112 research outputs found

    The case for validating ADDIE model as a digital forensic model for peer to peer network investigation

    Get PDF
    Rapid technological advancement can substantially impact the processes of digital forensic investigation and present a myriad of challenges to the investigator. With these challenges, it is necessary to have a standard digital forensic framework as the foundation of any digital investigation. State-of-the-art digital forensic models assume that it is safe to move from one investigation stage to the next. It guides the investigators with the required steps and procedures. This brings a great stride to validate a non-specific framework to be used in most digital investigation procedures. This paper considers a new technique for detecting active peers that participate in a peer-to-peer (P2P) network. As part of our study, we crawled the ÎŒTorrent P2P client over ten days in different instances while logging all participating peers. We then employed digital forensic techniques to analyse the popular users and generate evidence within them with high accuracy. We evaluated our approach against the standard Analysis, Design, Development, Implementation, and Evaluation (ADDIE) model for the digital investigation to achieve the credible digital evidence presented in this paper. Finally, we presented a validation case for the ADDIE model using the United States Daubert Test and the United Kingdom’s Forensic Science Regulator Guidance – 218 (FSR-G-218) and Forensic Science Regulator Guidance – 201 (FSR-G-201) to formulate it as a standard digital forensic model

    Assessing The Security Posture Of Openemr Using Capec Attack Patterns

    Get PDF
    Attack patterns describe the common methods of exploiting software. Good software engineering practices and principles alone are not enough to produce secure software. It is also important to know how software it attacked and to guard against it. Knowledge of attack patterns provides a good perspective of an attacker, thus enabling developers and testers to build secure software. CAPEC list is a taxonomy of attack patterns which we believe can enhance security testing. This research seeks to assess the security posture of OpenEMR 4.1.1, an open source Electronic Medical Record (EMR) system, based on CAPEC attack patterns. Five categories of CAPEC attack patterns were analyzed to find their relevance and applicability to OpenEMR. Whereas inapplicable attack patterns were not further considered, applicable attack patterns were further tested to assess OpenEMR vulnerability to them. Various security testing tools were used to carry out the tests. Attack patterns helped to focus black-box and white-box testing procedures on what and where to test. OpenEMR was found to be vulnerable to a number of vulnerabilities such as cross site scripting, authentication bypass, session sidejacking, among others. A number of exploitations were carried out based on the vulnerabilities discovered

    A structured approach to malware detection and analysis in digital forensics investigation

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of PhDWithin the World Wide Web (WWW), malware is considered one of the most serious threats to system security with complex system issues caused by malware and spam. Networks and systems can be accessed and compromised by various types of malware, such as viruses, worms, Trojans, botnet and rootkits, which compromise systems through coordinated attacks. Malware often uses anti-forensic techniques to avoid detection and investigation. Moreover, the results of investigating such attacks are often ineffective and can create barriers for obtaining clear evidence due to the lack of sufficient tools and the immaturity of forensics methodology. This research addressed various complexities faced by investigators in the detection and analysis of malware. In this thesis, the author identified the need for a new approach towards malware detection that focuses on a robust framework, and proposed a solution based on an extensive literature review and market research analysis. The literature review focussed on the different trials and techniques in malware detection to identify the parameters for developing a solution design, while market research was carried out to understand the precise nature of the current problem. The author termed the new approaches and development of the new framework the triple-tier centralised online real-time environment (tri-CORE) malware analysis (TCMA). The tiers come from three distinctive phases of detection and analysis where the entire research pattern is divided into three different domains. The tiers are the malware acquisition function, detection and analysis, and the database operational function. This framework design will contribute to the field of computer forensics by making the investigative process more effective and efficient. By integrating a hybrid method for malware detection, associated limitations with both static and dynamic methods are eliminated. This aids forensics experts with carrying out quick, investigatory processes to detect the behaviour of the malware and its related elements. The proposed framework will help to ensure system confidentiality, integrity, availability and accountability. The current research also focussed on a prototype (artefact) that was developed in favour of a different approach in digital forensics and malware detection methods. As such, a new Toolkit was designed and implemented, which is based on a simple architectural structure and built from open source software that can help investigators develop the skills to critically respond to current cyber incidents and analyses

