40,188 research outputs found

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Visualisation of the information resources for cell biology

    Get PDF
    Intelligent multimodal interfaces can facilitate scientists in utilising available information resources. Combining scientific visualisations with interactive and intelligent tools can help create a “habitable” information space. Development of such tools remains largely iterative. We discuss an ongoing implementation of intelligent interactive visualisation of information resources in cell biology

    MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

    Get PDF
    As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset

    TEST: A Tropic, Embodied, and Situated Theory of Cognition

    Get PDF
    TEST is a novel taxonomy of knowledge representations based on three distinct hierarchically organized representational features: Tropism, Embodiment, and Situatedness. Tropic representational features reflect constraints of the physical world on the agent’s ability to form, reactivate, and enrich embodied (i.e., resulting from the agent’s bodily constraints) conceptual representations embedded in situated contexts. The proposed hierarchy entails that representations can, in principle, have tropic features without necessarily having situated and/or embodied features. On the other hand, representations that are situated and/or embodied are likely to be simultaneously tropic. Hence while we propose tropism as the most general term, the hierarchical relationship between embodiment and situatedness is more on a par, such that the dominance of one component over the other relies on the distinction between offline storage vs. online generation as well as on representation-specific properties

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Semantic memory

    Get PDF
    The Encyclopedia of Human Behavior, Second Edition is a comprehensive three-volume reference source on human action and reaction, and the thoughts, feelings, and physiological functions behind those actions
    • …
    corecore