
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2007 Proceedings European Conference on Information Systems
(ECIS)

2007

An Extended MDA Method for User Interface
Modeling and Transformation
Jen-Her Wu
National Sun Yat-Sen University, jhwu@mis.nsysu.edu.tw

S Shin
x3216@mail.meiho.edu.tw

J Chien
frank.chien@msa.hinet.net

W Chao
chao@mail.nsysu.edu.tw

M Hsieh
hmz@nttu.edu.tw

Follow this and additional works at: http://aisel.aisnet.org/ecis2007

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Wu, Jen-Her; Shin, S; Chien, J; Chao, W; and Hsieh, M, "An Extended MDA Method for User Interface Modeling and Transformation"
(2007). ECIS 2007 Proceedings. 170.
http://aisel.aisnet.org/ecis2007/170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007/170?utm_source=aisel.aisnet.org%2Fecis2007%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

AN EXTENDED MDA METHOD FOR USER INTERFACE
MODELING AND TRANSFORMATION

Wu, Jen-Her, Department of Information Management, National Sun Yat-sen University, 70

Lien-Hai Road, Kaohsiung, 804, Taiwan, jhwu@mis.nsysu.edu.tw

Shin, Shin-Shing, Department of Information Management, Mei-Ho Institute of Technology,
Pingtung, 912, Taiwan, x3216@mail.meiho.edu.tw; Department of Information
Management, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung, 804,
Taiwan

Chien, Juei-Lung, Department of Information Management, National Sun Yat-sen University,
70 Lien-Hai Road, Kaohsiung, 804, Taiwan, frank.chien@msa.hinet.net

Chao, William S., Department of Information Management, National Sun Yat-sen University,
70 Lien-Hai Road, Kaohsiung, 804, Taiwan, chao@mail.nsysu.edu.tw

Hsieh, Ming-Che, Department of Information Science and Management Systems, National
Taitung University, 684 Sec.1, Chung-Hua Road, Taitung, 950, Taiwan, hmz@nttu.edu.tw

Abstract

This study presents a systematic methodology for MDA transformation that includes creating a
platform independent model (PIM), transforming PIM into platform specific model (PSM), and
transforming PSM into a Code model. The PIM is created first based on the use case, activity diagram
and robustness diagram. The PIM is then transformed into a PSM based on three target platforms:
Web-based user interface, Java, and relational database. The PSM is then transformed into a Code
model based on three types of code: JavaServer Pages (JSP) 2.0, J2SE 1.5.0 and Oracle Database.
With this methodology, systems can more easily and systematically be analyzed, designed, and
generated and, thereby, increase system development productivity.

Keywords: Model-Driven Architecture, Unified Modeling Language, Object-Oriented Technique,
Robustness Analysis, User Interface.

1632

1 INTRODUCTION

Software development is a labor intensive and costly job. The United States alone devotes at least
$250 billion each year to application development in approximately 175,000 projects involving several
million people (Mellor et al. 2004; Mahmood et al. 2005). Software development poses numerous
problems that must be solved. For instance, with a new technology, the legacy system needs to be
upgraded to align with a new platform and many of them cannot afford to lag behind. This forces
existing systems to operate with new systems, causing a portability problem. Systems are never built
using only one technology and thus always need to communicate with other systems. The model
driven architecture (MDA) approach has been adopted by the software industry to ameliorate the
above problems. This approach has been considered a useful solution for improving the efficiency of
software development (Uhl, 2003).
The MDA considers everything as a model or model element. Each model or model element is unit
independent of the other models and elements. Model elements can be transformed into applications
for other models and even be integrated together through communication bridges (Koehler et al. 2005).
With such idea, software development becomes a model construction and transformation procedure
(Caplat and Sourrouille, 2005). Independence and transformation provide the possibility for
ameliorating the foregoing problems. However, MDA is just a principle and there is no single
universal MDA framework that fits all software architectures and applications. Therefore, to make
MDA model construction and transformation practical, transformation rules must be developed
between models for each specific platform (Duddy et al. 2003). This is a challenging task.
Over the past few years a considerable effort has been made in the MDA transformation area (Agrawal
et al. 2003; Czarnecki and Helsen, 2003; Wu et al. 2005; Kleppe et al, 2003). However, little attention
has been paid to the issue of user interface transformation, especially for the web-based 3-tier systems.
This study, therefore, presents a systematic methodology for MDA transformation which integrates the
robustness analysis, activity diagram and state diagram to extend the MDA approach for PIM
modeling and user interface transformation from PIM to PSM and to Code model for the web-based 3-
tier systems.

2 LITERATURE REVIEW

2.1 Model driven architecture and transformation approach

Model Driven Architecture is a new approach for software development defined by the Object
Management Group. MDA regards system development as model building and transformation. These
concepts separate the application modeling away from the implementation details, and allow
developers to build a model without knowledge of the other models in the system. The existing models
can be combined in the final step to create a whole system. This prevents design decisions from
becoming intertwined with the application. It also renders the application independent of its
implementation; allowing it to be recombined with other technologies at some later time (Mellor et al.
2004; Bézivin et al. 2004).

MDA has been considered to be an enabling software development tool for increasing software
development productivity and reducing the software development cost and time to market (Uhl, 2003).
MDA concepts are closer to the problem domain at hand than those offered by programming
languages. However, the above advantages are based on the assumption of a transformation
mechanism application among models. Many approaches have been proposed to address this issue.
Sendall and Kozaczynski (2003) classified these approaches into three categories: (1) Direct model
manipulation, (2) Intermediate representation, and (3) Transformation language support.

1633

In direct model manipulation, transformation logics are contained that can access source models and
transform those into codes. The logics can be written as a series of APIs to handle model elements and
properties such as get, create and update. For instance, the logics could simply be Java codes that
access APIs provided by Java Metadata Interface (JMI). The other example in this category is Jamda
(Czarnecki and Helsen, 2003), which provides a set of classes representing UML models and several
APIs for manipulating those models. However Jamda’s work does not support the MOF standard
which dominates this domain. The advantage is that developers can use their preferred language to
write the transformation logics such as Java. This could reduce the difficulty and complexity of
constructing transformation rules. On the other hand, APIs lack high-level abstractions for specifying
transformations (Liu et al. 2005) and may limit the kinds of transformations that can be performed
(Mens and Van Gorp, 2005).

In intermediate representation, model transformations are performed through a standard intermediate
form. Take the transformation from PIM to PSM as an example, a PIM model could be an input model
and be transformed into a XMI (XML Meta data Interchange) document. The PSM model could then
be generated according to the XMI document transformed from the PIM. Usually, the transformation
is achieved using stand alone tools loosely coupled with modeling tools such as XSLT, which allows
the manipulation of XML files to accomplish the transformation from the source to the target model.
However, manual implementation of model transformation in XSLT quickly leads to a non-
maintainable implementation because of the verbosity and poor readability of XMI and XSLT. The
current XMI standard does not contain diagramming information. After a model is exported into a
XMI document, all diagram information is lost (Weis et al. 2003).

The transformation language support uses a specific language to specify the model transformation.
The most famous one in this category is the graph-transformation based approach, whose
transformation rules consist of a left-hand side (LHS) and right-hand side (RHS) graph pattern. Once
the LHS pattern of a transformation rule is matched in a source model, a rule is fired to replace that
one using the RHS pattern in its place. Because current OMG graphical language such as MOF and
UML provide a well-established foundation for defining PIM and PSM, the graph-transformation
based approach seems to be a natural solution for specifying the transformation. It has even been
considered the approach with the most potential (Sendall and Kozaczynski, 2003). This approach
complies with the principle of divide-and-conquer. It decomposes complex transformation into several
smaller parts that can be conquered individually and then reintegrated into a whole system. This
approach increases the readability, modularity and maintainability of a transformation mechanism.
The other advantage of this approach is the visualization using graphic transformation. On the visual
notation basis, the PIM and PSM can be expressed in a visual way that could make developers more
comfortable in using this approach. Several methodologies have been developed to provide this feature.
For example, Agrawal et al (2003) developed a UML-based approach for specifying model
transformations using a class diagram to represent the input and output transformation graph
grammars. The transformation language is called Graph Rewriting and Transformation language
(GreAT). Even though a few methodologies have been developed, a transformation method for user
interfaces from user requirements to Code is still lacking. This motivates us to develop a
transformation mechanism based on the concept of graph-transformation based approaches.

