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Abstract 
Adding adaptation capabilities to existing distributed systems is a 
major concern. The question addressed here is how to retrofit 
existing systems with self-healing, adaptation and/or self-
management capabilities. The problem is obviously intensified for 
“systems of systems” composed of components, whether new or 
legacy, that may have been developed by different vendors,  
mixing and matching COTS and “open source” components.  This 
system composition model is expected to be increasingly common 
in high performance computing.  The usual approach is to train 
technicians to understand the complexities of these components 
and their connections, including performance tuning parameters, 
so that they can then manually monitor and reconfigure the system 
as needed. We envision instead attaching a “standard” feedback-
loop infrastructure to existing distributed systems for the purposes 
of continual monitoring and dynamically adapting their activities 
and performance. (This approach can also be applied to “new” 
systems, as an alternative to “building in” adaptation facilities, but 
we do not address that here.) Our proposed infrastructure consists 
of multiple layers with the objectives of probing, measuring and 
reporting of activity and state within the execution of the legacy 
system among its components and connectors; gauging, analysis 
and interpretation of the reported events; and possible feedback to 
focus the probes and gauges to drill deeper, or – when necessary - 
direct but automatic reconfiguration of the running system. 
 
Categories and Subject Descriptors  
D.2.4 [Software Engineering]: Software/Program Verification - 
model checking, reliability, validation 
 
General Terms 
Measurement, Performance, Reliability, Standardization, 
Verification  
 
Keywords 
Runtime monitoring, dynamic adaptation, self-healing framework, 
autonomic system, externalized reconfiguration 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 
By its very nature, maintenance is the longest and most difficult 
phase of the software process lifecycle, for nearly any application 
domain. Furthermore, regardless of the amount of effort put into 
the development stages and pre-deployment and testing, a high 
performance computing application must be able to adapt to 
changing environmental contexts regarding, e.g., contention for 
resources. Adaptation of on-line, running applications is even 
more complex than conventional off-line maintenance.  
Hardwiring the adaptation mechanisms into the application code 
is the most common approach for “new” systems, but hard to 
modify post-deployment and tending to result in one-of solutions 
with relatively little to share or amortize the cost across 
applications and domains.  Also, retrofitting adaptation facilities 
directly into legacy systems or those composed of third-party 
components may be impractical when one has limited control over 
or understanding of the design and implementation of the system 
components. As a result, many of the methodologies and 
technologies being developed for building new adaptive systems 
do not fit well for those built out of legacy components.  
 
Following IBM’s “autonomic computing” terminology  [1][10], 
we are investigating an approach to “autonomizing” legacy 
systems and assembling “autonomic” systems-of-systems from 
components. Seeing that directly inserting adaptation mechanisms 
into existing application code is difficult, error-prone and costly, 
besides being hard to reuse or reason about, we have sought to 
enable adaptation properties through a solution orthogonal to the 
legacy systems’ main business logic and communication 
framework. We are now developing an infrastructure for 
instrumenting running systems with probes, and passing the data 
gathered by that instrumentation to gauges, where it can be 
collected, collated, filtered and aggregated into system level 
measurements of the system’s operation. These measurements 
form the basis by which analyses are made of the system’s 
execution, in terms of available models, which then leads to the 
feedback phase where runtime modifications to the system are 
(automatically) carried out. This approach to continual dynamic 
monitoring and reconfiguration of deployed systems is intended to 
help automate most system management functions with little or no 
human intervention, whereby the adaptation of the running system 
can be carried out dynamically without incurring any system 
downtime. 
 
We propose a common external infrastructure that can be widely 
applied as a technology for instrumenting, measuring, and 
dynamically controlling software systems through adaptation and 
reconfiguration.  Our infrastructure becomes an integral part of 
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the system-of-systems’ “self,” co-existing and cooperating with 
the systems’ native functional mechanisms (as well as any 
special-purpose adaptation facilities, e.g., for fault tolerance or 
transaction recovery, built into individual components). At this 
point in our research, we have the capability to instrument a wide 
variety of existing systems to perform measurements and convey 
this runtime information to the monitoring layer. This monitoring 
layer can then evaluate the performance of the system based on 
this data according to a wide variety of metric, protocol and 
architectural, etc. models. We are currently progressing from the 
few initial special cases towards the generic third and final layer 
of the infrastructure – the “Decision” layer, and its control of the 
effectors that carry out its self-healing and self-management 
decisions. 

