
An Approach to Autonomizing Legacy Systems

Gail Kaiser, Phil Gross, Gaurav Kc, Janak Parekh, Giuseppe Valetto
Columbia University, Programming Systems Lab

Department of Computer Science
500 West 120th Street
New York, NY 10027

{ kaiser, phil, gskc, janak, valetto } @ cs.columbia.edu

Abstract
Adding adaptation capabilities to existing distributed systems is a
major concern. The question addressed here is how to retrofit
existing systems with self-healing, adaptation and/or self-
management capabilities. The problem is obviously intensified for
“systems of systems” composed of components, whether new or
legacy, that may have been developed by different vendors,
mixing and matching COTS and “open source” components. This
system composition model is expected to be increasingly common
in high performance computing. The usual approach is to train
technicians to understand the complexities of these components
and their connections, including performance tuning parameters,
so that they can then manually monitor and reconfigure the system
as needed. We envision instead attaching a “standard” feedback-
loop infrastructure to existing distributed systems for the purposes
of continual monitoring and dynamically adapting their activities
and performance. (This approach can also be applied to “new”
systems, as an alternative to “building in” adaptation facilities, but
we do not address that here.) Our proposed infrastructure consists
of multiple layers with the objectives of probing, measuring and
reporting of activity and state within the execution of the legacy
system among its components and connectors; gauging, analysis
and interpretation of the reported events; and possible feedback to
focus the probes and gauges to drill deeper, or – when necessary -
direct but automatic reconfiguration of the running system.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification -
model checking, reliability, validation

General Terms
Measurement, Performance, Reliability, Standardization,
Verification

Keywords
Runtime monitoring, dynamic adaptation, self-healing framework,
autonomic system, externalized reconfiguration

1. Introduction
By its very nature, maintenance is the longest and most difficult
phase of the software process lifecycle, for nearly any application
domain. Furthermore, regardless of the amount of effort put into
the development stages and pre-deployment and testing, a high
performance computing application must be able to adapt to
changing environmental contexts regarding, e.g., contention for
resources. Adaptation of on-line, running applications is even
more complex than conventional off-line maintenance.
Hardwiring the adaptation mechanisms into the application code
is the most common approach for “new” systems, but hard to
modify post-deployment and tending to result in one-of solutions
with relatively little to share or amortize the cost across
applications and domains. Also, retrofitting adaptation facilities
directly into legacy systems or those composed of third-party
components may be impractical when one has limited control over
or understanding of the design and implementation of the system
components. As a result, many of the methodologies and
technologies being developed for building new adaptive systems
do not fit well for those built out of legacy components.

Following IBM’s “autonomic computing” terminology [1][10],
we are investigating an approach to “autonomizing” legacy
systems and assembling “autonomic” systems-of-systems from
components. Seeing that directly inserting adaptation mechanisms
into existing application code is difficult, error-prone and costly,
besides being hard to reuse or reason about, we have sought to
enable adaptation properties through a solution orthogonal to the
legacy systems’ main business logic and communication
framework. We are now developing an infrastructure for
instrumenting running systems with probes, and passing the data
gathered by that instrumentation to gauges, where it can be
collected, collated, filtered and aggregated into system level
measurements of the system’s operation. These measurements
form the basis by which analyses are made of the system’s
execution, in terms of available models, which then leads to the
feedback phase where runtime modifications to the system are
(automatically) carried out. This approach to continual dynamic
monitoring and reconfiguration of deployed systems is intended to
help automate most system management functions with little or no
human intervention, whereby the adaptation of the running system
can be carried out dynamically without incurring any system
downtime.

