6,347 research outputs found

    An extensible modular recognition concept that makes activity recognition practical

    Get PDF
    In mobile and ubiquitous computing, there is a strong need for supporting different users with different interests, needs, and demands. Activity recognition systems for context aware computing applications usually employ highly optimized off-line learning methods. In such systems, a new classifier can only be added if the whole recognition system is redesigned. For many applications that is not a practical approach. To be open for new users and applications, we propose an extensible recognition system with a modular structure.We will show that such an approach can produce almost the same accuracy compared to a system that has been generally trained (only 2 percentage points lower). Our modular classifier system allows the addition of new classifier modules. These modules use Recurrent Fuzzy Inference Systems (RFIS) as mapping functions, that not only deliver a classification, but also an uncertainty value describing the reliability of the classification. Based on the uncertainty value we are able to boost recognition rates. A genetic algorithm search enables the modular combination

    Developing a comprehensive framework for multimodal feature extraction

    Full text link
    Feature extraction is a critical component of many applied data science workflows. In recent years, rapid advances in artificial intelligence and machine learning have led to an explosion of feature extraction tools and services that allow data scientists to cheaply and effectively annotate their data along a vast array of dimensions---ranging from detecting faces in images to analyzing the sentiment expressed in coherent text. Unfortunately, the proliferation of powerful feature extraction services has been mirrored by a corresponding expansion in the number of distinct interfaces to feature extraction services. In a world where nearly every new service has its own API, documentation, and/or client library, data scientists who need to combine diverse features obtained from multiple sources are often forced to write and maintain ever more elaborate feature extraction pipelines. To address this challenge, we introduce a new open-source framework for comprehensive multimodal feature extraction. Pliers is an open-source Python package that supports standardized annotation of diverse data types (video, images, audio, and text), and is expressly with both ease-of-use and extensibility in mind. Users can apply a wide range of pre-existing feature extraction tools to their data in just a few lines of Python code, and can also easily add their own custom extractors by writing modular classes. A graph-based API enables rapid development of complex feature extraction pipelines that output results in a single, standardized format. We describe the package's architecture, detail its major advantages over previous feature extraction toolboxes, and use a sample application to a large functional MRI dataset to illustrate how pliers can significantly reduce the time and effort required to construct sophisticated feature extraction workflows while increasing code clarity and maintainability

    A framework for developing engineering design ontologies within the aerospace industry

    Get PDF
    This paper presents a framework for developing engineering design ontologies within the aerospace industry. The aim of this approach is to strengthen the modularity and reuse of engineering design ontologies to support knowledge management initiatives within the aerospace industry. Successful development and effective utilisation of engineering ontologies strongly depends on the method/framework used to develop them. Ensuring modularity in ontology design is essential for engineering design activities due to the complexity of knowledge that is required to be brought together to support the product design decision-making process. The proposed approach adopts best practices from previous ontology development methods, but focuses on encouraging modular architectural ontology design. The framework is comprised of three phases namely: (1) Ontology design and development; (2) Ontology validation and (3) Implementation of ontology structure. A qualitative research methodology is employed which is composed of four phases. The first phase defines the capture of knowledge required for the framework development, followed by the ontology framework development, iterative refinement of engineering ontologies and ontology validation through case studies and experts’ opinion. The ontology-based framework is applied in the combustor and casing aerospace engineering domain. The modular ontologies developed as a result of applying the framework and are used in a case study to restructure and improve the accessibility of information on a product design information-sharing platform. Additionally, domain experts within the aerospace industry validated the strengths, benefits and limitations of the framework. Due to the modular nature of the developed ontologies, they were also employed to support other project initiatives within the case study company such as role-based computing (RBC), IT modernisation activity and knowledge management implementation across the sponsoring organisation. The major benefit of this approach is in the reduction of man-hours required for maintaining engineering design ontologies. Furthermore, this approach strengthens reuse of ontology knowledge and encourages modularity in the design and development of engineering ontologies

    A realistic assessment of methods for extracting gene/protein interactions from free text

    Get PDF
    Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community

    Ontology-based context representation and reasoning for object tracking and scene interpretation in video

    Get PDF
    Computer vision research has been traditionally focused on the development of quantitative techniques to calculate the properties and relations of the entities appearing in a video sequence. Most object tracking methods are based on statistical methods, which often result inadequate to process complex scenarios. Recently, new techniques based on the exploitation of contextual information have been proposed to overcome the problems that these classical approaches do not solve. The present paper is a contribution in this direction: we propose a Computer Vision framework aimed at the construction of a symbolic model of the scene by integrating tracking data and contextual information. The scene model, represented with formal ontologies, supports the execution of reasoning procedures in order to: (i) obtain a high-level interpretation of the scenario; (ii) provide feedback to the low-level tracking procedure to improve its accuracy and performance. The paper describes the layered architecture of the framework and the structure of the knowledge model, which have been designed in compliance with the JDL model for Information Fusion. We also explain how deductive and abductive reasoning is performed within the model to accomplish scene interpretation and tracking improvement. To show the advantages of our approach, we develop an example of the use of the framework in a video-surveillance application.This work was supported in part by Projects CICYT TIN2008- 06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.Publicad

    Ontology-Based Framework for the Automatic Recognition of Activities of Daily Living Using Class Expression Learning Techniques

    Get PDF
    The miniaturization and price reduction of sensors have encouraged the proliferation of smart environments, in which multitudinous sensors detect and describe the activities carried out by inhabitants. In this context, the recognition of activities of daily living has represented one of the most developed research areas in recent years. Its objective is to determine what daily activity is developed by the inhabitants of a smart environment. In this field, many proposals have been presented in the literature, many of them being based on ad hoc ontologies to formalize logical rules, which hinders their reuse in other contexts. In this work, we propose the use of class expression learning (CEL), an ontology-based data mining technique, for the recognition of ADL. This technique is based on combining the entities in the ontology, trying to find the expressions that best describe those activities. As far as we know, it is the first time that this technique is applied to this problem. To evaluate the performance of CEL for the automatic recognition of activities, we have first developed a framework that is able to convert many of the available datasets to all the ontology models we have found in the literature for dealing with ADL. Two different CEL algorithms have been employed for the recognition of eighteen activities in two different datasets. Although all the available ontologies in the literature are focused on the description of the context of the activities, the results show that the sequence of the events produced by the sensors is more relevant for their automatic recognition, in general terms

    Project-based Learning Practices in Computer Science Education

    Get PDF
    The EPCoS project (Effective Projectwork in Computer Science) is working to map the range of project-based learning practices in UK higher education and to generate insights into what characterizes the contexts in which particular techniques are effective. In assembling a body of authentic examples, EPCoS aims to provide a resource that enables extrapolation and synthesis of new techniques. To allow educators and researchers to mine this material, EPCoS is systematizing it within a template-based catalogue, augmented with indexing and abstracting devices. Moreover, EPCoS is examining the process by which practices are transferred between institutional contexts, with a view to identifying effective models of the transfer process. Three key elements of transfer are the identification of appropriate practices, the selection of a practice for a purpose, and the integration of a chosen practice into the existing culture. Structured resources and process models are essential tools for supporting responsiveness in the current climate of continual change: the rapid development of computer technology is demanding new range and flexibility in project work, and EPCoS's mapping of project-based teaching allows practitioners to respond to these changes. This is one context in which educational research into how projects work can generalize to professional practice
    corecore