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Abstract

A novel multi-cellular electronic circuit capable of evolution
and development is described here. The circuit is composed
of identical cells whose shape and location in the system is
arbitrary. Cells all contain the complete genetic description
of the final system, as in living organisms. Through a mech-
anism of development, cells connect to each other using a
fully distributed hardware routing mechanism and differen-
tiate by expressing a corresponding part of the genetic code
thereby taking a specific functionality and connectivity in the
system. The configuration of the system is found by using
artificial evolution and intrinsic evolution at the schematic
level is possible. Applications include the approximation of
boolean functions and the evolution of a controller capable
of navigating a Khepera robot while avoiding obstacles. The
circuit is suited for a custom chip called POEtic, which is a
generic platform to implement bio-inspired applications.

Introduction
New approaches to the creation of electronic circuits have
been explored in the last 10 years. Evolvable Hardware
(EHW) (Higuchi et al., 1993) consists of using artificial evo-
lution (e.g. genetic algorithms) to create electronic circuits.
This approach showed that more efficient circuit imple-
mentations than those obtained with traditional techniques
may be found (Coello et al., 2000; Vassilev et al., 2000).
Evolved circuits may also operate using different principles
than those which are obtained by design. They may ex-
ploit physical characteristics of devices to implement rich
dynamical behaviour from simple building blocks, so better
use of the hardware resources may be achieved (Thompson,
1997). EHW is believed to have a lot of potential (Yao and
Higuchi, 1999), for instance in adaptive hardware (Kajitani
et al., 1998), or in fault-tolerant hardware (Keymeulen et al.,
2000), and it becomes more of an industrial reality (Higuchi
et al., 2000).

Another approach is to mimick the way living organ-
isms develop from a single cell to form a complete multi-
cellular organism. In Embryonics (Marchal et al., 1994;
Mange et al., 1996), cellular decomposition and develop-
ment are key features which are used to provide a self-
repairing substrate for the implementation of electronic cir-

cuits, as illustrated by the self-repairing BioWatch (Stauf-
fer et al., 2001). As embryonic cells contain the complete
description (genetic code) of the circuit, mechanisms such
as self-reproduction and self-repair become possible. Self-
repair is an alteration of the development process in which
faulty cells are avoided. Faults may be detected by dupli-
cation of computational unit (Mange and Tomassini, 1998,
251–258). However the cellular paradigm allows new ways
to perform fault-detection. Immunotronics takes inspiration
from the way the immune system is capable of discriminat-
ing between the normal and anormal behavior of a living cell
and transposes such concept to electronic circuits (Bradley
et al., 2000). Cellular system also open new possibilities in
genotype to phenotype mappings which can improve evolv-
ability of circuits.

Motivated by the previous points, we are interested in
the combination of evolution and development in hard-
ware. Such a circuit may combine efficient implementations
thanks to evolution with the advantages of the cellular and
developmental paradigm to explore bio-inspired hardware.
Novel in this paper is the development mechanism combined
with evolution, and their implementation on a prototype of
the custom chipPOEtic (Tyrrell et al., 2003). POEtic is
a generic platform to implement bio-inspired applications
comprising mechansisms such as evolution (Phylogenesis),
development (Ontogenesis) and learning (Epigenesis). Re-
taining the POEtic terminology we call the circuit described
here aPO circuit. The PO circuit consists of cells which
all contain the complete genetic description of the final cir-
cuit. Cells can be of any size/shape and can be located any-
where in the circuit. The development process uses a fully
distributed dynamic hardware routing mechanism which is
available in POEtic. Cells connect to each other at run-time
and get to know which part of the genetic code they must ex-
press and take a specific connectivity and functionality in the
system. The functionality of the system is found by evolv-
ing the circuit genotype using genetic algorithms. Applica-
tions include the approximation of boolean functions (adder
and multiplexer) and the evolution of a controller capable of
navigating a Khepera robot while avoiding obstacles. Self-



repair and self-replication issues are discussed. The next
section describes the POEtic hardware on which the PO cir-
cuit is implemented. Afterwards the cell structure and the
development mechanism are discussed, followed by a sec-
tion showing how the circuit can be evolved. Finally the
results are discussed before concluding.

