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Abstract
We study the complexity of representing polynomials as a sum of products of polynomials in few
variables. More precisely, we study representations of the form P =

∑T
i=1
∏d
j=1Qij such that

each Qij is an arbitrary polynomial that depends on at most s variables.
We prove the following results.
Over fields of characteristic zero, for every constant µ such that 0 ≤ µ < 1, we give an
explicit family of polynomials {PN}, where PN is of degree n in N = nO(1) variables, such
that any representation of the above type for PN with s = Nµ requires Td ≥ nΩ(

√
n). This

strengthens a recent result of Kayal and Saha [17] which showed similar lower bounds for the
model of sums of products of linear forms in few variables. It is known that any asymptotic
improvement in the exponent of the lower bounds (even for s =

√
n) would separate VP and

VNP [17].
We obtain a deterministic subexponential time blackbox polynomial identity testing (PIT)
algorithm for circuits computed by the above model when T and the individual degree of
each variable in P are at most logO(1)N and s ≤ Nµ for any constant µ < 1/2. We
get quasipolynomial running time when s < logO(1)N . The PIT algorithm is obtained by
combining our lower bounds with the hardness-randomness tradeoffs developed in [6, 14]. To
the best of our knowledge, this is the first nontrivial PIT algorithm for this model (even for
the case s = 2), and the first nontrivial PIT algorithm obtained from lower bounds for small
depth circuits.1
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1 Introduction

Arithmetic circuits are the most natural model of computation for a wide variety of algebraic
problems such as matrix multiplication, computing fast fourier transforms etc. The problem

∗ Research supported in part by NSF grants CCF-1350572 and by Simons Graduate Fellowship.
† Research supported by NSF grant CCF-1350572.
1 In a recent independent work, Forbes [7] does blackbox identity testing for another subclass of depth

four circuits using shifted partial derivative based methods. To the best of our understanding, the
results in these two papers are incomparable even though both rely on similar techniques.
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35:2 Sums of Products of Polynomials in Few Variables

of proving lower bounds for arithmetic circuits is one of the most fundamental and interesting
problems in complexity theory. Proving superpolynomial lower bounds for general arithmetic
circuits would resolve the VP versus VNP conjecture [34], the algebraic analog of the P vs
NP conjecture. This is one of the holy grails of complexity theory and has received a lot of
attention, since it is a more structured and potentially easier question to understand and
analyse than the P vs NP problem .

The intimately related problem of polynomial identity testing (PIT) is the problem of
testing if a polynomial, given as an arithmetic circuit is identically zero. In the setting
where the algorithm cannot look inside the circuit, but only has access to evaluations of
the circuit, the problem is referred to as blackbox PIT. There is a very simple randomized
algorithm for this problem - simply evaluate the polynomial at a random point from a large
enough domain. With very high probability, a nonzero polynomial will have a nonzero
evaluation [30, 36]. It is a very important and fundamental question to derandomize the
above algorithm. In a seminal work, Kabanets and Impagliazzo [14] showed that the problem
of proving lower bounds for arithmetic circuits and the problem of derandomizing identity
testing are essentially equivalent2!

These two problems have occupied a central position in complexity theory and despite
much attention, our understanding of general arithmetic circuits is still very limited. Thus
there has been a great deal of effort in understanding the complexity of restricted classes of
arithmetic circuits in an attempt to obtain a better understanding of the general problem.
Low depth arithmetic circuits in particular are one such well studied class.

Lower bounds for homogeneous low depth arithmetic circuits

The last few years have seen a tremendous amount of exciting progress on the problems of
“depth reduction" of general arithmetic circuits to low depth arithmetic circuits, and of proving
lower bounds for low depth arithmetic circuits. Using depth reduction techniques [35, 1, 20, 33]
it was shown that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for

just homogeneous depth 4 arithmetic circuits of bottom fan-in
√
n would suffice to separate

VP from VNP and imply superpolynomial lower bounds for general arithmetic circuits. At
the same time there was a very exciting line of works proving NΩ(

√
n) lower bounds for the

same model of arithmetic circuits (and in fact for even the more general class of homogeneous
depth 4 arithmetic circuits with no restriction on bottom fan-in) [11, 10, 19, 21, 15, 22].

Lower bounds for non-homogeneous low depth arithmetic circuits

Despite all this remarkable progress, and some very strong lower bounds for homogeneous low
depth arithmetic circuits, in the nonhomogenous world much less is understood. Only mild
lower bounds are known when we drop the condition of homogeneity, even for very simple
classes of low depth arithmetic circuits. For depth 3 circuits over fields of characteristic 0,
only quadratic lower bounds known [31, 32], and there has been no progress on this question
in more than a decade now.

In a beautiful depth reduction result over fields of characteristic 0, Gupta et al [13] showed
that Nω(

√
n) lower bounds (for polynomials in N variables and of degree n) for the class of

non-homogeneous depth 3 circuits would already separate VP from VNP. It was recently
observed by Kayal and Saha [17] 3 that in fact it suffices to prove such lower bounds for
depth 3 circuits with bottom fan-in

√
n.

2 They non-trivially transferred such known tradeoffs from the boolean world to the arithmetic world[25].
3 They attribute the observation to Ramprasad Saptharishi.
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Till recently (in particular till the work of [17]), the best known lower bounds for depth
3 circuits even with bottom fan-in 2 were still just quadratic. In a very nice recent result,
Kayal and Saha [17] showed an exponential lower bound for depth 3 circuits over fields of
characteristic 0, whose bottom fan-in is at most Nµ, where N is the number of variables and
0 ≤ µ < 1 is an arbitrary constant. More precisely, they prove the following.

I Theorem 1.1 (Kayal-Saha [17]). Let F be a field of characteristic zero. Then, for every
constant 0 ≤ µ < 1 there is a family {PN} of degree n polynomials in N = nOµ(1) variables
over F in VNP such that any depth three circuit of bottom fan-in at most Nµ computing PN
has top fan-in at least NΩµ(

√
n).

Our Model

In this work, we consider the model of sums of products of polynomials in few variables. More
formally, we consider representations of polynomials P (degree n in N = nO(1) variables) in
the form

P =
T∑
i=1

d∏
j=1

Qij (1)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables.
We call this the model of ΣΠ (ΣΠ)[s] circuits.

Observe that the model is more general than that considered in [17]. The model in [17]
corresponds to sums of products of linear forms in few variables. In our case, the Qij no
longer have to be linear forms, but can be general polynomials of arbitrarily high degree.
Prior to this work, even for the case when s = 2, there were no nontrivial lower bounds
known for this model.

ΣΠ (ΣΠ)[s] circuits for s ≥ 2 can also be seen as a generalization of the model of sums of
products of univariate polynomials (which corresponds to ΣΠ (ΣΠ)[s] circuits with s = 1),
which has been very well studied in the arithmetic circuit complexity literature. Lower
bounds for ΣΠ (ΣΠ)[1] circuits follow from works of Nisan [24] and Saxena [29]. Over the
last few years, there have been some very nice results giving quasipolynomial time blackbox
identity testers for ΣΠ (ΣΠ)[1] circuits [8, 9, 3]. ΣΠ (ΣΠ)[s] circuits can also be seen as a
generalization of the widely studied model of diagonal circuits, since polynomials computable
by diagonal circuits can be represented as a ΣΠ (ΣΠ)[1] circuit without much blow up in the
size of the representation [29].

Although ΣΠ (ΣΠ)[1] circuits seem fairly well understood from the point of view of lower
bounds and derandomization of polynomial identity testing, if one considers the model of
sums of products of bivariate polynomials (ΣΠ (ΣΠ)[2] circuits), then our understanding
changes completely. Although only seemingly a mild generalization of ΣΠ (ΣΠ)[1] circuits,
the known proof techniques for lower bounds for ΣΠ (ΣΠ)[1] circuits (which were proved
using evaluation dimension techniques of [24, 27]) seem to completely break down in this
setting. In fact, Forbes [7] was able to confirm this, showing that there is a polynomial which
is a sum of product of bivariates which has exponentially large evaluation dimension under
all possible partitions of variables. Thus, studying this model seems like an interesting next
step towards understanding non-homogeneous small depth algebraic computation. As far as
we are aware there are also (not surprisingly) no nontrivial PIT results for the model. We
are now ready to state our results.

CCC 2016



35:4 Sums of Products of Polynomials in Few Variables

1.1 Our results
Lower bounds

We show an exponential lower bound for the model of ΣΠ (ΣΠ)[s], when s is at most Nµ

for any constant 0 ≤ µ < 1 (N is the number of variables). More precisely, we show the
following.

I Theorem 1.2. Let F be a field of characteristic zero and µ be any constant such that
0 ≤ µ < 1. There exists a family {PN} of polynomials over F in VNP, where PN is of degree
n in N = nOµ(1) variables, such that for any representation of PN of the form

PN =
T∑
i=1

d∏
j=1

Qij

where each Qij is polynomial in at most s = Nµ variables, it must be true that

T · d ≥ nΩµ(
√
n) .

