16,500 research outputs found

    Generalizing the advancing front method to composite surfaces in the context of meshing constraints topology

    Get PDF
    International audienceBeing able to automatically mesh composite geometry is an important issue in the context of CAD-FEA integration. In some specific contexts of this integration, such as using virtual topology or meshing constraints topology (MCT), it is even a key requirement. In this paper, we present a new approach to automatic mesh generation over composite geometry. The proposed mesh generation approach is based on a generalization of the advancing front method (AFM) over curved surfaces. The adaptation of the AFM to composite faces (composed of multiple boundary representation (B-Rep) faces) involves the computation of complex paths along these B-Rep faces, on which progression of the advancing front is based. Each mesh segment or mesh triangle generated through this progression on composite geometry is likely to lie on multiple B-Rep faces and consequently, it is likely to be associated with a composite definition across multiple parametric spaces. Collision tests between new front segments and existing mesh elements also require specific and significant adaptations of the AFM, since a given front segment is also likely to lie on multiple B-Rep faces. This new mesh generation approach is presented in the context of MCT, which requires being able to handle composite geometry along with non-manifold boundary configurations, such as edges and vertices lying in the interior domain of B-Rep faces

    A comparison of coaxial and conventional rotor performance

    Get PDF
    The performance of a coaxial rotor in hover, in steady forward flight, and in level, coordinated turns is contrasted with that of an equivalent, conventional rotor with the same overall solidity, number of blades, and blade aerodynamic properties. Brown's vorticity transport model is used to calculate the profile, induced, and parasite contributions to the overall power consumed by the two systems, and the highly resolved representation of the rotor wake that is produced by the model is used to relate the observed differences in the performance of the two systems to the structures of their respective wakes. In all flight conditions, all else being equal, the coaxial system requires less induced power than the conventional system. In hover, the conventional rotor consumes increasingly more induced power than the coaxial rotor as thrust is increased. In forward flight, the relative advantage of the coaxial configuration is particularly evident at pretransitional advance ratios. In turning flight, the benefits of the coaxial rotor are seen at all load factors. The beneficial properties of the coaxial rotor in forward flight and maneuver, as far as induced power is concerned, are a subtle effect of rotor-wake interaction and result principally from differences between the two types of rotor in the character and strength of the localized interaction between the developing supervortices and the highly loaded blade-tips at the lateral extremities of the rotor. In hover, the increased axial convection rate of the tip vortices appears to result in a favorable redistribution of the loading slightly inboard of the tip of the upper rotor of the coaxial system

    Uncertainty in the manufacturing of fibrous thermosetting composites: A review

    Get PDF
    Composites manufacturing involves many sources of uncertainty associated with material properties variation and boundary conditions variability. In this study, experimental and numerical results concerning the statistical characterization and the influence of inputs variability on the main steps of composites manufacturing including process-induced defects are presented and analysed. Each of the steps of composite manufacturing introduces variability to the subsequent processes, creating strong interdependencies between the process parameters and properties of the final part. The development and implementation of stochastic simulation tools is imperative to quantify process output variabilities and develop optimal process designs in composites manufacturing

    A simulation method for fatigue-driven delamination in layered structures involving non-negligible fracture process zones and arbitrarily shaped crack fronts

    Full text link
    Most of the existing methods for fatigue-driven delamination are limited to two-dimensional (2D) applications or their predictive capabilities have not been validated in three-dimensional (3D) problems. This work presents a new cohesive zone-based computational method for simulating fatigue-driven delamination in the analysis of 3D structures without crack migration. The method accurately predicts fatigue propagation of non-nelgigible fracture process zones with arbitrarily shaped delamination fronts. The model does not require any kind of fitting parameter since all the input parameters are obtained experimentally from coupon tests. The evaluation of the energy release rate is done using two new techniques recently developed by the authors (the growth driving direction and the mode-decomposed J-integral) leading to an accurate prediction of delamination propagation under mixed-mode and non-self-similar growing conditions. The new method has been implemented as a UEL for Abaqus and validated against an experimental benchmark case with varying crack growth rate and shape and extension of the fracture process zone.Comment: 37 pages, 14 figures, 7 table

    A computational framework for the morpho-elastic development of molluskan shells by surface and volume growth