POEtic hardware
The multi-cellular PO circuit is implemented on a novel sub-
strate: the POEtic chip (Tyrrell et al., 2003). The POEtic
chip is a platform to test bio-inspired mechanisms, such as
mechanisms of evolution (Phylogenesis), development (On-
togenesis) and learning (Epigenesis). Its architecture is sum-
marized below and described extensively in (Thoma et al.,
2003).

The POEtic chip is composed of a CPU and anorganic
subsystem. The CPU is a 32-bit RISC with bit manipulation
and random number generation capabilities which make it
suited to run evolutionary algorithms.

The organic subsystem is where multi-cellular PO circuits
are implemented. It is composed of two layers: a layer of
moleculesand arouting layer(see fig. 1, right).

Molecules contain a 16 bits lookup table (LUT), a flip-
flop and a switchbox for local routing. The molecule output
can be registered or combinational. Molecules can operate
in different modes. In the3/4-LUTmode, the molecule com-
putes a logic function of 3- or 4-inputs. Modesinputandout-
putallow molecules to interact with the routing layer. Mode
reconfigureis used to reconfigure another molecule. This is
extensively used for the development mechanism of the PO
circuit.

The routing layer establishes long distance connections
between molecules (e.g. for inter-cell communication) and
interfaces molecules to physical pins of the circuit. It
is capable ofdynamic routingto create connections be-
tween molecules automatically and atrun-time. The rout-
ing layer is composed of routing units (RU) which are iden-
tified by a 16-bit ID and tagged as eithersourcesor tar-
gets. When dynamic routing is triggered, logic within the
RU connects sources and targets which have the same ID
using a breadth-first search algorithm (Thoma et al., 2003;
Moreno Aŕostegui et al., 2001). Molecules can change the
identifiers in the RU and retrigger the routing mechanism.
Therefore new connections can be built at runtime. This
may be used to respond to environmental changes, for exam-
ple changes in the location of sensors or actuators in a robot.
Note that this feature does not exist in FPGAs where physi-
cal connections are mapped atdesign-timeto the FPGA.

Because the final POEtic chip will be available by the
summer, prototyping is done by implementing the key parts
of POEtic on an FPGA. The main difference is that here the
organic subsystem is serially configured whereas in the final
POEtic chip it is mapped in the address space of the CPU
and accessed in parallel. The architecture of the system is

Figure 1: Left: the architecture of the system implemented
on the FPGA. Right: the organic subsystem is composed of
an array of molecules and an array of routing units.

shown in fig. 1, left. A 4K-word program ROM and an
8K-word RAM is interfaced to the CPU. The configuration
interface takes care of the serial configuration and the I/O
interface is used to read and write to the I/O of the organic
subsystem, to set control bits and to read its status. The host
interface allows the CPU to send data to the host (the PC
hosting the FPGA board) for example to monitor the status
of evolution.

Synthesis has been done for a Xilinx Virtex XC2V3000-4
FF1152. Ressource usage are around 5% of the LUTs for
the CPU and 66% for an organic subsystem composed of 80
molecules, while some other logic serves to connect both
together. Placement and routing of the system ended up
with a 97% ressource usage, and 51% of RAM blocks us-
age. Placement could succeed with 100 molecules but rout-
ing could not. After place and route no theoretical maximum
speed could be calculated, as there are combinational paths
because of the molecules switch boxes. However, successful
execution could be achieved at 10MHz.

One could argue that 80 molecules is a very small num-
ber compared to a Xilinx that owns more than 14000 slices,
but we have to keep in mind that an FPGA is not designed
to emulate another FPGA. For instance, as 76 configuration
bits define a molecule, at least 76 flip-flops are needed, only
for this purpose. Therefore, a hardware realization of PO-
Etic is the only way to obtain a efficient system.

Circuit development
Cell architecture
The basic unit of the PO circuit is the cell. Key characteris-
tics are that all cells are identical and contain the complete
genetic description of the whole organism. A development
mechanism is used to build the multi-cellular circuit from
initially unconnected and undifferentiated cells. Following
the view introduced in (Tyrrell et al., 2003) the cell can be
viewed as the three layered structure illustrated in fig. 3. The
genotype is a memory storing the genetic code of the entire
circuit. The mapping layer is where development mecha-
nisms take place. The phenotype layer is the functional part
of the cell. In this implementation it has three inputs and



one output and can compute any logic function of the inputs
with a lookup table.

