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Abstract

Self-healing systems require that repair mechanisms are
available to resolve problems that arise while the system ex-
ecutes. Managed execution environments such as the Com-
mon Language Runtime (CLR) and Java Virtual Machine
(JVM) provide a number of application services (applica-
tion isolation, security sandboxing, garbage collection and
structured exception handling) which are geared primar-
ily at making managed applications more robust. How-
ever, none of these services directly enables applications
to perform repairs or consistency checks of their compo-
nents. From a design and implementation standpoint, the
preferred way to enable repair in a self-healing system is
to use an externalized repair/adaptation architecture rather
than hardwiring adaptation logic inside the system where it
is harder to analyze, reuse and extend. We present a frame-
work that allows a repair engine to dynamically attach and
detach to/from a managed application while it executes es-
sentially adding repair mechanisms as another application
service provided in the execution environment.

1 Introduction

A self-healing system “...automatically detects, diag-
noses and repairs localized hardware and software prob-
lems” [8]. This definition promotes the non-functional re-
quirement of having repair mechanisms as an important fa-
cility that must be available in the implementation of a self-
healing system. The traditional approach to performing re-
pairs on a system is to stop the system, make the necessary
updates and restart the modified system. However, based
on the conceptual architecture for a self-managing system
introduced in [8] we expect a self-healing system to be able
to perform a repair of its components as part of a proactive,
preventative or reactive response to its operating environ-
ment while it executes.

Scheduled or unscheduled downtime to perform repairs
incurs a cost, this cost cannot always be expressed strictlyin
terms of money [2, 22]. One potential approach self-healing

systems can leverage to maintain high system availability is
to perform repairs in a degraded mode of operation[23, 10].

Conceptually, a self-managing system is composed of
four (4) key capabilities [12];Monitoring to collect data
about its execution and operating environment, performing
Analysisover the data collected from monitoring,Planning
an appropriate course of action andExecuting the plan.
Each of the four functions participating in the Monitor-
Analyze-Plan-Execute (MAPE) loop consumes and pro-
duces knowledge which is integral to the correct functioning
of the system. Over its execution lifetime the system builds
and refines a knowledge-base of its behavior and environ-
ment. Information in the knowledge-base could include
patterns of resource utilization and a “scorecard” tracking
the success of applying specific repair actions to detected or
predicted problems.

One software engineering challenge in implementing a
self-healing system is managing the degree of coupling be-
tween the components that effect system repair (collectively
referred to asthe repair engine, and the components that re-
alize the system’s functional requirements) collectivelyre-
ferred to asthe target system. For systems being built from
scratch, designers can either hardwire repair logic into the
target system or separate the concerns of repair and target
system functionality as is done in external architectures like
Kinesthetics eXtreme (KX) [5] or Rainbow [3]. For legacy
systems – which we define as any system for which the
source code is not available – designers are limited to us-
ing an external architecture and interacting with the target
system using whatever effectors or system knobs provided
by the original designers.

Externalized repair architectures are preferred for a num-
ber of software engineering reasons. Hardwiring the repair
logic inside target system components limits its generaliza-
tion and reuse [21]. The mixing of code that realizes func-
tional requirements and code that meets non-functional re-
quirements (code tangling[6]) makes it harder to analyze
and reason about the correctness of the repairs being per-
formed. Moreover, it is difficult to evolve (extend or update)
the repair facilities without affecting the execution and de-
ployment of the target system. Externalized architectures
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allow the repair engine and the target system to evolve sep-
arately rather than requiring that they are developed and de-
ployed in tandem.

Related to the concern of coupling between the repair
engine and the target system are issues of the interaction
between the two and its impact on the target system. Exam-
ples of interaction issues include, but are not limited to:

• How does the repair engine effect the repair of the tar-
get system?

• What is the scope of the repair actions that can be per-
formed, for example, can we perform repairs at the
granularity of entire programs, subsystems, compo-
nents, classes, methods or statements? Further, can we
add, remove, update, replace or verify the consistency
of elements at the same granularity?

• What is the impact of the repair engine on the perfor-
mance of the target system when repairs are/are not
being performed?

• How do we control and coordinate the interaction be-
tween the repair engine and the target application with
respect to the timing of repair actions given that appli-
cation consistency must be preserved?

