6,620 research outputs found

    Tracking moving optima using Kalman-based predictions

    Get PDF
    The dynamic optimization problem concerns finding an optimum in a changing environment. In the field of evolutionary algorithms, this implies dealing with a timechanging fitness landscape. In this paper we compare different techniques for integrating motion information into an evolutionary algorithm, in the case it has to follow a time-changing optimum, under the assumption that the changes follow a nonrandom law. Such a law can be estimated in order to improve the optimum tracking capabilities of the algorithm. In particular, we will focus on first order dynamical laws to track moving objects. A vision-based tracking robotic application is used as testbed for experimental comparison

    Dynamic Estimation of Rigid Motion from Perspective Views via Recursive Identification of Exterior Differential Systems with Parameters on a Topological Manifold

    Get PDF
    We formulate the problem of estimating the motion of a rigid object viewed under perspective projection as the identification of a dynamic model in Exterior Differential form with parameters on a topological manifold. We first describe a general method for recursive identification of nonlinear implicit systems using prediction error criteria. The parameters are allowed to move slowly on some topological (not necessarily smooth) manifold. The basic recursion is solved in two different ways: one is based on a simple extension of the traditional Kalman Filter to nonlinear and implicit measurement constraints, the other may be regarded as a generalized "Gauss-Newton" iteration, akin to traditional Recursive Prediction Error Method techniques in linear identification. A derivation of the "Implicit Extended Kalman Filter" (IEKF) is reported in the appendix. The ID framework is then applied to solving the visual motion problem: it indeed is possible to characterize it in terms of identification of an Exterior Differential System with parameters living on a C0 topological manifold, called the "essential manifold". We consider two alternative estimation paradigms. The first is in the local coordinates of the essential manifold: we estimate the state of a nonlinear implicit model on a linear space. The second is obtained by a linear update on the (linear) embedding space followed by a projection onto the essential manifold. These schemes proved successful in performing the motion estimation task, as we show in experiments on real and noisy synthetic image sequences

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Probabilistic three-dimensional object tracking based on adaptive depth segmentation

    Get PDF
    Object tracking is one of the fundamental topics of computer vision with diverse applications. The arising challenges in tracking, i.e., cluttered scenes, occlusion, complex motion, and illumination variations have motivated utilization of depth information from 3D sensors. However, current 3D trackers are not applicable to unconstrained environments without a priori knowledge. As an important object detection module in tracking, segmentation subdivides an image into its constituent regions. Nevertheless, the existing range segmentation methods in literature are difficult to implement in real-time due to their slow performance. In this thesis, a 3D object tracking method based on adaptive depth segmentation and particle filtering is presented. In this approach, the segmentation method as the bottom-up process is combined with the particle filter as the top-down process to achieve efficient tracking results under challenging circumstances. The experimental results demonstrate the efficiency, as well as robustness of the tracking algorithm utilizing real-world range information

    Self-correcting Bayesian target tracking

    Get PDF
    The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the authorAbstract Visual tracking, a building block for many applications, has challenges such as occlusions,illumination changes, background clutter and variable motion dynamics that may degrade the tracking performance and are likely to cause failures. In this thesis, we propose Track-Evaluate-Correct framework (self-correlation) for existing trackers in order to achieve a robust tracking. For a tracker in the framework, we embed an evaluation block to check the status of tracking quality and a correction block to avoid upcoming failures or to recover from failures. We present a generic representation and formulation of the self-correcting tracking for Bayesian trackers using a Dynamic Bayesian Network (DBN). The self-correcting tracking is done similarly to a selfaware system where parameters are tuned in the model or different models are fused or selected in a piece-wise way in order to deal with tracking challenges and failures. In the DBN model representation, the parameter tuning, fusion and model selection are done based on evaluation and correction variables that correspond to the evaluation and correction, respectively. The inferences of variables in the DBN model are used to explain the operation of self-correcting tracking. The specific contributions under the generic self-correcting framework are correlation-based selfcorrecting tracking for an extended object with model points and tracker-level fusion as described below. For improving the probabilistic tracking of extended object with a set of model points, we use Track-Evaluate-Correct framework in order to achieve self-correcting tracking. The framework combines the tracker with an on-line performance measure and a correction technique. We correlate model point trajectories to improve on-line the accuracy of a failed or an uncertain tracker. A model point tracker gets assistance from neighbouring trackers whenever degradation in its performance is detected using the on-line performance measure. The correction of the model point state is based on the correlation information from the states of other trackers. Partial Least Square regression is used to model the correlation of point tracker states from short windowed trajectories adaptively. Experimental results on data obtained from optical motion capture systems show the improvement in tracking performance of the proposed framework compared to the baseline tracker and other state-of-the-art trackers. The proposed framework allows appropriate re-initialisation of local trackers to recover from failures that are caused by clutter and missed detections in the motion capture data. Finally, we propose a tracker-level fusion framework to obtain self-correcting tracking. The fusion framework combines trackers addressing different tracking challenges to improve the overall performance. As a novelty of the proposed framework, we include an online performance measure to identify the track quality level of each tracker to guide the fusion. The trackers in the framework assist each other based on appropriate mixing of the prior states. Moreover, the track quality level is used to update the target appearance model. We demonstrate the framework with two Bayesian trackers on video sequences with various challenges and show its robustness compared to the independent use of the trackers used in the framework, and also compared to other state-of-the-art trackers. The appropriate online performance measure based appearance model update and prior mixing on trackers allows the proposed framework to deal with tracking challenges

    Dynamic Data Assimilation

    Get PDF
    Data assimilation is a process of fusing data with a model for the singular purpose of estimating unknown variables. It can be used, for example, to predict the evolution of the atmosphere at a given point and time. This book examines data assimilation methods including Kalman filtering, artificial intelligence, neural networks, machine learning, and cognitive computing
    • …
    corecore