We propose a common external infrastructure that can be widely
applied as a technology for instrumenting, measuring, and
dynamically controlling software systems through adaptation and
reconfiguration. Our infrastructure becomes an integral part of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161437182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the system-of-systems’ “self,” co-existing and cooperating with
the systems’ native functional mechanisms (as well as any
special-purpose adaptation facilities, e.g., for fault tolerance or
transaction recovery, built into individual components). At this
point in our research, we have the capability to instrument a wide
variety of existing systems to perform measurements and convey
this runtime information to the monitoring layer. This monitoring
layer can then evaluate the performance of the system based on
this data according to a wide variety of metric, protocol and
architectural, etc. models. We are currently progressing from the
few initial special cases towards the generic third and final layer
of the infrastructure – the “Decision” layer, and its control of the
effectors that carry out its self-healing and self-management
decisions.

2. Our Approach
It is generally agreed that a running system’s robustness can be
improved by dynamic analysis of model-based measurements to
determine appropriate modifications and adaptations. However,
rather than mixing measurement and analysis code with problem-
specific code, or even with separate monitoring code but peculiar
to the target system and/or its underlying framework, we have
chosen to develop common (or “standard”) externalized
reconfiguration as well as monitoring mechanisms, where the
adaptation feedback loop is handled outside of the application.
Thus we split the reusable mechanism from the system-specific
policies. This is particularly significant, because coordination of
multiple independently-developed internal adaptation mechanisms
is quite difficult or even impossible without some sort of “global”
supervisor.

Figure 1 shows our three-tiered infrastructure: Initially, data is
collected from the running system. It is instrumented with non-
invasive probes that report raw data to the higher levels via the
Probe Bus. The data is then interpreted via a set of gauges that
map the probe data into various models of the system. The gauges
then report their findings to the Gauge Bus. Then the decision and
control layer can analyze the implications of the interpreted data
on overall system performance and make decisions on whether to:
(1) introduce new gauges in the interpretation layer to analyze
further, or disable some as superfluous; (2) deploy new probes to

provide more detailed information to remaining gauges, or turn
some off to reduce “noise”; and/or (3) reconfigure the system
itself, perhaps changing the running system’s structure by
introducing new modules or modifying system or component
parameters. The system reconfiguration would be carried out via
deployment/activation of software effectors to reconfigure or
adapt individual components and/or major substructures of the
system. In our approach, these effectors make the actual changes
under the control of a decentralized workflow system, which
handles coordination of the effectors and contingencies.

We emphasize that the infrastructure is largely independent of the
running system. However, this is not to say that the specific
probes, gauges, controllers, effectors and models are themselves
independent of the running system – they are not. The probes and
effectors must often be specialized to the implementation
technology; the gauges and decision mechanisms must be
specialized to the problem domain and environmental context.
However, reuse of common infrastructure facilities should be
commonplace, such as probes and gauges geared towards
performance, architecture dynamism, system robustness, etc.

Our current implementation of this externalized infrastructure is
called Kinesthetics eXtreme, or KX (pronounced “kicks”). KX
can be downloaded from [6]. KX is being applied experimentally
for load balancing and server replacement for Telecom Italia’s
heterogeneous instant messaging system [16], and for more
complex contingencies in a geographically-based “open
information” (e.g., CNN, BBC) analysis system developed at
Information Sciences Institute [14] and in use at the US Pacific
Command (PACOM). We are restricted from discussing either
application in too much detail, so we will discuss our approach
more generically.

3. Monitoring
Probing of a running system is a necessary prerequisite for
monitoring the execution of the system. We need a minimally
invasive approach that can be guaranteed to have zero or
negligible effect on the performance of the system, while still
offering nearly the equivalence of remote debugging abilities. A
probe here is an individual sensor attached to, or associated with
(as a monitor of), a running program – or a component or
connector of a running program. A probe can sense some portion
of the program's, or its environment's, execution and make that
data available by issuing events. One focus of the DASADA
program [13], under which this research is being conducted, has
been to develop a “standard” API for controlling and reading (and
adding and removing) probes.

