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GlossaryAu10; 12

dt0010 Amygdala It is responsible for processing of emotion (e.g.,

fear, disgust, happiness).

dt0015 Association areas These are regions of the neocortex

beyond the primary sensory processing cortex and cortical

areas processing information before the primary motor

cortex. Unimodal association areas surround primary

sensory and primary motor areas, and multimodal

association areas lie beyond these, that is, in between

unimodal sensorimotor association areas.

dt0020 Cingulate cortex It lies immediately superior to the corpus

callosum, which is the white matter axonal fiber bundle that

connects the cerebral hemispheres. Cingulate cortex is

included in the limbic system implicated in emotion and

motivation and continues posteriorly as the

parahippocampal gyrus in the temporal lobe, which

provides input to the hippocampus, consistent with a role in

episodic memory.

dt0025 Frontal lobe It extends from the anterior-most part of the

brain to the central sulcus where the primary motor cortex

ends. The frontal lobe contains motor areas and lateral and

medial prefrontal regions and anterior cingulated regions

implicated in cognitive control, working memory, and

selective attention.

dt0030 Linguistic This refers to perceptual cues (i.e., words) and

actions involved in natural language, including semantics,

grammar, and phonetics.

dt0035 Mental state This is a state of brain activity related to an

introspective mental state, that is, a state accompanied by a

subjective quality of conscious experience (or qualia, e.g.,

feeling a headache, taste of food, your experience of the

colors in a rainbow). Mirror neuron circuits, in which

neurons involved in manipulating objects are also involved

in perceiving another animate agent prefer that action, may

underlie social simulations for embodied cognition.

dt0040Occipital lobe It is the most posterior part of the neocortex.

It includes the primary visual area (V1) in striate cortex and

extrastriate visual cortex that lies anterior to V1, as well as

association areas that are object-sensitive, responding more

strongly to intact images of objects than scrambled versions

with no coherent object structure. This lobe is

retinotopically organized such that adjacent neurons

respond to different but nonoverlapping parts of the visual

field. Extrastriate visual areas contribute to semantic

memory based on an embodied cognition account.

dt0045Parietal lobe This lies in the dorsal posterior part of the

cerebral cortex. It includes the angular gyrus region in the

lateral inferior part (Brodmann’s area [BA] 39; areas PGa and

PGp) and the supramarginal gyrus (BA 40) that have been

implicated in semantic processing in response to written and

spoken words. This angular gyrus region extends posteriorly

into the anterior occipital lobe.

dt0050Temporal lobe It is a ventrally located region of the

neocortex that includes association areas for visual

processing, primary and association areas for auditory

processing, and multimodal association areas. The anterior

temporal lobe has been proposed to be an amodal hub for

semantic memory. The medial temporal lobe includes the

hippocampus and the surrounding cortex of the

parahippocampal region, which is composed of perirhinal

cortex, parahippocampal gyrus, and entorhinal cortex, and

may also represent semantic memory.

s0010 Semantic Memory is One Type of Memory

p0010 Semantic memory is conscious long-term memory for mean-

ing, understanding, and conceptual facts about the world.

Semantic memory is one of the two main varieties of explicit,

conscious, long-term memory, which is memory that can be

retrieved into conscious awareness after a long delay (from

several seconds to years). Endel Tulving in 1972 (building

upon a distinction between two primary forms of memory by

Reiff and Scheers in 1959) distinguished between semantic and

episodic memory. Episodic memory refers to stored represen-

tations for personally experienced episodes from one’s life

within a particular spatiotemporal context (e.g., dinner in

Berkeley in January this year). Semantic memory refers to

stored representations for meaningful facts or world knowl-

edge, regardless of the spatiotemporal context in which the

information was acquired and without information about per-

sonal experiences surrounding learning the information (e.g.,

the concept ‘dinner’), and is necessary for language. Crucially,

while episodic memory involves awareness of a feeling of

having personally experienced an event or item, regardless

of meaning (i.e., an item could be a nonsensical figure like

abstract art and so has no meaning but has been experienced

before as on multiple museum visits), semantic memory

involves awareness of meaning unaccompanied by a feeling

of familiarity of having previously experienced the event or

item or remembering the place and time of the personal

learning experience(s). For example, using semantic memory,

you know what a dog is and can read the word ‘dog’ and be

aware of the meaning of this concept, but you do not remem-

ber where and when you first learned about a dog or even

necessarily subsequent personal experiences with dogs that

went into building your concept of what a dog is. Even without

a feeling of personal experience, you know what a dog is when

you see, hear, or read about a dog. Thus, you have semantic

memory for meaning, regardless of a feeling of familiarity or

recollection of personal experiences with the origins of the

concept.
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s0015 Language, Concepts, Categories, and Semantic
Networks

s0020 Hierarchical Model

p0015 Ideas about semantic memory developed from attempts to

explain how human language communicates concepts. While

computer scientists proposed semantic nets for translating natu-

ral language as early as 1956, the term ‘semantic memory’

