241,816 research outputs found

    Automatic Speech Emotion Recognition Using Machine Learning

    Get PDF
    This chapter presents a comparative study of speech emotion recognition (SER) systems. Theoretical definition, categorization of affective state and the modalities of emotion expression are presented. To achieve this study, an SER system, based on different classifiers and different methods for features extraction, is developed. Mel-frequency cepstrum coefficients (MFCC) and modulation spectral (MS) features are extracted from the speech signals and used to train different classifiers. Feature selection (FS) was applied in order to seek for the most relevant feature subset. Several machine learning paradigms were used for the emotion classification task. A recurrent neural network (RNN) classifier is used first to classify seven emotions. Their performances are compared later to multivariate linear regression (MLR) and support vector machines (SVM) techniques, which are widely used in the field of emotion recognition for spoken audio signals. Berlin and Spanish databases are used as the experimental data set. This study shows that for Berlin database all classifiers achieve an accuracy of 83% when a speaker normalization (SN) and a feature selection are applied to the features. For Spanish database, the best accuracy (94 %) is achieved by RNN classifier without SN and with FS

    Ensemble Methods in Environmental Data Mining

    Get PDF
    Environmental data mining is the nontrivial process of identifying valid, novel, and potentially useful patterns in data from environmental sciences. This chapter proposes ensemble methods in environmental data mining that combines the outputs from multiple classification models to obtain better results than the outputs that could be obtained by an individual model. The study presented in this chapter focuses on several ensemble strategies in addition to the standard single classifiers such as decision tree, naive Bayes, support vector machine, and k-nearest neighbor (KNN), popularly used in literature. This is the first study that compares four ensemble strategies for environmental data mining: (i) bagging, (ii) bagging combined with random feature subset selection (the random forest algorithm), (iii) boosting (the AdaBoost algorithm), and (iv) voting of different algorithms. In the experimental studies, ensemble methods are tested on different real-world environmental datasets in various subjects such as air, ecology, rainfall, and soil

    Unionization method for changing opinion in sentiment classification using machine learning

    Get PDF
    Sentiment classification aims to determine whether an opinionated text expresses a positive, negative or neutral opinion. Most existing sentiment classification approaches have focused on supervised text classification techniques. One critical problem of sentiment classification is that a text collection may contain tens or hundreds of thousands of features, i.e. high dimensionality, which can be solved by dimension reduction approach. Nonetheless, although feature selection as a dimension reduction method can reduce feature space to provide a reduced feature subset, the size of the subset commonly requires further reduction. In this research, a novel dimension reduction approach called feature unionization is proposed to construct a more reduced feature subset. This approach works based on the combination of several features to create a more informative single feature. Another challenge of sentiment classification is the handling of concept drift problem in the learning step. Users’ opinions are changed due to evolution of target entities over time. However, the existing sentiment classification approaches do not consider the evolution of users’ opinions. They assume that instances are independent, identically distributed and generated from a stationary distribution, even though they are generated from a stream distribution. In this study, a stream sentiment classification method is proposed to deal with changing opinion and imbalanced data distribution using ensemble learning and instance selection methods. In relation to the concept drift problem, another important issue is the handling of feature drift in the sentiment classification. To handle feature drift, relevant features need to be detected to update classifiers. Since proposed feature unionization method is very effective to construct more relevant features, it is further used to handle feature drift. Thus, a method to deal with concept and feature drifts for stream sentiment classification was proposed. The effectiveness of the feature unionization method was compared with the feature selection method over fourteen publicly available datasets in sentiment classification domain using three typical classifiers. The experimental results showed the proposed approach is more effective than current feature selection approaches. In addition, the experimental results showed the effectiveness of the proposed stream sentiment classification method in comparison to static sentiment classification. The experiments conducted on four datasets, have successfully shown that the proposed algorithm achieved better results and proving the effectiveness of the proposed method

    Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

    Get PDF
    This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Floating Search (SBFS), respectively, as search strategies, and the generalized F-score (GF) to evaluate the importance of each feature. The new accuracy measure is used as the criterion to evaluated the performance of a temporary SVM to direct the feature selection algorithms. These hybrid methods combine the advantages of filters and wrappers to select the optimal feature subset from the original feature set to build the stable and efficient classifiers. To get the stable, statistical and optimal classifiers, we conduct 10-fold cross validation experiments in the first stage; then we merge the 10 selected feature subsets of the 10-cross validation experiments, respectively, as the new full feature set to do feature selection in the second stage for each algorithm. We repeat the each hybrid feature selection algorithm in the second stage on the one fold that has got the best result in the first stage. Experimental results show that our proposed two-stage hybrid feature selection algorithms can construct efficient diagnostic models which have got better accuracy than that built by the corresponding hybrid feature selection algorithms without the second stage feature selection procedures. Furthermore our methods have got better classification accuracy when compared with the available algorithms for diagnosing erythemato-squamous diseases