Given the depth reduction results of [13] and the observation mentioned earlier from [17],
it is known that any asymptotic improvement in the exponent of the lower bound (even for
s = O(

√
n)) would imply VNP is different from VP.

As discussed in the introduction, even though this model seems a natural generalization
of the model of sums of products of univariate polynomials, our lower bound technique is very
different from those used in proving lower bounds for sums of products of univariates. Our
lower bound proof is based on ideas developed in the course of investigating homogeneous
depth four arithmetic circuits [15, 22].

Blackbox PIT

We also consider the problem of PIT for the model of ΣΠ (ΣΠ)[s] circuits. For general sums
of products of even bivariate polynomials, this question seems quite difficult, and as of now
we are not even able to obtain subexponential time PIT. However, as a consequence of our
lower bounds and by suitably adapting hardness randomness tradeoffs for arithmetic circuits
developed in [14] and [6], we are able to obtain PIT results in the setting where the top
fan-in of the circuit is bounded, and when we have the promise that the circuit computes a
polynomial of low individual degree.

Our understanding of blackbox PIT for depth four circuits is very limited, and the results
known are in very restricted settings. Saraf and Volkovich [28] gave blackbox PIT algorithms
for multilinear depth 4 circuits with bounded top fan-in. To the best of our knowledge,
the idea in [28] does not extend to the case of non-multilinear depth 4 circuits, even when
the individual degree of each of the variables is at most 2. Recently, Oliveira et al [5]
gave a subexponential time blackbox PIT for all depth four multilinear circuits4. In the
non-multilinear setting, Agrawal et al. [2] gave PIT algorithms for constant depth formulas
in which the number of occurences of each variable is bounded. Without going into the
technical details, we remark that the notion of bounded occur is a generalization of the well
studied notion of bounded reads. The most closely related results to those in this paper that
we are aware of are the recent papers of Gupta [12] and Mukhopadhyay [23], which give

4 The running time increases with the size of the circuit, and in particular, it is subexponential time for
polynomial sized depth four multilinear circuits.



M. Kumar and S. Saraf 35:5

blackbox PIT results for sums of products of low degree polynomials, where the top sum
fan-in is bounded and the circuits satisfy certain algebraic geometric restrictions.

So, the question of getting PIT results for general depth four circuits (even with bounded
top and bottom fan-in) remains wide open. For instance we still do not know any nontrivial
PIT results for a sum of constant many products of degree 2 polynomials. Though we still
don’t know how to deal with this question, when we replace the polynomials of low degree
with polynomials of few variables (but of arbitrarily large degree), then we are able to obtain
quasipolynomial PIT results. There is one added caveat however, that the final polynomial
computed needs to be of low individual degree (as seems necessary for PIT results obtained
from the known hardness-randomness tradeoffs for bounded depth circuits [6]). We now
formally state the theorem.

I Theorem 1.3. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and
let F be a field of characteristic zero. Let C be the set of polynomials P in N variables and
individual degree at most k over F, with the property that P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that
1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

Moreover, from our proof, it also follows that if each of polynomial Qij depends only on
logO(1)N variables, then both the size of the hitting set and the time to construct it, are
upper bounded by a quasipolynomial function in N .

Independent work

In a simultaneous independent work, Kayal and Saha [18] employ very similar techniques and
ideas to show an analog of Theorem 1.2 for the iterated matrix multiplication polynomial
(an entry in the product of n generic matrices of dimension poly(n)× poly(n)) when each of
the polynomials Qij depends on at most

√
n variables.

Organisation of the paper

We provide an overview of the proofs in Section 2. We describe some definitions and
preliminaries in Section 3. We present the proof of the lower bound in Section 4. We describe
the application to blackbox PIT in Section 5 and conclude with some open problems in
Section 6.

2 Proof overview

In this section, we provide an overview of the main ideas in proofs of Theorem 1.2 and
Theorem 1.3.

CCC 2016



35:6 Sums of Products of Polynomials in Few Variables

2.1 Overview of proof of Theorem 1.2
We restate Theorem 1.2 for the sake of clarity.

I Theorem 1.2 (restated). Let F be a field of characteristic zero and µ be any constant
such that 0 ≤ µ < 1. There exists a family {PN} of polynomials over F in VNP, where PN
is of degree n in N = nOµ(1) variables, such that for any representation of PN of the form
PN =

∑T
i=1
∏d
j=1Qij where each Qij is polynomial in at most s = Nµ variables, it must be

true that

T · d ≥ nΩµ(
√
n) .

The key difference between proving the above lower bound and the lower bounds for
homogeneous depth four circuits is that the formal degree of the circuit in the above case
could be much larger than the degree of the polynomial, which is n. In fact, even the
fan-in of the product gates at level 2, that is d could be much larger than n. Therefore, a
straightforward application of homogeneous depth four circuit lower bounds does not seem to
work. Our proof is in two steps and at a high level follows the strategy of the lower bound for
non-homogeneous depth three circuits with bounded bottom fan-in by Kayal and Saha [17]
with some key differences.

In the first step, we obtain another representation of PN , as

PN =
Td2O(

√
n)∑

i=1

n∏
j=1

Q′ij

where every monomial in each of the Q′ij has support5 at most s, although each Q′ij
could now depend on all the variables. The key property that we have gained from
this transformation is that the fan-in of the product gates at level two is bounded by n
now, which is the degree of PN . However, we have no bound on the degree of the Q′ij .
Moreover, we have blown up the top fan-in a bit, but we will be able to tolerate this loss
if s is small.
In the second step, the strategy can be seen in two stages. If µ was very small, say 0.001,
then we could have taken advantage of the fact that in the representation obtained in the
first step above, the product fan-in is at most n and the support of every monomial in each
of the Q′ij is small, to prove an upper bound on the dimension of the space of projected
shifted partial derivatives of the above representation. Comparing this dimension with
that of our hard polynomial gives us our lower bound. For larger values of µ, we use
random restrictions to ensure that all the monomials of large support in Q′ij are set to zero.
At the end of such a procedure, we are back to the low support case. This step of the
proof is closely along the lines of the proof of homogeneous depth four arithmetic circuit
lower bounds in [15, 22] although in the present case, formal degree of the circuit could
be as large as n2, which is much larger than the degree of the polynomial PN . For such
large formal degrees, in general we do not even know lower bounds for non-homogeneous
depth three circuits.

We would like to point out that the first step of the proof above is similar to the homogenization
step in the proof of lower bounds for general depth three circuits with bounded bottom fan-in
by Kayal and Saha [17]. The key difference is that while the circuit they obtain at the end of

5 A monomial is said to have support support s if it depends on at most s distinct variables.
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this step is a strictly homogeneous circuit of formal degree n, we are unable to get a similar
structure. The complication stems from the fact that when Qij are not affine forms, they
could contain monomials of varying degrees. In this case, it seems difficult to obtain a strict
homogenization with a small blow up in size. We get around this deficiency by a more subtle
analysis in the second step, where we show a lower bound for a circuit which has a formal
degree much larger than the degree of the polynomial being computed, but has some added
structure. This step critically uses that the fact that the product fan-in at level two of these
circuits is at most n, and the support of every monomial in each of the Q′ij is small.

2.2 Overview of proof of Theorem 1.3

We first restate Theorem 1.3.

I Theorem 1.3 (restated). Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2,
and let F be a field of characteristic zero. Let C be the set of polynomials P in N variables
and individual degree at most k over F, with the property that P can be expressed as
P =

∑T
i=1
∏d
j=1Qij such that

1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

The construction of the hitting set is based on the well known idea of using hard functions
for derandomization. Our goal is to reduce the number of variables from N to at most Nδ

for some constant δ < 1, while maintaining the zeroness/nonzeroness of the polynomial
being tested [14, 6]. Once we have done this, we take a brute force hitting set of size
(Degree + 1)Number of variables as given by Lemma 5.5. To reduce the number of variables, we
use the framework introduced by Kabanets and Impagliazzo [14].

The key technical step of the proof is to show that for a non-zero polynomial P as defined
above, if there exists a polynomial f ∈ F[X1, X2, . . . , Xi−1, Xi+1, Xi+2, . . . , XN ] such that
Xi − f divides P , then f can also be expressed as a sum of products of polynomials in few
variables of reasonably small size. This step crucially uses a statement about complexity of
roots of polynomials computed by low depth circuits from [6]. Therefore, if f is a polynomial
which does not have a small representation as a sum of products of polynomials in few
variables, then Xi − f does not divide P . This observation guarantees that the construction
of hitting sets from hard polynomials given by [14] works for this class of circuits.

3 Notation and Preliminaries

We now introduce some notation and preliminary notions that we use in the rest of the
paper.