emerged in psychology in early models of human knowledge

about word concepts circa 1969. Collins and Quillian viewed

semantic memory as a hierarchical network of relations among

concepts. A concept refers tomeaning, which is stored in seman-

tic memory. Language enables an arbitrary symbol, such as a

streamof sounds comprising aword (e.g., ‘dog’), to be associated

with the memory representation of the meaning of the symbol

(i.e., the semantic memory of dogs). As described in concept

learning research, a concept is a mental representation that

places anobject, event, or idea into a category. Semanticmemory

can thus be said to be the store of mental representations of

categories. In their original formulation of the organization

of semantic memory, Collins and Quillian in 1969 assumed

that categories are organizedhierarchically, anddefining features

compose each category. For example, an animal has skin,moves,

eats, and breathes. In 1976, Eleanor Rosch proposed different

levels of categories. For example, song and field sparrows are

subordinate categories of the more general category of sparrow,

which is a basic-level category, along with eagle and cardinal of

the superordinate-level category of birds, and, at a still more

general, superordinate level, birds and fish are animals. Collins

and Quillian’s theory predicts that the response time to classify

whether a feature belongs to a category depends uponhowmany

nodes or levels of the hierarchy must be traversed to do the task,

which was experimentally confirmed.

s0025 Feature Overlap

p0020 Smith and colleagues modified this basic framework to suggest

that the meaning of a concept is a set of features, as opposed to

a single node. Further, characteristic features are merely typical

of a concept (e.g., robins are bipedal, have wings, perch in

trees, and are wild), whereas defining features are more essen-

tial (e.g., robins have red breasts). Consistent with this feature

overlap model, people rate robins and sparrows as more typi-

cal birds than ducks and geese, and robins and sparrow are

rated as more similar to each other than the other birds.

However, there may be no defining features; as noted by the

philosopher Wittgenstein in 1953, there is no feature that all

games share. Also, feature overlap models compare features to

decide the concept, but evidence indicates that other kinds of

knowledge are relevant. For example, while a butterfly is read-

ily categorized as an insect, subjects instructed to generate

members of the insect category infrequently mention a butter-

fly. Such problemsmotivated alternative theories that continue

to be debated and tested. The main competing theories can be

grouped into those that propose that categories depend upon a

prototype representation, which is an average of all examples,

or multiple representations composed of each of the exemplars

(or instances) of the category (e.g., each example of a dog

experienced), referred to as prototype versus exemplar theories,

respectively.

s0030Spreading Activation

p0025Most current theories organize concepts and categories as

nodes in a network in which nodes can connect to one another

via a semantic link, thereby associating together related con-

cepts or categories. The length of the link in a semantic network

model varies with the relatedness and associations between

concepts. For example, car, truck, and bus may be connected

directly via short links, and each of these to fire engine via a

longer link. Nodes can be connected directly or indirectly via

links to other nodes. For example, apple may connect directly

to red and connect indirectly to fire engine through the red

node. As in the earlier Collins and Quilian model, the proper-

ties of a concept/category can be connected to its node. Seman-

tic network theories propose that activation spreads from

one node to another along the links between them, allowing

for even indirectly linked concepts to activate one another.

Semantic networks can easily explain retrieval of meaning.

For example, when thinking about apples, one might activate

the concept of red, which might trigger one to think about

fire engines, stoplights, or bricks.

p0030The semantic network approach has the advantages over

other theories of predictive power (perhaps too much so that it

becomes unfalsifiable, according to some critics) and being

readily modeled using neurocomputational methods (i.e., con-

nectionist or parallel distributed processingmodels, as described

byRumelhart andMcClelland, 1986). A node can bemodeled as

a neuronal cell, and the dendrites (input) and axons (output)

that interconnect neurons to each other are modeled as links

between nodes. Neural network models incorporate recurrent

and feedback connections that are well-known principles of

neocortical organization. A node in a semantic network has a

level of activation representing the probability that the neuron

will fire, thereby potentially activating a connected neuron suffi-

ciently that it also fires. Activation in one node could thereby

spread to other nodes connected to it directly or eventually

indirectly. Semantic memory is acquired using learning rules

(e.g., hebbian plasticity) that determine network connectivity

by modifying the weights among connections based on ex-

perience. Contemporary neural network models have more

biological realism.

s0035Compound Cue

p0035Despite these advantages of the spreading activation account,

compound cue models propose that semantic memory oper-

ates like other types of memory. For example, in the case of

episodic recognition, memory is an interconnected feature set

representing the item (i.e., its meaning), its learning context,

and its relation with other such feature sets. Recognition cues

are held in mind briefly to probe the feature sets, producing a

familiarity signal send to a decision process, enabling a deci-

sion that the stimulus is old or new. Likewise, in the types of

implicit memory tasks used to assess semantic memory, addi-

tional cues are relevant beyond those used for recognition. For

example, in the lexical decision task often used in semantic

memory studies, people decide faster whether a letter string is a

real word when the target word (e.g., doctor) is preceded by

a word that is related (e.g., nurse) than unrelated (e.g., butter).

