull

distribution, the shape parameter is kept fixetl.&4 for all the cases (same as that given by Green,
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Savin, and Wang (2006)). The displacement parameté3.i& and the scale parameterds/7,
except for the case where we are studying the impact of theatd deviation. The discrete versions
of the distributions are generated ovér discrete supports ranging froid to 150 using the R
software program. For the Gaussian distribution, the spording discrete version is truncated
at the negative tail of the distribution to ensure that theemite distribution has positive support

values.

Cost parameters For all the instances, the underage cost and the overagareoassumed to be
the same for all the jobs. We fix the overage cost td bk a typical instance of the appointment
scheduling problem in health care services, the underagfescmuch higher than the overage cost.
For our computational experiments, the underage cost dhaljobs is assumed to 1@, except
for the case where we study the impact of the underage costeoperformance. In that case, the

underage cost varies frofnto 25.

Computing the stochastic optimal solution An optimal solution for the discrete stochastic model
is computed using a local search algorithm (see Appendixg.algorithm is guaranteed to return an
optimal solution, although it may take exponential time éonpute an optimal solution. However,
for all the instances of the problem considered below, al@mpntation of the algorithm returned
an optimal solution in a reasonable amount of time. Sinceofitanal schedule in the discrete

stochastic model is integral, its cost can be computed efiilyi (Begen and Queyranne 2011).

Uncertainty interval for the robust model: For the robust model, the uncertainty interval for
each job is assumed to lhe — o, u + o], wherey is the mean processing time of the job and

is the standard deviation of the processing time. The roimastel gives a schedule which is not
necessarily integral, and its average cost is computed bgigdering all the possible realizations
of the processing times of the jobs exhaustively. This tuumisto be the main bottleneck in our
computational study. Because of this, the maximum numbgtsf for which the average cost can
be computed in a reasonable amount of tim@ iExcept for the case where we study the impact of

the number of jobs, the number of jobs for all other cases exlfat7.

5.3.4 Comparison of Robust Optimal and Stochastic Optimal &edules

Figure 5-2 shows the assigned durations for the jobs forphienal robust schedule and the optimal
stochastic schedule for the case of 8 jobs, when the progessies of the jobs have independent

and identically distributed Weibull distributions. Theshastic optimal schedule follows roughly
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a dome like pattern: the assigned durations to the jobs ficsease, and then decrease. Such a
form of the stochastic optimal schedule has also been epdxefore in the literature (Robinson
and Chen 2003). On the other hand, the assigned duratior {olik in the robust optimal schedule
is steadily decreasing. Such a schedule takes care of thargze1 which the starting jobs may take
a longer time to complete: even if these jobs finish later tiveir assigned deadlines, the impact

on the subsequent jobs is expected to be minimal.

5.3.5 Impact of Various Factors on the Average Cost of the Ralst Schedule

For each particular case consider below, we plot the relgterformance of the robust optimal
schedule, which is given bypOB — OPT)/OPT x 100, whereROB is the average cost of the
robust schedule an@PT is the average cost of the stochastic optimal schedule. \Wpute the

relative performance for the following three cases:

1. Impact of the number of jobs: This is shown in Figure 5-3. For all the three distributicihe,
average cost of the robust optimal schedule is wigti#t of the stochastic optimal schedule
cost. The performance of the robust schedule deteriorlidggsiyg with increase in the number

of the jobs.

2. Impact of the underage cost:This is shown in Figure 5-4. Similar to the previous case, the

Robust Optimal and Stochastic Optimal Schdeules
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Robust optimal schedule —=—
Stochastic optimal schedule ---e---
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Figure 5-2: Comparing the schedules obtained using robadehand stochastic model.
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Impact of number of jobs on performance

25 T T T T T T . T
Weibull —a—
Gaussian ---e---
Gamma ---4---
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Relative performance
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Number of jobs

Figure 5-3: Impact of the number of jobs on the relative penfance of the robust schedule.