Computational model

In this work, we consider the model of sums of products of polynomials in few variables. More
formally, we consider representations of polynomials P (degree n in N = nO(1) variables) in

CCC 2016



35:8 Sums of Products of Polynomials in Few Variables

the form

P =
T∑
i=1

αi ·
d∏
j=1

Qij (2)

where each Qij is an arbitrary polynomial (of arbitrarily high degree) in at most s variables
and each αi is a field constant. We call this the model of ΣΠ (ΣΠ)[s] circuits. We use the
quantity Td as a measure of the size of a ΣΠ (ΣΠ)[s] circuit. Without loss of generality,
we can assume that the degree zero term in each of the Qij is either zero or one. If it is a
non-zero constant other than 1, we can extract it out and absorb it in αi. For each of the
product gates, the fan-in could be different, but we can assume without loss of generality
that all the product fan-ins are equal to d. Observe that the d could be much larger than
the degree of the polynomial P . Throughout this paper, we will be working over a field of
characteristic zero.

Some basic notations

1. For an integer i, we denote the set {1, 2, . . . , i} by [i].
2. By X, we mean the set of variables {X1, X2, . . . , XN}.
3. For a polynomial P and a positive integer i, we represent by Homi[P ], the homogeneous

component of P of degree equal to i. By Hom≤i[P ] and Hom≥i[P ], we represent the
component of P of degree at most i and at least i respectively.

4. The support of a monomial α is the set of variables which appear with a non-zero exponent
in α. We denote the size of the support of α by Supp(α).

5. Throughout the paper, we say that a function f(N) is subexponential in N if there exists
a positive real number ε, such that ε < 1 and for all N sufficiently large, f(N) < exp(N ε).

6. We say that a function f(N) is quasipolynomial in N if there exists a positive absolute
constant c, such that for all N sufficiently large, f(N) < exp(logcN).

7. In this paper, we only consider layered arithmetic circuits and we will be counting levels
from top to bottom, starting with the output gates being at level one.

8. By a ΣΠΣ∧ circuit, we refer to a depth four circuit with all the product gates at the
lowest level being replaced by powering (∧) gates. Similarly, by a ΣΠΣ ∧ ΣΠ circuit,
we mean a depth six circuit all of whose product gates at level four from the top are
powering gates.

Hitting set

Let C be a set of polynomials in N variables over a field F. Then, a set H ⊆ FN is said to be
a hitting set for the class C, if for every polynomial P ∈ C such that P is not the identically
zero polynomial, there exists a p ∈ H such that P (p) 6= 0.

Elementary symmetric polynomials

For variables X = {X1, X2, . . . , XN} and any integer 0 ≤ l ≤ N , the elementary symmetric
polynomial of degree l on variables X is defined as

ESYMl(X) =
∑

S⊆[N ],|S|=l

∏
j∈S

Xj .
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Projected shifted partial derivatives

A key idea behind the recent progress on lower bounds is the notion of shifted partial
derivatives introduced in [16]. In this paper, we use a variant of the measure, called projected
shifted partial derivatives introduced in [15] and subsequently used in [22]. Although we never
explicitly do any calculations with the measure in this paper, we provide a brief introduction
to it below since the bounds are based on it.

For a polynomial P and a monomial γ, ∂γ(P ) is the partial derivative of P with respect
to γ. For every polynomial P and a set of monomials M, ∂M(P ) is the set of partial
derivatives of P with respect to monomials inM. The space of (M,m)-projected shifted
partial derivatives of a polynomial P is defined below.

I Definition 3.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[X1, X2, . . . , XN ], set of monomials M and a positive integer m ≥ 0, the space of
(M,m)-projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def= F-span{σ(

∏
i∈S

Xi · g) : g ∈ ∂M(P ), S ⊆ [N ], |S| = m} (3)

Here, σ(P ) of a polynomial P is the projection of P on the multilinear monomials in its
support. The measure of complexity of a polynomial that we use in this paper, is the
dimension of projected shifted partial derivative space of P with respect to some set of
monomialsM and a parameter m. Formally,

ΦM,m(P ) = dim(〈∂M(P )〉m) .

From the definitions, it is straight forward to see that the measure is subadditive.

I Lemma 3.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in
F[X1, X2, . . . , XN ]. Let M be any set of monomials and m be any positive integer. Then,
for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q) .

Approximations

We will refer to the following lemma to approximate expressions during our calculations.

I Lemma 3.3 ([11]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued functions such that
(f + g) = o(a). Then,

log (a+ f)!
(a− g)! = (f + g) log a±O

(
(f + g)2

a

)
.

In the proofs in this paper, we use Lemma 3.3 only in situations where (f + g)2 will
be O(a). In this case, the error term will be bounded by an absolute constant. So, up to
constant factors, (a+f)!

(a−g)! = a(f+g). We use the symbol ≈ to indicate equality up to constant
factors.

Complexity of coefficients and homogeneous components

We now summarise two simple lemmas which are useful for our proof. The first lemma
summarises that given a circuit C for a polynomial P ∈ F[X1, X2, . . . , XN , Y ] of degree at
most d, for every 0 ≤ i ≤ d, the coefficient of Y i in P (when viewing P as a polynomial in
F[X1, X2, . . . , XN ][Y ]) can also be computed by a circuit of size not much larger than the
size of C.

CCC 2016



35:10 Sums of Products of Polynomials in Few Variables

I Lemma 3.4. Let P ∈ F[X1, X2, . . . , XN , Y ] be a polynomial of degree at most d in Y over
a field F of characteristic zero, such that P is computable by an arithmetic circuit C of size
|C|. Let

P =
d∑
i=0

Qi(X1, X2, . . . , XN ) · Y i

for polynomials Qi(X1, X2, . . . , XN ) ∈ F[X1, X2, . . . , XN ]. Then, for every i such that
0 ≤ i ≤ d, the polynomial Qi can be computed by an arithmetic circuit C ′ of size at most
|C| · (d+ 1). Moreover, if the output gate of C is a + gate, then the depth of C ′ is equal to
the depth of C. Else, the depth of C ′ is at most 1 more than the depth of C.

Proof. We can view P as a univariate polynomial of degree at most d in Y with the coefficients
coming from F(X). From the classical Lagrange interpolation, we know that the coefficient
of Y i in P can be written as an F(X) linear combination of the evaluations of P at d+ 1
distinct values of Y taken from F(X). In fact, more strongly, we can evaluate P at d + 1
values of Y all chosen from F itself, in which case the constants in the linear combination are
also from F. So, Qi can be computed by a circuit obtained from taking d+ 1 circuits each
obtained from P by substituting Y by a scalar in F, and taking their linear combination. Let
this circuit be C ′. Clearly the size of C ′ is at most (d+ 1) times the size of C. If the output
gate of C was an addition gate, then the outer addition for the linear combination can be
absorbed into it, and the depth remains the same. Else, the depth increases by one. J

The second lemma stated below essentially says that the circuit complexity of homogeneous
components of a polynomial is not much larger than the circuit complexity of the polynomial
itself.

I Lemma 3.5. Let P be a polynomial of degree at most d in N variables over a field F of
characteristic zero, such that P is computable by an arithmetic circuit C of size |C|. Then,
for every i such that 0 ≤ i ≤ d, the homogeneous component of degree i of P can be computed
by an arithmetic circuit C ′ of size at most |C| · (d+ 1). Moreover, if the output gate of C is
a + gate, then the depth of C ′ is equal to the depth of C. Else, the depth of C ′ is at most 1
more than the depth of C.

Proof. Let P ′(t) be the polynomial obtained from P by replacing every variable X in P by
X · t for a new variable t. We can view P ′ to be a univariate polynomial of degree at most d
in t with the coefficients coming from F(X). Observe that for every i such that 0 ≤ i ≤ d,
the homogeneous component of P of degree equal to i is equal to the coefficient of ti in P ′.
The proof now follows from Lemma 3.4. J

4 Proof of the lower bound

In this section, we give the proof of Theorem 1.2. We prove the lower bound for a variant of
the well known family of Nisan-Wigderson polynomials defined by Kayal and Saha [17].

4.1 Target polynomials for the lower bound
We now define the family of polynomials of degree n in N variables for which we prove
the lower bounds. The family is a variant of the Nisan-Wigderson polynomials which were
introduced by Kayal et al in [19] in the context of lower bounds for homogeneous depth four
circuits. The particular variant we use in the paper is due to Kayal and Saha [17].
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The tradeoff between the number of variables N and the degree n will be parameterized
by the parameter µ where 0 ≤ µ < 1. First we need some parameters, which we define below.
1. δ = (1− µ)/2 is a positive real number such that µ+ δ < 1.
2. γ = 2(µ+δ)+1

1−µ−δ .
3. N is chosen such that N/n is a prime number between n1+γ and 2n1+γ . Such a prime

number always exists from the Bertrand-Chebychev theorem. Without loss of generality,
we pick the smallest one.

4. ρ = (µ+ δ) logN
logn

5. D = γ+ρ
2(1+γ) · n , where D − 1 is the degree of the underlying univariate polynomials in

the definition of NWn,µ.
Let ψ be the prime number equalling N/n. We are now ready to restate the definition of
NWn,µ from [17].

I Definition 4.1 (Nisan-Wigderson Polynomials [17]). Let µ be a real number such that
0 ≤ µ < 1. For a given µ and n, let N , D, ψ be as defined above. For the set of N variables
{Xij : i ∈ [n], j ∈ [ψ]}, we define the degree n homogeneous polynomial NWn,µ as

NWn,µ =
∑

f(z)∈Fψ[z]
deg(f)≤D−1

∏
i∈[n]

Xif(i) .