Prime and target are both cues that together constitute a third
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type of association besides the associations between target and

context plus target and other feature sets, which are available

for recognition. Compound cue theory attributes semantic

priming for related primes and target pairs to the greater num-

ber of shared associates between them than for unrelated pairs.

s0040 Knowledge and Generic Memory Encompass
Semantic and Nonsemantic Memory

p0040 The common label, semantic memory, may not be the most

appropriate but rather the term generic memory (suggested by

D. L. Hintzman) or knowledge (suggested here) can include

nonsemantic information. Consider that, in general, knowl-

edge is what you know (e.g., that dogs bark, your house num-

ber, the capital of France, the color of spinach, the shape of a

cat, as well as their meanings). Although linguistic stimuli (i.e.,

words) activate meaning, objects, scenes, and people are also

meaningful. To activate meaning, the perceptual features of the

stimulus must be matched to stored memory of these sensory-

based features. For example, to categorize a dog, its perceived

shape or other identifying perceptual attribute(s) (e.g., a bark)

must match successfully to memory for the perceptual form

associated with the dog category. Likewise, to activate the

meaning of a word, the word form being currently perceived

must match memory for the perceptual form of that word.

Thus, semantic memory depends upon non-semantic memoryAu5

to mediate between the perceived cue and its meaning. In

addition, activation of nonsemantic memory can also activate

associated nonsemantic information about the stimulus, as

when observing a dog and becoming aware of its meaning

and associated perceptual (e.g., its color, sound, smell),

motor (e.g., its movements), emotional (e.g., fear), or mental

state information.

p0045 Like semantic memory, nonsemantic knowledge is distinct

from episodic memory. For example, patients with visual

object agnosia are slow and make errors categorizing common

objects when visually presented (e.g., seeing a dog but being

unable to name or describe it meaningfully as a dog) but can

tell that they saw the object before, demonstrating episodic

memory. Moreover, all forms of visual object agnosia involve

some impaired perceptual processing, even associative (i.e.,

semantic) subtypes; a knowledge system for the perceptual

form of an object is necessary to know its meaning. In most

theories, this perceptual matching stage must, to some extent,

succeed before semantic memory can become active. Nonethe-

less, substantial parallel and interactive processing between

perceptual form and meaning can occur. Thus, activating

meaning always requires matching memory to the perceptual

form of the referent, be it a word, object, face, or place.

s0045 Knowledge, Priming, and Awareness

p0050 Semantic memory and nonsemantic knowledge are nonepiso-

dic, and aspects of these memories may be conscious, while

others lie outside of awareness. Conscious semantic memory

is primarily the variety of explicit memory that has been dis-

tinguished from episodic memory. After all, clearly, one can

become aware of a concept in a semantic network, as when you

are aware that you know what a word means. However, one is

not necessarily conscious of activating the nodes or links in the

network itself that lead to awareness of meaning or aware of

the processes that match a perceptual form to its nonsemantic

memory. Nonetheless, these nonconscious processes can lead

ultimately to awareness of the shape, color, category, and

meaning of the object.

p0055By contrast, nonconscious implicit memory is thought to

include nonsemantic memory as well as situations in which

semantic memory is activated nonconsciously. Implicit mem-

ory is typically probed by repeating information. In such

priming paradigms, the item (doctor) or a version of it

(a picture of a doctor) or a related item (nurse) is presented,

and then, following a delay, the item (e.g., doctor) is presented

again. Relative to unrepeated (i.e., new) items, repeated items

exhibit faster and more accurate performance, as well as differ-

ent brain response characteristics. Repetition priming (i.e.,

doctor–doctor), conceptual priming (i.e., a picture of and the

word for doctor), and semantic priming (i.e., nurse–doctor)

are varieties of implicit (nonconscious) memory. It is impor-

tant to note, however, that evidence is accumulating that con-

sciousness is not the critical factor distinguishing varieties of

learning and memory but rather the computational and deci-

sion demands of the task, and how these recruit different brain

structures, are primary.

s0050Standard Theory of the Semantic Memory System

p0060Research on knowledge has focused on how meaningful

(semantic) representations are organized, leaving nonsemantic

knowledge organization relatively less understood. Multiple

memory systems theory distinguishes between a semantic

memory system and a nonsemantic perceptual representation

system that can be matched to a currently perceived stimulus,

for example, to determine what an object is, such as a dog,

based on its perceived shape. This distinction of memory sys-

tems theory essentially reflects its adoption of the standard

theory of meaning that proposes that conceptual knowledge

resides in a single amodal system with a uniform architecture

and exists separate from modal sensorimotor systems.