Most of our own work has focused on interoperable infrastructure,
rather than the probe technology itself. We use a variety of
probes developed by other researchers as well as ourselves, and
can “drop in” any probe technology meeting the DASADA
standard API [3]. Experience both within and outside DASADA
has shown that it is easy to adapt or wrap a variety of probe
technologies to be compliant with this API. Basically, the
standard defines how probes may be deployed (probe code
situated at a host for subsequent attachment to specific systems at
that site), installed (attached to a specific target), and activated
(turned on).

Interpretation

Collection

Configuration

Probes

Gauges

Controllers

Decision

Effectors

Legacy System(s)

Gauge Bus

Figure 1. Common Infrastructure

Probe Bus

Probes generally fall into one of two categories, either passive or
active. In the former, we rely on activity within the system to
trigger any probe processing. This method is well-suited for
situations where much of the information about the performance
of the system can be gleaned from the actual goings-on in the
system itself, e.g., to keep track of the number of times a certain
service was invoked during the execution, possibly tracking its
parameters and cause-effect correlating with invocations of other
services. For example, passive probing using the Active Interfaces
Development Environment tool [8][9] inserts callback probes into
Java source code as part of the instrumentation phase. We have
also experimented with ProbeMeister [12], which inserts probes
into Java byte code, and are in the process of integrating
“instrumented connectors” [2] which replace Win32 DLLs. There
are numerous other alternatives.

Active probing, on the other hand, is a potentially more
sophisticated mechanism that permits us to perform (resource-
limited) computation within the system’s context when making
our measurements on the system’s activity and state. We have
developed an active probing technology based on our “Worklets”
mobile agent platform [7][11][15], which means that we only
need the lightweight Worklet Virtual Machine to be pre-installed
within the target system (using any of the above source, or
bytecode or DLL instrumentation technologies - or others). We
can then dynamically attach and remove what we call “Probelets”,
mobile agent-based probes, as our monitoring needs dictate.

Legacy System

Probe

Probelet

Probes

Event
Packager

Event
Distiller

Data

SmartEvents

Gauges

Figure 2 KX Probes and Gauges

We have proposed an XML Schema [5] as a “standard” format for
structuring probe output data. Our intent is to unify the disparate
ways in which the varied probe implementations describe
observed events. This “Smart Event” Schema includes points for
extending with generic application models so that (e.g.) arbitrary

gauge technologies can use this information to determine what
probes to select according to relevant models. This enables that
probe descriptions do not need to be customized for a given
application or its specific models. In general, Smart Events are
composed from standard “blocks” of information. The initial
probe might emit simple Smart Events containing a raw data
block, but later processing and analysis stages augment this with
additional or higher-level information blocks.

Some gauges' activities will be so time-consuming that they can
only be used in an offline analysis mode. Such gauges will want
to consume events using “event logs”. Rather than forcing each
such offline gauge to create its own logging facility, a generic
persistent event store and “replay” facility has been implemented.

4. Dynamic Analysis
Gauges are software entities that gather, filter, aggregate,
compute, and/or analyze measurement information about software
systems. In particular, they interpret probe data against various
models, to produce higher-level outputs: gauges can emit events
just as can probes. These events are typically at a higher level of
abstraction, but the “Smart Event” XML Schema has been defined
to support both levels. As with probes, a major concern of the
DASADA project has been developing standards for gauges to
allow interoperability.

Our own gauges work within a framework called XML-based
Universal Event Service (XUES) [7], with two major components
named the Event Packager and the Event Distiller, shown in
Figure 2. The Event Packager can transform the raw-data format
of legacy probe output into Smart Event compatible event
streams. It also packages and logs these events for possible
replaying. The Event Distiller can recognize complex temporal
event patterns from multiple probe sources, and it constructs
higher-level measurements to reflect the system state represented
by the events. It also produces events to interface with the
decision layer and gauge visualizers. The Event Distiller is
“programmed” by providing a collection of condition/action rules,
where the condition specifies the event pattern and the action
specifies what to do when that pattern is recognized – typically
generation of a higher-level event.