From the definition, we can observe the following properties of NWn,µ.
1. The number of monomials in NWn,µ is exactly ψD = nO(D).
2. Each of the monomials in NWn,µ is multilinear.
3. Each monomial corresponds to evaluations of a univariate polynomial of degree at most

D − 1 at all points of Fψ. Thus, any two distinct monomials agree in at most D − 1
variables in their support.

We will also need the following lemma in our proof.

I Lemma 4.2. Let µ be a non-negative real number less than 1. Given q ∈ FN , µ, n, we
can evaluate the polynomial NWn,µ at q in time NO(n).

Proof. Given n and µ, we first find D, ψ as given by the choice of parameters. Once we have
D, we iterate through every monomial α of degree n in the X variables which is supported
on all the rows of the variable matrix and check if it is in the polynomial NWn,µ by trying
to find a univariate polynomial f(z) ∈ Fψ[z] such that degree of f is at most D − 1 and∏
i∈[n]Xif(i) = α. The interpolation takes only Poly(n) time, and the total number of

monomials to try is at most Nn. So, we get the lemma. J

We now proceed with the proof as outlined in Section 2.1.

4.2 Reducing the product fan-in at level two
Let P be a homogeneous polynomial in N variables of degree n which has a ΣΠ (ΣΠ)[s]

circuit of top fan-in T and product fan-in d at the second level. In other words, there exist
polynomials {Qij : i ∈ [T ], j ∈ [d]} in at most s variables each, such that

P =
T∑
i=1

αi ·
d∏
j=1

Qij . (4)

Recall that without loss of generality, we can assume that the constant term in each of the
Qij is either 0 or 1. We have the following lemma.
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I Lemma 4.3. Let F be a field of characteristic zero. Let P be a homogeneous polynomial
of degree n in N variables over F as defined above. For each i, 1 ≤ i ≤ T define the set

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1} .

Then,

P =
T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 . (5)

Proof. To prove the lemma, we will try to extract out the homogeneous part of degree n of
each product gate

∏d
j=1Qij . Together with the fact that the polynomial P is homogeneous

of degree n, we get the lemma. Every Qij with a non-zero constant term can be written as
Hom≥1[Qij ] + 1, since the constant term in each Qij is either 0 or 1. Now,

d∏
j=1

Qij =
∏
j /∈Si

Qij ×
∏
j∈Si

(Hom≥1[Qij ] + 1) . (6)

Decomposing the product
∏
j∈Si(Hom≥1[Qij ] + 1) further, we have

∏
j∈Si

(Hom≥1[Qij ] + 1] =
|Si|∑
l=0

∑
U⊆Si:|U |=l

∏
j∈U

Hom≥1[Qij ] . (7)

Now, observe that the degree of every monomial in
∏
j∈U Hom≥1[Qij ] is at least as large as the

size of U . So, for every subset U of size larger than n,
∏
j∈U Hom≥1[Qij ] is a polynomial of de-

gree strictly larger than n. Also, for any fixed l, the expression
∑
U⊆Si:|U |=l

∏
j∈U Hom≥1[Qij ]

is precisely the elementary symmetric polynomial of degree l in the set of variables {Hom≥1[Qij ] :
j ∈ Si}. Therefore,

Hom≤n
∏
j∈Si

(Hom≥1[Qij ] + 1)

 = Hom≤n
[

n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})
]
. (8)

Therefore,

Homn

 d∏
j=1

Qij

 = Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 . (9)

Summing up for all i, we get the lemma. J

The lemma above has in some sense helped us locate the monomials of degree n in the
circuit, which otherwise has a much higher formal degree. We now combine the above lemma
with the well known fact that elementary symmetric polynomial of degree l in k variables can
be computed by homogeneous ΣΠΣ∧ circuits of size at most k2O(

√
l) to obtain a ΣΠΣ ∧ ΣΠ

circut C ′ such that the fan-in of the product gates at level two is at most n. We use the
following theorem (Theorem 5.2) by Shpilka and Wigderson [31].

I Theorem 4.4 (Shpilka-Wigderson [31]). For every set of variables {Y1, Y2, . . . , Ym} and a
positive integer l, ESYMl({Y1, Y2, . . . , Ym}) can be computed by a homogeneous ΣΠΣ∧ circuit
of size m2O(

√
l).
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We now prove the following lemma.

I Lemma 4.5. Let F be a field of characteristic zero. Let P be a polynomial of degree n in
N variables over F which is computable by an ΣΠ (ΣΠ)[s] circuit C of top fan-in T and the
degree of product gates at level two being d. So, P can be represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij .

Then, P can be represented as the homogeneous component of degree n of a polynomial
computed by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :
1. The inputs to the ∧ gates are the polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Tdn2O(

√
n).

Proof. From Lemma 4.3, we know that for the set Si defined as

Si = {j : 1 ≤ j ≤ d and Hom0[Qij ] = 1}

the polynomial P can be written as

P =
T∑
i=1

αi · Homn

∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})


which is the same as

P = Homn

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n∑
l=0

ESYMl({Hom≥1[Qij ] : j ∈ Si})

 .
Observe that the polynomial

∏
j /∈Si Qij has degree at least d − |Si|. We remark that if

d− |Si| is larger than n, then such product gates do not contribute anything to the degree n
component of the polynomial and hence can be discarded without loss of generality; hence we
assume n− (d− |Si|) > 0. So, we could confine the inner sum from l = 0 to l = n− (d− |Si|),
and still preserve the degree n part of the polynomial, which is what we are interested in.
From Theorem 4.4, we know that for every 0 ≤ l ≤ n, we can compute the polynomial
ESYMl({Hom≥1[Qij ] : j ∈ Si}) by a ΣΠΣ∧ circuit of top fan-in at most d × 2O(

√
l) which

takes as input the polynomials {Hom≥1(Qij) : 1 ≤ j ≤ d}. From the homogeneity of the
circuits given by Theorem 4.4, it follows that the product gates at level two of these circuits
have fan-in at most the degree of polynomial they compute, which is at most n− (d− |Si|).
So, it follows that the polynomial

P̃ =

 T∑
i=1

αi ·
∏
j /∈Si

Qij ×
n−(d−|Si|)∑

l=0
ESYMl({Hom≥1[Qij ] : j ∈ Si})


can be computed by a ΣΠΣ∧ΣΠ circuit, with top fan-in at most Tdn ·2O(

√
n), which satisfies

the conditions in the lemma. J

Finally, given the circuit C ′′ constructed above, we can construct a circuit which computes
the polynomial P as given by Lemma 3.5. For this, observe that the monomials of degree
strictly larger than n in any of the Qij do not contribute to degree n part of P̃ . So, we can
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drop them, while still preserving the degree n part of P̃ . Therefore, the degree of P̃ can be
upper bounded by n2d. We can recover the degree n part of P̃ by interpolation which blows
up the top fan-in by a factor of at most n2d.

In this process, the fan-in of the product gates at level two remains unchanged. Strictly
speaking, inputs to the powering gate ∧ at level four may no longer be the polynomials
Hom≥1[Qij ], since in the process of interpolation, we replaced every variable Xi by Xi.t

in P̃ and looked at the resulting polynomial P̃ ′ as a univariate polynomial in t over the
function field F(X). We then evaluated P̃ ′ at sufficiently many values of t ∈ F and then took
their F linear combination. So, each of the polynomials Hom≥1[Qij ] gives rise to many other
polynomials, one each for different values of t. We will call them the siblings of Hom≥1[Qij ].
The key observation for our proof is that the set of variables in the siblings of Hom≥1[Qij ] is
the same as the set of variables in Hom≥1[Qij ]. From the lemma and the discussion above,
we have the following corollary.

I Corollary 4.6. Let F be a field of characteristic zero. Let P be a polynomial of degree n in
N variables over F which is computable by an ΣΠ (ΣΠ)[s] circuit C of top fan-in T and the
degree of product gates at level two being d. So, P can be represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij .

Then, P can be computed by a ΣΠΣ ∧ ΣΠ circuit C ′′ with the following properties :
1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤

j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Td2n32O(

√
n).

4.3 Random Restrictions
From the definition, it follows that the total number of variables in NWn,µ is N . Let the set
of all these variables be V. We now define our random restriction procedure by defining a
distribution D over subsets V ⊂ V. The random restriction procedure will sample V ← D
and then keep only those variables “alive" that come from V and set the rest to zero. We
will denote the restriction of the polynomial obtained by such a restriction as NWn,µ|V .
Observe that a random restriction also results in a distribution over all circuits computing
the polynomial NWn,µ. We denote by C|V the restriction of a circuit C obtained by setting
every input gate in C which is labelled by a variable outside V to 0.

The distribution Dp: Each variable in V is independently kept alive with a probability p.
We will choose the value of p based on the parameter µ.

