2,951 research outputs found

    Simulation of diffusions by means of importance sampling paradigm

    Get PDF
    The aim of this paper is to introduce a new Monte Carlo method based on importance sampling techniques for the simulation of stochastic differential equations. The main idea is to combine random walk on squares or rectangles methods with importance sampling techniques. The first interest of this approach is that the weights can be easily computed from the density of the one-dimensional Brownian motion. Compared to the Euler scheme this method allows one to obtain a more accurate approximation of diffusions when one has to consider complex boundary conditions. The method provides also an interesting alternative to performing variance reduction techniques and simulating rare events.Comment: Published in at http://dx.doi.org/10.1214/09-AAP659 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    Asymptotic Exit Location Distributions in the Stochastic Exit Problem

    Full text link
    Consider a two-dimensional continuous-time dynamical system, with an attracting fixed point SS. If the deterministic dynamics are perturbed by white noise (random perturbations) of strength ϵ\epsilon, the system state will eventually leave the domain of attraction Ω\Omega of SS. We analyse the case when, as ϵ→0\epsilon\to0, the exit location on the boundary ∂Ω\partial\Omega is increasingly concentrated near a saddle point HH of the deterministic dynamics. We show that the asymptotic form of the exit location distribution on ∂Ω\partial\Omega is generically non-Gaussian and asymmetric, and classify the possible limiting distributions. A key role is played by a parameter μ\mu, equal to the ratio ∣λs(H)∣/λu(H)|\lambda_s(H)|/\lambda_u(H) of the stable and unstable eigenvalues of the linearized deterministic flow at HH. If μ<1\mu<1 then the exit location distribution is generically asymptotic as ϵ→0\epsilon\to0 to a Weibull distribution with shape parameter 2/μ2/\mu, on the O(ϵμ/2)O(\epsilon^{\mu/2}) length scale near HH. If μ>1\mu>1 it is generically asymptotic to a distribution on the O(ϵ1/2)O(\epsilon^{1/2}) length scale, whose moments we compute. The asymmetry of the asymptotic exit location distribution is attributable to the generic presence of a `classically forbidden' region: a wedge-shaped subset of Ω\Omega with HH as vertex, which is reached from SS, in the ϵ→0\epsilon\to0 limit, only via `bent' (non-smooth) fluctuational paths that first pass through the vicinity of HH. We deduce from the presence of this forbidden region that the classical Eyring formula for the small-ϵ\epsilon exponential asymptotics of the mean first exit time is generically inapplicable.Comment: This is a 72-page Postscript file, about 600K in length. Hardcopy requests to [email protected] or [email protected]
    • …
    corecore