4,731 research outputs found

    An Extended MDA Method for User Interface Modeling and Transformation

    Get PDF

    Embedding Requirements within the Model Driven Architecture

    Get PDF
    The Model Driven Architecture (MDA) brings benefits to software development, among them the potential for connecting software models with the business domain. This paper focuses on the upstream or Computation Independent Model (CIM) phase of the MDA. Our contention is that, whilst there are many models and notations available within the CIM Phase, those that are currently popular and supported by the Object Management Group (OMG), may not be the most useful notations for business analysts nor sufficient to fully support software requirements and specification. Therefore, with specific emphasis on the value of the Business Process Modelling Notation (BPMN) for business analysts, this paper provides an example of a typical CIM approach before describing an approach which incorporates specific requirements techniques. A framework extension to the MDA is then introduced; which embeds requirements and specification within the CIM, thus further enhancing the utility of MDA by providing a more complete method for business analysis

    Domain-Specific Modeling and Code Generation for Cross-Platform Multi-Device Mobile Apps

    Get PDF
    Nowadays, mobile devices constitute the most common computing device. This new computing model has brought intense competition among hardware and software providers who are continuously introducing increasingly powerful mobile devices and innovative OSs into the market. In consequence, cross-platform and multi-device development has become a priority for software companies that want to reach the widest possible audience. However, developing an application for several platforms implies high costs and technical complexity. Currently, there are several frameworks that allow cross-platform application development. However, these approaches still require manual programming. My research proposes to face the challenge of the mobile revolution by exploiting abstraction, modeling and code generation, in the spirit of the modern paradigm of Model Driven Engineering

    A Practical Example for Model-Driven Web Requirements

    Get PDF
    The number of approaches for Web environments has grown very fast in the last years: HDM, OOHDM, and WSDM were among the first, and now a large number can be found in the literature. With the definition of MDA (Model- Driven Architecture) and the acceptance of MDE (Model-Driven Engineering) techniques in this environment, some groups are working in the use of metamodels and transformations to make their approaches more powerful. UWE (UMLBased Web Engineering) or OOWS (Object-Oriented Web Solutions) are only some examples. However, there are few real experiences with Web Engineering in the enterprise environment, and very few real applications of metamodels and MDE techniques. In this chapter the practical experience of a Web Engineering approach, NDT, in a big project developed in Andalusia is presented. Besides, it shows the usability of metamodels in real environments

    A model driven architecture approach to web development

    Get PDF
    The rise of the number and complexity of web applications is ever increasing. Web engineers need advanced development methods to build better systems and to maintain them in an easy way. Model-Driven Architecture (MDA) is an important trend in the software engineering field based on both models and its transformations to automatically generate code. This paper describes a a methodology for web application development, providing a process based on MDA which provides an effective engineering approach to reduce effort. It consists of defining models from metamodels at platform- independent and platform-specific levels, from which source code is automatically generated

    Specifications and Development of Interoperability Solution dedicated to Multiple Expertise Collaboration in a Design Framework

    Get PDF
    This paper describes the specifications of an interoperability platform based on the PPO (Product Process Organization) model developed by the French community IPPOP in the context of collaborative and innovative design. By using PPO model as a reference, this work aims to connect together heterogonous tools used by experts easing data and information exchanges. After underlining the growing needs of collaborative design process, this paper focuses on interoperability concept by describing current solutions and their limits. Then a solution based on the flexibility of the PPO model adapted to the philosophy of interoperability is proposed. To illustrate these concepts, several examples are more particularly described (robustness analysis, CAD and Product Lifecycle Management systems connections)

    Modelling mobile health systems: an application of augmented MDA for the extended healthcare enterprise

    Get PDF
    Mobile health systems can extend the enterprise computing system of the healthcare provider by bringing services to the patient any time and anywhere. We propose a model-driven design and development methodology for the development of the m-health components in such extended enterprise computing systems. The methodology applies a model-driven design and development approach augmented with formal validation and verification to address quality and correctness and to support model transformation. Recent work on modelling applications from the healthcare domain is reported. One objective of this work is to explore and elaborate the proposed methodology. At the University of Twente we are developing m-health systems based on Body Area Networks (BANs). One specialization of the generic BAN is the health BAN, which incorporates a set of devices and associated software components to provide some set of health-related services. A patient will have a personalized instance of the health BAN customized to their current set of needs. A health professional interacts with their\ud patients¿ BANs via a BAN Professional System. The set of deployed BANs are supported by a server. We refer to this distributed system as the BAN System. The BAN system extends the enterprise computing system of the healthcare provider. Development of such systems requires a sound software engineering approach and this is what we explore with the new methodology. The methodology is illustrated with reference to recent modelling activities targeted at real implementations. In the context of the Awareness project BAN implementations will be trialled in a number of clinical settings including epilepsy management and management of chronic pain
    corecore