4.4 Analysing the circuit under random restrictions
Let C be a ΣΠ (ΣΠ)[Nµ] circuit computing the polynomial NWn,µ. Let the top fan-in of C
be T and the product fan-in at the second level be d. So, we have the following expression:

NWn,µ =
T∑
i=1

αi ·
d∏
j=1

Qij

where each Qij depends on at most Nµ variables.
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Recall that from the choice of parameters δ = (1− µ)/2. Let s be a parameter, which we
later set such that s = Θ(

√
n). If T · d ≥ N δ

4 s, then we already have the desired lower bound
of nΩ(

√
n) on the size of C and we are done. Therefore, for the rest of this discussion, we will

assume that T · d ≤ N δ
4 s. We now apply the transformation to C given by Corollary 4.6 to

obtain a ΣΠΣ ∧ ΣΠ circuit C ′′, which has the following properties:
1. The inputs to the ∧ gates are the siblings of polynomials {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤

j ≤ d}
2. The fan-in of the × gates at the second level from the top is at most n
3. The top fan-in of C ′′ is at most Td2n32O(

√
n).

We now analyse the effect of the random restrictions on the circuit C ′′. We will choose a
parameter p = N−µ−δ and keep every variable alive with a probability p. The circuit C ′′
can be represented as

C ′′ =
∑
u

∏
v

Duv .

Here, each Duv is a sum of powers of the siblings of Hom≥1[Qij ]. Our goal is to argue that
under random restrictions, all the monomials in each of the Duv are of small support (support
at most s).

For any polynomial P in Nµ variables and any integers t, t0 such that t0 < t, observe
that P t can be written as

P t = P0 +
∑
α

α · Pα

where P0 is the part of P consisting of monomials of support strictly less than t0. The inner
sum is over all multilinear monomials α of support equal to t0. Such a decomposition may not
be unique, but for this application, it would suffice to work with any one such decomposition.
The number of such monomials α is at most

(
Nµ

t0

)
. The probability that one such monomial

survives the random restriction procedure is equal to pt0 . So, the expected number of such
multilinear monomials α surviving the random restriction procedure is at most

(
Nµ

t0

)
· pt0 .

The crucial observation is that if no such monomials survive, then only the monomials in P0
survive, all of which have support at most t0 − 1.

Now, observe that each of the Duv are a sum of powers of the siblings of polynomials
in the set {Hom≥1[Qij ] : 1 ≤ i ≤ T, 1 ≤ j ≤ d}. Define B to be the set of all multilinear
monomials of support equal to s, supported entirely on variables in any of the polynomials
Qij for some 1 ≤ i ≤ T, 1 ≤ j ≤ d. From the discussion in the paragraph above, the following
observation follows.

I Observation 4.7. Let the polynomials Duv, Qij and the set B be as defined above. Then,
|B| ≤ T · d ·

(
Nµ

s

)
If none of the monomials in B survive under some random restrictions, then each of the
polynomials D′uv obtained as a restriction of Duv has all monomials of support at most s.

Proof. The bound on the size trivially follows from the fact that each of the Qij depends on
at most Nµ variables. For the second item, observe that each of the Duv is a sum of powers
of siblings of the Hom≥1[Qij ] and all the siblings are supported on the same set of variables.
If all the monomials in the set B are set to zero, then the surviving monomials in any power
of any of the siblings of Hom≥1[Qij ] has support at most s. J

We now estimate the probability that at least one of the monomials in the set B survives
the random restriction procedure. We have the following lemma.
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I Lemma 4.8. Let δ be a positive real number such that δ = (1− µ)/2 and let p = N−µ−δ.
Then

PrV←Dp [|B|V | ≥ 1] ≤ N−3/4·δ·s .

Proof. We know that

|B| ≤ T · d ·
(
Nµ

s

)
and the probability that any fixed monomial in B survives the random restriction procedure
is at most ps. So

EV←Dp [|BV |] ≤ T · d ·
(
Nµ

s

)
· ps .

Now, observing that the value of T · d is at most N δ
4 s and p = N−µ−δ, the expected value is

at most

N
δ
4 s

(
Nµ

s

)
·N−(µ+δ)s ≤ N−3/4·δ·s .

The lemma then follows by Markov’s inequality. J

As a corollary of Lemma 4.8 and Observation 4.7, we get the following lemma.

I Lemma 4.9. Let δ be a positive real number such that δ = (1− µ)/2 and let p = N−µ−δ.
Then with probability at least 1−N−3/4·δ·s over random restrictions V ← Dp, the polynomial
computed by the circuit C ′′|V can be written as

∑T ′

u=1
∏n
v=1D

′
uv, where each of the monomials

in each of the polynomials D′uv has support at most s.

4.5 Upper bound on the complexity of C
In order to upper bound the dimension of the projected shifted partial derivatives (under
random restrictions) of the ΣΠ (ΣΠ)[s] circuit C, Corollary 4.6 implies that it suffices to upper
bound the dimension of the space of projected shifted partial derivatives of the ΣΠΣ ∧ ΣΠ
circuit C ′′ given by Corollary 4.6. In some sense, C ′′ is more structured than C and this lets
us prove a better upper bound.

Recall that we are under the assumption that for the circuit C, the product of the top
fan-in and the product fan-in at level two is at most N δ

4 ·s, else we are already done. From
Lemma 4.9, we know that with a high probability, under random restrictions, we are left
with a circuit of the form

∑T ′

u=1
∏n
v=1D

′
uv where each of the monomials in each of the

polynomials D′uv has support at most s. The upper bound on the complexity of the projected
shifted partial derivatives of

∑T ′

u=1
∏n
v=1D

′
uv then just follows from the upper bound for

homogeneous depth four circuits of bounded bottom support proved in [15, 22]. We restate
the bound from [22].

I Lemma 4.10. Let C be a depth 4 circuit with the fan-in or product gates at level two
bounded by n, the bottom support bounded by s and computing a polynomial in N variables.
LetM be a set of monomials of degree equal to r and let m be a positive integer. Then,

ΦM,m(C) ≤ Top fan-in(C)
(
n+ r

r

)(
N

m+ rs

)
for any choice of m, r, s,N satisfying m+ rs ≤ N/2.
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The upper bound for ΣΠ (ΣΠ)[Nµ] circuits, follows easily form the above lemma after
random restrictions, and we formalize this in the lemma below.

I Lemma 4.11. Let µ be a positive real number such that 0 ≤ µ < 1. Let δ = (1− µ)/2 and
let p = N−µ−δ and let F be a field of characteristic zero. Let P be a polynomial of degree n
in N variables over F which is computed by an ΣΠ (ΣΠ)[Nµ] circuit C of top fan-in T and
degree of product gates at level two at most d, i.e P can represented as

P =
T∑
i=1

αi ·
d∏
j=1

Qij

where αi are field constants. Let m and r be positive integers satisfying m+ rs ≤ N/2 and
M be any subset of multilinear monomials of degree equal to r. If Td ≤ N

s·δ
4 , then with

probability at least 1−N−3/4·δ·s over random restrictions V ← Dp,

ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N

m+ rs

)
·
(
n+ r

r

)
.

Proof. The lemma follows immediately from Corollary 4.6, Lemma 4.9 and Lemma 4.10. J

4.6 Nisan-Wigderson polynomial under random restrictions
To complete the proof of Theorem 1.2, we need a lower bound on the dimension of the space
of projected shifted partial derivatives of the polynomial NWn,µ, under random restrictions.
To this end, we will use the lower bound proved by Kayal and Saha [17]. We first enumerate
our choice of parameters. Recall that δ = (1− µ)/2 is a positive real number.
1. γ = 2(µ+δ)+1

1−µ−δ
2. N is such that N/n is set equal to the smallest prime number between n1+γ and 2n1+γ .
3. ρ = (µ+ δ) logN

logn

4. D = γ+ρ
2(1+γ) · n , where D − 1 is the degree of the underlying univariate polynomials in

the definition of NWn,µ.
5. r, s which are the order of derivative and the bound on bottom support of the circuit

after random restrictions respectively, are chosen such that r = ε1 ·
√
n, s = ε2 ·

√
n. Here,

ε1 and ε2 are small enough positive real numbers satisfying ε1 · ε2 = 0.001n.
6. m = N

2 (1− r lnn
n ) is the degree of the shifts.

7. p = N−(µ+δ) is the probability with which each variable is independently kept alive.
8. M is the set of all multilinear monomials of degree r. We take partial derivatives with

respect to monomials in this set.
We are now ready to state the lower bound on the dimension of projected shifted partial
derivatives as in [17].

I Lemma 4.12 (Kayal-Saha [17]). Let NWn,µ be Nisan-Wigderson polynomials as defined in
Definition 4.1. Let F be any field of characteristic zero. Then, for the choice of parameters
defined above

ΦM,m(NWn,µ|V ) ≥ 1
nO(1)min

(
pr

4r ·
(
N

r

)
·
(
N

m

)
,

(
N

m+ n− r

))
with probability at least 1− 1

nθ(1) over random restrictions V ← Dp.
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4.7 Wrapping up the proof of Theorem 1.2
From Lemma 4.12 and Lemma 4.9, we know that with a non-zero probability over the random
restrictions V from the distribution Dp, the following two conditions hold.
1. ΦM,m(NWn,µ|V ) ≥ 1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
.