2. Our Approach 
It is generally agreed that a running system’s robustness can be 
improved by dynamic analysis of model-based measurements to 
determine appropriate modifications and adaptations. However, 
rather than mixing measurement and analysis code with problem-
specific code, or even with separate monitoring code but peculiar 
to the target system and/or its underlying framework, we have 
chosen to develop common (or “standard”) externalized 
reconfiguration as well as monitoring mechanisms, where the 
adaptation feedback loop is handled outside of the application. 
Thus we split the reusable mechanism from the system-specific 
policies. This is particularly significant, because coordination of 
multiple independently-developed internal adaptation mechanisms 
is quite difficult or even impossible without some sort of “global” 
supervisor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows our three-tiered infrastructure: Initially, data is 
collected from the running system.  It is instrumented with non-
invasive probes that report raw data to the higher levels via the 
Probe Bus. The data is then interpreted via a set of gauges that 
map the probe data into various models of the system. The gauges 
then report their findings to the Gauge Bus. Then the decision and 
control layer can analyze the implications of the interpreted data 
on overall system performance and make decisions on whether to: 
(1) introduce new gauges in the interpretation layer to analyze 
further, or disable some as superfluous; (2) deploy new probes to 

provide more detailed information to remaining gauges, or turn 
some off to reduce “noise”; and/or (3) reconfigure the system 
itself, perhaps changing the running system’s structure by 
introducing new modules or modifying system or component 
parameters. The system reconfiguration would be carried out via 
deployment/activation of software effectors to reconfigure or 
adapt individual components and/or major substructures of the 
system. In our approach, these effectors make the actual changes 
under the control of a decentralized workflow system, which 
handles coordination of the effectors and contingencies.  
 
We emphasize that the infrastructure is largely independent of the 
running system.  However, this is not to say that the specific 
probes, gauges, controllers, effectors and models are themselves 
independent of the running system – they are not.  The probes and 
effectors must often be specialized to the implementation 
technology; the gauges and decision mechanisms must be 
specialized to the problem domain and environmental context.  
However, reuse of common infrastructure facilities should be 
commonplace, such as probes and gauges geared towards 
performance, architecture dynamism, system robustness, etc. 
 
Our current implementation of this externalized infrastructure is 
called Kinesthetics eXtreme, or KX (pronounced “kicks”).  KX 
can be downloaded from [6]. KX is being applied experimentally 
for load balancing and server replacement for Telecom Italia’s 
heterogeneous instant messaging system [16], and for more 
complex contingencies in a geographically-based “open 
information” (e.g., CNN, BBC) analysis system developed at 
Information Sciences Institute [14] and in use at the US Pacific 
Command  (PACOM).  We are restricted from discussing either 
application in too much detail, so we will discuss our approach 
more generically. 

3. Monitoring 
Probing of a running system is a necessary prerequisite for 
monitoring the execution of the system. We need a minimally 
invasive approach that can be guaranteed to have zero or 
negligible effect on the performance of the system, while still 
offering nearly the equivalence of remote debugging abilities. A 
probe here is an individual sensor attached to, or associated with 
(as a monitor of), a running program – or a component or 
connector of a running program. A probe can sense some portion 
of the program's, or its environment's, execution and make that 
data available by issuing events.  One focus of the DASADA 
program [13], under which this research is being conducted, has 
been to develop a “standard” API for controlling and reading (and 
adding and removing) probes. 