1.1 Contribution

To address these issues we present a framework for dy-
namically attaching and detaching a repair engine to/from
a target system executing in a managed execution environ-
ment. To demonstrate this capability we implemented a
prototype which targets the Common Language Runtime
(CLR). We chose the CLR because it includes facilities to
make fine-grained changes to types and methods at runtime.
There is infrastructure support for extending the existing
metadata of types, generating new metadata, editing and
replacing method bodies and performing multiple just-in-
time (JIT) compilations to persist or undo changes made to
method bodies. We leverage these facilities to add repair
mechanisms as an application service provided in the man-
aged execution environment.

The two popular Java Virtual Machine (JVM) implemen-
tations we considered do not yet provide the same level
of flexibility as the CLR. Sun Microsystem’s Java HotSpot
Virtual Machine 5.0 and IBM’s JVM implementation sup-
port coarse-grained “HotSwap” classfile replacement[15].
Both implementations support JIT compilation however we
could not find any indication that APIs existed to allow us to
programmatically control or influence the JIT compilation
process at runtime[25]. Also, The current API reference
for the Java Virtual Machine Tool Interface (JVMTI)[18]
allows interested parties to receive notifications of JVM ex-
ecution events such as class loads however, the API does

not include callbacks that receive JIT compilation event no-
tifications.

Using our framework a repair engine can attach to a run-
ning application and once attached, can perform highly spe-
cific consistency checks and repairs over individual compo-
nents and sub-systems before detaching. Further, it allows
for the replacement of individual method bodies and com-
ponents. When no repairs are being performed, our proto-
type’s impact on the target system is negligible,∼5% run-
time overhead. Finally, it allows repairs to be enacted at
well understood times during target system execution.

Our framework is transparent to the application, it is not
necessary to modify the target system’s source code to fa-
cilitate attaching or detaching the repair engine or to initiate
repair actions.

The rest of this paper is organized as follows. Section 2
covers some background on .NET and the CLR execution
model. Section 3 presents the architecture of our frame-
work. Section 4 evaluates the performance of our proto-
type. Section 5 covers related work, section 6 presents our
conclusions and future work.

2 Background

2.1 Common Language Runtime Basics

The CLR is the runtime environment in which .NET ap-
plications execute. It provides an operating layer between
the .NET application and the underlying operating system
[14]. The CLR manages the execution of .NET applica-
tions, taking on the responsibility of providing services such
as application isolation, security sandboxing and garbage
collection. Managed .NET applications are calledassem-
bliesand managed executables are calledmodules. Within
the CLR, assemblies execute inapplication domainswhich
are logical constructs used by the runtime to provide isola-
tion from other managed applications.

.NET applications, as generated by the various compil-
ers that target the CLR, are represented in an abstract in-
termediate form. This abstract intermediate representation
is comprised of two main elements,metadataandmanaged
code. Metadata is “...a system of descriptors of all struc-
tural items of the application – classes, their members and
attributes, global items...and their relationships”[14]. To-
kensare handles to metadata entries, they can refer to types,
methods, members etc. Tokens are used instead of pointers
so that the abstract intermediate representation is memory-
model independent. Managed code “...represents the func-
tionality of the application’s methods...encoded in an ab-
stract binary format known as Microsoft Intermediate Lan-
guage (MSIL)” [14]. MSIL, also referred to as bytecode, is
a set of abstract instructions targeted at the CLR.



.NET applications written in different languages can in-
teroperate closely, calling each others functions and lever-
agingcross-language inheritance, since they share the same
abstract intermediate representation.

2.2 Common Language Runtime Execution
Model

During execution two major components of the CLR that
interact with metadata and bytecode are theloaderand the
just-in-time (JIT) compiler. The loader reads the assem-
bly metadata and creates an in-memory representation and
layout of the various classes, members and methods on de-
mand as each class is referenced. The JIT compiler uses
the results of the loader and compiles the bytecode for each
method into native assembly instructions for the target plat-
form. JIT compilation only occurs the first time the method
is called in the managed application. Compiled methods
remain cached in memory, subsequent method calls jump
directly into the native (compiled) version of the method
skipping the JIT compilation step, as shown in Figure 1.