Impact of the underage cost on performance
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Figure 5-4: Impact of the underage cost on the relative peidioce of the robust schedule.
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average cost of the robust optimal schedule is wigti#t of the stochastic optimal schedule
cost, and the performance of the robust schedule detesosdightly with increase in the

underage cost of the jobs.

3. Impact of the standard deviation: This is shown in Figure 5-5. Unlike the previous two

Impact of the standard deviation on performance
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Figure 5-5: Impact of the standard deviation on the relgiedormance of the robust schedule.

cases, the performance of the robust schedule remainy gtatlin fact it decreases slightly)

with increase in the standard deviation of the processimgsiof the jobs.

In all the cases, the average cost of the robust optimal stdéwithin20% of the average cost of
the stochastic optimal schedule. This shows that for tyjmstances of the appointment scheduling

problem, the global balancing heuristic gives easy to campaar-optimal schedules.

5.4 The Ordering Problem

In this section, we look at the case where we also have thdiligkiof changing the order in which
the jobs are processed. Using the closed form for the cosscti@dule given by equation (5.6), we
first give two non-linear programming formulations of theeting problem in which the underlying

set of constraints is a polyhedron. Later, we present a sitmgliristic which gives us a near-optimal
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solution for the ordering problem. We only look at the caseerghall the jobs have the same

underage cost, which we assume, without loss of generatityal tol.

5.4.1 A Linear Ordering Formulation for the Ordering Proble m

For an ordering of the jobs, we can define a vedtarith ¢;; equal tol if job i precedes joly in a
processing sequence, afidtherwise §;; = 1 for all the jobs:). With this definition ofd, the cost

of an ordering can be written as follows.

S A1 6i50;
FO)=) —<m (5.7)
Z,Z:; 1+ ijl 6ij0j
Let N = {1,...,n} denote the set of all jobs. The following set of constrairftaracterize

exactly those vectorgthat correspond to a total ordering of the jobs.

0ij +6;; = 1, foralli,j € N,i#j, (5.8a)

0ij + 05k + 0 > 1, foralli,j,k € N,i#j#k, (5.8b)
0;; = 1, forallie N, (5.8¢)

%; € {0,1}, foralli,j € N. (5.8d)

We consider a relaxation of this integer optimization peablin whichd;; can take any value
betweerD and1:

0<9;; <1, foralli,jeN. (5.9)

Given a fractional solutiord* for the relaxation with the objective function (5.7) and €on
straints (5.8a)-(5.8c¢), (5.9), we propose a rounding sehtarnget an ordering on the jobs. Let
©F = >_7_, d;;0;. The jobs are re-numbered so tigit > ©; > ... > ©;, and they are executed

in this particular order. For this order, I€; = Z;’:i oj. An upper bound or®; is given in the

following lemma.

Lemma 5.4.1 (Schulz (1996))orall i =1,...,n,0; <20;.

Proof. For any subse$ of the jobs, the following inequality can be derived, similathat for the
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sum of completion times of jobs in single machine schedul@geyranne 1993).

2

2
Zoj@;f:% > o +%Zo§2% > o] (5.10)

Jjes Jjes Jjes JES

Using S = {i,...,n} in the above inequality, we get

0; =Y 0, <2) 0,05/ 0; <20}, (5.11)
Jj=t j=t j=t
where the second inequality follows from the fact tgt< ©7 for j > 4, by assumption. O

Lemma 5.4.2 The above algorithm gives an ordering on the jobs whose sadtinose times the

cost of the fractional solution®.

Proof. The rounding scheme ensures that for each job

i:é;}oj S Zn:Oj S QZN:(SZ}OJ'.
7j=1 Jj=t 7j=1

Therefore, for each joly we get

Z?:ioj < 22?:1 Ekjoj _
1+ Z;L:z oj — 1+ Z?:l 550

Hence the cost of the rounded solution is at most twice that.of O

Thus, if the sum-of-fractions problem corresponding torilaxation of the ordering problem
can be solved exactly in polynomial time, then this heurigfill be a2-approximation algorithm for
the ordering problem. However, the number of fractions is filrmulation is equal to the number of
jobs. For a large number of jobs, solving the relaxation #xaall be computationally prohibitive.
We present a more compact formulation of the ordering probldrich use® variables instead of

thed variables in the next section.