    Full text link
    Mollusk shells are an ideal model system for understanding the morpho-elastic basis of morphological evolution of invertebrates' exoskeletons. During the formation of the shell, the mantle tissue secretes proteins and minerals that calcify to form a new incremental layer of the exoskeleton. Most of the existing literature on the morphology of mollusks is descriptive. The mathematical understanding of the underlying coupling between pre-existing shell morphology, de novo surface deposition and morpho-elastic volume growth is at a nascent stage, primarily limited to reduced geometric representations. Here, we propose a general, three-dimensional computational framework coupling pre-existing morphology, incremental surface growth by accretion, and morpho-elastic volume growth. We exercise this framework by applying it to explain the stepwise morphogenesis of seashells during growth: new material surfaces are laid down by accretive growth on the mantle whose form is determined by its morpho-elastic growth. Calcification of the newest surfaces extends the shell as well as creates a new scaffold that constrains the next growth step. We study the effects of surface and volumetric growth rates, and of previously deposited shell geometries on the resulting modes of mantle deformation, and therefore of the developing shell's morphology. Connections are made to a range of complex shells ornamentations.Comment: Main article is 20 pages long with 15 figures. Supplementary material is 4 pages long with 6 figures and 6 attached movies. To be published in PLOS Computational Biolog

    An insight into the science of unstructured meshes in computer numerical simulation

    Get PDF
    Computer numerical simulation is a beneficial tool for studying various domains of knowledge. Among the steps in the whole process of numerical simulation is the generation of unstructured meshes. Since the unstructured meshes are usually generated using automatic software, the fundamental knowledge of the unstructured meshes is often neglected. This paper highlighted some useful insights into the unstructured meshes in numerical simulation for several application domains, such as the radiative heat transfer problem, ocean modelling and biomedical engineering. It also reviewed some fundamental concepts and frameworks for element generation in producing unstructured meshes, particularly the Delaunay triangulation and advancing front techniques

    Unstructured and semi-structured hexahedral mesh generation methods

    Get PDF
    Discretization techniques such as the finite element method, the finite volume method or the discontinuous Galerkin method are the most used simulation techniques in ap- plied sciences and technology. These methods rely on a spatial discretization adapted to the geometry and to the prescribed distribution of element size. Several fast and robust algorithms have been developed to generate triangular and tetrahedral meshes. In these methods local connectivity modifications are a crucial step. Nevertheless, in hexahedral meshes the connectivity modifications propagate through the mesh. In this sense, hexahedral meshes are more constrained and therefore, more difficult to gener- ate. However, in many applications such as boundary layers in computational fluid dy- namics or composite material in structural analysis hexahedral meshes are preferred. In this work we present a survey of developed methods for generating structured and unstructured hexahedral meshes.Peer ReviewedPostprint (published version

    Vacuum Infusion Process Development for Conformal Ablative Thermal Protection System Materials

    Get PDF
    Conformal ablators are low density composite materials comprised of a flexible carbon felt based fibrous substrate and a high surface area phenolic matrix. These materials are fabricated to near net shape by molding the substrate, placing in a rigid matched mold and infusing with liquid resin through a vacuum assisted process. The open mold process, originally developed for older rigid substrate ablators, such as PICA, wastes a substantial amount of resin. In this work, a vacuum infusion process a type of liquid composite molding where resin is directly injected into a closed mold under vacuum is advanced for conformal ablators. The process reduces waste over the state-of-the-art technique. Small, flat samples of Conformal Phenolic Impregnated Carbon Ablator are infused using the new approach and subjected to a range of curing configurations and conditions. Resulting materials are inspected for quality and compared to material produced using the standard process. Lessons learned inform subsequent plans for process scale up

    Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific.

    Get PDF
    While modelling studies suggest that mesoscale eddies strengthen the subduction of mode waters, this eddy effect has never been observed in the field. Here we report results from a field campaign from March 2014 that captured the eddy effects on mode-water subduction south of the Kuroshio Extension east of Japan. The experiment deployed 17 Argo floats in an anticyclonic eddy (AC) with enhanced daily sampling. Analysis of over 3,000 hydrographic profiles following the AC reveals that potential vorticity and apparent oxygen utilization distributions are asymmetric outside the AC core, with enhanced subduction near the southeastern rim of the AC. There, the southward eddy flow advects newly ventilated mode water from the north into the main thermocline. Our results show that subduction by eddy lateral advection is comparable in magnitude to that by the mean flow--an effect that needs to be better represented in climate models
    corecore