// Other code
SampleClass s = new SampleClass();
s.doSomethingUseful();
// More code

Find member 
doSomethingUseful() 

in memory

Jump to JIT-Compiled 
native assembly version 

of the method

Method 
body JIT 

Compiled?

Do JIT-Compile 
of MSIL

Execute

Yes

No

Figure 1. Overview of the CLR execution cycle

2.3 The CLR Profiler and Unmanaged Metadata
APIs

The CLR Profiler APIs allow an interested party (a pro-
filer) to collect information on the execution and mem-
ory usage of a running application. There are two in-
terfaces of interest, ICorProfilerCallback, which a profiler
must implement and ICorProfilerInfo which is implemented
by the CLR. Implementors of ICorProfilerCallback (also re-
ferred to as thenotifications API[17]) can receive notifi-
cations about assembly loads and unloads, module loads
and unloads, class loads and unloads, function entry and
exit and just-in-time compilations of method bodies. The

complete list of notifications can be found in [17].The
ICorProfilerInfo interface is used by the profiler to obtain
details about particular events e.g. when a module has
finished loading, the CLR will call the ICorProfilerCall-
back::ModuleLoadFinished implementation of the profiler
passing themoduleID. The profiler can then use ICorProfi-
lerInfo::GetModuleInfo to get the module’s name, path and
base load address.

The unmanaged metadata APIs allow users to
emit/import data for/from the CLR. These interfaces
are considered low-level interfaces that provide fast access
to metadata [16]. There are two interfaces of interest,
IMetaDataEmit and IMetaDataImport. As the names
suggest, the former is used to write metadata and the latter
is used to read metadata. As mentioned earlier in Section
2.1, tokens are abstractions used as handles to the metadata
of module, type, method, members etc. IMetaDataEmit
generates new metadata tokens as metadata is written
while IMetaDataImport resolves the details of a supplied
metadata token.

2.4 Motivation behind our framework

Application services such as isolation, security sandbox-
ing, garbage collection and structured exception handling
which managed execution environments provide may make
managed applications more robust but these facilities do not
directly enable applications to effect the repair of their com-
ponents or sub-systems.

Our framework demonstrates how self-healing capabili-
ties can be added to a managed execution environment as
another application service. We target the CLR with our
prototype because it provides the infrastructure to make
fine-grained changes to the metadata of types and methods
at runtime and affords control over the JIT compilation pro-
cess, currently offering more flexibility than the JVM.

Our prototype is enabled by the .NET Profiler Inter-
face [17], specifically ICorProfilerCallback and ICorProfi-
lerInfo, and the Metadata Unmanaged API [16], specifically
IMetaDataImport and IMetaDataEmit.

3 Architecture

Our framework prototype is implemented as a single dy-
namic linked library (DLL) which includes a profiler that
implements ICorProfilerCallback. Figure 2 shows the four
(4) main components in our prototype.

• TheExecution Monitor receives module load, unload
and module attached to assembly events, JIT compila-
tion events and function entry and exit events from the
CLR.



• TheMetadata Helper wraps the IMetaDataImport in-
terface and is used by the Execution Monitor to resolve
metadata tokens such as method tokens to less cryptic
method names and attributes.

• Internal book-keeping structures store the results
of metadata resolutions as well as execution statistics
such as method invocation and JIT compilation times.

• TheByte-code and Metadata Transformerwraps the
IMetaDataEmit interface to write new metadata e.g.
adding new methods to a type and adding references
to external assemblies, types and methods. It also gen-
erates, inserts and replaces bytecode in existing meth-
ods as directed by the Execution Monitor. Bytecode
changes are committed by forcing the CLR to JIT com-
pile the modified methods again (re-JIT ).

Managed Application

Execution
Monitor

Internal book-keeping
structures

Metadata
Helper

Byte-code &
Metadata

Transformer
(XFormer)

Managed Execution Environment

Profiler Notification
API

Our Profiler

Figure 2. Prototype architecture diagram

3.1 Model of operation

Our prototype performs operations on types and methods
at various stages in the method invocation cycle shown in
Figure 3 to make them capable of interacting with a repair
engine.

To allow a repair engine to interact with a class instance
we augment the type definition such that the necessary
“hooks” can be added. Augmenting the type definition is a
two-phase operation. The first phase occurs at module load
time, Stage 1 in Figure 3.

