7 research outputs found

    A hybrid kidney algorithm strategy for combinatorial interaction testing problem

    Get PDF
    Combinatorial Interaction Testing (CIT) generates a sampled test case set (Final Test Suite (FTS)) instead of all possible test cases. Generating the FTS with the optimum size is a computational optimization problem (COP) as well as a Non-deterministic Polynomial hard (NP-hard) problem. Recent studies have implemented hybrid metaheuristic algorithms as the basis for CIT strategy. However, the existing hybrid metaheuristic-based CIT strategies generate a competitive FTS size, there is no single CIT strategy can overcome others existing in all cases. In addition, the hybrid metaheuristic-based CIT strategies require more execution time than their own original algorithm-based strategies. Kidney Algorithm (KA) is a recent metaheuristic algorithm and has high efficiency and performance in solving different optimization problems against most of the state-of-the-art of metaheuristic algorithms. However, KA has limitations in the exploitation and exploration processes as well as the balancing control process is needed to be improved. These shortages cause KA to fail easily into the local optimum. This study proposes a low-level hybridization of KA with the mutation operator and improve the filtration process in KA to form a recently Hybrid Kidney Algorithm (HKA). HKA addresses the limitations in KA by improving the algorithm's exploration and exploitation processes by hybridizing KA with mutation operator, and improve the balancing control process by enhancing the filtration process in KA. HKA improves the efficiency in terms of generating an optimum FTS size and enhances the performance in terms of the execution time. HKA has been adopted into the CIT strategy as HKA based CIT Strategy (HKAS) to generate the most optimum FTS size. The results of HKAS shows that HKAS can generate the optimum FTS size in more than 67% of the benchmarking experiments as well as contributes by 34 new optimum size of FTS. HKAS also has better efficiency and performance than KAS. HKAS is the first hybrid metaheuristic-based CIT strategy that generates an optimum FTS size with less execution time than the original algorithm-based CIT strategy. Apart from supporting different CIT features: uniform/VS CIT, IOR CIT as well as the interaction strength up to 6, this study also introduces another recently variant of KA which are Improved KA (IKA) and Mutation KA (MKA) as well as new CIT strategies which are IKA-based (IKAS) and MKA-based (MKAS)

    GALP: A hybrid artificial intelligence algorithm for generating covering array

    Get PDF
    Today, there are a lot of useful algorithms for covering array (CA) generation, one of the branches of combinatorial testing. The major CA challenge is the generation of an array with the minimum number of test cases (efficiency) in an appropriate run-time (performance), for large systems. CA generation strategies are classified into several categories: computational and meta-heuristic, to name the most important ones. Generally, computational strategies have high performance and yield poor results in terms of efficiency, in contrast, meta-heuristic strategies have good efficiency and lower performance. Among the strategies available, some are efficient strategies but suffer from low performance; conversely, some others have good performance, but is not such efficient. In general, there is not a strategy that enjoys both above-mentioned metrics. In this paper, it is tried to combine the genetic algorithm and the Augmented Lagrangian Particle Swarm Optimization with Fractional Order Velocity to produce the appropriate test suite in terms of efficiency and performance. Also, a simple and effective minimizing function is employed to increase efficiency. The evaluation results show that the proposed strategy outperforms the existing approaches in terms of both efficiency and performance

    Experimentation on Iterated Local Search Hyper-heuristics for Combinatorial Optimization Problems

    Get PDF
    Designing effective algorithms to solve cross-domain combinatorial optimization problems is an important goal for which manifold search methods have been extensively investigated. However, finding an optimal combination of perturbation operations for solving cross-domain optimization problems is hard because of the different characteristics of each problem and the discrepancies in the strengths of perturbation operations. The algorithm that works effectively for one problem domain may completely falter in the instances of other optimization problems. The objectives of this study are to describe three categories of a hyper-heuristic that combine low-level heuristics with an acceptance mechanism for solving cross-domain optimization problems, compare the three hyper-heuristic categories against the existing benchmark algorithms and experimentally determine the effects of low-level heuristic categorization on the standard optimization problems from the hyper-heuristic flexible framework. The hyper-heuristic categories are based on the methods of Thompson sampling and iterated local search to control the perturbation behavior of the iterated local search. The performances of the perturbation configurations in a hyper-heuristic were experimentally tested against the existing benchmark algorithms on standard optimization problems from the hyper-heuristic flexible framework. Study findings have suggested the most effective hyper-heuristic with improved performance when compared to the existing hyper-heuristics investigated for solving cross-domain optimization problems to be the one with a good balance between “single shaking” and “double shaking” strategies. The findings not only provide a foundation for establishing comparisons with other hyper-heuristics but also demonstrate a flexible alternative to investigate effective hyper-heuristics for solving complex combinatorial optimization problems