s0055Anterior Temporal Lobe Stores Amodal Meaning

p0065Multiple memory systems theory (originating with Elizabeth

Warrington in 1979) adopted the distinction between seman-

tic and episodic memory and added the proposal that different

brain systems support each type. In particular, while episodic

memory depends upon the medial temporal lobe (MTL),

semantic memory depends upon association areas of neocor-

tex that lie outside primary sensorimotor areas and outside the

MTL. Studies of patients with semantic memory problems

indicate that an amodal system may reside in the anterior

temporal lobe (ATL). The ATL is considered to be the best

candidate for an amodal hub for meaning based on convergent

evidence from patients with semantic memory problems and

its anatomical connectivity. The ATL lies next to limbic system

structures, including the amygdala and the orbitofrontal cor-

tex, which has been implicated in emotion, reward, and moti-

vation processing, thereby enabling associations among these
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abilities and sensorimotor and linguistic aspects of concepts.

Further, the ATL lies next to the anterior MTL system for epi-

sodic memory, which is thought to contribute to learning

conceptual knowledge gradually over multiple experiences, as

when many personal experiences with a variety of dogs gradu-

ally result in a concept of the dog category. Hub theories,

however, do not equate amodal with cross-modal (i.e., picture

and word modalities), emphasizing that a cross-modal (or

multimodal) region that integrates information from multiple

sensory and/or motor regions may not perform the true amo-

dal function required of a semantic hub. For example, the

angular gyrus performs multimodal sensory integration but

may not function as a semantic system for linguistic purposes.

p0070 However, it is unclear what exactly is the difference between

amodal and cross-modal/multimodal, and this distinction will

be critical for determining the anatomical locus of an amodal

hub for meaning that abstracts across stimulus form. Consider

that any region that integrates information, (a) across sensory

modalities, (b) multiple sensory plus motor or linguistic in-

formation, or (c) any of these plus emotion or mental state

information, would meet the definitions of multimodal, cross-

modal, and amodal (i.e., a similar pattern of neural activity is

activated by more than one type of physical stimulus or type of

response in the case of motor output). Moreover, alternative

views about the organization of semantic memory, including

those that posit no amodal hub, can accommodate the anato-

mical definition offered for the amodal semantic hub (i.e.,

integrates sensorimotor and emotion/reward information).

p0075 Further, anatomical evidence suggests that the ATL may not

be amodal (or fully multimodal). Some evidence suggests that,

rather than being a domain-general semantic hub, the ATL

stores knowledge about a unique item (e.g., an individual

person, a famous landmark), which may be particularly neces-

sary for socially relevant knowledge, as social information

necessarily involves two or more unique people. Consider

also that nonspatial (or object) processing inputs connect to

the hippocampus via the perirhinal cortex in the MTL and the

adjacent associative cortex, as well as the ventral visual path-

way in the occipitotemporal cortex, in the ATL, whereas spatial

processing inputs connect to the MTL via the parahippocampal

gyrus and the adjacent associative cortex, as well as the dorsal

visual pathway in the occipitoparietal cortex, in the posterior

temporal lobe. In short, the ATL provides input to the peri-

rhinal (nonspatial) and parahippocampal (spatial), which pro-

vide inputs to the hippocampus in the MTL. If the ATL is

amodal, then how can it send segregated, modal nonspatial,

and spatial inputs to the MTL? Modal segregation is difficult to

reconcile with a definition of semantic memory organization

that requires an amodal semantic hub where both nonspatial

(object) and spatial information must be combined. Other

types of sensorimotor, emotion, and reward inputs also send

segregated inputs into the MTL via the ATL.

s0060 Medial Temporal Lobe, Episodic Memory, and Meaning

p0080 Indeed, perhaps the brain structure that shows the most amo-

dal (or multimodal) properties is the MTL. The MTL shows

highly sensory-invariant response properties. For example,

MTL neurons respond to single individuals (e.g., Jennifer

Aniston), regardless of the form of the stimulus (i.e., varieties

of pictures, names), showing seemingly complete invariance,

and have been suggested to represent meaning in long-term

semantic memory. Further, MTL structures have been proposed

to construct representations of integrated multimodal percepts

that are sensitive to semantic variables.

p0085Spared new learning of knowledge in amnesia suggests that

the MTL is necessary not only for episodic memory but also for

semantic memory. However, this idea is hard to reconcile with

the substantial evidence dissociating episodic and semantic

memory. For example, patients with developmental amnesia in

which the MTL is dysfunctional from childhood have impaired

episodic memory but remarkably spared semantic memory.

Some evidence suggests that MTL amnesics can acquire some

new explicit knowledge, but this is limited in amount and gen-

eralization and attributable to the remaining spared MTL struc-

tures, clearly so in some cases and possibly in others. Whether

new explicit knowledge learning is spared in amnesia remains

controversial in part due to the inherent difficulties of the lesion

approach involving human patients; controlled, targeted lesions

cannot be done in humans and so residual sparing of critical

structures is hard to rule out. Overall, the evidence suggests that

knowledge can be acquired using primarily cortical mechanisms

but only through substantial repeated exposure, and episodic

encoding processes of theMTL accelerate knowledge learning by

integrating across multiple episodes in a way that also facilitates

generalization and abstraction of knowledge, consistent with

evidence that episodic and semantic memory are interlinked.

