1,798 research outputs found

    Cluster-Based Load Balancing Algorithms for Grids

    Full text link
    E-science applications may require huge amounts of data and high processing power where grid infrastructures are very suitable for meeting these requirements. The load distribution in a grid may vary leading to the bottlenecks and overloaded sites. We describe a hierarchical dynamic load balancing protocol for Grids. The Grid consists of clusters and each cluster is represented by a coordinator. Each coordinator first attempts to balance the load in its cluster and if this fails, communicates with the other coordinators to perform transfer or reception of load. This process is repeated periodically. We analyze the correctness, performance and scalability of the proposed protocol and show from the simulation results that our algorithm balances the load by decreasing the number of high loaded nodes in a grid environment.Comment: 17 pages, 11 figures; International Journal of Computer Networks, volume3, number 5, 201

    Compact extensible authentication protocol for the internet of things : enabling scalable and efficient security commissioning

    Get PDF
    Internet of Things security is one of the most challenging parts of the domain. Combining strong cryptography and lifelong security with highly constrained devices under conditions of limited energy consumption and no maintenance time is extremely difficult task. This paper presents an approach that combines authentication and bootstrapping protocol (TEPANOM) with Extensible Authentication Protocol (EAP) framework optimized for the IEEE 802.15.4 networks. The solution achieves significant reduction of network resource usage. Additionally, by application of EAP header compacting approach, further network usage savings have been reached. The EAP-TEPANOM solution has achieved substantial reduction of 42% in the number of transferred packets and 35% reduction of the transferred data. By application of EAP header compaction, it has been possible to achieve up to 80% smaller EAP header. That comprises further reduction of transferred data for 3.84% for the EAP-TEPANOM method and 10% for the EAP-TLS-ECDSA based methods. The results have placed the EAP-TEPANOM method as one of the most lightweight EAP methods from ones that have been tested throughout this research, making it feasible for large scale deployments scenarios of IoT

    Defining the Behavior of IoT Devices through the MUD Standard: Review, Challenges, and Research Directions

    Get PDF
    With the strong development of the Internet of Things (IoT), the definition of IoT devices' intended behavior is key for an effective detection of potential cybersecurity attacks and threats in an increasingly connected environment. In 2019, the Manufacturer Usage Description (MUD) was standardized within the IETF as a data model and architecture for defining, obtaining and deploying MUD files, which describe the network behavioral profiles of IoT devices. While it has attracted a strong interest from academia, industry, and Standards Developing Organizations (SDOs), MUD is not yet widely deployed in real-world scenarios. In this work, we analyze the current research landscape around this standard, and describe some of the main challenges to be considered in the coming years to foster its adoption and deployment. Based on the literature analysis and our own experience in this area, we further describe potential research directions exploiting the MUD standard to encourage the development of secure IoT-enabled scenarios

    Digital television applications

    Get PDF
    Studying development of interactive services for digital television is a leading edge area of work as there is minimal research or precedent to guide their design. Published research is limited and therefore this thesis aims at establishing a set of computing methods using Java and XML technology for future set-top box interactive services. The main issues include middleware architecture, a Java user interface for digital television, content representation and return channel communications. The middleware architecture used was made up of an Application Manager, Application Programming Interface (API), a Java Virtual Machine, etc., which were arranged in a layered model to ensure the interoperability. The application manager was designed to control the lifecycle of Xlets; manage set-top box resources and remote control keys and to adapt the graphical device environment. The architecture of both application manager and Xlet forms the basic framework for running multiple interactive services simultaneously in future set-top box designs. User interface development is more complex for this type of platform (when compared to that for a desktop computer) as many constraints are set on the look and feel (e.g., TV-like and limited buttons). Various aspects of Java user interfaces were studied and my research in this area focused on creating a remote control event model and lightweight drawing components using the Java Abstract Window Toolkit (AWT) and Java Media Framework (JMF) together with Extensible Markup Language (XML). Applications were designed aimed at studying the data structure and efficiency of the XML language to define interactive content. Content parsing was designed as a lightweight software module based around two parsers (i.e., SAX parsing and DOM parsing). The still content (i.e., text, images, and graphics) and dynamic content (i.e., hyperlinked text, animations, and forms) can then be modeled and processed efficiently. This thesis also studies interactivity methods using Java APIs via a return channel. Various communication models are also discussed that meet the interactivity requirements for different interactive services. They include URL, Socket, Datagram, and SOAP models which applications can choose to use in order to establish a connection with the service or broadcaster in order to transfer data. This thesis is presented in two parts: The first section gives a general summary of the research and acts as a complement to the second section, which contains a series of related publications.reviewe

    Security assessment of the smart grid : a review focusing on the NAN architecture

    Get PDF
    Abstract: This paper presents a comprehensive review on the security aspect of the smart grid communication network. The paper focus on the Neighborhood Area Network (NAN) cybersecurity and it laid emphasis on how the NAN architecture is such an attractive target to intruders and attackers. The paper aims at summarizing recent research efforts on some of the attacks and the various techniques employed in tackling them as they were discussed in recent literatures and research works. Furthermore, the paper presents a detailed review on the smart grid communication layers, wireless technology standards, networks and the security challenges the grid is currently facing. The work concludes by explaining current and future directions NAN communication security could consider in terms of data privacy measures. The data privacy measures are discussed in terms of prevention and detection techniques

    Bioinformatics Solutions for Image Data Processing

    Get PDF
    In recent years, the increasing use of medical devices has led to the generation of large amounts of data, including image data. Bioinformatics solutions provide an effective approach for image data processing in order to retrieve information of interest and to integrate several data sources for knowledge extraction; furthermore, images processing techniques support scientists and physicians in diagnosis and therapies. In addition, bioinformatics image analysis may be extended to support several scenarios, for instance, in cyber-security the biometric recognition systems are applied to unlock devices and restricted areas, as well as to access sensitive data. In medicine, computational platforms generate high amount of data from medical devices such as Computed Tomography (CT), and Magnetic Resonance Imaging (MRI); this chapter will survey on bioinformatics solutions and toolkits for medical imaging in order to suggest an overview of techniques and methods that can be applied for the imaging analysis in medicine

    NEUROSim: Naturally Extensible, Unique RISC Operation Simulator

    Get PDF
    The NEUROSim framework consists of a compiler, assembler, and cycle-accurate processor simulator to facilitate computer architecture research. This framework provides a core instruction set common to many applications and a simulated datapath capable of executing these instructions. However, the core contribution of NEUROSim is its exible and extensible design allowing for the addition of instructions and architecture changes which target aspecic application. The NEUROSim framework is presented through the analysis of many system design decisions including execution forwarding, control change detection, FPU configuration, loop unrolling, recursive functions, self modifying code, branch predictors, and cache architectures. To demonstrate its exible nature, the NEUROSim framework is applied to specific domains including a modulo instruction intended for use in encryption applications, a multiply accumulate instruction analyzed in the context of digital signal processing, Taylor series expansion and lookup table instructions applied to mathematical expression approximation, and an atomic compare and swap instruction used for sorting
    • …
    corecore