When the loader loads a module, the bytecode for the
method bodies of the module’s types is laid out in mem-
ory. The starting address of the first bytecode instruction
in a method body is referred to as theRelative Virtual

Application/Module
Load

Class Load

Method Invoke

JIT Compile
(if necessary)

Function Exit

Function Enter

1

2

3

4

5

6

Figure 3. First method invocation in a Managed Applica-
tion

Address (RVA)of the method. At the end of the mod-
ule load we add (prepare)shadow methods, using IMeta-
DataEmit::DefineMethod, for each of the original public
and/or private methods of the type. A shadow method
shares all the properties (attributes, signature, implemen-
tation flags and RVA) of the original method except the
name. By sharing (borrowing) the RVA of the original
method, the shadow method points at the method body of
the original method. Figure 4 shows an example of adding
a shadow method,SampleMethod, for an original method,
SampleMethod. Extending the metadata of a type by adding
methods must be done before the type definition is installed
in the CLR. Once the type definition is installed its list of
methods and members becomes read only, further requests
to define new methods or members are silently ignored even
though the API call “succeeds”.

SampleMethod
RVA

MSIL
Method

body

SampleMethod
RVA

MSIL
Method

body

_SampleMethod
RVA

Before After

Figure 4. Preparing a shadow method



The second phase of type augmentation occurs the first
time an original method is JIT compiled, Stage 4 in Fig-
ure 3. This phase converts the original method into a thin
wrapperwhich simply calls the shadow method as shown
in Figure 5. The heart of phase 2 allocates space for a new
method body, uses the Byte-code & Metadata Transformer
to generate the sequence of bytecode instructions to call the
shadow and sets the new RVA for the original method to
point at the new method body.

There are a number of special considerations when cre-
ating shadows, especially in the case of non-void meth-
ods. The main issues revolve around ensuring the MaxStack
and LocalVarSigTok properties in the method header of the
wrapper are kept consistent with the newly defined method
body with respect to the number of local variables and the
maximum stack space needed to execute the instructions in
the method body. Additionally, the new method body must
contain any applicable instructions to push the arguments
expected by the shadow method. Failure to get these details
right results in a failed program verification and a subse-
quent crash of the CLR. The interested reader is directed to
[14] for more details.

SampleMethod
RVA

MSIL
Method

body

_SampleMethod
RVA

Before

SampleMethod
RVA

New
MSIL

Method
Body

Call
_Sample
Method

_SampleMethod
RVA

After

MSIL
Method

body

Figure 5. Creating a shadow method

Using shadows and wrappers has a number of advan-
tages. Given the structure of the wrapper method, see Fig-
ure 6, we can inject repair instructions as prologs and/or
epilogs to shadow method calls.

Adding a prolog to the wrapper requires that new byte-
code instructions prefix the existing bytecode instructions.
The level of difficulty is the same whether we augment the
wrapper or the original method. Adding epilogs, however,
presents a few more challenges. Intuitively, to add an epi-
log, we wish to insert new instructions before control leaves
a method. In the simple case, a method has a single return
statement and the epilog can be inserted right before that
point. For methods with multiple return statements and/or
exception handling routines, finding every possible return

SampleMethod( args)
<room for prolog>
push args
call _SampleMethod( args)
<room for epilog>
return value/void

Figure 6. Conceptual diagram of a Wrapper

point can be an arduous task [19]. Further, the layout and
packing of the bytecode for methods that contain exception
handling routines is considered a special case which may be
challenging to augment correctly [19].

Using wrappers presents a cleaner approach since we can
ignore all of the complexity in the shadow method. Fur-
ther, the regular structure and single return statement of the
wrapper method lends itself easily to adding an epilog.

3.2 Performing a repair

To perform a repair, we augment the wrapper to insert
a jump into a repair engine at thecontrol point(s)before
and/or after a shadow method call. Effecting the jump into
a repair engine is a four-step process.

• Step one extends the metadata of the assembly cur-
rently executing in the CLR such that a reference to
the assembly containing the repair engine is added us-
ing IMetaDataEmit::DefineAssemblyRef.

• Step two uses IMetaDataEmit::DefineTypeRef to add
references to the repair engine type (class).

