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ABSTRACT 

In Software Product Line (SPL), testing is used to manage core assets that 

comprised variability and commonality in effective ways due to large sizes of products 

that continue to be developed. SPL testing requires a technique that is capable to 

manage SPL core assets. Model-based Testing (MBT) is a promising technique that 

offers automation and reusability in test cases generation. However, there are 

difficulties to ensure testing in MBT can achieve good test cases generation results 

based on cost (size of test suite, total execution time) and effectiveness (coverage 

criteria, fault detection rate) measures. This is due to lack of trade-off between cost 

and effectiveness in test cases generated in MBT for SPL. This study aims to increase 

quality of test cases based on cost and effectiveness by using generation and 

prioritization approaches for MBT in SPL. This study focuses on three parts to enhance 

quality of test cases. First, test model development based on traceability link. In order 

to improve test cases quality, this study focused on implementation of hybrid-based 

and hyper-heuristic based techniques to generate test cases. This is followed by Test 

Cases Prioritization (TCP) technique that is based on dissimilarity-based technique 

with string distance. These test cases generation and prioritization approaches are 

evaluated by using two benchmarks - one test object and one real object. The results 

are compared with other prominent approaches. The mapping approach showed 

10.27% and 32.39% f-measure improvement against existing approach on e-shop 

object, respectively. For test cases generation using hybrid-based approach, the 

proposed approach outperformed existing approaches with 11.66% coverage, 17.78% 

average execution time, and 45.98% average size of test suite on vending machine 

object. The hyper-heuristic based approach NSGA-II-LHH outperformed other 

proposed low-level heuristic approaches with 12.00% improvement on coverage, 

46.66% average execution time and 42.54% average size of test suite. Furthermore, 

evaluation of TCP approaches showed fault detection improvement of 21.60%, 

10.40% and 12.20% and total execution time improvement of 48.00%, 22.70% and 

31.80% in comparison with three existing approaches. The results revealed that 

proposed model transformations, test cases generation and prioritization approaches 

significantly improve cost and effectiveness measure in MBT for SPL. 
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ABSTRAK 

Dalam Barisan Keluaran Perisian (SPL), ujian digunakan untuk menguruskan 

aset teras yang dibahagikan kepada kepelbagaian dan persamaan. Ujian Berasaskan 

Model (MBT) ialah teknik yang memungkinkan automasi dan guna semula kes ujian. 

Walau bagaimanapun, terdapat dua masalah yang menyebabkan MBT sukar mencapai 

penjanaan kes ujian yang bagus dari segi kos (saiz suit ujian, jumlah masa 

perlaksanaan) dan keberkesanan (kriteria liputan dan kadar kesalahan dikesan) iaitu 

masalah ketidakseimbangan antara kos dan keberkesanan kes ujian yang dijana oleh 

MBT. Objektif kajian ini ialah untuk meningkatkan kualiti kes ujian dari segi kos dan 

keberkesanan dengan menggunakan kaedah penjanaan dan keutamaan dalam MBT 

untuk SPL. Kajian ini memfokuskan kepada tiga bahagian dalam usaha untuk 

meningkatkan kualiti kes ujian. Pertama, pembangunan model ujian berasaskan pautan 

kebolehkesanan. Untuk memperbaiki kualiti kes ujian, kajian ini menumpukan kepada 

pelaksanaan berasaskan hibrid dan hiper-heuristik untuk menjana kes ujian. Setelah 

itu, Kes Ujian Keutamaan (TCP) yang berasaskan teknik ketidaksamaan dengan jarak 

rantaian dijalankan. Ujian penjanaan dan keutamaan ini dinilai menggunakan dua 

penanda aras – sebuah objek ujian dan sebuah objek sebenar. Keputusan kajian 

dibandingkan dengan kaedah terdahulu. Teknik pemetaan menunjukkan peningkatan 

10.27% dan 32.39% ukuran f untuk objek e-kedai. Untuk ujian penjanaan 

menggunakan kaedah berasaskan hibrid, kaedah yang dicadangkan menunjukkan 

11.66% liputan, 17.78% masa purata pelaksanaan dan 45.98% saiz purata suit ujian 

untuk objek mesin layan diri. Ujian berasaskan hiper-heuristik NSGA-II mengatasi 

pendekatan lain dengan 12.00% liputan, 46.66% masa purata pelaksanaan dan 42.54% 

saiz purata suit ujian. Selain itu, penilaian terhadap kaedah TCP menunjukkan 

peningkatan kadar pengesanan kesalahan 21.60%, 10.40% dan 12.20% manakala 

jumlah masa pelaksanaan menurun sebanyak 48.00%, 22.70% dan 31.80% berbanding 

tiga pendekatan sedia ada. Hasil kajian mendapati kaedah transformasi model, kaedah 

penjanaan kes ujian dan kaedah keutamaan berjaya menurunkan kos serta 

meningkatkan keberkesanan dalam MBT untuk SPL.  
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INTRODUCTION 

1.1 Overview 

A Software Product Line (SPL) is one of the paradigms for systematic reuse 

that guides organization to develop products from core assets rather than develop 

products from scratch. There are two major activities in SPL that focus of core assets 

development in domain engineering and product development in application 

engineering. Development of core assets is based on identification of reusable assets. 