2.2 Robustness analysis

Robustness analysis introduced by Ivar Jacobson acts as a mediator to bridge the gap between
modeling use case diagram and sequence diagram (Zhou and Stålhane, 2004). It provides an approach
for classifying objects and their courses of interaction from the use case to build the robustness
diagram which shows the objects that participate in the scenario and how those objects interact with
each other as shown in Figure 1. Robustness analysis classifies objects in a system into three
stereotypes: boundary object, entity object and control object. Entity objects represent data stored in a
database. Boundary objects are deemed user interfaces and triggered by users to communicate with

1634

control objects, which capture application logics and act as bridges between boundary objects and
entity objects. The interaction rules among these objects can be summarized as follows (Rosenberg
and Scott 2001):
• Actors can only communicate with boundary objects.
• Boundary objects can only communicate with control objects and actors.
• Entity objects can only communicate with control objects.
• Control objects can communicate with boundary objects, entity objects and the other control

objects, but not with actors.

Figure 1. An example of robustness diagram

3 THE FRAMEWORK OF USER INTERFACE
TRANSFORMATION

With respect to 3-tier software architecture, Kleppe et al (2003) developed an MDA framework
including three models in a hierarchical order: Platform Independent Model (PIM), Platform Specific
Model (PSM) and Code model. The model at the first level is PIM which provides a formal function
and structure system specification without technical details. The model at the second level is PSM
which is derived from PIM to target a specific technology. PSM is tailored to specify a system in
terms of the implementation constructs that are available in one specific implementation technology.
The model at the third level is the Code model, which is the executable program transformed from the
PSM model. In addition, OMG defined the computation independent model (CIM) prior to the stage of
PIM to model user requirements (Miller and Mukerji, 2003). CIM doesn't consider how a system is
implemented and focuses on what the system is expected to do. CIM should be traceable to PIM and
vice versa.

Based on Kleppe et al’s framework, we draw an MDA architecture for 3-tier JSP applications, as
shown in Figure 2. This architecture encompasses four levels: CIM, PIM, PSM and Code model. At
the first level, CIM, three tools are used to analyze user requirements and produce preliminary objects
including boundary, control and entity objects and communication bridges. At the second level, PIM,
these objects can then be refined or enhanced into the object in the sequence diagram. Besides the
boundary objects, control objects and entity objects in a robustness diagram correspond to boundary
classes, object classes and entity classes in a sequence diagram in PIM, respectively. At the Third level,
PSM, the MVC (model-view-controller) model is used as the fundamental system architecture. It
separates the PSM into three distinct tiers: model, view and controller, so that modifications to one tier
can be made with minimal impact on the others. The model dubbed relation schema is the domain-
specific representation of the information on which the application operates. It contains a data model
and domain logics which add meaning to the raw data. The view is termed widget class diagram which
refers to how to render the model into user interfaces for interaction. The controller referred to as Java
class diagram responds to the model and the view and invokes changes on those. Especially, these
three tiers can be transformed from PIM plus JSP, database and Java technology.

1635

Further, the PSM can be transformed into real executable program namely Code model. In this study,
the widget class diagram can be transformed into JSP code. The Java class diagram can be
transformed into Servlet. The relation schema can be transformed into JavaBean and database schema.
Database schema is used to generate a database for JavaBean Code. JavaBean acts as an interface to
access and store data in the database for Servlet.

Figure 2. The MDA architecture for 3-tier JSP software.

In this study, we focus on the UI and propose a framework for MDA transformation from boundary to
JSP code through widget class diagram as marked by the solid line in Figure 2. This framework
consists of four levels; CIM, PIM, PSM, and JSP code. In CIM level, use case diagram and activity
diagram are used to model user requirements; the robustness analysis is used to enhance the
completeness and correctness of user requirements. The outcome can then be further enhanced in two
facets in the PIM level: behaviour and structure. The behaviour part is presented using the sequence
diagram, while the structure part is depicted using the class diagram. Once the PIM model is
constructed, it then can be used to produce widget class diagram based on MVC architecture in the
PSM level. JSP code is finally generated from the PSM.

3.1 Computation Independent Model

In the study, use case diagram, activity diagram and robustness analysis are used to represent the CIM.
Use case diagram has been a well-known tool to model user requirements. Once a use case diagram is
constructed, the outcome can then be used to construct a sequence diagram in the PIM. To do so, the
robustness analysis has been used to help the identification of boundary, control, and entity objects

1636

and enhance the completeness of the user requirement (Rosenberg and Scott, 2001). However, it’s still
not a straightforward task to identify objects, operations and their relationships from the use case
diagram. The activity diagram can be used to alleviate the problems since it is used to describe the
activity flow and the associated input/output of each use case. The activity diagram provides a visual
manner to represent the actors and their related activities, needed information, flow controls and
transitions. This is helpful for discovering objects and process flows and furnishes a basis for
performing robustness analysis. For instance, a note of an activity could be considered as a user
interface namely a boundary object. Data in the note can be regarded as attributes of the boundary
object. An activity could be deemed as a control object and so forth. The transformation rules from
activity diagram to robustness diagram are summarized as in Table 1. This construction procedure is
not only providing an aid in establishing a robustness diagram, but also useful in clarifying user
requirements.