    Assessing similarity of feature selection techniques in high-dimensional domains

    Get PDF
    Recent research efforts attempt to combine multiple feature selection techniques instead of using a single one. However, this combination is often made on an “ad hoc” basis, depending on the specific problem at hand, without considering the degree of diversity/similarity of the involved methods. Moreover, though it is recognized that different techniques may return quite dissimilar outputs, especially in high dimensional/small sample size domains, few direct comparisons exist that quantify these differences and their implications on classification performance. This paper aims to provide a contribution in this direction by proposing a general methodology for assessing the similarity between the outputs of different feature selection methods in high dimensional classification problems. Using as benchmark the genomics domain, an empirical study has been conducted to compare some of the most popular feature selection methods, and useful insight has been obtained about their pattern of agreement

    Dataset selection for aggregate model implementation in predictive data mining

    Get PDF
    Data mining has become a commonly used method for the analysis of organisational data, for purposes of summarizing data in useful ways and identifying non-trivial patterns and relationships in the data. Given the large volumes of data that are collected by business, government, non-government and scientific research organizations, a major challenge for data mining researchers and practitioners is how to select relevant data for analysis in sufficient quantities, in order to meet the objectives of a data mining task. This thesis addresses the problem of dataset selection for predictive data mining. Dataset selection was studied in the context of aggregate modeling for classification. The central argument of this thesis is that, for predictive data mining, it is possible to systematically select many dataset samples and employ different approaches (different from current practice) to feature selection, training dataset selection, and model construction. When a large amount of information in a large dataset is utilised in the modeling process, the resulting models will have a high level of predictive performance and should be more reliable. Aggregate classification models, also known as ensemble classifiers, have been shown to provide a high level of predictive accuracy on small datasets. Such models are known to achieve a reduction in the bias and variance components of the prediction error of a model. The research for this thesis was aimed at the design of aggregate models and the selection of training datasets from large amounts of available data. The objectives for the model design and dataset selection were to reduce the bias and variance components of the prediction error for the aggregate models. Design science research was adopted as the paradigm for the research. Large datasets obtained from the UCI KDD Archive were used in the experiments. Two classification algorithms: See5 for classification tree modeling and K-Nearest Neighbour, were used in the experiments. The two methods of aggregate modeling that were studied are One-Vs-All (OVA) and positive-Vs-negative (pVn) modeling. While OVA is an existing method that has been used for small datasets, pVn is a new method of aggregate modeling, proposed in this thesis. Methods for feature selection from large datasets, and methods for training dataset selection from large datasets, for OVA and pVn aggregate modeling, were studied. The experiments of feature selection revealed that the use of many samples, robust measures of correlation, and validation procedures result in the reliable selection of relevant features for classification. A new algorithm for feature subset search, based on the decision rule-based approach to heuristic search, was designed and the performance of this algorithm was compared to two existing algorithms for feature subset search. The experimental results revealed that the new algorithm makes better decisions for feature subset search. The information provided by a confusion matrix was used as a basis for the design of OVA and pVn base models which aren combined into one aggregate model. A new construct called a confusion graph was used in conjunction with new algorithms for the design of pVn base models. A new algorithm for combining base model predictions and resolving conflicting predictions was designed and implemented. Experiments to study the performance of the OVA and pVn aggregate models revealed the aggregate models provide a high level of predictive accuracy compared to single models. Finally, theoretical models to depict the relationships between the factors that influence feature selection and training dataset selection for aggregate models are proposed, based on the experimental results.Thesis (PhD)--University of Pretoria, 2010.Computer Scienceunrestricte

    Exploiting the accumulated evidence for gene selection in microarray gene expression data

    Get PDF
    Machine Learning methods have of late made signicant efforts to solving multidisciplinary problems in the field of cancer classification using microarray gene expression data. Feature subset selection methods can play an important role in the modeling process, since these tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this particular scenario, it is extremely important to select genes by taking into account the possible interactions with other gene subsets. This paper shows that, by accumulating the evidence in favour (or against) each gene along the search process, the obtained gene subsets may constitute better solutions, either in terms of predictive accuracy or gene size, or in both. The proposed technique is extremely simple and applicable at a negligible overhead in cost.Postprint (published version
    • …
    corecore