1,435 research outputs found

    A deliberative model for self-adaptation middleware using architectural dependency

    Get PDF
    A crucial prerequisite to externalized adaptation is an understanding of how components are interconnected, or more particularly how and why they depend on one another. Such dependencies can be used to provide an architectural model, which provides a reference point for externalized adaptation. In this paper, it is described how dependencies are used as a basis to systems' self-understanding and subsequent architectural reconfigurations. The approach is based on the combination of: instrumentation services, a dependency meta-model and a system controller. In particular, the latter uses self-healing repair rules (or conflict resolution strategies), based on extensible beliefs, desires and intention (EBDI) model, to reflect reconfiguration changes back to a target application under examination

    Using Process Technology to Control and Coordinate Software Adaptation

    Get PDF
    We have developed an infrastructure for end-to-end run-time monitoring, behavior/performance analysis, and dynamic adaptation of distributed software. This infrastructure is primarily targeted to pre-existing systems and thus operates outside the target application, without making assumptions about the target's implementation, internal communication/computation mechanisms, source code availability, etc. This paper assumes the existence of the monitoring and analysis components, presented elsewhere, and focuses on the mechanisms used to control and coordinate possibly complex repairs/reconfigurations to the target system. These mechanisms require lower level effectors somehow attached to the target system, so we briefly sketch one such facility (elaborated elsewhere). Our main contribution is the model, architecture, and implementation of Workflakes, the decentralized process engine we use to tailor, control, coordinate, etc. a cohort of such effectors. We have validated the Workflakes approach with case studies in several application domains. Due to space restrictions we concentrate primarily on one case study, briefly discuss a second, and only sketch others

    Runtime observable and adaptable UML state machines: [email protected] approach

    Get PDF
    n embedded system is a self-contained system that incorporateselements of control logic and real-world interaction. UML State Ma-chines constitute a powerful formalism to model the behaviour ofthese types of systems. In current industrial environments, the soft-ware of these embedded systems have to cope with the increasingcomplexity and robustness requirements at runtime. One way tomanage these requirements is having the software component’sbehaviour model available at runtime ([email protected]). Thus,it is possible to enhance the safety of the software component byenabling verification and adaptation at runtime. In this paper, wepresent a model-driven approach to generate software components(namely, RESCO framework), which are able both to provide theirinternal information in model terms at runtime and adapt their be-haviour automatically when an error or an unexpected situation isdetected. The aforementioned runtime introspection and adaptationabilities are added automatically to the software component and itdoes not require the developer make any extra effort. The solutionhas been tested in the design and implementation of an industrialBurner controller. Results indicate that the software components ge-nerated by the presented solution provides introspection at runtime.Thanks to this introspection ability at runtime, the software com-ponents are able to adapt automatically from their normal-modebehaviour to a safe-mode behaviour which was defined to be usedin erroneous or unexpected situations at runtime. Therefore, it ispossible to enhance the safety of the systems consisting of thesesoftware components

    Architectural Approaches for Self-Healing Systems Based on Multi Agent Technologies

    Get PDF
    Self-healing systems are able to adapt themselves at runtime time in response to changing environmental or operational circumstances, shifting user requirements, and unanticipated faults without human intervention. Conceptually, a self-managing system is composed of four key capabilities; Monitoring, performing Analysis, Planning and Executing the plan. The preferred way to enable repair in a self-healing system is to use externalized repair/adaptation architecture. Adaptability, dynamicity, awareness, observability, autonomy, robustness, distributability, mobility and traceability are requirements that an architecture style for self-healing system should satisfy. In this paper we discuss Multi agent based self-healing system has a characteristics that can satisfy mentioned requirement. We define associations between architecture style requirements for self-healing system and MAS characteristics. As a case study in a real project we have designed Automated Teller Machine (ATM) combination with biometric sensors based on multi-agent architecture.DOI:http://dx.doi.org/10.11591/ijece.v3i6.395

    Manipulating Managed Execution Runtimes to Support Self-Healing Systems

    Get PDF
    Self-healing systems require that repair mechanisms are available to resolve problems that arise while the system executes. Managed execution environments such as the Common Language Runtime (CLR) and Java Virtual Machine (JVM) provide a number of application services (application isolation, security sandboxing, garbage collection and structured exception handling) which are geared primarily at making managed applications more robust. However, none of these services directly enables applications to perform repairs or consistency checks of their components. From a design and implementation standpoint, the preferred way to enable repair in a self-healing system is to use an externalized repair/adaptation architecture rather than hardwiring adaptation logic inside the system where it is harder to analyze, reuse and extend. We present a framework that allows a repair engine to dynamically attach and detach to/from a managed application while it executes essentially adding repair mechanisms as another application service provided in the execution environment

    A Review on Present State-of-the-Art of Self Adaptive Dynamic Software Architecture

    Get PDF
    Enterprises across the world are increasingly depending on software to drive their businesses. It is more so with distributing computing technologies in place that pave way for realization of seamless business integration. On the other hand those complex software systems are expected to adapt changes dynamically without causing administrative overhead. Moreover software systems should exhibit fault tolerance, location transparency, availability, scalability self-adaptive capabilities to fit into present enterprise business use cases. To cope with such expectations software systems are to be built with a dynamic and self-adaptive software architecture which drives home quality of services perfectly. The point made here is that software systems are facing unprecedented level of complexity and aware of self-adaptation. Therefore it is essential to have technical knowhow pertaining to self adaptive dynamic software architecture. Towards this end, we explore present state-of-the-art of this area in software engineering domain. It throws light into dynamic software architectures, distributed component technologies for realizing such architectures, besides dynamic software composition and metrics to evaluate the quality of dynamic adaptation
    • …
    corecore