The diverse need for system monitoring and adaptation has
resulted in the definition of a wide variety of gauges based on the
associated models, the types of values they are expected to report,
etc. In order to have a uniform way of interacting with these
gauges, we expect them to asynchronously report information on
the gauge bus. Gauge consumers can then register an interest in
particular types of gauge events. A gauge consumer may also
reconfigure a gauge (e.g., to change its reporting frequency). The
consumers are automatically notified if a gauge asynchronously
reports a value, or if a gauge has been reconfigured or deleted by
some other consumer.

5. Feedback Control Loop to Reconfiguration
We see the control problem as follows: gauge outputs are in turn
input to a decision process that determines what course of action
to take, if any. The decision process can be supported by a variety
of tools, including, for example, an architecture transformation
tool that reacts to gauges that detect differences in the running
architecture from what is nominal. Executing the high-level repair
action, e.g., to reconfigure the architecture, will normally involve

several activities at the effector level. Some of these activities
may fail, so one needs to be able to express the control process as
a workflow rich enough to express contingency plans for
alternative actions.

We use our Workflakes decentralized workflow system [16] to
carry out the actual local adaptations and more global
reconfigurations in the running system, as is illustrated in Figure
3. We do not yet employ workflow notation to describe the
activities, the workflow is currently coded by hand (in Java).
However, we are experimenting with the Little-JIL workflow
formalism [4] for specifying the reconfiguration actions, and are
also investigating several other workflow notations. The chosen
process specification language must support the description of the
actions to be applied to repair a system, including at which
location(s) they should be applied. The language needs to specify
both sequential and parallel execution of actions, and how to deal
with unsuccessful actions, e.g., by retrying, attempting alternate
actions, or rolling back changes.

Legacy System

Probe

Probelet

Probes

Event
Packager

Event
Distiller

Data

SmartEvents

Gauges

Workflakes
Control Worklet

Effector

Effectors

SmartEvents

Figure 3 KX Feedback Loop

Workflakes coordinates the actual reconfigurations by invoking
low-level effectors attached to the target system. As with probes,
effectors could be realized with various technologies. We
currently use our Worklets mobile agents as the effectors,
analogous to our “Probelets” above. Workflakes conducts a
reconfiguration workflow by selecting, instantiating and
dispatching Worklets, and coordinating the activities of the
deployed Worklets on the target system’s components and
connectors.

More generally, effector management primarily involves the
installation and removal of such low-level modules that cause
adaptations and reconfiguration to occur. The control layer might
also invoke the management actions of the probe and gauge layers
on occasion, for example, to produce refined measurements before
proceeding. Effector actions range over a spectrum from simple
adaptations – relatively low-level adjustments to a well-defined
target system API, e.g., changing a process variable or calling a
method – to potentially complex reconfiguration commands that
cause structurally significant changes, possibly involving high-
level adjustments at the system/environmental level. The latter
may involve, e.g., starting, migrating, restarting, or stopping one
or more processes, and/or rearranging the connections among
components.

Our current feedback loop is relatively ad hoc, depending on
manually constructed gauge rules that may trigger canned
workflows to perform reconfigurations. The next step is to base
reconfiguration decisions on more sophisticated architectural
models. Architectural models for a given target system could be
created a priori, or generated based on analysis of probed event
traffic. We would then be able to build gauges that recognize
structural changes based on these models. A variety of
mechanisms could be in the analysis, including expert systems
and constraint solvers, as well as hard-coded repair rules.

6. Examples

Static Architecture Scenario
A somewhat simplified, but common, scenario that an externally
autonomized system will undergo might go as follows:

• Probes and gauges are placed via the control layer.

• Probes emit implementation-level events (ILEs) like “process
D006 opened file ‘C:\Program Files\log.txt’ for write” or
“process E001 used 2021.”

• Gauges provide interpretations of these events by first
determining what logical architectural entities are being
referred to – here, perhaps “Radar Tracker” (D006) and
“Radar Analysis” (E001), for example. This mapping from
implementation terms (process ids) to logical architectural
components must be established in the architectural model by
the processes that originally set up the system and probes.
The gauges additionally interpret implicit information from
the probes; for example, perhaps 2021 means 2021
microseconds.