• Step three adds references to the subset of the repair
engine’s methods that we wish to insert calls to, using
IMetaDataEmit::DefineMemberRef.

• Step four augments the bytecode and metadata of the
wrapper function to insert bytecode instructions to
make calls into the repair engine before and/or after
the existing bytecode that calls the shadow method.

Of the above four steps, steps 1 – 3 are relatively easy
compared to step 4. The main concern when perform-
ing steps 1 through 3 is to ensure the assembly proper-
ties (name, version, path, culture info etc.), type properties
(type name and assembly reference) and member proper-
ties (method name, type reference, and method signature)
are valid. Realizing the design goal of making the unman-
aged metadata APIs fast, sacrifices extensive semantic error
checking [16] placing the responsibility of getting the de-
tails right squarely on the API user. Errors in these details
can result in failed metadata verifications, failed assembly
resolutions and halting of the CLR.



In step 4, adding a jump into the repair engine as a pro-
log is done by inserting as few as two (2) MSIL instruc-
tions1, see Figure 7, before the existing MSIL instructions
that comprise the current method body. Adding a jump as

1: ldarg.0 //pass this pointer to the repair engine method
2: call<Metadata token of repair engine method>

Figure 7. Jump into Repair Engine

an epilog is slightly more complicated, despite the regular
structure of the wrapper method. Class methods that have a
return type other than void look like Figure 8 after we create
a shadow for them.

1: ldarg.0 //push *this* before calling member method 2:
call <Metadata token of shadow method>

3: stdloc.0 //store return value in first local slot
4: br.s 0 //branch nowhere (fall through to next)
5: ldloc.0 //push the return value on the stack
6: ret //return

Figure 8. Before epilog insertion

To add the epilog, we need to keep track of where we in-
serted the lastcall instruction and whether it returns a value
or not. If it returns a value we insert the instructions shown
in Figure 7 between instructions 3 and 4 in Figure 8 and re-
emit instructions 4 to 6. The final result is shown in Figure
9.

1: ldarg.0 //push *this* before calling member method
2: call<Metadata token of shadow method>

3: stdloc.0 //store return value in first local slot
4: ldarg.0 //pass this pointer to the repair engine method
5: call<Metadata token of repair engine method>

6: br.s 0 //branch nowhere (fall through to next)
7: ldloc.0 //push the return value on the stack
8: ret //return

Figure 9. After epilog insertion

To persist the bytecode changes made to the method bod-
ies of the wrappers the Execution Monitor requests the CLR
JIT compile the wrapper method again (referred to as a re-
JIT). The actual re-JIT takes place the next time the wrapper
method is called. In our prototype re-JIT requests are sub-
mitted in the Function Exit event, Stage 6 in Figure 3.

We use the ICorProfilerInfo::SetFunctionReJIT function
to persist bytecode changes but we can also use it to undo
the changes we make. We can temporarily disable shadows,
reverting back to shadow prepare phase, Figure 4 and we

1This assumes that the method being called on the repair engine is a static
method that takes an object as its sole argument e.g. public static void Re-
pairEngine::Repair(Object o)

can remove prologs and/or epilogs by setting the wrapper
method RVA to the RVA of a method body without those
prologs and/or epilogs and requesting a re-JIT. This facility
allows us to recover from any performance hit we take from
making shadowed method calls and we can flexibly attach
or detach the repair engine as desired.

The ability to perform multiple JIT compilations on de-
mand is a quite powerful facility, however some additional
tweaking is required to get function re-JITs to work as ex-
pected in our prototype.

Function ID 0x00975338
Calculating the address of the prestub by
hand:

Before JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e8 18 dc f7 ff
0x00975338 05 00 00 00 98 20 00
0x0097533F c0 05 00 fc e8 08 dc
0x00975346 f7 ff 06 00 00 00 b0

Function ID + Word(Function ID-4)

0x00975338 + 0xfff7dc18 = 008F2F50

Once we know where the prestub is
We can restore:

Byte Function ID-5
Word Function ID-4

by hand to force a re-JIT.