Table 1. Mapping rules from an activity diagram to a robustness diagram.

3.2 PIM

The objective of PIM is to provide the formal function and structure specifications for systems without
technical details. To achieve this end, two tasks must be performed: behaviour and structure modeling.
The sequence diagram is the major modeling tool for behaviour modeling. However, for the user
interface, the sequence diagram falls short in modeling the information about which UI widget triggers
which operation, while this information is essential for programming. Therefore, we propose that each
UI sequence diagram should be fraught with a UI state diagram to clearly specify the behaviour of UIs
and widgets. The state diagram considers each UI as a state and widget as a sub-state, and reveals their
state transitions including event, guard and action information. This concept brings the sequence
diagram and the state diagram together, underpinning the PIM class diagram construction. It provides
the designer with detailed specifications for deciding which UI widget could serve in a specific
platform.

3.2.1 Behaviour modeling

The sequence diagram is a good tool for modeling system behaviour because it brings together objects,
operations and sequences simultaneously. A sequence diagram can be built by transforming
information from robustness and activity diagrams. The transformation rules were established as
shown in Table 2.

Rule Activity
Diagram

Mapping Robustness Diagram

1. Activity 1. Activities could be transformed into a control object.
2. User behavior in an activity can be implemented by widgets. These widgets

could be transformed into attributes and operations of boundary objects.
2. Note 1. A note could be transformed into a boundary object.

2. Data in a note could be transformed into attributes of the boundary object.
3. While data in a note is stored in a database, entity objects with attributes could

be generated from the data. Also, operations for retrieving and storing the data
could be identified and delivered to the entity objects.

4. If data in a note is retrieved from a database, an operation creating the note in a
control object would be generated.

3. Transition 1. If transition invokes a control object to fire its action, the control object should
contain an operation responding the invocation.

2. If transition send data to an activity or receives data from an activity, the data
would be transformed into attributes of a control object.

1637

Rule Robustness/Activity Diagram Mapping PIM Sequence Diagram
1. A boundary object in a robustness diagram. It could be a boundary object in a sequence diagram.
2. A control object in a robustness diagram. It could be a control object in a sequence diagram.
3. An entity object in a robustness diagram. It could be an entity object in a sequence diagram.
4. An association between two objects. It could be a message between these two objects’

focus of control.
5. An operation of an object. It could be an operation on a message.
6. An attribute of an object. It could be a parameter of operations or a return

value of an object.
7. An event which could be an activity or a

transition in an activity diagram.
 An event can be transformed into a chain of

messages and objects involved to achieve the event’
goal.

8. A loop in an activity diagram It could be a loop frame.
9. A branch transition in an activity diagram It could be an alternative or option frame.
10. A fork transition in an activity diagram It could be a parallel frame.

Table 2. The transformation rules from a robustness/activity diagram to a sequence diagram.

3.2.2 Structure modeling

Behaviour modeling concerns objects and their interactions at the instance level, while the structure
modeling highlights classes and their static relationships between those. To establish a PIM class
diagram, it consists of two steps: (1) generalize classes, (2) identify relationships. In the first step,
objects with the same attributes and operations can be abstracted to form a class. Obviously, each
object in a PIM sequence diagram can be transformed into a class in a PIM class diagram. Most of the
relationships among classes can be identified based on the message passing in the sequence diagram.
The rules are shown in Table 3. Table 3 indicates that rules 4-8 act as an aid in identifying dependency
relationships. Usage is one kind of dependency predefined by OMG, which indicates a situation in
which one class requires the presence of another class for its correct implementation or functioning. A
usage represents calling an operation from another class or instantiating an object of another class, etc.
It even can be stereotyped further to indicate the exact nature of a dependency. Therefore, a calling
message in a PIM sequence diagram can be notated as a usage with call, and a return message can be
notated as a usage with send in a PIM class diagram. If the instance of a class is created by another
class, it can be notated as a usage with instantiate. The association relationships with multiplicity
between entity objects can be identified based on the information passing among the objects. If there is
many-to-many multiplicity in an association relationship, an association class needs to be created to
record the association information.