Episodic and semanticmemory systems have substantial mutual

interdependence during encoding and retrieval.

s0065Semantic Memory Includes Embodied
(Grounded) Knowledge

p0090Neuroscience largely invalidates the strong form of the stan-

dard theory. All current views about the organization of knowl-

edge incorporate an embodied (or grounded) cognition that

says that knowledge depends upon multiple modality-specific

systems, including those for sensorimotor properties in percep-

tual systems based on the senses (e.g., vision) and action

systems for motor planning as well as emotion and mental

states. For example, different modal knowledge systems in the

extrastriate occipitotemporal cortex support face, word, and

object knowledge. Within each system, modal knowledge var-

ies in how specifically physical properties are represented.

Some knowledge is more specific for a shape, spatial configu-

ration, or other physical property (e.g., visually specific object

knowledge) and others less so (i.e., being more abstract)

showing, for example, more invariance across changes in phys-

ical properties between experiences (e.g., an object from differ-

ent viewpoints) or cross-/multimodal activation patterns as

when stimuli with the same associated meaning (i.e., a picture,

sound, and word for dog) produce similar patterns of perfor-

mance or brain activity. By an embodied account, a brain area

can be both nonsemantic (e.g., sensorimotor), supporting, for

example, both perceptual processing and perceptual memory,

and semantic, supporting human symbolic abilities. Hybrid

theories suggest that one or more separate amodal system(s)

act as hub[s] or convergence zone[s] that interact reciprocally

with embodied knowledge systems.
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p0095 A key argument against embodied cognition is that so-

called abstract words, such as abstractAu6 and freedom, are unre-

lated to sensorimotor processes. The main counterargument

is that internal states, such as metacognition and emotion, are

also stored as knowledge, and introspective states provide

information that is central to representing abstract concepts.

Unfortunately, relatively little is known about abstract con-

cepts even though they play central roles in human cognition,

as most research has focused on concrete concepts.

s0070 Brain Basis of Knowledge

s0075 Word Meaning

s0080 Mental lexicon
p0100 How words activate meaning has been a central question in

language and semantic memory studies. The mental lexicon

stores word information, including meanings (i.e., semantic

memory for words), syntax, and perceptual word forms. Most

studies focused on speech comprehension, with early accounts

(e.g., Levelt) positing a processing sequence from word sounds

to syntax and finally to concepts in semantic memory. The

importance of sequential processing for language theory and

the fact that language comprehension is rapid, with all word

identification achieved even before sentences end, the timing

of semantic activation by words has been of greater interest

than anatomy. Consequently, most neuroscience studies of

semantics from words have used electromagnetic potentials

that have high temporal resolution lacking in anatomical

methods like functional magnetic resonance imaging (fMRI)

that instead has been used to determine the brain regions.

s0085 Linguistic N400
p0105 Most studies of language and semantic memory focus on the

linguistic N400, which is a scalp-recorded, negative electrical

potential peaking around 400ms that varies with semantic

processing between 300 and 500ms in response to written

words and spoken words for which the onset is slightly earlier.

The N400 indexes a multimodal, abstract knowledge system

for wordmeaning that is sensitive to ongoing context, construc-

tive, and processes semantic information over an extended time

period and across multiple brain regions. Thus, the meaning of

a word is extracted within about 300ms of processing. How-

ever, some lexical processing, including semantics, has been

argued recently to occur before the N400 since ERPs to words

between 200 and 300ms seem sensitive to lexical processes.

s0090 Anatomy of word concepts
p0110 The N400 in response to words indexes activity in the ATL and

the superior temporal gyrus, which are considered storage sites,

and the ventrolateral prefrontal cortex (VLPFC), which sup-

ports efficient retrieval and encoding of this semantic knowl-

edge. While electromagnetic potential and fMRI findings were

combined to infer these neural generators, fMRI findings alone

suggest that a more extensive, left-lateralized (i.e., more activity

in the left cerebral hemisphere) network activates semantic

memory in response to written and spoken words. The tempo-

ral lobe regions recruited extend (a) posteriorly into the modal

visual association cortex implicated in category-specific se-

mantic deficits and semantic dementia and may store object

knowledge specifying perceptual and conceptual attributes and

support multimodal integration, and (b) medially into the

parahippocampal region of the MTL, implicating it as an inter-

facing region between the more lateral temporal cortex and the

episodic memory system in the hippocampus of the MTL.

Notably, the left superior temporal gyrus region implicated in

language comprehension problems of Wernicke’s aphasia is

mainly the modal auditory cortex for speech perception and

has not been implicated in word meaning, though the most

ventral part may contribute to processing abstract concepts.