Most of our own work has focused on interoperable infrastructure, 
rather than the probe technology itself.  We use a variety of 
probes developed by other researchers as well as ourselves, and 
can “drop in” any probe technology meeting the DASADA 
standard API [3].  Experience both within and outside DASADA 
has shown that it is easy to adapt or wrap a variety of probe 
technologies to be compliant with this API. Basically, the 
standard defines how probes may be deployed (probe code 
situated at a host for subsequent attachment to specific systems at 
that site), installed (attached to a specific target), and activated 
(turned on). 
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Probes generally fall into one of two categories, either passive or 
active. In the former, we rely on activity within the system to 
trigger any probe processing. This method is well-suited for 
situations where much of the information about the performance 
of the system can be gleaned from the actual goings-on in the 
system itself, e.g., to keep track of the number of times a certain 
service was invoked during the execution, possibly tracking its 
parameters and cause-effect correlating with invocations of other 
services. For example, passive probing using the Active Interfaces 
Development Environment tool [8][9]  inserts callback probes into 
Java source code as part of the instrumentation phase. We have 
also experimented with ProbeMeister [12], which inserts probes 
into Java byte code, and are in the process of integrating 
“instrumented connectors” [2] which replace Win32 DLLs.  There 
are numerous other alternatives. 

Active probing, on the other hand, is a potentially more 
sophisticated mechanism that permits us to perform (resource-
limited) computation within the system’s context  when making 
our measurements on the system’s activity and state. We have 
developed an active probing technology based on our “Worklets” 
mobile agent platform [7][11][15], which means that we only 
need the lightweight Worklet Virtual Machine to be pre-installed 
within the target system (using any of the above source, or 
bytecode or DLL instrumentation technologies - or others). We 
can then dynamically attach and remove what we call “Probelets”, 
mobile agent-based probes, as our monitoring needs dictate.  
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Figure 2 KX Probes and Gauges 

We have proposed an XML Schema [5] as a “standard” format for 
structuring probe output data. Our intent is to unify the disparate 
ways in which the varied probe implementations describe 
observed events. This “Smart Event” Schema includes points for 
extending with generic application models so that (e.g.) arbitrary 

gauge technologies can use this information to determine what 
probes to select according to relevant models. This enables that 
probe descriptions do not need to be customized for a given 
application or its specific models. In general, Smart Events are 
composed from standard “blocks” of information.  The initial 
probe might emit simple Smart Events containing a raw data 
block, but later processing and analysis stages augment this with 
additional or higher-level information blocks.   

Some gauges' activities will be so time-consuming that they can 
only be used in an offline analysis mode.  Such gauges will want 
to consume events using “event logs”.  Rather than forcing each 
such offline gauge to create its own logging facility, a generic 
persistent event store and “replay” facility has been implemented. 

4. Dynamic Analysis 
Gauges are software entities that gather, filter, aggregate, 
compute, and/or analyze measurement information about software 
systems.  In particular, they interpret probe data against various 
models, to produce higher-level outputs: gauges can emit events 
just as can probes. These events are typically at a higher level of 
abstraction, but the “Smart Event” XML Schema has been defined 
to support both levels. As with probes, a major concern of the 
DASADA project has been developing standards for gauges to 
allow interoperability.   

Our own gauges work within a framework called XML-based 
Universal Event Service (XUES) [7], with two major components 
named the Event Packager and the Event Distiller, shown in 
Figure 2. The Event Packager can transform the raw-data format 
of legacy probe output into Smart Event compatible event 
streams. It also packages and logs these events for possible 
replaying. The Event Distiller can recognize complex temporal 
event patterns from multiple probe sources, and it constructs 
higher-level measurements to reflect the system state represented 
by the events. It also produces events to interface with the 
decision layer and gauge visualizers.  The Event Distiller is 
“programmed” by providing a collection of condition/action rules, 
where the condition specifies the event pattern and the action 
specifies what to do when that pattern is recognized – typically 
generation of a higher-level event.  