Table 3. The transformation rules from a PIM sequence diagram to a PIM class diagram.

Rule PIM Sequence Diagram Mapping PIM Class Diagram
1. A boundary object A boundary class
2. A control object A control class
3. An entity object An entity class
4. A message with operation from a

boundary object to a control object
 A usage with call from the boundary class to the

control class
5. A message with operation from a control

object to an entity object
 A usage with call from the control class to the

entity class
6. A message with return values from an

entity object to a control object
 A usage with send from the entity class to the

control class
7. A message with return values from a

control object to a boundary object
 A usage with instantiate from the control class to

the boundary class
8. A message with operation between two

control objects
 A usage with call between the two control classes

1638

3.3 PSM

At the PSM phase, a PIM is tailored to a specific platform. In this study, the technologies employed in
the PSM for boundary, control and entity classes are JSP, Java and Oracle DB, respectively. This
study focuses on the UI transformations from PIM through PSM to Code. The application and
database transformation are beyond the scope of this study.

3.3.1 PSM class diagram

Many widgets have been developed to facilitate user interface design. Most designers don not develop
UI components in house and use widgets available on the market. As noted in the previous section, a
user interface is defined by a drawing, a boundary class and a UI state diagram. This is obviously
insufficient for establishing a PSM class diagram including widget information. The PIM focuses on
the user's initial requirements without technical information, while the PSM is forced not to ignore low
level details for specific technologies. A UI function may be implemented using different widgets with
the same function. It is by no means clear how to model user interfaces using UML. There is a lack of
uniformity and standardisation in widget selection and integration (da Silva and Paton, 2003). It seems
that there are no theoretically or even pragmatically well-developed guidelines to help software
engineers tackle this problem successfully.

We believe an interactive mechanism is useful to mitigate these problems. This mechanism should
provide a UI presentation structure and allow users/designers to choose adequate widgets for
achieving a function. To do so, we adopted the presentation model introduced by da Silva and Paton
(2003). It contains a top-level container, Form, which is composed of other Containers that consist of
UI components. A UI Component is specialised into three categories: StaticDisplay, ActionInvoker
and InteractionControl. The StaticDisplay category is relevant at those UI components providing
visual information, such as labels. The ActionInvoker category is relevant at those UI components
receiving user triggers, such as a button. The InteractionControl category is relevant at those UI
components receiving user options concerning navigation through the UI, such as a menu. With this
premise, we construct representation models based on JSP for each boundary class and then integrate
them into a PSM class diagram. Using the BookList (boundary class) and its drawing as an
example (Figure 3), the representation model is constructed using four HTML components.
For instance, the BookList (drawing) is transformed into the BookList (Form), which is
aggregated with a CheckOut button (ActionInvoke) and a Table (StaticDisplay). The
CheckOut button comes from the command button check out. The grid on the drawing
generates the Table (StaticDisplay), which is aggregated with several Table Records
(StaticDisplay). Hence, the BookList (boundary class) is modelled as shown in Appendix F.
Similarly, the other boundary class, ShoppingCart, can also be transformed.

3.4 Code

The Code phase aims at transforming the UIs and widgets constructed in the PSM phase into code.
This is straightforward because every element has a specific corresponding code on JSP platform. We
enumerate three basic transformation patterns including form, button and table as shown in Table 4.

1639

Figure 3. The transformation of BookList from PIM to PSM

Rule Pattern in PSM class diagram Code

1 Form

2 Button

1640

3 Table

Table 4. The transformation patterns from a PSM class diagram to JSP code.

4 CONCLUSIONS AND FUTURE WORK

This study presented a methodology that integrates the MDA, UML, robustness analysis and object-
oriented programming concepts to specify user requirements, construct the PIM, and then transform it
into user interface PSM and to user interface code based on the 3-tiers JSP architecture. This
methodology includes four major levels: CIM, PIM, PSM, and JSP code modeling. A case with
prototype system is used to demonstrate the feasibility of this methodology.

The contribution of this paper is two-fold. First, the proposed methodology provides a complete
procedure for developing a web-based 3-tiers JSP application including CIM modeling, PIM modeling,
and PIM to UI PSM and to UI code transformations. These results provide a greater insight for
understanding and reducing the gap among PIM, UI PSM, and UI code. Second, the proposed
methodology provides a mechanism to automate the transformation among PIM to UI code and the
communication bridge between UI code and application code to increase the system development
efficiency.