    Cost-effective model-based test case generation and prioritization for software product line

    Get PDF
    In Software Product Line (SPL), testing is used to manage core assets that comprised variability and commonality in effective ways due to large sizes of products that continue to be developed. SPL testing requires a technique that is capable to manage SPL core assets. Model-based Testing (MBT) is a promising technique that offers automation and reusability in test cases generation. However, there are difficulties to ensure testing in MBT can achieve good test cases generation results based on cost (size of test suite, total execution time) and effectiveness (coverage criteria, fault detection rate) measures. This is due to lack of trade-off between cost and effectiveness in test cases generated in MBT for SPL. This study aims to increase quality of test cases based on cost and effectiveness by using generation and prioritization approaches for MBT in SPL. This study focuses on three parts to enhance quality of test cases. First, test model development based on traceability link. In order to improve test cases quality, this study focused on implementation of hybrid-based and hyper-heuristic based techniques to generate test cases. This is followed by Test Cases Prioritization (TCP) technique that is based on dissimilarity-based technique with string distance. These test cases generation and prioritization approaches are evaluated by using two benchmarks - one test object and one real object. The results are compared with other prominent approaches. The mapping approach showed 10.27% and 32.39% f-measure improvement against existing approach on e-shop object, respectively. For test cases generation using hybrid-based approach, the proposed approach outperformed existing approaches with 11.66% coverage, 17.78% average execution time, and 45.98% average size of test suite on vending machine object. The hyper-heuristic based approach NSGA-II-LHH outperformed other proposed low-level heuristic approaches with 12.00% improvement on coverage, 46.66% average execution time and 42.54% average size of test suite. Furthermore, evaluation of TCP approaches showed fault detection improvement of 21.60%, 10.40% and 12.20% and total execution time improvement of 48.00%, 22.70% and 31.80% in comparison with three existing approaches. The results revealed that proposed model transformations, test cases generation and prioritization approaches significantly improve cost and effectiveness measure in MBT for SPL

    An evaluation of Monte Carlo-based hyper-heuristic for interaction testing of industrial embedded software applications

    No full text
    Hyper-heuristic is a new methodology for the adaptive hybridization of meta-heuristic algorithms to derive a general algorithm for solving optimization problems. This work focuses on the selection type of hyper-heuristic, called the exponential Monte Carlo with counter (EMCQ). Current implementations rely on the memory-less selection that can be counterproductive as the selected search operator may not (historically) be the best performing operator for the current search instance. Addressing this issue, we propose to integrate the memory into EMCQ for combinatorial t-wise test suite generation using reinforcement learning based on the Q-learning mechanism, called Q-EMCQ. The limited application of combinatorial test generation on industrial programs can impact the use of such techniques as Q-EMCQ. Thus, there is a need to evaluate this kind of approach against relevant industrial software, with a purpose to show the degree of interaction required to cover the code as well as finding faults. We applied Q-EMCQ on 37 real-world industrial programs written in Function Block Diagram (FBD) language, which is used for developing a train control management system at Bombardier Transportation Sweden AB. The results show that Q-EMCQ is an efficient technique for test case generation. Addition- ally, unlike the t-wise test suite generation, which deals with the minimization problem, we have also subjected Q-EMCQ to a maximization problem involving the general module clustering to demonstrate the effectiveness of our approach. The results show the Q-EMCQ is also capable of outperforming the original EMCQ as well as several recent meta/hyper-heuristic including modified choice function, Tabu high-level hyper-heuristic, teaching learning-based optimization, sine cosine algorithm, and symbiotic optimization search in clustering quality within comparable execution time
    corecore