    Cross-Platform Video Management Solutions

    Get PDF
    With a multitude of platform and operating system combinations available to- day, ranging from laptops and workstations to tablets and smartphones, users want to use their favorite applications regardless of device. Cross-platform development has thus become more important in recent years. When devel- oping a new application the developers must decide what platforms to support and what strategy to use to reach out to them. By developing both native and cross-platform prototypes we try to find advantages and disadvantages of using a cross-platform strategy for video management applications. We show that it indeed is possible to develop cross-platform video management applications for both Windows and OS X and find both advantages and disadvantages of this strategy. The result of this thesis state that the choice of cross-platform or not depends much on the situation and the preferences of the developers

    Network anomalies detection via event analysis and correlation by a smart system

    Get PDF
    The multidisciplinary of contemporary societies compel us to look at Information Technology (IT) systems as one of the most significant grants that we can remember. However, its increase implies a mandatory security force for users, a force in the form of effective and robust tools to combat cybercrime to which users, individual or collective, are ex-posed almost daily. Monitoring and detection of this kind of problem must be ensured in real-time, allowing companies to intervene fruitfully, quickly and in unison. The proposed framework is based on an organic symbiosis between credible, affordable, and effective open-source tools for data analysis, relying on Security Information and Event Management (SIEM), Big Data and Machine Learning (ML) techniques commonly applied for the development of real-time monitoring systems. Dissecting this framework, it is composed of a system based on SIEM methodology that provides monitoring of data in real-time and simultaneously saves the information, to assist forensic investigation teams. Secondly, the application of the Big Data concept is effective in manipulating and organising the flow of data. Lastly, the use of ML techniques that help create mechanisms to detect possible attacks or anomalies on the network. This framework is intended to provide a real-time analysis application in the institution ISCTE – Instituto UniversitĂĄrio de Lisboa (Iscte), offering a more complete, efficient, and secure monitoring of the data from the different devices comprising the network.A multidisciplinaridade das sociedades contemporĂąneas obriga-nos a perspetivar os sistemas informĂĄticos como uma das maiores dĂĄdivas de que hĂĄ memĂłria. Todavia o seu incremento implica uma mandatĂĄria força de segurança para utilizadores, força essa em forma de ferramentas eficazes e robustas no combate ao cibercrime a que os utilizadores, individuais ou coletivos, sĂŁo sujeitos quase diariamente. A monitorização e deteção deste tipo de problemas tem de ser assegurada em tempo real, permitindo assim, Ă s empresas intervençÔes frutuosas, rĂĄpidas e em unĂ­ssono. A framework proposta Ă© alicerçada numa simbiose orgĂąnica entre ferramentas open source credĂ­veis, acessĂ­veis pecuniariamente e eficazes na monitorização de dados, recorrendo a um sistema baseado em tĂ©cnicas de Security Information and Event Management (SIEM), Big Data e Machine Learning (ML) comumente aplicadas para a criação de sistemas de monitorização em tempo real. Dissecando esta framework, Ă© composta pela metodologia SIEM que possibilita a monitorização de dados em tempo real e em simultĂąneo guardar a informação, com o objetivo de auxiliar as equipas de investigação forense. Em segundo lugar, a aplicação do conceito Big Data eficaz na manipulação e organização do fluxo dos dados. Por Ășltimo, o uso de tĂ©cnicas de ML que ajudam a criação de mecanismos de deteção de possĂ­veis ataques ou anomalias na rede. Esta framework tem como objetivo uma aplicação de anĂĄlise em tempo real na instituição ISCTE – Instituto UniversitĂĄrio de Lisboa (Iscte), apresentando uma monitorização mais completa, eficiente e segura dos dados dos diversos dispositivos presentes na mesma

    Graph-based Temporal Analysis in Digital Forensics

    Get PDF
    Establishing a timeline as part of a digital forensics investigation is a vital part of understanding the order in which system events occurred. However, most digital forensics tools present timelines as histogram or as raw artifacts. Consequently, digital forensics examiners are forced to rely on manual, labor-intensive practices to reconstruct system events. Current digital forensics analysis tools are at their technological limit with the increasing storage and complexity of data. A graph-based timeline can present digital forensics evidence in a structure that can be immediately understood and effortlessly focused. This paper presents the Temporal Analysis Integration Management Application (TAIMA) to enhance digital forensics analysis via information visualization (infovis) techniques. TAIMA is a prototype application that provides a graph-based timeline for event reconstruction using abstraction and visualization techniques. A workflow illustration and pilot usability study provided evidence that TAIMA assisted digital forensics specialists in identifying key system events during digital forensics analysis