Figure 10. Locating the prestub

3.3 Forcing Multiple JIT Compilations (re-JITs)

The CLR includes the infrastructure to force a function
re-JIT by providing the ICorProfilerInfo::SetFunctionReJIT
method. To enable re-JITs the CLR the constant
COR PRF ENABLE REJIT, found in corprof.h, must be
used when informing the CLR of the kinds of notifications
the profiler wishes to receive. As shown in Figure 1, the
CLR needs a way to determine whether a method body
has already been JIT-compiled. To do this the CLR relies
on a tripwire in the form of an indirect method call to a
helper function known asthe prestub helper. When a type
is loaded, a structure known as aMethodTableis created
for it. The method table will eventually contain pointers to
the native assembly versions of the method bodies. Initially
each slot in the table is loaded with a pointer to the prestub
helper [24].

The prestub helper does the work of compilation. Af-
ter compilation the relevant slot in the MethodTable is up-



dated with a pointer to the compiled version of the method
body. Figure 11 illustrates what happens before and after
a JIT compilation. Before the JIT compilation, execution
jumps into the prestub helper, instructione8 near address
on X86. After JIT compilation this is replaced with an
absolute jump, instructione9 addresson X86, where the
jump target is the memory location of the compiled method
body. The process used to force reJITs in our framework,
is based on refinements and extensions to the process used
in [4]. We calculate the address of the prestub helper in
memory, as shown in Figure 10. The prestub address is
used to calculate the offset for the near address jump for
any function ID. Restoring the appropriate memory loca-
tion causes the CLR to jump into the prestub helper the
next time the function is called. To ensure a re-JIT actually
occurs on the next jump into the prestub we call ICorPro-
filer::SetFunctionReJIT which we presume restores some
internal CLR book-keeping for the function, see Figure 11.

Function ID 0x00975338

Before JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e8 18 dc f7 ff
0x00975338 05 00 00 00 98 20 00
0x0097533F c0 05 00 fc e8 08 dc
0x00975346 f7 ff 06 00 00 00 b0
0x0097534D 20 00 c0 00 00 08 00
0x00975354 0c 00 00 00 08 34 e2
0x0097535B 02 00 00 00 00 00 00

After JIT Compilation
0x0097532A 00 00 f8 be de 02 04
0x00975331 00 fe e9 a0 70 47 02
0x00975338 05 00 00 00 d8 c3 de
0x0097533F 02 05 00 fc e9 e0 88
0x00975346 47 02 06 00 00 00 28
0x0097534D dc de 02 00 00 08 00
0x00975354 0c 00 00 00 08 34 e2
0x0097535B 02 00 00 00 00 00 00

Distinguished memory addresses:

Byte Function ID-5

Word Function ID-4

Word Function ID+4 restored by

SetFunctionReJIT

Byte Function ID+11

Word Function ID+12

Figure 11. JIT Compilation Overview

4 Performance Evaluation

We have evaluated the performance of our prototype by
quantifying the overheads on program execution using two

separate benchmarks.

4.1 Experimental Setup

The experiments were run on a single Pentium III Mo-
bile Processor, 1.2 GHz with 1 GB RAM. The platform was
Windows XP SP2 running the .NET Framework v1.14322.

In our evaluation we used the C# benchmarks SciMark2

and Linpack3.
SciMark is a benchmark for scientific and numeri-

cal computing. It includes five (5) computation kernels:
Fast Fourier Transform (FFT), Jacobi Successive Over-
relaxation (SOR), Monte Carlo integration (Monte Carlo),
Sparse matrix multiply (Sparse MatMult) and dense LU ma-
trix factorization (LU).

Linpack is a benchmark that uses routines for solving
common problems in numerical linear algebra including
linear systems of equations, eigenvalues and eigenvectors,
linear least squares and singular value decomposition. In
our tests we used a problem size of 1000.

4.2 Overheads

Our framework consists of a profiler that uses the Pro-
filer API [17] to intercept module load, unload and mod-
ule attached to assembly events, JIT compilation events and
function entry and exit events. As expected, running an ap-
plication in the profiler imposes some overhead on the ap-
plication. Figure 12 shows the runtime overhead for running
the benchmarks with and without profiling enabled. We
performed five (5) test runs for SciMark and Linpack each
with and without profiling enabled. All executables under
test and our profiler implementation were optimized release
builds. For each benchmark, the bar on the left shows the
performance normalized to one, of the benchmark running
without profiling enabled. The bar on the right shows the
normalized performance with our profiler enabled.