• The gauges are then "read" by the control layer to see if any
action should be taken. For example, assume that the ILE for
E001 is interpreted as "Radar Analysis took 2021
microseconds to process the last scan." Furthermore, assume
that the analysis module is a function of the parameter,
ScanGrain. The decision logic may then determine that the
ScanGrain for Radar Analysis should be coarsened to 5
degrees / scan.

• The control layer will then use one of its architectural models
to determine that process E001 needs to be adapted - i.e., the
inverse translation from before, here from logical
architecture to physical architecture - and determine what
process variable of E001 corresponds to ScanGrain and
needs to be reset to reflect the 5 degrees / scan modification.
It will select or construct a workflow to be conducted by the
effector layer.

Notice that nothing about the architecture itself changed during
this scenario; no modules or connections were created or
destroyed. Moreover, the repair was effected by a simple
parameter change to a running module; no new resources were
brought to bear.

Dynamic Architecture Scenario
A more dynamic scenario involving the same kinds of activities
might look like:

• Probes and gauges are placed via the control layer.

• Probes emit architecturally significant implementation-level
events (ASILEs), such as “process D006 spawned new
process E001 of type RAN” and “process E001 requested
socket 239.”

• Gauges interpret ASILEs and modify the corresponding
physical and logical architectural models. Here, perhaps,
because E001 was of type RAN the system knows to identify
the E001 process with a (previously unidentified) logical
process, “Radar Analysis.” Similarly, the socket may
correspond with the Analysis Report socket. We call this
process identification of physical models with pre-defined,
logical architecture models.

• Imagine that some time later the same ILE as above,
“process E001 used 2021,” is transmitted by the probes and
reported by the gauges. The control layer at this point may
want to change the system’s running architecture by issuing
to the effector layer a workflow intended to carry out
reconfiguration. This time perhaps the adaptation would be
to “replace Radar Analysis type RAN with RAAN” (another
radar analyzer type, perhaps with a coarser scan rate).

• Now suppose that the component replacement is executed
successfully, but a failure of a different component, the
Moving Map Display (MMD), is noted.

• On replacement of the MMD, the Radar Analysis component
is again observed to fail. On restart, the MMD again fails.

• A higher-level dynamic analysis component notices the
oscillating sequence of events, and forces a reconfiguration,
instantiating the MMD on a different computational node.
Now both services execute successfully, and the event log
can be used for later off-line analysis of the causes of the
problem.

So there are two separable dynamic architecture activities here:
modeling the dynamic architecture as it evolves and reconfiguring
the architecture via the control layer. System scenarios could
easily require the former without being able to use facilities to do
the latter (but not vice versa).

7. Conclusions and Future Work
The proliferation of component-based software engineering has
forced us to rethink many of our system maintenance and
optimization techniques. It has become harder to tweak the
performance of our systems especially when a lot of the
components were designed and developed by different sources,
including COTS, open source and legacy. We have proposed a
mechanism for dynamically monitoring and reconfiguring a
system-of-systems built out of a heterogeneous mix of
components. Our orthogonal solution makes no restrictions on the
system design, hereby freeing us from having to insert
application-specific adaptive mechanisms into the code, which
would not be reusable elsewhere anyway. Furthermore, it provides
the advantage of having a running system continually self-
evaluate its performance and fine tune its operations
automatically.

We have had considerable success in being able to, both manually
and automatically, instrument the source code of components and
observe the implementation-level events that were emitted by our
probing technologies. We also incrementally construct an

evolving model of the system’s execution based on the stream of
event data. Our work in the immediate future will focus on better
decision-making logic in the feedback and reconfiguration layer
based on more comprehensive architectural models of the system.

8. Acknowledgements
Giuseppe Valetto (Giuseppe.Valetto@tilab.com) is also affiliated
with the Telecom Italia Lab, Via Reiss Romoli 274, 10148, Turin,
Italy.