Nearby, in the lateral inferior parietal lobe, an angular gyrus

region is greatly expanded in humans, receives multimodal

inputs, and may support the conceptual retrieval, integration,

and fluent combination processes critical for understanding

discourse. While these regions are on the lateral surface, the

rest of the regions are medial. Specifically, the posterior cingu-

late region includes the retrosplenial cortex, which connects

directly and bidirectionally with the MTL system for episodic

memory and may promote episodic and semantic memory

interactions. This cingulate region has been implicated in

visuospatial, mental imagery, and simulation functions of

both memory systems. In the frontal lobe, dorsomedial parts

(BA 8) may support internally guiding semantic memory

retrieval, while ventromedial parts support the emotional sig-

nificance of concepts.

s0095Semantic (default) network for words
p0115Intriguingly, the lateral temporal lobe regions, the angular gyrus,

posterior cingulate, and medial prefrontal regions of this pro-

posed semanticmemory network for words (i.e., all wordmean-

ing regions except VLPFC) are all key components of the default

network. The default network activates in an anticorrelated

manner with an active task network, which essentially includes

the rest of the neocortex, including VLFPC. The active task

network activates more than the default network during tasks

demanding greater selective attention, working memory, and

executive functions. By contrast, the default network activates

more than the active task network in many language studies,

episodic memory tasks (for which the MTL also activates), and

rest (i.e., when minimally engaged with a task). The default

network is affected earlier and more than other brain systems

in Alzheimer’s disease patients who develop progressively severe

problems encoding new long-term episodic memory and

retrieving knowledge. The default network may thus have a

greater role in semantic memory, consistent with proposals

that this network supports mental imagery or simulation pro-

cesses that creatively synthesize, integrate, and associate multi-

modal information, especially episodic memory from the MTL,

across past experiences. These functions would be crucial for

constructing sequential, higher-order concepts from multiple

life episodes, such as generalizing across numerous restaurant

visits to construct a framework to comprehend the next such

visit, a knowledge representation known as a schema, and to

predict and anticipate how the next such visit will unfold over

time, a sequential knowledge representation known as a script.

However, it is unclear whether these regions are sufficient to

support all aspects of meaning, as these studies focused on

words. After all, other regions in the active task network, includ-

ing the VLFPC, are implicated in semantic memory and contrib-

ute important processes to knowledge encoding and retrieval
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and to mental imagery. For example, script knowledge evoked

by linguistic and nonlinguistic (e.g., picture) sequences involves

active task network regions that interact with basal ganglia

structures implicated in sequential processing and implicit

learning more than the default network (Figure 1).

s0100 Brain Basis of Multiple Knowledge Systems

s0105 Nonlinguistic Stimuli

p0120 The focus on semantic memory to words has left meaning in

response to nonlinguistic stimuli relatively less well under-

stood. Most work with nonlinguistic stimuli used pictures,

revealing visual object knowledge. This topic is important

because such research enables direct links between human

and nonhuman animals not afforded by word studies since

nonhuman animals have at best only very limited linguistic

capacity, and most neuroscience questions can be addressed

only in nonhuman animals for ethical reasons. Such links are

necessary to understand the neural underpinnings of semantic

memory from neural circuits to systems becauseAu7 . Moreover,

visual object knowledge is most important for human cogni-

tion, as vision is the dominant sensory modality, the best

characterized sensory system, and objects are the focus of

visual processing and attention.

s0110Early N3 Complex to Objects

p0125In response to a visually presented object, an N400-like scalp

electrical potential, the N3 complex (aka N300, N350, N390),

indexes neurophysiological processes between 200 and 500ms

involved in acquiring categorical knowledge, retrieving knowl-

edge and implicit memory about objects, andmaking cognitive

decisions based on object knowledge. The N3 complex peaks

around 350ms, differs in scalp distribution from the N400

(i.e., the N3 has a frontal maximum and can become positive

over occipitotemporal locations, whereas the N400 is centro-

parietal), and cognitive manipulations affect it earlier, around

200ms, than the N400. The earlier time course of the N3

relative to the N400 suggests that the arbitrary relationship

between a word and its meaning takes longer to activate than

the (nonarbitrary) association between a perceived object and

its meaning for which the shape and other physical properties

are part of its meaning. The N3 complex indexes a modal

knowledge system frommore visually specific to more abstract

or invariant representations stored in extrastriate occipital and

ventral temporal cortex. Crucial evidence that the processes

underlying the N3 complex are part of a semantic memory

system is that the N3 complex is sensitive to similar contextual,

memory, and conceptual manipulations as the linguistic

N400. For example, semantic priming, that is, preceding an

item by a semantically related item (e.g., doctor preceded by

nurse), reduces both brain potentials and response time. The

different scalp distributions of the N3 and N400 indicate mul-

tiple, modality-specific knowledge systems. This is due to

recruitment of the occipitotemporal cortex involved in stor-

ing object knowledge versus anterior and superior temporal

regions involved in storing word knowledge. The VLPFC has a

general role in semantic memory, however, controlling both

posterior cortical processes for object and word knowledge to

accomplish task-relevant goals and for decision-making (e.g.,

categorization). Notably, faces also evoke a functionally simi-

lar frontal N400-like potential. In sum, functionally similar but

somewhat anatomically distinct, semantic memory systems

support knowledge about words, faces, and other objects.