Our measurements show that our profiler contributes
∼5% runtime overhead when no repairs are active, which
we consider negligible.

Our prototype imposes additional overheads on the run-
ning application at different points in its execution. We pre-
pare shadows at module load time, specifically when the
module binds to an assembly which occurs before the ap-
plication begins running. We create shadows the first time
the method is JIT compiled, provided a shadow has been
prepared for it and we force re-JITs when we add or remove
the prologs and epilogs that jump into the repair engine.

To quantify these overheads, we use the SciMark2.SOR
class which executes the Jacobi Successive Over-relaxation
benchmark. Table 1 shows the impact on module bind time

2http://rotor.cs.cornell.edu/SciMark/
3http://www.shudo.net/jit/perf/Linpack.cs
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Figure 12. Overheads when no repair active

due to preparing shadows on the two public methods of Sci-
Mark2.SOR, SciMark2.SOR::execute and
SciMark2.SOR::numflops.

Preparing shadows at module load time causes the appli-
cation to take slightly longer to load but does not affect its
steady state execution since the module bind must occur be-
fore the application begins to execute. Moreover, the impact
on module bind time in this case is relatively small, sub-
millisecond, and is dominated by time spent making calls
to IMetaDataEmit::DefineMethod which adds new method
definitions to a type.

Module Name SciMark.exe
Module Load time (ms) 0.0230229
Module bind time (ms) 0.374817
# shadows prepared 2
Total shadow prepare time (ms) 0.196664
Average shadow prepare time (ms) 0.0983317
Bind time - shadow prepare time (ms) 0.178153

Table 1. Overheads of preparing shadows

Creating shadows imposes a one time overhead incurred
the first time the method is JIT compiled. As shown in Table
2 the time for the first JIT compilation is dominated by the
time spent creating the shadow4.

Forcing multiple JIT-compilations adds additional over-
head to the steady-state execution times of the application.
In our experiments we compute the method time as:

4Shadow creation time is dominated by the calls to the IMethodMalloc::Alloc
function which allocates the buffer for the new method body at the appropriate ad-
dress in memory

Method name SOR::execute
First JIT time (ms) 13.7202
# shadows created 1
Total shadow create time (ms) 13.3576
Average shadow create time (ms) 13.3576
First Jit time - shadow create time (ms) 0.3626

Table 2. Overheads of creating shadows

Ttotalmethodtime = Tshadowcreatetime + TJITtime +

Tinvoketime

Table 3 compares the total method time for the
SciMark2.SOR::execute method, the wrapper method, with
the total method time for its shadow method. In this case the
disparity in method times is≪1% and the overall impact on
the performance of the benchmark is negligible.

For methods that are not as computationally intensive as
SOR::execute, whereTshadowcreatetime+TJITtime is a sig-
nificant fraction ofTinvoketime, we expect the overheads of
creating shadows and multiple re-JITs to be much worse.

Wrapper Method Shadow Method
SOR::execute SOR::execute

Function ID 0x935ae8 0x935b18
Enter/Leave count 15 15
JIT Count 15 1
# shadows created 1 0
Create shadow (ms) 11.1834 n/a
Ttl Invoke time (ms) 6273.27 6272.31
Ttl JIT time (ms) 2.9622 0.90244
Ttl method time (ms) 6287.4156 6273.21244

Table 3. Execution overheads on SciMark2.SOR::execute

5 Related Work

Aspect Oriented Programming (AOP) is an approach to
designing software that allows developers the modularize
cross-cutting concerns [6] that manifest themselves as non-
functional system requirements. Modularized cross-cutting
concerns,aspects, allow developers to cleanly separate the
logic that meets system requirements from the code that
meets the non-functional system requirements.

In the context of self-healing systems AOP is an ap-
proach to designing the system such that the non-functional
requirement of having repair mechanisms available is
cleanly separated from the logic that meets the system’s
functional requirements. An AOP engine is still necessary
to realize the final system.