A cell composed of 40 molecules has been designed (fig.
2) which allows to fit 2 cells in the system. The molecules
are composed of three different blocks, corresponding to the
three layers depicted in fig. 3:

• The genotype layer is implemented with 16 molecules
which store the genome. Each cell of the organism needs 4
molecules. Therefore the same cell can be used for organ-
isms of up to four cells.

• The mapping from genotype to phenotype is done by
18 molecules: 8 molecules are responsible for the growth
process, and 10 molecules used to differentiate cells.

• The phenotype layer is implemented by 5 molecules.
Three of them serve as inputs, one as the functional part of
the cell (a 3-LUT), and one as the output.

Development mechanism

Development maps the functionality of the cell from its
genotype. It operates in two phases: growth and differen-
tiation. The mechanism is based on a unique identifier for
each cell, encoded in one-hot (a single bit is 1 at any time
and indicates the ID) to reduce the cell size (binary encod-
ing is possible but takes more space). For a system of n cells
(n being a number in [1,16]), the first cell has an ID of n-
1. For instance, if n=4, its ID would be 0...01000 (in this
prototype n=2). IDs are 16-bits.

Growth The growth phase lets the organism grow from
one cell to the whole organism. It is initiated by the CPU
which first configures the entire organic subsystem with the
cell description, including the genome. All cells are iden-
tical, totipotent, but are unconnected and undifferentiated.
Cells have aninput molecule waiting for a connection, with
address 1...111. An external agent (e.g. the CPU) starts a
dynamic routing, by configuring an I/O routing unit to be
a source, with address 1...111. Dynamic routing creates a
path to the closest cell. Once the routing process is over,
the external agent sends serially the ID of the cell (number
n-1). The cell stores it and computes the ID of the next cell
by shifting its own ID by 1 (if cell is 0...01000, then next
one is 0...0100). Afterwards, an output of the cell, with ad-
dress 1...111 launches a new routing process, to connect to
the nearest available cell. It then transmits the newly calcu-
lated ID, and the process continues until a cell receives the
ID 0...01. It recognizes it is the last one, and does not start a
new routing process.

The end of the growth phase is detected by the way of
a global enable. This special feature of POEtic allows
molecules which are sensitive to this signal to act on a global
enable. In our system, the molecules involved in the growth
process are not sensitive to this enable, but the others are.
Once a cell has received its ID, it sets its global enable line,
and so, the differentiation phase can not start before the or-

ganism is totally built.

Differentiation Cells know their ID and can differenti-
ate to express the corresponding part of the genome. The
genome codes the functionality (3-LUT content) and the
connectivity (three inputs addresses) of each cell. Hence the
topology on the phenotype layer needs not be the same as
that of growth which is topologically linear on the mapping
layer. The topology of the phenotype is given by the geno-
type and can be anything. For example, at the phenotype
level, cells could be connected to form an array.

Four shift-memory molecules are required to store the
genome of a cell. The partial reconfiguration capabilities of
POEtic are fully exploited in the differentiation phase, where
the 3 input molecules and the 3-LUT (functional) molecule
are reconfigured with the corresponding part of the genome.

During the differentiation phase, the genome is shifted,
the output being redirected to the input. Based on the ID
of the cell, counters are used to enable the partial reconfig-
uration of the phenotype at the right time, that is when the
output of the genome corresponds to the current cell. The
reconfiguration lasts 4x16=64 clock cycles for each cell, but
as the genome has to shift entirely it makes the differentia-
tion longer.

At the end of the differentiation phase, every cell has its
functional part ready, but cells are not yet inter-connected at
the phenotype level. Therefore, every cellular input launches
a routing process, until all cells are connected on the pheno-
type layer. Finally, the organism is ready to operate, the mi-
croprocessor can apply the inputs, retrieve the outputs, and
calculate the fitness of this newly created individual.

Circuit evolution

In the PO concept, circuits areevolvedrather thandesigned.
The behaviour of the PO circuit is determined by itsconfig-
uration: how cells are interconnected and what functionality
cells take. This information is stored in the genotype layer
of cells and can be evolved using genetic algorithms (GA)
to obtain the desired functionality.

To demonstrate that the PO circuit can be evolved, two ap-
plications are considered. The first consists in implementing
logic functions (adders and multiplexers) in the PO circuit,
and the second consists in evolving a Khepera robot con-
troller to perform navigation with obstacle avoidance using
proximity sensors. In the latter case the relation between in-
puts and outputs which give the desired robot behaviour may
potentially be difficult to determine which makes evolution
well suited for such problems (Harvey et al., 1993).

Evolved ”organisms” (PO circuits) are implemented in the
organic subsystem of the POEtic hardware. A PO circuit is
composed of two three-input cells (see 4, left). It has six
inputs and two outputs which are connected by design to the
output of the cells. Cells can compute any logic function of
three inputs by the mean of a lookup table. The inputs of



Figure 2: The cell is composed of 10 by 4 molecules. The
complete circuit contains two such cells. Within a molecule
is drawn its configuration. Five molecules form the pheno-
type, 16 molecules store the genotype and the remaining cells
are used for the growth and differentiation.

Figure 3: The 3-layer decomposition of a cell. The
genotype layer holds the genetic code. The mapping
layer handles development. The phenotype layer is the
functional part of the cell, selected among a given reper-
toire of functionalities.

the cells can be connected to one of eight possible locations:
one of the six inputs, or the output of one of the two cells.
Input and outputs of the PO circuit can be accessed by the
CPU which is in charge of running the GA and computing
the circuit fitness. The physical location of the inputs and
outputs in the organic subsystem are shown on the right of
fig. 4. The outputs are placed close to the output molecule of
the cells to minimize the use of RU. The only consideration
regarding the placement of the inputs is to avoid the leftmost
column of routing units, which are used by the development
mechanism.

Evolution is applied to the input connectivity of the cells
and to the content of their lookup table. The genetic code is
a compact version of what is stored in the genotype layer of
the cells to reduce the size of the search space. Eight bits are
used to encode the content of the LUT and three bits are used
for each cell input to encode the connectivity. Therefore the
complete genetic code takes 34 bits (17 bits per cell).

Evolving logic functions
The PO circuit is evolved to implement logic functions. Two
functions are considered: a multiplexer and a full adder.
Three inputs are used (inputs 0 to 2) while inputs 3, 4 and
5 are set at all time to constant values 0, 1 and 0 respec-
tively. The multiplexer uses one output whereas the adder
uses two which represent the sum and the carry out. Circuits

Figure 4: Left: functional view of the PO circuit with two
cells which can compute logic functions of three inputs. The
circuit has two outputs and five inputs. The outputs are con-
nected by design to the outputs of the cells. The connections
of the inputs of the cells are evolved together with the logic
function. Right: physical location of the input and outputs
of the circuit.

Figure 5: Maximum and average fitness over the generations
when evolving logic functions. The horizontal dashed line
represents the maximum fitness. The dotted lines either side
the maximum represent the standard deviation between 20
runs.

are evolved by a GA with the following parameters: popu-
lation size of 200, rank selection of the 20 best individuals,
5% of mutation rate, one-point crossover rate of 30% and
elitism.

The fitness is evaluated by comparing the output of the
circuit with the desired output for all possible inputs. It is
equal to the number of times the outputs take the correct
value. The maximum fitness is 8 and 16 for the multiplexer
respectively the full adder. Fig. 5 shows the fitness over the
generations averaged on 32 runs for the multiplexer and full
adder. Evolution managed to implement the multiplexer in
31 of the 32 runs (in one run the maximum fitness obtained is
7). The full adder is evolved in 20 of the 32 runs (remaining
runs achieve a maximum fitness of 14). As expected the
multiplexer is easier to evolved than the full adder because
it is a simpler circuit which can be implemented in only one
cell whereas the full adder needs two.



Figure 6: Left: mapping of the Khepera sensors and actuator
on the PO circuit. Right: evolution of the maximum and
average fitnes of the robot controller. Maximum fitness is 1.

Evolving a robot controller

The PO circuit is evolved to control the navigation of a
Khepera robot to avoid obstacles, that is to map sensory in-
puts to motor commands. The Khepera is a two-wheeled
robot with 8 proximity sensors (K-TEAM, 1999). The prox-
imity sensors are connected to the inputs of the PO circuit,
and the motors of the Khepera are controlled by the output
of the cells. Fig. 6 left shows the mapping of the sensors
and motors to the PO circuit. Some sensors are grouped by
taking the value of the most active sensor. The robot has a
sensory motor period of 100ms during which the speed of
the wheels remain constant. At the end of the period, the
outputs of the PO circuit update the speed of the wheels. An
output of 1 corresponds to a wheel speed of +80mm/s, while
an output of 0 corresponds to a speed of -80mm/s. Obvi-
ously wheels can never stop. This is a limitation imposed
by the small amount of cells which fit on the FPGA. After-
wards, obstacles are sensed and the inputs of of the circuit
are set for the next sensory motor period.