s0115Cortical Object Knowledge

p0130Multiple knowledge systems are consistent with the functionally

localized, hierarchical organization of the neocortex. From pos-

terior to anterior areas along the ventral stream, stimulus selec-

tivity becomes increasingly complex from more elementary,

local features and greater visual-specificity to higher-order global

shapes and combinations of features and increasing visual object

constancy (i.e., similar responses despite changes in orientation,

size, or other visual properties). Human occipitotemporal cortex

is necessary for normal behavior on wide-ranging object cogni-

tion tasks. Patients with occipitotemporal damage have visual

object agnosia: impaired perceiving, categorizing, and recogniz-

ing of visual objects with the pattern of deficits varying with

the locus of damage. Occipitotemporal areas are retinotopic

(a)

(b)

−1 µV 

N3
complex

200 ms

(c)

(d)

Figure 1f0010 Brain systems for knowledge. (a) Rendering of the left lateral
neocortex (Montreal Neurological Institute individual canonical brain,
SPM99) showing the lateral inferior posterior parietal regions, including
the angular gyrus, and superior temporal gyrus parts of the default state
network implicated in semantic memory for words. (b) Sagittal slice
through the medial cortex showing the medial cortical areas that form
most of the default state network implicated in semantic memory for
words. (c) Rendering as in a, except showing the right lateral neocortex
and parts of the active task network implicated in knowledge about
visually presented objects during a categorization task. (d) The negative
event-related potential called the N3 complex in response to visually
presented known objects (from an experiment like that in c). Note, a and
c were computed based on data from an experiment described in
Schendan and Stern (2008) Cerebral Cortex 18(7): 1695–1711; results in
a are from the contrast of old> new objects from different atypical views
(uncorrected p< 0.001) on an episodic recognition task; results in c are
from the contrast of unusual > canonical views of known visual objects
(e.g., dog) on a categorization task (uncorrected p< 0.05). Results in b
were computed from the contrast of control > mental rotation
(uncorrected p< 0.05) based on data from Schendan and Stern (2007)
Neuroimage 35(3): 1264–1277Au1 . Results in d are based on an ERP version
of that used for fMRI in c; the N3 is more negative for atypical than
canonical views of known visual objects for which knowledge is more
challenging to activate.
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(i.e., adjacent neurons respond to different but nonoverlapping

parts of the visual field) and object-sensitive (i.e., responding

more strongly to intact images of objects than scrambled

versions with no coherent object structure). However, recent

evidence suggests that object-sensitivity, object perception, and

invariant object knowledge continue into the MTL, including

the hippocampus. Extended object processing and memory

from the occipital into the MTL accords with embodied cogni-

tion but not the standard theory of an amodal system.

s0120 Domains of Knowledge

p0135 Multiple knowledge systems are consistent with embodied cog-

nition but also an alternative, though not incompatible idea that

it is object domain that primarily constrains conceptual knowl-

edge organization.Distributed domain-specific theories propose

that evolutionary history affects development, which thereby

determines object domain. Convergent findings suggest that

the domains are living animate (e.g., mammals), living inani-

mate (e.g., trees), conspecifics (e.g., humans), and tools. For

example, an individual brain-damaged patient can display

category-specific semantic problems with multimodal input,

implicating abstract representations of conceptual knowledge.

Both picture-naming and verbal questions about objects can be

impaired for living animate objects (e.g., animals) but spared for

nonanimals. Even so, the patients can also have problems with

nonsemantic, visual structural processing and knowledge. These

and other findings motivated other multiple semantic system

accounts to distinguish instead between nonliving things, ani-

mals, and fruits/vegetables, proposing that visual motion and

functional information are more important for knowing about

nonliving things and other kinds of sensory information are

more important for knowing about living things of which

fruits/vegetables depend more on color and taste information

(than animals do). Notably, a domain account need not imply

that semantic memory is modular but rather current ideas

emphasize that domain-specific neural networks are distributed

across multiple cortical regions. Each domain of knowledge can

be further subdivided according to the sensorimotor, affect, and

mental state processes posited in embodied cognition theories,

enabling a rapprochement between accounts. A central idea in

hybrid accounts is that sensory processing within a specific

domain (e.g., how a conspecific human looks based on visual

processing) will be connected (e.g., via links in the semantic

network) to other processes (e.g., how a conspecific human

also sounds, emotes, or acts based on motor processing). Over-

all, findings converge on the idea that knowledge is organized

across multiple cortical systems, contrary to the standard theory

of meaning incorporated in multiple memory systems theory,

but debates continue over the organizational principles govern-

ing the divisions (embodiment, domains, sensory-functional).

