9 research outputs found

    On the complexity of partial derivatives

    Full text link
    The method of partial derivatives is one of the most successful lower bound methods for arithmetic circuits. It uses as a complexity measure the dimension of the span of the partial derivatives of a polynomial. In this paper, we consider this complexity measure as a computational problem: for an input polynomial given as the sum of its nonzero monomials, what is the complexity of computing the dimension of its space of partial derivatives? We show that this problem is #P-hard and we ask whether it belongs to #P. We analyze the "trace method", recently used in combinatorics and in algebraic complexity to lower bound the rank of certain matrices. We show that this method provides a polynomial-time computable lower bound on the dimension of the span of partial derivatives, and from this method we derive closed-form lower bounds. We leave as an open problem the existence of an approximation algorithm with reasonable performance guarantees.A slightly shorter version of this paper was presented at STACS'17. In this new version we have corrected a typo in Section 4.1, and added a reference to Shitov's work on tensor rank

    Sums of products of polynomials in few variables : lower bounds and polynomial identity testing

    Get PDF
    We study the complexity of representing polynomials as a sum of products of polynomials in few variables. More precisely, we study representations of the form P=i=1Tj=1dQijP = \sum_{i = 1}^T \prod_{j = 1}^d Q_{ij} such that each QijQ_{ij} is an arbitrary polynomial that depends on at most ss variables. We prove the following results. 1. Over fields of characteristic zero, for every constant μ\mu such that 0μ<10 \leq \mu < 1, we give an explicit family of polynomials {PN}\{P_{N}\}, where PNP_{N} is of degree nn in N=nO(1)N = n^{O(1)} variables, such that any representation of the above type for PNP_{N} with s=Nμs = N^{\mu} requires TdnΩ(n)Td \geq n^{\Omega(\sqrt{n})}. This strengthens a recent result of Kayal and Saha [KS14a] which showed similar lower bounds for the model of sums of products of linear forms in few variables. It is known that any asymptotic improvement in the exponent of the lower bounds (even for s=ns = \sqrt{n}) would separate VP and VNP[KS14a]. 2. We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT) algorithm for circuits computed by the above model when TT and the individual degree of each variable in PP are at most logO(1)N\log^{O(1)} N and sNμs \leq N^{\mu} for any constant μ<1/2\mu < 1/2. We get quasipolynomial running time when s<logO(1)Ns < \log^{O(1)} N. The PIT algorithm is obtained by combining our lower bounds with the hardness-randomness tradeoffs developed in [DSY09, KI04]. To the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for the case s=2s=2), and the first nontrivial PIT algorithm obtained from lower bounds for small depth circuits

    Multi-k-ic depth three circuit lower bound

    Get PDF
    Abstract In a multi-k-ic depth three circuit every variable appears in at most k of the linear polynomials in every product gate of the circuit. This model is a natural generalization of multilinear depth three circuits that allows the formal degree of the circuit to exceed the number of underlying variables (as the formal degree of a multi-k-ic depth three circuit can be kn where n is the number of variables). The problem of proving lower bounds for depth three circuits with high formal degree has gained in importance following a work by Gupta, Kamath, Kayal and Saptharishi [GKKS13a] on depth reduction to high formal degree depth three circuits. In this work, we show an exponential lower bound for multi-k-ic depth three circuits for any arbitrary constant k

    AN EXPONENTIAL LOWER BOUND FOR HOMOGENEOUS DEPTH FOUR ARITHMETIC FORMULAS

    No full text
    We show here a 2(Omega(root d center dot logN)) size lower bound for homogeneous depth four arithmetic formulas over fields of characteristic zero. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i)Pi(j)Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (number of monomials of Q(ij)) >= 2(Omega(root d center dot logN)). The abovementioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on recent lower bound results and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of [N. Kayal et al., in Symposium on Theory of Computing, ACM, New York, 2014, pp. 119-127] and the N-Omega(log logN) lower bound in the independent work of [M. Kumar and S. Saraf, in Automata, Languages, and Programming, Part I, Springer, Berlin, 2014, pp. 751-762]

    An Exponential Lower Bound for Homogeneous Depth Four Arithmetic Formulas

    No full text
    We show here a 2(Omega(root d.log N)) size lower bound for homogeneous depth four arithmetic formulas. That is, we give an explicit family of polynomials of degree d on N variables (with N = d(3) in our case) with 0, 1-coefficients such that for any representation of a polynomial f in this family of the form f = Sigma(i) Pi(j) Q(ij), where the Q(ij)'s are homogeneous polynomials (recall that a polynomial is said to be homogeneous if all its monomials have the same degree), it must hold that Sigma(i,j) (Number of monomials of Q(ij)) >= 2(Omega(root d.log N)). The above mentioned family, which we refer to as the Nisan-Wigderson design-based family of polynomials, is in the complexity class VNP. Our work builds on the recent lower bound results 1], 2], 3], 4], 5] and yields an improved quantitative bound as compared to the quasi-polynomial lower bound of 6] and the N-Omega(log log (N)) lower bound in the independent work of 7]

    On the size of homogeneous and of depth four formulas with low individual degree

    Get PDF
    International audienceLet r ≥ 1 be an integer. Let us call a polynomial f (x_1,...,x_N) ∈ F[x] as a multi-r-ic polynomial if the degree of f with respect to any variable is at most r (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output is syntactically forced to be a multi-r-ic polynomial and refer to these as multi-r-ic circuits. We prove lower bounds for several subclasses of such circuits. Specifically, first define the formal degree of a node α with respect to a variable x_i inductively as follows. For a leaf α it is 1 if α is labelled with x_i and zero otherwise; for an internal node α labelled with × (respectively +) it is the sum of (respectively the maximum of) the formal degrees of the children with respect to x_i. We call an arithmetic circuit as a multi-r-ic circuit if the formal degree of the output node with respect to any variable is at most r. We prove lower bounds for various subclasses of multi-r-ic circuits

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore