273 research outputs found

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Assembling strategies in extrinsic evolvable hardware with bi-directional incremental evolution

    Get PDF
    Bidirectional incremental evolution (BIE) has been proposed as a technique to overcome the ”stalling” effect in evolvable hardware applications. However preliminary results show perceptible dependence of performance of BIE and quality of evaluated circuit on assembling strategy applied during reverse stage of incremental evolution. The purpose of this paper is to develop assembling strategy that will assist BIE to produce relatively optimal solution with minimal computational effort (e.g. the minimal number of generations)

    Bidirectional incremental evolution in extrinsic evolvable hardware

    Get PDF
    Evolvable Hardware (EHW) has been proposed as a new technique to design complex systems. Often, complex systems turn out to be very difficult to evolve. The problem is that a general strategy is too difficult for the evolution process to discover directly. This paper proposes a new approach that performs incremental evolution in two directions: from complex system to sub-systems and from sub-systems back to complex system. In this approach, incremental evolution gradually decomposes a complex problem into some sub-tasks. In a second step, we gradually make the tasks more challenging and general. Our approach automatically discovers the sub-tasks, their sequence as well as circuit layout dimensions. Our method is tested in a digital circuit domain and compared to direct evolution. We show that our bidirectional incremental approach can handle more complex, harder tasks and evolve them more effectively, then direct evolution

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Acquiring moving skills in robots with evolvable morphologies: Recent results and outlook

    Get PDF
    © 2017 ACM. We construct and investigate a strongly embodied evolutionary system, where not only the controllers but also the morphologies undergo evolution in an on-line fashion. In these studies, we have been using various types of robot morphologies and controller architectures in combination with several learning algorithms, e.g. evolutionary algorithms, reinforcement learning, simulated annealing, and HyperNEAT. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development

    Evolutionary morphogenesis for multi-cellular systems

    Get PDF
    With a gene required for each phenotypic trait, direct genetic encodings may show poor scalability to increasing phenotype length. Developmental systems may alleviate this problem by providing more efficient indirect genotype to phenotype mappings. A novel classification of multi-cellular developmental systems in evolvable hardware is introduced. It shows a category of developmental systems that up to now has rarely been explored. We argue that this category is where most of the benefits of developmental systems lie (e.g. speed, scalability, robustness, inter-cellular and environmental interactions that allow fault-tolerance or adaptivity). This article describes a very simple genetic encoding and developmental system designed for multi-cellular circuits that belongs to this category. We refer to it as the morphogenetic system. The morphogenetic system is inspired by gene expression and cellular differentiation. It focuses on low computational requirements which allows fast execution and a compact hardware implementation. The morphogenetic system shows better scalability compared to a direct genetic encoding in the evolution of structures of differentiated cells, and its dynamics provides fault-tolerance up to high fault rates. It outperforms a direct genetic encoding when evolving spiking neural networks for pattern recognition and robot navigation. The results obtained with the morphogenetic system indicate that this "minimalist” approach to developmental systems merits further stud

    An Evolving and Developing Cellular Electronic Circuit

    Get PDF
    A novel multi-cellular electronic circuit capable of evolution and development is described here. The circuit is composed of identical cells whose shape and location in the system is arbitrary. Cells all contain the complete genetic description of the final system, as in living organisms. Through a mechanism of development, cells connect to each other using a fully distributed hardware routing mechanism and differentiate by expressing a corresponding part of the genetic code thereby taking a specific functionality and connectivity in the system. The configuration of the system is found by using artificial evolution and intrinsic evolution at the schematic level is possible. Applications include the approximation of boolean functions and the evolution of a controller capable of navigating a Khepera robot while avoiding obstacles. The circuit is suited for a custom chip called POEtic, which is a generic platform to implement bio-inspired applications

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche
    • 

    corecore