2. ΦM,m(C|V ) ≤ Td2n3 · rs · 2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

)
.

If C computed the polynomial NWn,µ, then

Td2n3 · rs ≥
1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

) .

From the calculations in Appendix A, it follows that for our choice of parameters, the
ratio is at least exp(

√
n logn). So, we have the following theorem.

I Theorem 4.13. Let µ be an absolute constant such that 0 ≥ µ < 1 and F be a field of
characteristic zero. For 1 ≤ i ≤ T and 1 ≤ j ≤ d, if there exist polynomials Qij, each
dependent on only s = Nµ variables, such that

NWn,µ =
T∑
i=1

d∏
j=1

Qij .

Then

T · d ≥ nΩµ(
√
n) .

As a remark, we mention here that the lower bound above also holds for any translation
NWn,µ(X + a) of the polynomial NWn,µ(X). This is because the highest degree term of
NWn,µ(X + a) equals the polynomial NWn,µ(X) and from Lemma 3.5, the homogeneous
components of a polynomial computable by small sized ΣΠ (ΣΠ)[s] circuits also have small
sized ΣΠ (ΣΠ)[s] circuits. We leave the details to the interested reader.

5 Application to polynomial identity testing

In this section, we prove Theorem 1.3. We are interested in identity testing for ΣΠ (ΣΠ)[s]

circuits, i.e for polynomials in N variables {X1, X2, . . . , XN} which can be expressed in the
form

P =
T∑
i=1

d∏
j=1

Qij

such that
1. The individual degree in P of every variable is at most k
2. Each Qij depends on at most s variables
For the case of this application, we will think of k, T being polynomial in (logN) and s being
N1/2−ε for a positive constant ε. Observe that the bound on individual degree lets us upper
bound the total degree of the polynomials by Nk.

We describe the construction of the hitting set in Section 5.2 and prove its correctness in
Section 5.3. We go over some preliminaries that we need in our proof in the next section.
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5.1 Some preliminaries
In the following lemma, we prove some properties of the model of ΣΠ (ΣΠ)[s] circuits, which
will be useful in the proof of the identity testing result.

I Lemma 5.1. Let F be a field of characteristic zero. Let P be a non-zero polynomial in N
variables and individual degree at most k over F, which is computed by a ΣΠ (ΣΠ)[s] circuit
C of top fan-in T and product fan-in d at level two, i.e P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that for each i ∈ [T ] and j ∈ [d], Qij depends on at most s variables. Then, the following
are true.
1. For every variable y and integer 1 ≤ j ≤ k, ∂

jP
∂yj can be computed by a circuit of the form

∂jP

∂yj
=

T ′∑
i=1

d∏
j=1

Q′ij

where T ′ ≤ T · (k + 1)2 and each of the polynomials Q′ij depends on at most s variables.
2. For any a ∈ FN , P (X + a) can be computed by a circuit of the form

P (X + a) =
T∑
i=1

d∏
j=1

Q′′ij

where each of the polynomials Q′′ij depends on at most s variables.

Proof. The proof of the second item is immediate from the definitions. The only thing that
changes due to a translation is the number of monomials in the Qij . The number of variables
that each Qij depends on remains unchanged, and so does the fan-in of the top sum gate
and the product gates at level two.

We now prove the first item. Let the set of variables in P be X = X ′ ∪{y} where X ′ is of
size N − 1. Since the individual degree of P is at most k, we can write P =

∑k
i=0 Ci(X ′) · yi.

Here, Ci(X ′) are polynomials only in the X ′ variables and are the coefficient of yi, when
viewing P as an element of F[X ′][y]. Now, for every 0 ≤ i ≤ k, we can compute each of
Ci by a ΣΠ (ΣΠ)[s] circuit with top fan-in at most T · (k + 1) by interpolation as given by
Lemma 3.4. All the partial derivatives of P with respect to y are linear combinations of the
terms of the form Cj1 · yj2 . And so, the result follows. J

We will also need the following simple fact about polynomials.

I Lemma 5.2. Let F be a field of characteristic zero. Let R ∈ F[y] be a non-zero polynomial
of degree at most t over the field F. Then, for every a ∈ F such that R(a) = 0, there exists a
j such that 0 ≤ j ≤ t− 1 and ∂jR

∂yj (a) = 0 and ∂j+1R
∂yj+1 (a) 6= 0.

Proof. Let the degree of R in y be equal to t′. This means that the coefficient of highest
degree term yt

′ in R is non-zero. Let us call the coefficient of yt′ in R(y) as Ct′ . We know
that Ct′ is nonzero. Consider j = t′ − 1. The lemma immediately follows. J

We will crucially use the following result of Dvir, Shpilka, Yehudayoff [6] in the analysis
of the hitting set constructed in this paper.
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I Lemma 5.3 (Dvir, Shpilka, Yehudayoff [6]). For a field F, let P ∈ F[X1, X2, . . . , XN , Y ] be
a non-zero polynomial of degree at most k in Y . Let f ∈ F[X1, X2, . . . , XN ] be a polynomial
such that P (X1, X2, . . . , XN , f) = 0 and ∂P

∂Y (0, 0, . . . , 0, f(0, 0, . . . , 0)) 6= 0. Let

P =
k∑
i=0

Ci(X1, X2, . . . , XN ) · yi .

Then, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of degree at most t
such that

Hom≤t[f(X1, X2, . . . , XN )] = Hom≤t[Rt(C0, C1, . . . , Ck)] .

A key technical idea in the proof will be the notion of Nisan-Wigderson designs introduced
in [26]. We will use the following lemma.

I Lemma 5.4 (Nisan-Wigderson [26]). For every a, b ∈ N, b < 2a, there exists a family of
sets S1, S2, . . . , Sb ⊆ {1, 2, . . . , l} such that
1. l ∈ O(a2/ log b)
2. for all i, |Si| = a

3. for all i 6= j, |Si ∩ Sj | ≤ log b
Moreover, such a set family can be constructed in time polynomial in b and 2l.

We will also use the following lemma of Alon [4] very crucially in our proof.

I Lemma 5.5 (Combinatorial Nullstellensatz [4]). Let P be a non-zero polynomial of individual
degree at most d in N variables over a large enough field F. Let S be an arbitrary subset of
F of size d+ 1. Then, there exists a point p in SN such that P (p) 6= 0.

5.2 Blackbox PIT for ΣΠ (ΣΠ)[s] circuits
In this section, we prove the following theorem.

I Theorem 5.6. Let c and µ be arbitrary constants such that c > 0 and 0 ≤ µ < 1/2, and
let F be a field of characteristic zero. Let C be the set of polynomials P in N variables and
individual degree at most k over F, with the property that P can be expressed as

P =
T∑
i=1

d∏
j=1

Qij

such that
1. T < logcN
2. k < logcN
3. d < N c

4. each Qij depends on at most Nµ variables
Then, there exists a constant ε < 1 dependent only on c and µ, such that there is a hitting
set of size exp(N ε) for C which can be constructed in time exp(N ε).

From our proof, it also follows that if each of polynomial Qij depends only on logO(1)N

variables, then both the size of the hitting set and the time to construct it, are upper bounded
by a quasipolynomial function in N . In the rest of the section, we prove Theorem 5.6. We
start by describing the construction of the hitting set H.
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5.2.1 Construction of hitting sets for ΣΠ (ΣΠ)[Nµ] circuits for
0 ≤ µ < 1/2

Given µ such that 0 ≤ µ < 1/2, we pick the parameter µ′ such that 0 < µ′ < 1 and 2µ
µ′ is a

positive constant strictly smaller than 1. We construct a family of Nisan-Wigderson designs
as described in Lemma 5.4 with the following parameters:
1. b, the number of sets is set equal to N .
2. a, the size of each of the sets Si is set equal to N

µ

µ′ log
1
µ′ N .

3. l, the size of the universe is chosen large enough in order to satisfy the hypothesis of
Lemma 5.4. From Lemma 5.4, it follows that we can pick l which is not too large
(l ∈ O(a2/ log b)). For the above chosen values of a, b, there is a choice of l such that l is
at most N

2µ
µ′ log

2
µ′−1

N .
Recall that our goal is to construct a hitting set for ΣΠ (ΣΠ)[Nµ] circuits. Observe that the
choice of parameters l, a, b satisfy the hypothesis of Lemma 5.4. So, we get a collection of N
subsets S1, S2, . . . , SN of {1, 2, 3, . . . , l} satisfying
1. for all 1 ≤ i ≤ N , |Si| = a

2. for all 1 ≤ i < j ≤ N , |Si ∩ Sj | ≤ logN
Moreover, these sets can be constructed in time polynomial in b and 2l. We identify the
set {1, 2, 3, . . . , l} with the set of new variables Y = {Y1, Y2, . . . , Yl}. Before we proceed
further, we need some notation. We will pick δ = (1− µ′)/2 to be a non-negative constant.
Given, a, µ′, δ, we define γ = 2(µ′+δ)+1

1−(µ′+δ) . Then, we define q to be the smallest prime number
between (a/2)

1+γ
2+γ and 2 · (a/2)

1+γ
2+γ . Also, we set a′ to be equal to (a/2)

1
2+γ . Observe that

a/2 ≤ a′q ≤ a.
For each i, such that 1 ≤ i ≤ N , let Si′ be an arbitrary subset of Si of size equal to a′q.