In order to develop reusable core assets, SPL must have ability to exploit commonality 

and manage variability. Due to the explosion in the number of products, SPL requires 

an exhaustive testing technique to manage products. SPL testing is aimed to minimize 

testing effort while at the same time produce effective testing results. One of the most 

promising techniques is Model-Based Testing (MBT), which offers systematic 

automation in test cases generation (Reuys et al. 2010). There are two main steps, 

which are to obtain requirements to be presented in the test model and derive test cases. 

It offers automated, rigorous and systematic testing early in the software life cycle 

stage (modelling stage). 

Among the challenges of MBT in SPL is to have a test model development that 

consists of variability and commonality. Cooperation between variability model with 

test model helps to realize this goal, which requires realization of variability, thus test 

model can represent SPL core assets. Realization of variability and commonality is 

important to be well defined in test model because the model will be used for test cases 

generation. This makes SPL different compared with single system engineering, since 

SPL features variability property, which is important to be reflected in test model. 

Researchers addressed mapping linkage to trace between Feature Model (FM) with 

requirement model. The link between two models is also known as a traceability link. 

Approaches have been proposed that described the implementation of traceability link 



 

28 

in SPL scope (Cichos et al. 2011), (Oster 2012), (Wang et al. 2013), however, they do 

not provide any ways to generate the trace link. Many studies proposed traceability 

link based on model to code transformation (Shen et al. 2008), (Zheng et al. 2017) and 

metamodel (Czarnecki and Helsen 2006), (Rose et al. 2012), (Machado 2014), (Font 

et al. 2017). Nevertheless, there is lack of standard semantics definition for trace link 

and it is represented in poor expressibility of the link and causes the misconception of 

variability interpreted in the test model (Vale et al. 2017). One of the ways to overcome 

the presentation of mapping linkage is to have a clear prerequisite traceability process 

with proper guidelines. These guidelines can be used to represent model 

transformation in traceability between variability and commonality with requirement 

model.  

The second difficulty is regarding the quality of test cases generated from test 

model artefacts. The quality of test cases covers two main aspects, which are the cost 

of testing and effectiveness of test cases. The multi-objectives technique for MBT in 

SPL testing is used to handle trade-off between cost and effectiveness measures in 

generation and optimization techniques (Henard et al. 2015), (Wang et al. 2015), 

(Abbas et al. 2016). A test case is classified as a good test case if trade-off can be 

balanced between cost and effectiveness. The single-objectives measure, for example, 

coverage criteria, can be used to represent effectiveness of test cases; however, lack of 

cost measure caused the testing cost, for example total execution time and size of test 

suite, to be ignored (Hemmati et al. 2010), (Devroey 2014). 

In recent years, the multi-objectives technique has been proposed to cover 

multiple test cases quality measure in SPL. Effectiveness of testing in MBT for SPL 

is commonly measured by using coverage criteria. The third challenge is related with 

lack of studies that implemented a multi-objective criterion that proved effective in 

fault detection rate in test suites in MBT statechart for SPL. Effectiveness in fault 

detection can be discovered efficiently by using Test Cases Prioritization (TCP) 

Technique (Kazmi et al. 2017b). However, the lack of TCP implemented by using 

multi-objective caused the fault to be unable to be revealed earlier. Thus, it highlights 

the need for test cases generation and prioritization in order to balance a trade-off 

between cost and effectiveness measure. Studies by (Henard et al. 2013), (Arrieta et 
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al. 2016), (Egyed et al. 2016) defined optimization based on generation and 

prioritization problem by using Search-Based and Heuristic-Based Technique.  

However, the cost-effectiveness of test suite is still in early phase since there are 

arguments between the selection of efficient techniques that can give the best cost and 

effectiveness for SPL testing. It showed the importance of optimization problem of 

maximizing effectiveness and minimizing the cost for MBT in SPL testing. Summary 

of challenges in MBT for SPL is illustrated in Figure 1.1.   