With this methodology, the web-based, 3-tier JSP applications can more easily and systematically be
analyzed, designed, and generated. This work is the beginning of a line of MDA transformation
methodology. Future research directions are abundant. For instance, a complete transformation
methodology which includes the PIM to relation schema, Java class diagram, and widget class
diagram is worthy to perform. Other issues may include developing the software system to support the
transformation automation.

Acknowledgement: This research was partially supported by the National Science Council of Taiwan
under grant # NSC 95-2221-E-276 -001 and NSC 94-2416-H-110-017.

1641

References
Agrawal, A., G. Karsai and F. Shi (2003). A UML-based Graph Transformation Approach for

Implementing Domain-Specific Model Transformations, Technical report, (ISIS), Vanderbilt
University, Nashville, TN.

Bézivin, J., S. Hammoudi, D. Lopes and F. Jouault (2004). Applying MDA Approach for Web Service
Platform. In Proceedings of the 8th International IEEE Enterprise Distributed Object Computing
Conference – EDOC 2004, pp. 20-24, IEEE Press, Monterey, California, USA.

Caplat, G. and Sourrouille, J.-L. (2005). Model mapping using formalism extensions. IEEE software,
22 (2), 44-51.

Czarnecki, K. and S. Helsen (2003). Classification of model transformation approaches. In
Proceedings of OOPSLA 2003 Workshop on Generative Techniques in the Context of MDA, pp.
33-50, Anaheim, CA, USA.

da Silva, P.P. and Paton, N.W. (2003). User interface modeling in UMLi. IEEE software, 20 (4), 62-69.
Duddy, K., A. Gerber, M. Lawley, K. Raymond and J. Steel (2003). Model transformation: A

declarative, reusable patterns approach. In Proceedings of the 7th International IEEE Conference
on Enterprise Distributed Object Computing (EDOC), pp. 174-195, IEEE Press, Brisbane, Qld.,
Australia.

Kleppe, A., J. Warmer and W. Bast (2003). MDA Explained-The Model Driven Architecture: Practice
and Promise. Addison-Wesley, Boston.

Koehler, J., Hauser, R., Sendall, S. and Wahler, M. (2005). Declarative techniques for model-driven
business process integration. IBM Systems Journal, 44 (1), 47-65.

Liu, J., K. He, B. Li, C. He and P. Liang (2005). A Transformation Definition Metamodel for Model
Transformation. In Proceedings of the International Conference on Information Technology:
Coding and Computing, pp. v-xiv, Las Vegas, Nevada, USA.

Mahmood, S., Lai, R., Soo Kim, Y., Hong Kim, J., Cheon Park, S. and Suk Oh, H. (2005). A survey of
component based system quality assurance and assessment. Information and Software Technology,
47 (10), 693-707.

Mellor, J.S., K. Scott, A. Uhl and D. Weise (2004). MDA Distilled: Principles of Model-Driven
Architecture. Addison-Wesley, Boston.

Mens, T., and P. Van Gorp (2005). A taxonomy of model transformations. In Proceedings of
International Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia.

Miller, J. and J. Mukerji (2003). MDA Guide Version 1.0.1. Eds. Object Management Group
Rosenberg, D. and K. Scott (2001). Applying Use Case Driven Object Modeling with UML: An

Annotated e-Commerce Example. Addison-Wesley, Boston.
Sendall, S. and Kozaczynski, W. (2003). Model transformation: the heart and soul of model-driven

software development. IEEE Software, 20 (5), 42-45.
Uhl, A. (2003). Model Driven Architecture Is Ready for Prime Time. IEEE Software, 20 (5), 70-72.
Weis, T., Ulbrich, A. and Geihs, K. (2003). Model Metamorphosis. IEEE Software, 20 (5), 46-51.
Wu, J.H., Huang, Y.C. and Shin, S.S. (2005). Object-Oriented Analysis and Design: Transformation

from Class Diagram to Relational Table and Application Template. Journal of Internet Technology,
6 (4), 453-461.

Zhou, J. and T. Stålhane (2004). A Framework for Early Robustness Assessment, Software
Engineering and Applications (SEA’ 04), MIT Cambridge, MA, USA, 64-69.

1642

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	An Extended MDA Method for User Interface Modeling and Transformation
	Jen-Her Wu
	S Shin
	J Chien
	W Chao
	M Hsieh
	Recommended Citation

	An Extended MDA Method for User Interface Modeling and Transformation

