24,637 research outputs found

    Curcumin-loaded zeolite as anticancer drug carrier: Effect of curcumin adsorption on zeolite structure

    Get PDF
    In this work we used a combination of different techniques to investigate the adsorption properties of curcumin by zeolite type A for potential use as an anticancer drug carrier. Curcumin is a natural water-insoluble drug that has attracted great attention in recent years due to its potential anticancer effect in suppressing many types of cancers, while showing a synergistic antitumor effect with other anticancer agents. However, curcumin is poorly soluble in aqueous solutions leading to the application of high drug dosage in oral formulations. Zeolites, inorganic crystalline aluminosilicates with porous structure on the nano- and micro-scale and high internal surface area, can be useful as pharmaceutical carrier systems to encapsulate drugs with intrinsic low aqueous solubility and improve their dissolution. Here, we explore the use of zeolite type A for encapsulation of curcumin, and we investigate its surface properties and morphology, before and after loading of the anticancer agent, using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and UV-vis spectroscopy. Results are used to assess the loading efficiency of zeolite type A towards curcumin and its structural stability after loading

    Dibucaine in Ionic-Gradient Liposomes: Biophysical, Toxicological, and Activity Characterization

    Get PDF
    Administration of local anesthetics is one of the most effective pain control techniques for postoperative analgesia. However, anesthetic agents easily diffuse into the injection site, limiting the time of anesthesia. One approach to prolong analgesia is to entrap local anesthetic agents in nanostructured carriers (e.g., liposomes). Here, we report that using an ammonium sulphate gradient was the best strategy to improve the encapsulation (62.6%) of dibucaine (DBC) into liposomes. Light scattering and nanotracking analyses were used to characterize vesicle properties, such as, size, polydispersity, zeta potentials, and number. In vitro kinetic experiments revealed the sustained release of DBC (50% in 7 h) from the liposomes. In addition, in vitro (3T3 cells in culture) and in vivo (zebrafish) toxicity assays revealed that ionic-gradient liposomes were able to reduce DBC cyto/cardiotoxicity and morphological changes in zebrafish larvae. Moreover, the anesthesia time attained after infiltrative administration in mice was longer with encapsulated DBC (27 h) than that with free DBC (11 h), at 320 μM (0.012%), confirming it as a promising long-acting liposome formulation for parenteral drug administration of dibucaine.Fil: Couto, Verônica M.. Universidade Estadual de Campinas; BrasilFil: Prieto, Maria Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Igartúa, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Feas, Daniela Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: Ribeiro, Lígia N.M.. Universidade Estadual de Campinas; BrasilFil: Silva, Camila M.G.. Universidade Estadual de Campinas; BrasilFil: Castro, Simone R.. Universidade Estadual de Campinas; BrasilFil: Guilherme, Viviane A.. Universidade Estadual de Campinas; BrasilFil: Dantzger, Darlene D.. Universidade Estadual de Campinas; BrasilFil: Machado, Daisy. Universidade Estadual de Campinas; BrasilFil: Alonso, Silvia del Valle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB | Universidad Nacional de la Plata. Instituto Multidisciplinario de Biología Celular. Grupo Vinculado al IMBICE - Grupo de Biología Estructural y Biotecnología-Universidad Nacional de Quilmes - GBEyB; ArgentinaFil: de Paula, Eneida. Universidade Estadual de Campinas; Brasi

    Steroid-Based Supramolecular Systems and their Biomedical Applications: Biomolecular Recognition and Transportation

    Get PDF
    In this chapter, the biomedical application of steroid-based compounds at “beyond the molecule”—supramolecular level—is reviewed. The renewable and economic natural steroid compounds could be employed as building blocks in the design and construction of steroid-based supramolecular systems. The specific physicochemical features (size, shape, topology, hydrophobicity, chemical modifiability, etc.) and biological properties (biocompatibility, biodegradability, bioaffinity, etc.) could be integrated into functional supramolecular systems by chemical synthesis, modification and intermolecular interactions (such as hydrogen bonding, π-π stacking, van der Waals forces, inclusion interactions, chiral interactions, electrostatic interactions, and so on). The steroid-based (supra)molecules could be employed for molecular recognition and/or be self-assembled into various functional supramolecular assemblies for biomedical applications. The specific physicochemical and biological properties, good biocompatibility, and biological activity endow the steroid-based supramolecular systems good feasibility to be employed in biomolecular recognition/sensing and biomolecular transportation (gene/drug delivery). The examples in this chapter are exemplificative of the transformation of natural steroid-based compounds into functional steroid-based supramolecular systems through molecular and supramolecular engineering technology, moreover, which may inspire the systematic study of natural product-based supramolecular (nano)materials toward future pharmaceutical and biomedical industry