For brevity, we rename the sets S′i as Si 6. Let ρ = (µ′ + δ) log a′q
log a′ and D = γ+ρ

2(1+γ) · a
′.

Often for the ease of notation we will identify the set Si of {1, 2, . . . , l} with the set
of variables {Yj : j ∈ Si}. We will think of the variables {Yj : j ∈ Si} to be arranged
in a a′ × q matrix V (i), with the variables placed in the matrix in some order. For every
i ∈ {1, 2, 3, . . . , N}, we define NWa′,µ′(Si) as

NWa′,µ′(Si) =
∑

f(z)∈Fq [z]
deg(f)≤D−1

∏
j∈[a′]

V (i)jf(j) .

For a point p = (p1, p2, . . . , pl) ∈ Fl, we denote by NWa′,µ′(Si)|p, the evaluation of
NWa′,µ′(Si) when the variable Yj is set to pj .

Let G be an arbitrary subset of F of size Nka′+ 1. We define the hitting set H as follows.

I Definition 5.7 (Definition of the hitting set H).
H =

{
(NWa′,µ′(S1) | p,NWa′,µ′(S2) | p, . . . , NWa′,µ′(SN ) | p) : p ∈ Gl

}
.

We now proceed to prove the correctness of the construction. We first prove the following
lemma which shows that H is explicit and has the correct size as per Theorem 5.6.

I Lemma 5.8. The set H as defined in Definition 5.7 has size at most (Nka′ + 1)l and all
its elements can be enumerated in time aa′ · (Nka′ + 1)l ·NO(1).

6 We have replaced the family {S1, S2, . . . , SN} by the set family {S′
1, S′

2, . . . , S′
N} such that for each

i ∈ [N ], S′
i ⊆ Si. Observe that the design based properties of the original system continue to hold. The

only thing that changes is that the size of S′
i could be smaller than the size of Si, by at most a factor 2.
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Proof. The size of the set H is equal to |G|l = (Nka′ + 1)l. The set H can be enumerated
by enumerating through the points p in Gl in some natural order (say lexicographic order)
and evaluating the tuple (NWa′,µ′(S1)|p,NWa′,µ′(S2)|p, . . . , NWa′,µ′(SN )|p) at each of these
points. For every point p and subset Si, the polynomial NWa′,µ′(Si) can be evaluated in
time at most aa′ × Poly(N) from Lemma 4.2. So, the second part of the lemma follows. J

Observe that for our choice of parameters, the above bounds on the size and the time of
enumeration are bounded by a function which is subexponential in N .

We now show that for every non-zero polynomial P in the class C, as defined in the
statement of Theorem 5.6, there exists a point p ∈ H, such that P (p) is non-zero. We show
this in Lemma 5.9 below. That will complete the proof of Theorem 5.6.

5.3 Correctness of the construction
For the rest of this section, we denote Nµ by s.

I Lemma 5.9. Let P be a non-zero polynomial in the set C as defined in the statement of
Theorem 5.6, and let H be the set defined in Definition 5.7. Then, there is a point p in the
set H such that P (p) 6= 0.

Proof. We define

Pi(X,Y ) := P (NWa′,µ′(S1), NWa′,µ′(S2), . . . , NWa′,µ′(Si), Xi+1, Xi+2, . . . , XN )

to be the polynomial obtained from P by substituting the variables Xj by NWa′,µ′(Sj), for
every 1 ≤ j ≤ i.

From the construction of our hitting set, it follows that it would suffice to argue that the
polynomial PN (X,Y ) is non-zero. If this was true, then the lemma above will follow from
Lemma 5.5, since the degree of any variable P (X,Y ) is at most Nka′.

We proceed via contradiction. If possible, let PN (X,Y ) be identically zero. Since
P = P0(X,Y ) is non-zero to start with, by a hybrid argument it follows that there is an
index i, such that Pi(X,Y ) is non-zero while Pi+1(X,Y ) is identically zero. Observe that Pi
is a polynomial in the variables Y and Xi+1, Xi+2, . . . , XN . In going from Pi to Pi+1, we
substituted the variable Xi+1 by the polynomial NWa′,µ′(Si+1). Since Pi(X,Y ) is non-zero
by assumption above, there exists a substitution c of all variables apart from {Yj : j ∈ Si+1}
and Xi+1, which keeps the polynomial non-zero. Let the polynomial resulting after this
substitution be P ′i . From the definitions, it follows that

P ′i = P (NWa′,µ′(S1)|c,NWa′,µ′(S2)|c, . . . , NWa′,µ′(Si)|c,Xi+1, Xi+2|c, . . . ,XN |c) .

Observe that each of the polynomials NWa′,µ′(Sj)|c depends only on the variables in the
set Sj ∩Si+1. From the properties of Nisan-Wigderson designs, and the choice of parameters,
the size of this intersection is at most logN . From the definition of Pi and the choice of c,
P ′i is not identically zero. We will think of P ′i as a polynomial in Xi+1 with the coefficients
being polynomials in the variables in the set {Yj : j ∈ Si+1}. Now, we know that the the
polynomial P ′i+1 obtained by substituting Xi+1 by NWa′,µ′(Si+1) is identically zero. Hence,
it must be the case that Xi+1 −NWa′,µ′(Si+1) is a factor of P ′i .

To proceed further, we need the following claim.

I Claim 5.10. P ′i as defined above can be represented as

P ′i =
T∑
r=1

d∏
j=1

Q′rj

such that each of the polynomials Q′rj depends on at most s logN variables.
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Proof. Recall that P can be represented as

P =
T∑
i=1

d∏
j=1

Qij

where each Qij is a polynomial in at most s = Nµ variables. In going from P to P ′i , we have
substituted each of the variables outside the set {Yj : j ∈ Si+1}∪{Xi+1} by either a constant
or by the polynomial NWa′,µ′(Sj)|c (which is a polynomial in at most |Sj ∩ Si+1| ≤ logN
variables) for some j. In either case, after substitution, the polynomials Q′rj obtained from
Qrj depends on at most s logN variables, since Qrj depended on at most s variables. This
completes the proof of the claim. J

Moreover, since the individual degree of variables in P is at most k, the individual degree
of Xi+1 in P ′i is at most k. The goal now is to invoke Lemma 5.3, which would imply that
NWa′,µ′(Si+1) also has a small circuit as a sum of product of polynomials in few variables,
and together with the lower bound from Theorem 4.13, this would lead to a contradiction.
We essentially follow this outline. Formally, we use the following claim to complete the proof
of Lemma 5.9. We defer the proof of the claim to the end.

I Claim 5.11. If (Xi+1 −NWa′,µ′(Si+1)) divides P ′i , then NWa′,µ′(Si+1) can be written as

NWa′,µ′(Si+1) =
I′∑
r=1

d′∏
j=1

Γrj

where
1. I ′ ≤ (da′2 + 1) ·

(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1
,

2. d′ ≤ d · a′, and
3. each Γrj depends on at most s logN variables.

From our choice of parameters, recall that

a = Nµ/µ′ · log1/µ′ N

and

s = Nµ .

Therefore, s logN ≤ Nµ · logN ≤ aµ
′ . To complete the proof, we observe that by

Theorem 4.13, we must have

I ′d′ ≥ (a′)Ω(
√
a′) .

But, for our choice of parameters,
1. I ′ ≤ (da′2 + 1) ·

(
k+a′
k

)
×
(
T ·(k+1)3+a′

a′

)k+1
≤ daO(Tk4) ≤ da′

O(Tk4) (since a and a′ are
polynomially related)

2. d′ ≤ da′

This implies that I ′d′ ≤ d2aO(Tk4). From our choice of parameters, s logN < aµ
′ and

Tk4 + 2 log d ∈ o(
√
a′). This contradicts that I ′d′ ≥ (a′)Ω(

√
a′). This completes the proof of

Lemma 5.9 assuming Claim 5.11. J

We now give a proof of Claim 5.11.
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Proof of Claim 5.11. From Claim 5.10, we know that

P ′i =
T∑
r=1

d∏
j=1

Q′rj

such that each Q′rj depends on at most s logN variables. Since P ′i is not identically zero
and NWa′,µ′(Si+1) is a root of P ′i , it follows from Lemma 5.2 that there is an integer λ such
that 0 ≤ λ ≤ k − 1 and,

∂λP ′i
∂Xλ

i+1
(NWa′,µ′(Si+1)) = 0

and

∂λ+1P ′i
∂Xλ+1

i+1
(NWa′,µ′(Si+1)) 6= 0 .