1The main difference between the two cases is that in the dememof completion times, for each jabwe count
the processing time of the jobs that are execlieftbrejob i, whereas in this case we count the overage costs of the jobs
that are executedfter job i. However, the inequality holds for the latter case as well.
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5.4.2 An Exact Formulation of the Ordering Problem

The formulation given in this section is inspired from thengetion time indexed formulation for
the single machine scheduling problem with sum of comptetime as the objective (Queyranne
1993). Instead of using thevariables, we directly use th@ variables in this formulation, which is

given below.

min 2 IAL%Z (5.12a)
2
1 1 o
s.t. Zoj@j > 5 (Z oj) +5 Zoj forall S C N. (5.12b)
Jjes jeS jES

Theorem 5.4.3 The above formulation is an exact formulation of the ordgipmoblem.

Proof. The extreme point of the polyhedral set (5.12b) can be cheniaed as follows (Queyranne
1993). Lets : N — N be a permutation of the jobs. That is(i) is theith job in the execution
sequence. Letsq;) = ijz 0s(j)- Then(o>1,...,0>,) is an extreme point of this polyhedron,
and all the extreme points of the polyhedron have this fore ®bjective function (5.12a) then
corresponds to the cost of the schedule when the jobs aregs®d in the order given by the per-
mutationo. Thus each extreme point of the polyhedron (5.12b) cormdpdo some ordering of
the jobs.

Moreover, the objective function (5.12a) is a concave fiancin the variable®. Hence the
optimal solution of the non-linear program (5.12a)-(5.)LRbattained at an extreme point of the
polyhedron. This means that an optimal ordering of the jasle found by solving for an optimal
extreme point of this formulation. If07,...,©7) is an optimal extreme point, then an optimal

ordering of the jobs is given by a permutatierwhich satisfie@;(l) >...> @:(n). O

5.4.3 KKT Conditions for Local Optimality

For the above formulation, we look at the KKT conditions fotaining a necessary condition for a

sequence of jobs to be an optimal sequence. Fdf all NV, let f(.S) denote the function

JeS jeSs

2
7(8) = (Zoj> >
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A necessary condition for a sequence of jobs to be an optieguence is captured in the

following theorem.

Theorem 5.4.4 For a given instance of the robust appointment schedulimblpm, a necessary

condition for the sequenck. .., n to be optimal is that the values

Ai/oi
(1+0)?

must be in increasing order far=1,...,n.

Proof. The Lagrangian formulation of the optimization probleml@a)-(5.12b) is given below.

" A6O;
LOw) =3 g = 2 hs | D_0i®i — f(9) | (5.13)
i=1 SCN jes
If © = (04,...,0,) is an optimal solution, then it must satisfy the following Kkcondi-

tions (Bertsekas, Nedit, and Ozdaglar 2003).

L_ 0= 7Ai
00, (14 6,)?

Stationarity: —0; Y ps=0,i€N. (5.14a)

S:es

Complementary slackness: ug (Z 0;0; — f(S)| =0, forallSC N. (5.14b)

jES

Primal feasibility: Zoj@j > f(S), forallSC N. (5.14¢)
j€S

Dual feasibility:  us >0, forallS C N. (5.14d)

From Theorem 5.4.3, we know that there is a (local) optimaltem which is also an extreme
point of the polyhedral set given by the constraints (5.1Zberefore we restrict our analysis only to
the extreme point solutions. The extreme point of the palytie corresponding to the job sequence
L...,nis®; =05 =37 ;o;fori=1,....,n. LetS; = {i,i+1,...,n}fori=1,...,n.

If the overage costs are all positive, then the constramtsa€) will be satisfied with equality
for the setsS = S; forall i = 1,...,n, and for all other set$' the inequality will be strict.

