372,178 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Progressive surface modeling scheme from unorganised curves

    Get PDF
    This paper presents a novel surface modelling scheme to construct a freeform surface progressively from unorganised curves representing the boundary and interior characteristic curves. The approach can construct a base surface model from four ordinary or composite boundary curves and support incremental surface updating from interior characteristic curves, some of which may not be on the final surface. The base surface is first constructed as a regular Coons surface and upon receiving an interior curve sketch, it is then updated. With this progressive modelling scheme, a final surface with multiple sub-surfaces can be obtained from a set of unorganised curves and transferred to commercial surface modelling software for detailed modification. The approach has been tested with examples based on 3D motion sketches; it is capable of dealing with unorganised design curves for surface modelling in conceptual design. Its limitations have been discussed

    Design and Implementation of a Method Base Management System for a Situational CASE Environment

    Get PDF
    Situational method engineering focuses on configuration of system development methods (SDMs) tuned to the situation of a project at hand. Situational methods are assembled from parts of existing SDMs, so called method fragments, that are selected to match the project situation. The complex task of selecting appropriate method fragments and assembling them into a method requires effective automated support. The paper describes the architecture of a tool prototype offering such support. We present the structure of its central repository, a method base containing method fragments. The functions to store, select and assemble these method fragments are offered by a stratified method base management system tool component, which is described as wel

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    The Synonym management process in SAREL

    Get PDF
    The specification phase is one of the most important and least supported parts of the software development process. The SAREL system has been conceived as a knowledge-based tool to improve the specification phase. The purpose of SAREL (Assistance System for Writing Software Specifications in Natural Language) is to assist engineers in the creation of software specifications written in Natural Language (NL). These documents are divided into several parts. We can distinguish the Introduction and the Overall Description as parts that should be used in the Knowledge Base construction. The information contained in the Specific Requirements Section corresponds to the information represented in the Requirements Base. In order to obtain high-quality software requirements specification the writing norms that define the linguistic restrictions required and the software engineering constraints related to the quality factors have been taken into account. One of the controls performed is the lexical analysis that verifies the words belong to the application domain lexicon which consists of the Required and the Extended lexicon. In this sense a synonym management process is needed in order to get a quality software specification. The aim of this paper is to present the synonym management process performed during the Knowledge Base construction. Such process makes use of the Spanish Wordnet developed inside the Eurowordnet project. This process generates both the Required lexicon and the Extended lexicon that will be used during the Requirements Base construction.Postprint (published version

    Construct redundancy in process modelling grammars: Improving the explanatory power of ontological analysis

    Get PDF
    Conceptual modelling supports developers and users of information systems in areas of documentation, analysis or system redesign. The ongoing interest in the modelling of business processes has led to a variety of different grammars, raising the question of the quality of these grammars for modelling. An established way of evaluating the quality of a modelling grammar is by means of an ontological analysis, which can determine the extent to which grammars contain construct deficit, overload, excess or redundancy. While several studies have shown the relevance of most of these criteria, predictions about construct redundancy have yielded inconsistent results in the past, with some studies suggesting that redundancy may even be beneficial for modelling in practice. In this paper we seek to contribute to clarifying the concept of construct redundancy by introducing a revision to the ontological analysis method. Based on the concept of inheritance we propose an approach that distinguishes between specialized and distinct construct redundancy. We demonstrate the potential explanatory power of the revised method by reviewing and clarifying previous results found in the literature

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures
    • 

    corecore