From Lemma 5.1 it follows that P̃ ′i = ∂λP ′i
∂Xλ

i+1
can also be expressed as

P̃ ′i =
T ′∑
r=1

d∏
j=1

Q̃ij

where T ′ ≤ T · (k + 1)2 and each of the Q̃rj depends on at most s logN variables.
Observe that, P̃ ′i vanishes when NWa′,µ′(Si+1) is substituted for Xi+1, while its derivative

with respect to Xi+1 does not vanish identically at Xi+1 = NWa′,µ′(Si+1). So, in particular,
there is a substitution of the Y variables where the derivative ∂P̃ ′

i

∂Xi+1
is nonzero. Since

the class of ΣΠ (ΣΠ)[s] circuits is closed under translations of variables (from item 2 in
Lemma 5.1), we can assume without loss of generality that the derivative is nonzero when
all the variables in Y are set to zero. Also observe that by this variable translation, we have
actually obtained a polynomial NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1). Moreover, the degree of
NW ′a′,µ′(Si+1) is equal to a′ and the homogeneous component of degree a′ of NW ′a′,µ′(Si+1)
is equal to NWa′,µ′(Si+1). Let the polynomial obtained after the variable translation from
P̃ ′i as P̃ ′′i . At this point, the hypothesis of Lemma 5.3 is satisfied by P̃ ′′i .

Let P̃ ′′i =
∑k
j=0 Cj(Y ) ·Xj

i+1. Here, Cj(Y ) is a polynomial only in the Y variables and is
the coefficient of Xj

i+1, when viewing P̃ ′′i as an element of F[Y ][Xi+1]. From Lemma 3.4, we
know that each of the polynomials Cj can be expressed as a polynomial of the form

Cj =
Tj∑
r=1

d∏
l=1

Q′′rl

where Tj ≤ T ′ · (k + 1) ≤ T · (k + 1)3 and each Q′′rl depends on at most s logN variables.
Hence, by Lemma 5.3, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1]

of degree at most t such that

Hom≤t[NW ′a′,µ′(Si+1)] = Hom≤t[Rt(C0, C1, . . . , Ck)] .

The goal now is to obtain a representation of NWa′,µ′(Si+1) as a sum of products of
polynomials in few variables and show that this contradicts the lower bound in Theorem 4.13.
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NW ′a′,µ′(Si+1) is a polynomial of degree at most a′. So, there is a polynomial Ra′ of degree
at most a′ in k + 1 variables such that

NW ′a′,µ′(Si+1) = Hom≤a
′
[Ra′(C0, C1, . . . , Ck)] .

From the discussion on the relation between NW ′a′,µ′(Si+1) from NWa′,µ′(Si+1), we also
know that

NWa′,µ′(Si+1) = Homa′ [NW ′a′,µ′(Si+1)] = Homa′ [Ra′(C0, C1, . . . , Ck)] .

Since Ra′ is a polynomial in k + 1 variables of degree a′, the number of monomials in Ra′ is
at most

(
a′+k+1
k+1

)
. Therefore, we can represent Ra′(C0, C1, . . . , Ck) as a sum of products of

the Cj ’s, with the sum fan-in at most
(
a′+k+1
k+1

)
and the product fan-in at most a′. Moreover,

each of the product gates in this representation takes the polynomials Cj ’s as inputs. We
know that each Cj can be written as

Cj =
Tj∑
r=1

d∏
l=1

Q′′rl

where each Q′′rl is a polynomial in at most s logN variables, and the top sum fan-in Tj is at
most T · (k + 1)3. For any t, the polynomial Ctj , has a similar representation with the top
sum fan-in at most

(
T ·(k+1)3+t

t

)
. Therefore, any product of fan-in at most a′ in the Cj ’s can

be written as a sum of product of polynomials in at most s logN variables, with top fan-in
at most(

T · (k + 1)3 + a′

a′

)k+1

since each Cj is raised to a power of at most a′ and there are k + 1 such Cj ’s. Therefore,
Ra′(C0, C1, . . . , Ck) can be written as

Ra′(C0, C1, . . . , Ck) =
I∑
r=1

d′∏
j=1

Γ′rj

such that
1. I ≤

(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1

2. d′ ≤ d · a′
3. Each Γ′rj depends on at most s logN variables
We would now like to extract the homogeneous part of degree a′ of Ra′(C0, C1, . . . , Ck), which
we know is equal to NWa′,µ′(Si+1). We do this by a standard application of Lemma 3.5.
Since we are interested only in the homogeneous part of degree a′, we can assume without
loss of generality that each of the polynomials Γ′rj is of degree at most a′ (we can discard
all monomials of degree larger than a′ in each of the Γ′rj , since they do not contribute to
the homogeneous component of degree a′ of Ra′(C0, C1, . . . , Ck) ). Hence, the degree of
Ra′(C0, C1, . . . , Ck) is upper bounded by da′ · a′. So, from Lemma 3.5, we can extract the
homogeneous component of degree a′ of Ra′(C0, C1, . . . , Ck) by blowing up the top fan-in by
a factor of at most da′2 + 1. Hence, NWa′,µ′(Si+1) can be expressed as

NWa′,µ′(Si+1) =
I′∑
r=1

d′∏
j=1

Γrj

where
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1. I ′ ≤ (da′2 + 1) ·
(
k+a′+1
k+1

)
×
(
T ·(k+1)3+a′

a′

)k+1
,

2. d′ ≤ d · a′, and
3. each Γrj depends on at most s logN variables. J

We remark that if the value of s was logO(1)N to start with, the same proof as above
goes through with l and a being set to polynomials of sufficiently high degree in logN . The
size of the hitting set and the time to construct it in this case are upper bounded by a
quasipolynomial function in N .

6 Open problems

We conclude with some open problems.
1. An intriguing open question is to obtain PIT for ΣΠ (ΣΠ)[s] circuits without the restriction

on the individual degree. The strategy in this paper relies on hardness randomness
tradeoffs for bounded depth circuits [6]. The tradeoffs in [6] crucially use the fact that
the individual degree is bounded.

2. Another related question would be to get any non-trivial PIT (even subexponential) for
the sum of constant many products of degree two polynomials.

3. A related question of interest is to obtain non-trivial PIT for sums of products of
polynomials in few variables with bounded individual degree but without a restriction on
the top fan-in.

4. It would also be interesting to understand if one could obtain any non-trivial PIT for
slightly non-multilinear depth four circuits (say individual degree at most 2) with bounded
top fan-in. A natural strategy for this question would be to reduce it to the case of
ΣΠ (ΣΠ)[s] circuits by either expanding out the polynomials Qij which depend on too
many variables or use a partial derivative like trick, as in [5]. The immediate challenge in
this case is that the top fan-in seems to increase by any of these tricks and the calculations
in this paper seem to not work out.
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A Calculations

Td2n3 · rs ≥
1

nO(1) min
(
pr

4r ·
(
N
r

)
·
(
N
m

)
,
(

N
m+n−r

))
2O(
√
n) ·
(

N
m+rs

)
·
(
n+r
r

) .

We first estimate the ratio ( N
m+n−r)

( N
m+rs)·(n+r

r ) :

(
N

m+n−r
)(

N
m+rs

)
·
(
n+r
r

) ≥ (m+ rs)!
(m+ n− r)!

(N −m− rs)!
(N −m− (n− r))! ·

(
r

e(n+ r)

)r

Here we use the fact that
(
n+r
r

)
≤
(
e(n+r)
r

)r
. Now, approximating the ratios using Lemma 3.3

and substituting m = N
2 (1− r lnn

n ), we get

(
N

m+n−r
)(

N
m+rs

)
·
(
n+r
r

) ≥
(
N −m
m

)n−r−rs
·
(

r

e(n+ r)

)r
≥ exp

(
r lnn
n
· (n− r − rs)− r ln e(n+ r)

r

)

Since r = Θ(
√
n), we get that the ratio is at least exp

(
r lnn((n− r − rs)/n− 1

2 + o(1))
)
,

which is exp(Ω(
√
n lnn)).
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Next we estimate the ratio
(
pr

4r ·(Nr )·(Nm)
)

( N
m+rs)·(n+r

r ) :(
pr

4r ·
(
N
r

)
·
(
N
m

))(
N

m+rs
)
·
(
n+r
r

) ≥ pr

4r ·
(m+ rs)!

m! · (N −m− rs)!
(N −m)! · N !

(N − r)! ·
n!

(n+ r)!

≥ pr

4r ·
(

m

N −m

)rs
·
(
N

n

)r
≥ pr

4r ·
(

1− 2.01r lnn
n

)rs
·
(
N

n

)r
≥ 1

4r exp
(
−r(µ+ δ) lnN − 2.01r2s

lnn
n

+ r ln(N/n)
)

Here, we used Lemma 3.3 in the second step and substituted p = N−(δ+µ) in the last step.
Now, substituting 2n2+γ ≥ N ≥ n2+γ , the exponent is at least

r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ)) .

This is at least

r lnn(−(µ+ δ)(2 + γ)− 2.01rs/n+ (1 + γ)) .

Now, plugging back the value of γ, the exponent is at least (2− 2.01rs/n)r lnn. We have
chosen rs such that rs/n < 0.001. Therefore, the ratio we set out to lower bound is at least
exp(Ω(

√
n lnn)).
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