The fitness of the controller is determined from the be-
haviour of the robot: straight motion should be maximized
while minimizing contacts with the walls. The fitness func-
tion is the sum of the speeds of the wheels at each sensory-
motor step when both wheels spin forward (Floreano and
Mattiussi, 2001). It favors obstacle avoidance because the
wheels of a robot which is stuck against an obstacle do not
spin due to the friction with the ground.

The circuit has been evolved using the same GA param-
eters as previously. Fig. 6 right shows the evolution of the
fitness over the generations. A good obstacle avoidance be-
haviour is already obtained after about 10 generations. Note
that evolution was performed in simulation to speed up ex-
periments and the best individual tested successfully on a
real robot.

Discussion
The development mechanism is novel in many respects. An
important difference compared to embryonics development

is that cells can be of any shape and can be physically placed
anywhere in the organic subsystem even at irregular inter-
vals. This may be interesting for example if parts of the
organic subsystem are damaged: cells may be placed on the
functional molecules (an off-line test may reveal the dam-
aged locations), and dynamic routing takes care connecting
cells in a transparent way.

Compared to classic unconstrained evolution which con-
sists of manipulating directly the configuration bits of an
FPGA (Thompson, 1997), evolution could be performed at a
higher level thanks to dynamic routing. Indeed the approach
could be classified asintrinsic schematicevolution. Connec-
tions are evolved by encoding identifiers of source cells (like
in a net-list), rather than by encoding the configurations of
many switchboxes. Consequently the genetic coding is more
compact and evolution may be faster. Note that the genetic
coding resembles Cartesian Genetic Programming (Miller,
1999) which also encodes the functionality and connectivity
of every cell. In particular circuits which were evolved in
simulation in the latter paper can be intrinsically evolved in
the PO circuit.

Several features unique to the POEtic chip have been used
to realize the PO circuit. The close interaction between the
CPU and the organic subsystem allow fast reconfiguration of
the organic subsystem by the CPU when running evolution-
ary algorithms. The POEtic CPU containes features such as
a hardware random number generator which may speedup
the execution of evolutionary algorithms. Dynamic routing
and the possibility of one molecule to reconfigure another
molecule to achieve self-reconfiguration are also at the core
of the development mechanism.

The POEtic chip implemented on the FPGA has been
changed in a number of ways compared to the final POEtic
chip to reduce the space taken. Notably the final POEtic chip
will contain an AMBA bus to interface with internal and ex-
ternal peripherals. Additional peripherals such as timers and
hardware multipliers will be available. Also several chips
may be cascaded to form a larger organic subsystem.

Conclusions
An evolving and developing circuit has been implemented
on a novel POEtic chip. The circuit is composed of identical
cells, all of them containing the complete genetic descrip-
tion of the final system, as in living organisms. A hardware
development mechanism using specific features of the PO-
Etic chip is used to build the circuit starting from uncon-
nected and undifferentiated cells through a growth and dif-
ferentiation process. Evolution has been used successfully
to find suitable configurations of the circuit in tasks such as
the evolution of logic functions and the evolution of a robot
controller.

The circuit described here can be improved in a number
of ways. Self-repair although mentionned has not yet been
explored. Self-repair requires a means to detect faults in the



circuit. This can be done by functional redundancy within
the cells or by following the immunotronics approach. Upon
detection of a defective cell, it would go offline and a new
development process could be triggered which would make
use of spare cells placed in the circuit.

Cells contain the genetic code of the complete circuit,
however they were not designed to transfer the genetic code
to other cells during or after development. As such, circuit
self-replication is not yet possible. Modifications to allow
self-replication may be explored in the future.

A direct genotype to phenotype mapping has been used
and this is known to lead to scalability issues when evolv-
ing complex circuits. Indirect genotype to phenotype map-
pings can be implemented in the mapping layer of the cells.
In particular amorphogenetic codinghas been developed
taking inspiration from the way inter-cellular chemical sig-
nalling regulate the functionality of cells. It has been de-
signed to remain simple and suited for hardware implemen-
tations (Roggen et al., 2003). Further work may explore the
combination of evolution and development using such indi-
rect genetic codings.
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