Therefore, from the complementary slackness conditiorisit§ we gefugs = 0 for all S # S; for
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anyi = 1,...,n. The stationarity conditions (5.14a) then give

Zus _Bifoi

1 + 0>z)

Therefore the value of the Lagrange multipliers we get are

Ai/or for S = 5y,
DN
_ i/ 04 i—1/0i—1 .
s = - forS=25;i=2,....n, (5.15)
(1+0>)? (14 05i-1) ' "
0 otherwise

The dual feasibility conditions (5.14d) and (5.15) togetingply that a necessary condition for

the sequenceg, ..., n of jobs to be an optimal sequence is that the values
Ai/oi
(1+0x)?
must be in increasing order. O

Note that the KKT conditions give only a necessary condit@rocal optimality. Thus the con-
dition that we obtain above characterizes not only the dlplogtimal solutions, but also the local
optima (with respect to optimizing the objective functidnl2a) over the polyhedral set (5.12b)).
This means that a sequence of jobs satisfying the abovet@mmndiay not necessarily be a globally
optimal sequence. This analysis, however, does give umtbdion that scheduling the jobs in
increasing order of\;/o; ratios may be a reasonable strategy, especially if the gearasts of the

jobs are much smaller as compared to the underage cost. IiWeattas particular heuristic in the

next section.

5.4.4 An Approximation Algorithm for the Ordering Problem

In this section, we look at heuristic methods which give uarfaptimal solution for the ordering
problem in appointment scheduling. We first show that wherotherage costs of the jobs are high
as compared to the underage cost, then any ordering haswatdoktis reasonably close to the cost
of the optimal ordering.

Leto* denote an optimal ordering of the jobs for a given instandb@fppointment scheduling

problem. For an ordering of the jobs,F' (o) denotes the cost of the corresponding optimal robust
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appointment schedule given by (5.6). Byin, we denote the minimum overage cost among the

overage costs of all the jobs, and; denotes the sum of the overage costs of all the jobs.

Lemma 5.4.5 Let o* be an optimal ordering of the jobs for a given instance of thpantment

scheduling problem. For any ordering

I+ 0min  0>1 «
Omin 1 + 021

F(o) <

Proof. An upper bound on the cost of the orderings given by

- OZU(i)Ai
F = —_
(U) ZZ:; 1+ 0>4(4)

1 +0>1

=1

B 1+0>1Z;

IN

A lower bound on the cost of the optimal orderingis

« . n OZU*(i)Ai
F(U ) N ZZ:; 1 —|—020(i)

n
Z OminA;
° 1+ omin
=1

Y

Omin

1+ Omin
=1

Taking the ratio of the upper bound to the lower bound we gestatement of the lemma. O

The above lemma shows that when the overage costs are sgtlifitigher compared to the
underage costs, then any ordering has a cost that is quéte tahe cost of the optimal ordering.
For example, iby,;, = 10, then any ordering is a factor @f1 within that of the optimal ordering.

We propose a simple heuristic for the ordering problem, tiscsimilar to the Smith’s rule
for finding an optimal schedule for scheduling jobs on a singlachine to minimize weighted

completion time.
Smith’s ordering heuristic: Schedule the jobs in the non-decreasing ratidgfo; ratios.

Let the schedule obtained by Smith’s rule &€& The following lemma holds for this sched-
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ule (Smith 1956).

Lemma 5.4.6 If o° is the ordering given by Smith’s ordering heuristic, thendny orderingo of

the jobs,

n

D 0zasAi < D 0momAi

i=1 =1

Proof. Follows from (Smith 1956). O

The idea behind the heuristic is simple: If there is a job witarge uncertainty, then it is better
to execute itin the end, so that if the job is overaged it daslelay the subsequent jobs. Similarly,
if a job has a higher overage cost, then it is better to exatirt¢he start of the schedule otherwise
the delay due to the lateness of the preceding jobs may lembitfher overage cost of this job. The

next lemma gives a bound on the performance of this ordedngistic.
Lemma 5.4.7 For Smith’s ordering heuristic,

140>
F(o®) < 2=
( )_1+0min

F(o%).
Proof. The cost of the schedute® is

IS . n Ozas(i)Ai
F(U ) N ZZ:; 1 + OZO'S(i)

n

1
< ) VAY
1+ omin ; =0T
1 n
< 0] s (7 A
- 1+Omin; 2o (@)=
P S Oty
~ 1+ omin P 1+ 0>+ (4)
140>
= =—F(c"),
1+ Omin ( )
where the second inequality follows from Lemma 5.4.6. O

The two lemmata together imply the following theorem.

