29,812 research outputs found

    Application of Thermoresponsive Polymer and Microfluidics to the Development of a Velocity-Dependent Cell-Sorting Microdevice

    Get PDF
    3rd Place, Denman Undergraduate Research ForumLow-cost velocity dependent cell sorting in 2D is a currently nonexistent technology for cancer research. The development of such a device would enable further research on the treatment of various deleterious cancers, such as Glioblastoma Multiforme (GBM), which metastasize based off the high motility of a single cell. Here we present a low-cost device capable of sorting these cells. Separation would enable development of highly specific therapeutic agents to limit cancer metastasis in patients. This device consists of microfluidics channels situated under microtextured Polydimethylsiloxane (PDMS) coated with the thermoresponsive polymer Poly(N-isopropylacrylamide) (PNIPAM). Cells are seeded on one end of the device and orient themselves parallel to the striations patterned into the PDMS; traveling further across the device over time. At a specific location (determined by velocity of target cells and time passed), low-temperature fluid can be passed through the microfluidic channel below which triggers a selective conformational change in the PNIPAM. This change shifts PNIPAM from nonpolar to polar, causing the polymer to release previously-adhered cells into solution in favor of binding to media. Establishing the PNIPAM layer capable of releasing cells while allowing them to adhere to microtextures on the PDMS involved a multi-step process. First, PDMS stamps are made of varying thickness, then they were placed in a plasma cleaner and exposed to Argon for 1,3, and 5 minutes at 30 Watts, 8-10 MHz, and ~1000microTorr. Then, samples were exposed to N-isopropylacrylamide (NIPAM) via immersion into a polymer solution and via dropping that solution onto samples and baked at 3 hours or 5 hours. Cell detachment analysis, goniometer experimentation, and SEM images showed that a 1 minute Argon gas exposure, with 1 minute of NIPAM immersion and a 3 hour bake yielded the most successful layer that lifted cells without inhibiting the PDMS microtexture. Future work involves optimizing the device to lift all cells exposed to the channel, as well as further corroborating its efficacy.A one-year embargo was granted for this item.Academic Major: Biomedical Engineerin

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Real-time predictive maintenance for wind turbines using Big Data frameworks

    Full text link
    This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs

    Microfluidics : the fur-free way towards personalised medicine in cancer therapy

    Get PDF
    Microfluidic technology has great potential for complementing and, in some instances, replacing the use of animal models in the testing of medicines and in developing personalised treatments for cancer patients. The maintenance of tissue in an in vivo-like state provides a platform upon which normal and diseased tissue biology can be investigated in a novel way. This review describes the use of microfluidic technology for the maintenance of tissue samples ex vivo and the current state of play for the use of this technology in the replacement of animal models, with a focus on cancer

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201
    corecore