The diverse need for system monitoring and adaptation has 
resulted in the definition of a wide variety of gauges based on the 
associated models, the types of values they are expected to report, 
etc. In order to have a uniform way of interacting with these 
gauges, we expect them to asynchronously report information on 
the gauge bus. Gauge consumers can then register an interest in 
particular types of gauge events. A gauge consumer may also 
reconfigure a gauge (e.g., to change its reporting frequency). The 
consumers are automatically notified if a gauge asynchronously 
reports a value, or if a gauge has been reconfigured or deleted by 
some other consumer. 

5. Feedback Control Loop to Reconfiguration 
We see the control problem as follows: gauge outputs are in turn 
input to a decision process that determines what course of action 
to take, if any.  The decision process can be supported by a variety 
of tools, including, for example, an architecture transformation 
tool that reacts to gauges that detect differences in the running 
architecture from what is nominal. Executing the high-level repair 
action, e.g., to reconfigure the architecture, will normally involve 



several activities at the effector level. Some of these activities 
may fail, so one needs to be able to express the control process as 
a workflow rich enough to express contingency plans for 
alternative actions.  

We use our Workflakes decentralized workflow system [16] to 
carry out the actual local adaptations and more global 
reconfigurations in the running system, as is illustrated in Figure 
3.  We do not yet employ workflow notation to describe the 
activities, the workflow is currently coded by hand (in Java). 
However, we are experimenting with the Little-JIL workflow 
formalism [4] for specifying the reconfiguration actions, and are 
also investigating several other workflow notations. The chosen 
process specification language must support  the description of the 
actions to be applied to repair a system, including at which 
location(s) they should be applied.  The language needs to specify 
both sequential and parallel execution of actions, and how to deal 
with unsuccessful actions, e.g., by retrying, attempting alternate 
actions, or rolling back changes.   
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Figure 3 KX Feedback Loop 

Workflakes coordinates the actual reconfigurations by invoking 
low-level effectors attached to the target system. As with probes, 
effectors could be realized with various technologies.  We 
currently use our Worklets mobile agents as the effectors, 
analogous to our “Probelets” above. Workflakes conducts a 
reconfiguration workflow by selecting, instantiating and 
dispatching Worklets, and coordinating the activities of the 
deployed Worklets on the target system’s components and 
connectors. 

More generally, effector management primarily involves the 
installation and removal of such low-level modules that cause 
adaptations and reconfiguration to occur. The control layer might 
also invoke the management actions of the probe and gauge layers 
on occasion, for example, to produce refined measurements before 
proceeding. Effector actions range over a spectrum from simple 
adaptations – relatively low-level adjustments to a well-defined 
target system API, e.g., changing a process variable or calling a 
method – to potentially complex reconfiguration commands that 
cause structurally significant changes, possibly involving high-
level adjustments at the system/environmental level. The latter 
may involve, e.g., starting, migrating, restarting, or stopping one 
or more processes, and/or rearranging the connections among 
components. 

Our current feedback loop is relatively ad hoc, depending on 
manually constructed gauge rules that may trigger canned 
workflows to perform reconfigurations.  The next step is to base 
reconfiguration decisions on more sophisticated architectural 
models. Architectural models for a given target system could be 
created a priori, or generated based on analysis of probed event 
traffic.  We would then be able to build gauges that recognize 
structural changes based on these models. A variety of 
mechanisms could be in the analysis, including expert systems 
and constraint solvers, as well as hard-coded repair rules. 

6. Examples 

Static Architecture Scenario 
A somewhat simplified, but common, scenario that an externally 
autonomized system will undergo might go as follows: 

• Probes and gauges are placed via the control layer. 

• Probes emit implementation-level events (ILEs) like “process 
D006 opened file ‘C:\Program Files\log.txt’ for write” or 
“process E001 used 2021.” 

• Gauges provide interpretations of these events by first 
determining what logical architectural entities are being 
referred to – here, perhaps “Radar Tracker” (D006) and 
“Radar Analysis” (E001), for example.  This mapping from 
implementation terms (process ids) to logical architectural 
components must be established in the architectural model by 
the processes that originally set up the system and probes.  
The gauges additionally interpret implicit information from 
the probes; for example, perhaps 2021 means 2021 
microseconds.  

