25,706 research outputs found

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    On the design of state-of-the-art pseudorandom number generators by means of genetic programming

    Get PDF
    Congress on Evolutionary Computation. Portland, EEUU, 19-23 June 2004The design of pseudorandom number generators by means of evolutionary computation is a classical problem. Today, it has been mostly and better accomplished by means of cellular automata and not many proposals, inside or outside this paradigm could claim to be both robust (passing all the statistical tests, including the most demanding ones) and fast, as is the case of the proposal we present here. Furthermore, for obtaining these generators, we use a radical approach, where our fitness function is not at all based in any measure of randomness, as is frequently the case in the literature, but of nonlinearity. Efficiency is assured by using only very efficient operators (both in hardware and software) and by limiting the number of terminals in the genetic programming implementation

    Conservation, Creation, and Evolution: Revising the Darwinian Project

    Get PDF
    There is hardly anything more central to our universe than conservation. Many scientific fields and disciplines view the law of conservation as one of the most fundamental universal laws. The Darwinian model pivots the process of evolution on variability, reproduction, and natural selection. Conservation plays a marginal role in this model and is not really universal, as the model allows exceptions to conservation, i.e. non-conservation, to play an equally important role in evolution. This anomalous role of conservation in the Darwinian model raises questions: What is the reason for this anomaly? Is conservation really universal, as we tend to believe or is it not, as the Darwinian model suggests? This contribution proposes a new model of evolution that focuses on levels of organization, rather than of species, organisms, or populations. It argues that conservation is central to evolution. Not only does this new model restores the universal status of conservation but it also makes possible to resolve some outstanding problems and controversies that continue to plague the Darwinian model. The article tries to advance the broad Darwinian project that seeks to explain the process of evolution as a product of the spontaneous processes in nature

    Approximating n-player behavioural strategy nash equilibria using coevolution

    Get PDF
    Coevolutionary algorithms are plagued with a set of problems related to intransitivity that make it questionable what the end product of a coevolutionary run can achieve. With the introduction of solution concepts into coevolution, part of the issue was alleviated, however efficiently representing and achieving game theoretic solution concepts is still not a trivial task. In this paper we propose a coevolutionary algorithm that approximates behavioural strategy Nash equilibria in n-player zero sum games, by exploiting the minimax solution concept. In order to support our case we provide a set of experiments in both games of known and unknown equilibria. In the case of known equilibria, we can confirm our algorithm converges to the known solution, while in the case of unknown equilibria we can see a steady progress towards Nash. Copyright 2011 ACM

    Generative theatre of totality

    Get PDF
    Generative art can be used for creating complex multisensory and multimedia experiences within predetermined aesthetic parameters, characteristic of the performing arts and remarkably suitable to address Moholy-Nagy's Theatre of Totality vision. In generative artworks the artist will usually take on the role of an experience framework designer, and the system evolves freely within that framework and its defined aesthetic boundaries. Most generative art impacts visual arts, music and literature, but there does not seem to be any relevant work exploring the cross-medium potential, and one could confidently state that most generative art outcomes are abstract and visual, or audio. It is the goal of this article to propose a model for the creation of generative performances within the Theatre of Totality's scope, derived from stochastic Lindenmayer systems, where mapping techniques are proposed to address the seven variables addressed by Moholy-Nagy: light, space, plane, form, motion, sound and man ("man" is replaced in this article with "human", except where quoting from the author), with all the inherent complexities

    A Unifying Theory of Biological Function

    Get PDF
    A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories
    corecore