AOP enginesweavetogether the code that meets the
functional requirements of the system with the aspects that



encapsulate the non-functional system requirements. In an
AOP engine implementation ajoin point is a well-defined
point in the control-flow of a program e.g a method call and
are the places where aspects can be woven in. Apointcut
selects a particular join point e.g. method foo().Advicede-
fines the code to be executed at a join point. There are three
(3) types of advice:

• Before advice executes when a join point is reached
but before the computation begins e.g. before foo()

• After advice executes when a join point is reached by
after the computation ends e.g. after foo()

• Around advice executes when a join point is reached
instead of the original computation e.g. around foo()

Specifying that we wish to perform a repair before or
after a particular method call (method call interposition)us-
ing AOP is simply a matter of indicating the methods and
the kind of advice desired – usually AOP engine implemen-
tations have their own languages for doing this. However,
the way different AOP engines effect the request vary de-
pending on the kind of AOP engine it is.

There are three kinds of AOP engines, those that per-
form weaving at compile time (static weaving) e.g. AspectJ
[20], Aspect C# [9], those that perform weaving after com-
pile time but before load time e.g. Weave .NET [20] and
Aspect.NET [20] which pre-process .NET assemblies, op-
erating directly on bytecode and metadata and those that
perform weaving at runtime (dynamic weaving) e.g. A dy-
namic AOP-Engine for .NET [4] and CLAW [13].

Compile time weavers require access to the source code,
moreover once the weaving is done and the final system is
compiled, there is no way to remove the aspects without
re-compilation. Pre-load-time weavers operate on bytecode
creating custom class files for java or custom assemblies for
.NET, however, once weaving completes there is no way to
remove the aspects. Runtime weavers offer the most flex-
ibility, they do not require access to the source code and
weaving and un-weaving can occur at runtime.

Our prototype exhibits dynamic weaving functionality
and is most similar to A Dynamic AOP-Engine for .NET [4]
and Cross-Language Load-Time Aspect Weaver (CLAW)
[13].

A Dynamic AOP-Engine for .NET [4] exhibits the ba-
sic behavior necessary to enable method call interposition
before, after and around a given method. Injection and re-
moval of aspects is done at runtime using the CLR profiler
API for method re-JITs and Unmanaged Metadata APIs,
however, their system requires that applications run with
the debugger enabled which incurs as much as a 3X per-
formance slowdown.

The Cross-Language Load-Time Aspect Weaver
(CLAW) [13] uses dynamically generated proxies to

intercept method calls before passing them onto the “real”
callee. CLAW uses the CLR profiler interface and the
Unmanaged Metadata APIs to generate dynamic proxies
and insert aspects. An implementation of CLAW was never
released and development seems to have tapered off, as
a result we were unable to investigate its capabilities and
implementation details.

Despite the functional similarities to dynamic AOP en-
gines our focus is to demonstrate how flexible dynamic
AOP engine facilities can be used to add repair mechanisms
as a service provided by managed execution environments.

AOP is not the only way to achieve method call interpo-
sition. Software Engineers are free to design in such facili-
ties as is done in the open-source research operating system
K42 [1]. K42 uses method-call interposition and designed
in indirection mechanisms between operating system com-
ponents to support hot component swaps.

Other approaches for building systems that exhibit self-
healing capabilities construct the system from components
that have specific properties and special interfaces. Candea
et al. [2] propose the use of crash-only components and re-
cursively restartable systems. With crash-only components
the only way to stop them is to crash them and the only
way to start them is to recover them. When components
fail a recovery manager uses their recovery API to restart
them. Recovery (micro-reboot) begins at a component and
propogates “outwards” to sub-systems before restarting the
application.

6 Conclusions

We have presented a framework prototype that uses dy-
namic AOP engine facilities to allow us to transparently
attach/detach a repair engine to/from a target system ex-
ecuting in a managed execution environment with low-
overhead. This allows us to add repair mechanisms as an-
other application service provided by managed execution
environments. Our framework relies on facilities for ex-
tending type and method metadata and the ability to control
and direct the JIT compilation process.

For future work we seek to investigate the issue of re-
pair timings. The timing of repairs is a major consideration
for change management[11] in software systems. Gupta
in [7] presents a proof of the undecidability of automati-
cally finding all the control points in an application where a
consistency-preserving repair/adaptation can be performed.
However, we can use a software engineer’s knowledge of
the application to identifysomesafe control points and in-
voke highly specific repairs only at those well understood
times.
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