s0125 Frontal Lobe Controls Knowledge Encoding
and Retrieval

s0130 Controlled Knowledge Retrieval and Decisions in
Prefrontal Cortex (PFC)

p0140 The VLPFC controls knowledge encoding of mappings

between knowledge stored in posterior areas and decision

processes in frontal areas and subsequent retrieval. The human

lateral PFC is organized functionally along a gradient from

abstract decision and action planning processes in more rostral

parts (e.g., VLPFC) to increasingly more concrete response-

related processes in more caudal parts (e.g., premotor cortex

[PM]). This system maintains patterns of activity for multiple

types of information (e.g., linguistic, visuospatial, object, rules)

in functionally distinct neural populations, each of which influ-

ences (controls) other areas to accomplish a mental or overt

action. For example, to decide the category of a visual object,

dorsolateral PFC (DLPFC) and PM accumulate and compare

visual evidence obtained from the occipitotemporal cortex to

compute a decision according to a rule that determines the

choice, which involves more rostral frontopolar (BA 10) areas.

In the parietal lobe, the intraparietal sulcus (IPS) also accumu-

lates evidence, consistent with its strong bidirectional connec-

tions with some decision-making regions. The VLPFC has an

important role in disambiguating knowledge, as when multiple

interpretations of the input result from initial processing (e.g.,

ambiguous figures, impoverished percepts, multiple alternative

meanings or knowledge types are competing), and it interacts

reciprocally with DLPFC and PM to recruit working memory

resources to resolve uncertainty.

s0135Simulation, Mental Imagery, and Semantic Memory

p0145Embodied cognition theories propose mental imagery, partic-

ularly automatic simulation varieties, as a core mechanism

for deep conceptual processing, rather than language with

which semantic memory has been commonly allied. For exam-

ple, hearing the word dog automatically simulates the sensori-

motor, affect, and/or mental state associated with experiences

of dogs (e.g., what they look like, how they move, feel, etc.).

The idea is that embodied processes encoded into the knowl-

edge system during the initial experience are later recapitulated

via cortical network simulation mechanisms in response to the

original stimulus (e.g., seeing a dog) or associated stimuli (e.g.,

the word, dog). The human capacity for symbolic cognition

arises from interactions between simulation in the cortical

knowledge network and linguistic processing. By this view,

nonhumans lack symbolic cognition insofar as they lack lin-

guistic processes, even though nonhuman animals have simu-

lation abilities like those in humans by virtue of common

cortical architectures for sensorimotor, emotion, and mental

state processes.

p0150However, mental imagery research has primarily investi-

gated not automatic imagery but rather strategic mental imag-

ery. Such studies, moreover, mainly use recently trained stimuli

for which episodic memory (not semantic memory) likely

dominates processing. For example, people are trained to

memorize a few pictures until they can visualize themmentally

with clear vivid detail. Later, while trying to (i.e., strategically)

visualize these pictures, they answer questions about them

requiring accurate mental images, such as whether a specific

object part falls within a location of a grid on a computer

screen. Consequently, little is known about mental imagery

evoked automatically when semantic memory is activated.

What is known comes mostly from studies of embodied cogni-

tion and two neuroimaging studies comparing episodic and
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semantic memory sources. The latter evidence implicates simi-

lar structures for imagery from episodic and semantic memory,

including visual association areas, the amygdala, which sup-

ports emotional processing, the MTL, and parts of the active

task and default networks. Notably, the right VLPFC is acti-

vated more during mental imagery based on episodic than

semantic memory, consistent with the possibility that most

prior mental imagery studies reveal how strategic mental imag-

ery from episodic memory works, which depends more on the

frontal lobe, but not necessarily automatic simulation (imag-

ery) from semantic memory.

s0140 Summary

p0155 Semantic and nonsemantic memory systems store knowledge

based on experience with the world independent from episodic

memory about the originating personal experiences. Initial

studies aimed to solve how language communicates concepts,

inspiring cognitive models describing hierarchies of concepts

composed of sets of overlapping features, semantic networks

that operate by activation spreading along links between con-

cepts, or memory decisions based on cues to conceptual asso-

ciations. Meaning is embodied in sensorimotor, emotion, and

mental state information processing but also may be organized

by domain in multiple semantic systems and may include an

amodal hub in the anterior temporal lobe. While words acti-

vate meaning between 300 and 500ms, knowledge evoked by

nonlinguistic objects (for which the perceptual form may con-

vey aspects of meaning) starts earlier by 200ms. Anticorrelated

active task and default state networks may support different

aspects of meaning, while the lateral prefrontal cortex controls

semantic memory retrieval and encoding. Conceptual proces-

sing depends critically upon automatic mental imagery simu-

lating information processing in these brain networks, which,

in humans, interacts with language to accomplish symbolic

reasoning functions.
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