    DESIGN AND SYNTHESIS OF MULTIFUNCTIONAL POLYMERIC MICELLES FOR GENE-DIRECTED ENZYME PRODRUG THERAPY

    Get PDF
    Gene-directed enzyme prodrug therapy is a form of cancer therapy in which delivery of a gene that encodes an enzyme is able to convert a prodrug, a pharmacologically inactive molecule, into a potent cytotoxin. Currently delivery of gene and prodrug is a two-step process. Here, we propose a one-step method using polymer nanocarriers to deliver prodrug, gene and cytotoxic drug simultaneously to malignant cells. Prodrugs acyclovir, ganciclovir and 5-doxifluridine were used to directly to initiate ring-opening polymerization of epsilon-caprolactone, forming a hydrophobic prodrug-tagged poly(epsilon-caprolactone) which was further grafted with hydrophilic polymers (methoxy poly(ethylene glycol), chitosan or polyethylenemine) to form amphiphilic copolymers for micelle formation. Successful synthesis of copolymers and micelle formation was confirmed by standard analytical means. Conversion of prodrugs to their cytotoxic forms was analyzed by both two-step and one-step means i.e. by first delivering gene plasmid into cell line HT29 and then challenging the cells with the prodrug-tagged micelle carriers and secondly by complexing gene plasmid onto micelle nanocarriers and delivery gene and prodrug simultaneously to parental HT29 cells. Anticancer effectiveness of prodrug-tagged micelles was further enhanced by encapsulating chemotherapy drugs doxorubicin or SN-38. Viability of colon cancer cell line HT29 was significantly reduced. Furthermore, in an effort to develop a stealth and targeted carrier, CD47-streptavidin fusion protein was attached onto the micelle surface utilizing biotin-streptavidin affinity. CD47, a marker of self on the red blood cell surface, was used for its antiphagocytic efficacy, results showed that micelles bound with CD47 showed antiphagocytic efficacy when exposed to J774A.1 macrophages. Since CD47 is not only an antiphagocytic ligand but also an integrin associated protein, it was used to target integrin alpha(v)beta(3), which is overexpressed on tumor-activated neovascular endothelial cells. Results showed that CD47-tagged micelles had enhanced uptake when treated to PC3 cells which have high expression of alpha(v)beta(3). The synthesized multifunctional polymeric micelle carriers developed could offer a new platform for an innovative cancer therapy regime

    The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels

    Get PDF
    Aim: Topical administration of siRNA nanocarriers is a promising approach in the treatment of pulmonary disorders. Pulmonary surfactant, covering the entire alveolar surface of mammalian lungs, will be one of the first interfaces that siRNA nanocarriers encounter upon inhalation therapy. Therefore, it is of outstanding importance to evaluate the impact of pulmonary surfactant on the performance of siRNA nanocarriers. Materials & methods: The effect of natural lung-derived surfactants on the siRNA delivery capacity of dextran nanogels (DEX-NGs) was evaluated in vitro using flow cytometry and confocal microscopy. Results: Although the interaction with pulmonary surfactant decreases the cellular internalization of siRNA-loaded DEX-NGs significantly, the gene silencing potential of siRNA-loaded DEX-NGs was maintained. On the other hand, cationic lipid-based siRNA nanocarriers (Lipofectamine (TM) RNAiMAX) were incompatible with pulmonary surfactants. Conclusion: Our data suggest that pulmonary surfactant can enhance the intracellular siRNA delivery by DEX-NGs, thereby possibly providing new therapeutic opportunities

    Advanced modification of drug nanocrystals by using novel fabrication and downstream approaches for tailor-made drug delivery

    Get PDF
    Drug nanosuspensions/nanocrystals have been recognized as one useful and successful approach for drug delivery. Drug nanocrystals could be further decorated to possess extended functions (such as controlled release) and designed for special in vivo applications (such as drug tracking), which make best use of the advantages of drug nanocrystals. A lot of novel and advanced size reduction methods have been invented recently for special drug deliveries. In addition, some novel downstream processes have been combined with nanosuspensions, which have highly broadened its application areas (such as targeting) besides traditional routes. A large number of recent research publication regarding as nanocrystals focuses on above mentioned aspects, which have widely attracted attention. This review will focus on the recent development of nanocrystals and give an overview of regarding modification of nanocrystal by some new approaches for tailor-made drug delivery

    Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles

    Get PDF
    Despite the existence of effective oral therapy, tuberculosis remains a deadly pathology, namely because of bacterial resistance and incompliance with treatments. Establishing alternative therapeutic approaches is urgently needed and inhalable therapy has a great potential in this regard. As pathogenic bacteria are hosted by alveolar macrophages, the co-localisation of antitubercular drugs and pathogens is thus potentiated by this strategy. This work proposes inhalable therapy of pulmonary tuberculosis mediated by a single locust bean gum (LBG) formulation of microparticles associating both isoniazid and rifabutin, complying with requisites of the World Health Organisation of combined therapy. Microparticles were produced by spray-drying, at LBG/INH/RFB mass ratio of 10/1/0.5. The aerodynamic characterisation of microparticles revealed emitted doses of more than 90% and fine particle fraction of 38%, thus indicating the adequacy of the system to reach the respiratory lung area, thus partially the alveolar region. Cytotoxicity results indicate moderate toxicity (cell viability around 60%), with a concentration-dependent effect. Additionally, rat alveolar macrophages evidenced preferential capture of LBG microparticles, possibly due to chemical composition comprising mannose and galactose units that are specifically recognised by macrophage surface receptors. (C) 2017 Elsevier B.V. All rights reserved.National Portuguese funding through FCT - Fundacao para a Ciencia e a Tecnologia [PTDC/DTP-FTO/0094/2012, UID/BIM/04773/2013, UID/Multi/04326/2013, UID/QUI/00100/2013, PEst-OE/QUI/UI4023/2011
    corecore