1+021 0>1 1+Omin
1+Omin ’ 1+021 Omin

Theorem 5.4.8 The Smith’s ordering heuristic givesiain ( )—approximate

solution to the ordering problem.
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Proof. Follows from Lemma 5.4.5 and Lemma 5.4.7. O

Thus, for the case where.; is not too large compared tg,i,, Smith’s ordering heuristic gives

a near-optimal ordering of the jobs.

5.5 Conclusion and Future Directions

We have presented a robust optimization framewaork for tipe@pment scheduling problem arising

in service operations. The main contribution of this chajgén demonstrating that there is a neat
closed form for the optimal schedule in the robust model. \8fe give insights into the structure of

the optimal solution. Furthermore, we propose simple lséias to get a near-optimal ordering of

the jobs, something which has eluded the stochastic modd#s.s

We present two problems below related to appointment sdingdinat are worth pursuing:

1. Hardness of the appointment scheduling problem|t is well known that the appointment
scheduling problem is quite intractable for the stochastadel. Surprisingly, no one has
given a proof of NP-hardness of this problem for for the mastagal case for any of the
models mentioned in Section 5.1. We believe that at the earst) the problem of finding an
optimal order of the execution of the jobs is NP-hard, bottttie stochastic model as well as

for the robust model.

2. Scheduling multiple facilities. So far, in our model we have assumed that the jobs are to
be scheduled on a single facility. In general, there mightbee than one facility where the
jobs can be processed, with possibly different underage#dge cost for different facilities.

In the most general form, the problem will have three comptseassigning which jobs are
to processed on which machines, ordering the jobs assignedch machine in an optimal

sequence, and then computing the optimal duration thaidheuassigned to each job.

Appendix

A Local Search Algorithm for the Discrete Stochastic Model

The discrete stochastic model of Begen and Queyranne (20448s the assumptions that the pro-
cessing duratior®; of each jobi is a discrete random variable with integer support. The givoiy

distributions of the random variables are assumed to be atiytindependent. The probability
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mass functions of the distributions are known, and is a dafreinput to the problem. Under this

assumption, they prove the following results:

1. There is an integer appointment schedule (i.e. a schadulhich the assigned starting time

of each job is an integer) that is optimal.

2. The cost functior¥'(A) = Ep[F(A, P)] is an L-convex function over the lattice of integer

points. (For more details oh-convex functions, see Murota (2003).)

3. An integer scheduld minimizing the cost function can be computed in polynomiialet by

using a polynomial time algorithm for minimizing a submaaluset function.

The algorithm used for minimizing the cost function overteger lattice is the steepest descent
algorithm (Murota 2003), whose outline is given below. le tiest of this sectiorly denotes the

indicator vector ofX C {1,...,n}.

1. Let A be any integer appointment schedule for the given instance.

N

. Finde € {—1,1} andX C {1,...,n} that minimizesF' (A + el x).
3. f F(A+elx) < F(A)

4. A+ A+ ey,

5. Go to ste.

6. ReturnA as the optimal solution.

The key step in the above algorithm is the local search in 8teprhe functiong(X) =
F(A+Ix)—F(A)is asubmodular function i, and hence the function can be minimized in poly-
nomial time by using an efficient algorithm for submodulandtion minimization (see e.g. lwata
(2008), Orlin (2009)).

In our implementation, instead of computing the solutioat thives the best improvement for
the objective function in each step, we compatsg/ solution that gives an improvement over the
current solution. This modified algorithm is guaranteedetium an optimal solution, however it
is not guaranteed to run in polynomial time. In our compotad study, the modified local search

algorithm returned an optimal solution in a reasonable foneip to 14 jobs in an instance.
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