This work is being undertaken in collaboration with Bob Balzer
and Dave Wile, Teknowledge; Nathan Combs, BBN; David
Garlan and Bradley Schmerl, CMU; George Heineman, WPI;
David Wells, OBJS; and Lee Osterweil, UMass. We would also
like to thank the other members of the Programming Systems Lab.
The Programming Systems Lab is funded in part by Defense
Advanced Research Project Agency under DARPA Order K503
monitored by Air Force Research Laboratory F30602-00-2-0611,
by National Science Foundation CCR-9970790 and EIA-0071954,
by Microsoft Research, and by NEC Computers, Inc.

9. References
[1] An Almaden Institute Symposium: Autonomic Computing

http://www.almaden.ibm.com/institute/2002/

[2] Balzer, R.M., and Goldman, N.M., Mediating Connectors, in
ICDCS Workshop on Electronic Commerce and Web-Based
Applications, June 1999.

[3] Balzer, B., Probe Run-Time Infrastructure, December 2001.
http://www.schafercorp-
ballston.com/dasada/2001WinterPI/ProbeRun-
TimeInfrastructureDesign.ppt

[4] Cass, A.G., Staudt Lerner, B., McCall, E.K., Osterweil, L. J.,
Sutton, Jr., S.M., and Wise, A., Little-JIL/Juliette: A Process
Definition Language and Interpreter, in 22nd International
Conference on Software Engineering, June 2000.
ftp://ftp.cs.umass.edu/pub/techrept/techreport/2000/UM-CS-
2000-066.ps.

[5] Columbia University Programming Systems Lab, DASADA
Probe Event Schema, January 2002.
http://www.psl.cs.columbia.edu/kx/smartevent-schema.html

[6] Columbia University Programming Systems Lab, Download
PSL Software. http://www.psl.cs.columbia.edu/software.html

[7] Gross, P.N., Gupta, S., Kaiser, G.E., Kc, G.S., and Parekh,
J.J., An Active Events Model for Systems Monitoring, in
Working Conference on Complex and Dynamic Systems
Architecture, December 2001.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-011-01.pdf.

[8] Heineman, G.T., A Model for Designing Adaptable Software
Components, in 22nd International Computer Science and
Application Conference, August 1998.
http://www.cs.wpi.edu/~heineman/PDF/WPI-CS-TR-97-
6.pdf.

[9] Heineman, G.T., Adaptation and Software Architecture, in
3rd International Workshop on Software Architecture,
November 1998. ftp://ftp.cs.wpi.edu/pub/techreports/pdf/98-
13.pdf.

[10] IBM Research, Autonomic Computing.
http://www.research.ibm.com/autonomic/

[11] Kaiser, G., Stone, A., and Dossick, S., A Mobile Agent
Approach to Lightweight Process Workflow, in International
Process Technology Workshop, September 1999.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-021-99.pdf.

[12] Object Services & Consulting, Inc., ProbeMeister 2002.
http://www.objs.com/DASADA/ProbeMeister.htm

[13] Salasin, J., Dynamic Assembly for System Adaptability,
Dependability, and Assurance (DASADA).
http://www.darpa.mil/ipto/research/dasada/

[14] University of Southern California Information Sciences
Institute, GeoWorlds Project. http://www.isi.edu/geoworlds/

[15] Valetto, G., Kaiser, G., and Kc, G.S., A Mobile Agent
Approach to Process-based Dynamic Adaptation of Complex
Software Systems, in 8th European Workshop on Software
Process Technology, June 2001.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-001-01.pdf.

[16] Valetto, G., and Kaiser, G., Combining Mobile Agents and
Process-based Coordination to Achieve Software Adaptation,
Columbia University Department of Computer Science,
CUCS-007-02, March 2002.
http://www.psl.cs.columbia.edu/ftp/psl/CUCS-007-02.pdf.