    Toward hyper-realistic and interactive social VR experiences in live TV scenarios

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Social Virtual Reality (VR) allows multiple distributed users getting together in shared virtual environments to socially interact and/or collaborate. This article explores the applicability and potential of Social VR in the broadcast sector, focusing on a live TV show use case. For such a purpose, a novel and lightweight Social VR platform is introduced. The platform provides three key outstanding features compared to state-of-the-art solutions. First, it allows a real-time integration of remote users in shared virtual environments, using realistic volumetric representations and affordable capturing systems, thus not relying on the use of synthetic avatars. Second, it supports a seamless and rich integration of heterogeneous media formats, including 3D scenarios, dynamic volumetric representation of users and (live/stored) stereoscopic 2D and 180Âș/360Âș videos. Third, it enables low-latency interaction between the volumetric users and a video-based presenter (Chroma keying), and a dynamic control of the media playout to adapt to the session’s evolution. The production process of an immersive TV show to be able to evaluate the experience is also described. On the one hand, the results from objective tests show the satisfactory performance of the platform. On the other hand, the promising results from user tests support the potential impact of the presented platform, opening up new opportunities in the broadcast sector, among others.This work has been partially funded by the European Union’s Horizon 2020 program, under agreement nÂș 762111 (VRTogether project), and partially by ACCIÓ, under agreement COMRDI18-1-0008 (ViVIM project). Work by Mario Montagud has been additionally funded by the Spanish Ministry of Science, Innovation and Universities with a Juan de la Cierva – IncorporaciĂłn grant (reference IJCI-2017-34611). The authors would also like to thank the EU H2020 VRTogether project consortium for their relevant and valuable contributions.Peer ReviewedPostprint (author's final draft

    Multi-party holomeetings: toward a new era of low-cost volumetric holographic meetings in virtual reality

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fueled by advances in multi-party communications, increasingly mature immersive technologies being adopted, and the COVID-19 pandemic, a new wave of social virtual reality (VR) platforms have emerged to support socialization, interaction, and collaboration among multiple remote users who are integrated into shared virtual environments. Social VR aims to increase levels of (co-)presence and interaction quality by overcoming the limitations of 2D windowed representations in traditional multi-party video conferencing tools, although most existing solutions rely on 3D avatars to represent users. This article presents a social VR platform that supports real-time volumetric holographic representations of users that are based on point clouds captured by off-the-shelf RGB-D sensors, and it analyzes the platform’s potential for conducting interactive holomeetings (i.e., holoconferencing scenarios). This work evaluates such a platform’s performance and readiness for conducting meetings with up to four users, and it provides insights into aspects of the user experience when using single-camera and low-cost capture systems in scenarios with both frontal and side viewpoints. Overall, the obtained results confirm the platform’s maturity and the potential of holographic communications for conducting interactive multi-party meetings, even when using low-cost systems and single-camera capture systems in scenarios where users are sitting or have a limited translational movement along the X, Y, and Z axes within the 3D virtual environment (commonly known as 3 Degrees of Freedom plus, 3DoF+).The authors would like to thank the members of the EU H2020 VR-Together consortium for their valuable contributions, especially Marc Martos and Mohamad Hjeij for their support in developing and evaluating tasks. This work has been partially funded by: the EU’s Horizon 2020 program, under agreement nÂș 762111 (VR-Together project); by ACCIÓ (Generalitat de Catalunya), under agreement COMRDI18-1-0008 (ViVIM project); and by Cisco Research and the Silicon Valley Community Foundation, under the grant Extended Reality Multipoint Control Unit (ID: 1779376). The work by Mario Montagud has been additionally funded by Spain’s Agencia Estatal de InvestigaciĂłn under grant RYC2020-030679-I (AEI / 10.13039/501100011033) and by Fondo Social Europeo. The work of David RincĂłn was supported by Spain’s Agencia Estatal de InvestigaciĂłn within the Ministerio de Ciencia e InnovaciĂłn under Project PID2019-108713RB-C51 MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version
    • 

    corecore