1,852 research outputs found

    Know Your Enemy: Stealth Configuration-Information Gathering in SDN

    Full text link
    Software Defined Networking (SDN) is a network architecture that aims at providing high flexibility through the separation of the network logic from the forwarding functions. The industry has already widely adopted SDN and researchers thoroughly analyzed its vulnerabilities, proposing solutions to improve its security. However, we believe important security aspects of SDN are still left uninvestigated. In this paper, we raise the concern of the possibility for an attacker to obtain knowledge about an SDN network. In particular, we introduce a novel attack, named Know Your Enemy (KYE), by means of which an attacker can gather vital information about the configuration of the network. This information ranges from the configuration of security tools, such as attack detection thresholds for network scanning, to general network policies like QoS and network virtualization. Additionally, we show that an attacker can perform a KYE attack in a stealthy fashion, i.e., without the risk of being detected. We underline that the vulnerability exploited by the KYE attack is proper of SDN and is not present in legacy networks. To address the KYE attack, we also propose an active defense countermeasure based on network flows obfuscation, which considerably increases the complexity for a successful attack. Our solution offers provable security guarantees that can be tailored to the needs of the specific network under consideratio

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa

    SDN-Based Network Intrusion Detection as DDoS defense system for Virtualization Environment

    Get PDF
    Nowadays, DDoS attacks are often aimed at cloud computing environments, as more people use virtualization servers. With so many Nodes and distributed services, it will be challenging to rely solely on conventional networks to control and monitor intrusions. We design and deploy DDoS attack defense systems in virtualization environments based on Software-defined Networking (SDN) by combining signature-based Network Intrusion Detection Systems (NIDS) and sampled flow (sFlow). These techniques are practically tested and evaluated on the Proxmox production Virtualization Environment testbed, adding High Availability capabilities to the Controller. The evaluation results show that it promptly detects several types of DDoS attacks and mitigates their negative impact on network performance. Moreover, it also shows good results on Quality of Service (QoS) parameters such as average packet loss about 0 %, average latency about 0.8 ms, and average bitrate about 860 Mbit/s

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    A consensus based network intrusion detection system

    Full text link
    Network intrusion detection is the process of identifying malicious behaviors that target a network and its resources. Current systems implementing intrusion detection processes observe traffic at several data collecting points in the network but analysis is often centralized or partly centralized. These systems are not scalable and suffer from the single point of failure, i.e. attackers only need to target the central node to compromise the whole system. This paper proposes an anomaly-based fully distributed network intrusion detection system where analysis is run at each data collecting point using a naive Bayes classifier. Probability values computed by each classifier are shared among nodes using an iterative average consensus protocol. The final analysis is performed redundantly and in parallel at the level of each data collecting point, thus avoiding the single point of failure issue. We run simulations focusing on DDoS attacks with several network configurations, comparing the accuracy of our fully distributed system with a hierarchical one. We also analyze communication costs and convergence speed during consensus phases.Comment: Presented at THE 5TH INTERNATIONAL CONFERENCE ON IT CONVERGENCE AND SECURITY 2015 IN KUALA LUMPUR, MALAYSI
    • …
    corecore