• The gauges are then "read" by the control layer to see if any 
action should be taken.  For example, assume that the ILE for 
E001 is interpreted as "Radar Analysis took 2021 
microseconds to process the last scan."  Furthermore, assume 
that the analysis module is a function of the parameter, 
ScanGrain. The decision logic may then determine that the 
ScanGrain for Radar Analysis should be coarsened to 5 
degrees / scan. 

• The control layer will then use one of its architectural models 
to determine that process E001 needs to be adapted - i.e., the 
inverse translation from before, here from logical 
architecture to physical architecture - and determine what 
process variable of E001 corresponds to ScanGrain and 
needs to be reset to reflect the 5 degrees / scan modification. 
It will select or construct a workflow to be conducted by the 
effector layer. 

Notice that nothing about the architecture itself changed during 
this scenario; no modules or connections were created or 
destroyed. Moreover, the repair was effected by a simple 
parameter change to a running module; no new resources were 
brought to bear. 

Dynamic Architecture Scenario 
A more dynamic scenario involving the same kinds of activities 
might look like: 

• Probes and gauges are placed via the control layer. 



• Probes emit architecturally significant implementation-level 
events (ASILEs), such as “process D006 spawned new 
process E001 of type RAN” and “process E001 requested 
socket 239.” 

• Gauges interpret ASILEs and modify the corresponding 
physical and logical architectural models.  Here, perhaps, 
because E001 was of type RAN the system knows to identify 
the E001 process with a (previously unidentified) logical 
process, “Radar Analysis.”  Similarly, the socket may 
correspond with the Analysis Report socket.  We call this 
process identification of physical models with pre-defined, 
logical architecture models.   

• Imagine that some time later the same ILE as above, 
“process E001 used 2021,” is transmitted by the probes and 
reported by the gauges. The control layer at this point may 
want to change the system’s running architecture by issuing 
to the effector layer a workflow intended to carry out 
reconfiguration. This time perhaps the adaptation would be 
to “replace Radar Analysis type RAN with RAAN” (another 
radar analyzer type, perhaps with a coarser scan rate). 

• Now suppose that the component replacement is executed 
successfully, but a failure of a different component, the 
Moving Map Display (MMD), is noted. 

• On replacement of the MMD, the Radar Analysis component 
is again observed to fail.  On restart, the MMD again fails. 

• A higher-level dynamic analysis component notices the 
oscillating sequence of events, and forces a reconfiguration, 
instantiating the MMD on a different computational node.  
Now both services execute successfully, and the event log 
can be used for later off-line analysis of the causes of the 
problem. 

So there are two separable dynamic architecture activities here: 
modeling the dynamic architecture as it evolves and reconfiguring 
the architecture via the control layer.  System scenarios could 
easily require the former without being able to use facilities to do 
the latter (but not vice versa). 

7. Conclusions and Future Work 
The proliferation of component-based software engineering has 
forced us to rethink many of our system maintenance and 
optimization techniques. It has become harder to tweak the 
performance of our systems especially when a lot of the 
components were designed and developed by different sources, 
including COTS, open source and legacy. We have proposed a 
mechanism for dynamically monitoring and reconfiguring a 
system-of-systems built out of a heterogeneous mix of 
components.  Our orthogonal solution makes no restrictions on the 
system design, hereby freeing us from having to insert 
application-specific adaptive mechanisms into the code, which 
would not be reusable elsewhere anyway. Furthermore, it provides 
the advantage of having a running system continually self-
evaluate its performance and fine tune its operations 
automatically. 

We have had considerable success in being able to, both manually 
and automatically, instrument the source code of components and 
observe the implementation-level events that were emitted by our 
probing technologies. We also incrementally construct an 

evolving model of the system’s execution based on the stream of 
event data. Our work in the immediate future will focus on better 
decision-making logic in the feedback and reconfiguration layer 
based on more comprehensive architectural models of the system. 
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