33,065 research outputs found

    Semi-supervised Tuning from Temporal Coherence

    Full text link
    Recent works demonstrated the usefulness of temporal coherence to regularize supervised training or to learn invariant features with deep architectures. In particular, enforcing smooth output changes while presenting temporally-closed frames from video sequences, proved to be an effective strategy. In this paper we prove the efficacy of temporal coherence for semi-supervised incremental tuning. We show that a deep architecture, just mildly trained in a supervised manner, can progressively improve its classification accuracy, if exposed to video sequences of unlabeled data. The extent to which, in some cases, a semi-supervised tuning allows to improve classification accuracy (approaching the supervised one) is somewhat surprising. A number of control experiments pointed out the fundamental role of temporal coherence.Comment: Under review as a conference paper at ICLR 201

    Vehicle Type Detection by Convolutional Neural Networks

    Get PDF
    In this work a new vehicle type detection procedure for traffic surveillance videos is proposed. A Convolutional Neural Network is integrated into a vehicle tracking system in order to accomplish this task. Solutions for vehicle overlapping, differing vehicle sizes and poor spatial resolution are presented. The system is tested on well known benchmarks, and multiclass recognition performance results are reported. Our proposal is shown to attain good results over a wide range of difficult situations.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Interactive multiple object learning with scanty human supervision

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We present a fast and online human-robot interaction approach that progressively learns multiple object classifiers using scanty human supervision. Given an input video stream recorded during the human robot interaction, the user just needs to annotate a small fraction of frames to compute object specific classifiers based on random ferns which share the same features. The resulting methodology is fast (in a few seconds, complex object appearances can be learned), versatile (it can be applied to unconstrained scenarios), scalable (real experiments show we can model up to 30 different object classes), and minimizes the amount of human intervention by leveraging the uncertainty measures associated to each classifier.; We thoroughly validate the approach on synthetic data and on real sequences acquired with a mobile platform in indoor and outdoor scenarios containing a multitude of different objects. We show that with little human assistance, we are able to build object classifiers robust to viewpoint changes, partial occlusions, varying lighting and cluttered backgrounds. (C) 2016 Elsevier Inc. All rights reserved.Peer ReviewedPostprint (author's final draft

    Action recognition based on efficient deep feature learning in the spatio-temporal domain

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Hand-crafted feature functions are usually designed based on the domain knowledge of a presumably controlled environment and often fail to generalize, as the statistics of real-world data cannot always be modeled correctly. Data-driven feature learning methods, on the other hand, have emerged as an alternative that often generalize better in uncontrolled environments. We present a simple, yet robust, 2D convolutional neural network extended to a concatenated 3D network that learns to extract features from the spatio-temporal domain of raw video data. The resulting network model is used for content-based recognition of videos. Relying on a 2D convolutional neural network allows us to exploit a pretrained network as a descriptor that yielded the best results on the largest and challenging ILSVRC-2014 dataset. Experimental results on commonly used benchmarking video datasets demonstrate that our results are state-of-the-art in terms of accuracy and computational time without requiring any preprocessing (e.g., optic flow) or a priori knowledge on data capture (e.g., camera motion estimation), which makes it more general and flexible than other approaches. Our implementation is made available.Peer ReviewedPostprint (author's final draft

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202
    corecore