 

Figure 1.1: Overview of Challenges in MBT for SPL 

 

1.2 Problem Background 

In SPL testing context, the explosion in the number of possible products caused 

exhaustive testing to be infeasible. This issue gives challenge to select relevant subset 

of product for testing. A basic way to conduct testing for SPL is by using standard 

technique which are used in single system to be applied for SPL products. However, 

this takes higher cost and time consumption to evaluate every single product. Thus, 

there are techniques have been proposed previously to handle issues in SPL testing 

including MBT. The basic idea of MBT is to systematically minimize effort by 

exploiting knowledge of core assets. MBT for SPL is used to capture behavior of SPL.  
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 MBT process starts with the test model development which is build based on 

requirement specifications. Then, test selection criteria will be defined to derive good 

test cases. A good test case is one that can detect faults earlier with higher effectiveness 

measure such as structural-based criteria (Utting 2006). In the scope of SPL testing, 

previous implementation of MBT faced issues of test model development (Ajila and 

Kaba 2004), (Czarnecki and Helsen 2006), (Heidenreich et al. 2008), (Shen et al. 

2008), (Abbas et al. 2016), redundancy in test suites (Perrouin et al. 2010), (Wang et 

al. 2015), (Lackner 2017), and quality measure, which are effectiveness of test cases 

(Devroey 2014), (Machado 2014), (Lackner 2015), (Al-Hajjaji et al. 2017) and cost of 

testing (Hemmati et al. 2010), (Ensan et al. 2012), (Papadakis et al. 2016).  

At first, the test model needs to be developed based on core assets reflected in 

requirement model. This development is related to the process of collection of core 

assets into the test model. Traceability link is commonly used to handle the different 

types of models. However, in the scope of SPL testing for derivation of test cases, it 

required a mapping between models in domain engineering because test cases should 

be generated in domain engineering before being considered ready to be reused in 

application engineering. In traceability link for MBT in SPL, approaches have been 

proposed related to the metamodel (Cavalcanti et al. 2011), (Font et al. 2017), 

(Steghöfer et al. 2019), model transformation (Czarnecki and Helsen 2006), 

(Heidenreich et al. 2008), (Rose et al. 2012), (Jessica et al. 2013), (Olsen and Oldevik 

2013). Existing studies proposed model transformation approach to trace features in 

FM with statechart (Czarnecki and Helsen 2006), (Heidenreich et al, 2008). These 

model transformations proposed a process of conversion between FM into test model. 

However, it faced a problem with scalability due to manual mapping process that 

required tester to select the features to map with states. Furthermore, these approaches 

did not fulfill the needs of SPL because the dependency constraints of FM existed were 

ignored. This caused problem to maintain and evolve the large size of SPL core assets 

due to tester demand for good quality of test cases based on cost and effectiveness 

measures. Furthermore, there is a lack of comprehensive steps in development of 

traceability link. It is very important to have a clear view of traceability link in order 

to make sure the commonality and variability is undoubtedly defined in test model.  
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In MBT, redundancy of generated test cases also leads to a large size of test 

suite and increase in total execution time. This is related with the cost (size of test 

suite, total execution time) and effectiveness (coverage and fault detection) of test 

cases that can cause scalability issue. Studies by (Reuys et al. 2010), (Cichos et al. 

2011) and (Lackner 2017) applied coverage-based measures, for example all-states 

and all-transition to generate test cases. The Ensan et al. (2012) discussed the 

importance of trade-off between different coverage types. However, according to (Ur 

et al. 2018), balance trade-off is not only represented in single measurement types, but 

needs to be measured between cost and effectiveness of test cases.  

For example, once tester has achieved the maximum target to find defects, 

studies have been unable to ensure that these activities significantly reduce the testing 

effort and cost. Furthermore, as highlighted by (Inozemtseva and Holmes 2014), a 

good coverage test suite does not guarantee that the test suite is effective enough. This 

fact is acceptable in SPL context. The Devroey (2014) proposed a single effectiveness 

measure aimed to produce a good coverage-based generation. However, it faced 

scalability issue due to the longer execution time for test case generation. Most existing 

approaches in MBT for SPL focusing on test case measures were based on 

effectiveness (coverage). However, due to cost (size of test suite and total execution 

time), few cases have been evaluated (Cichos et al. 2011), (Arrieta et al. 2014), 

(Devroey et al. 2014), (Papadakis et al. 2016). This brings room for improvement in 

terms of trade-off between cost and effectiveness measure to improve the test case 

results. Furthermore, the implementation of Search-Based Technique (SBT) in MBT 

for SPL was designed to handle trade-off as optimization problem. SBT was based on 

heuristic technique that consists of cost and effectiveness measures to be transformed 

into objective functions. The goal of implementation of SBT in MBT for SPL is to 

generate test cases that balanced trade-off between cost and effectiveness measure.  

In order to improve effectiveness (faults detection) in test cases, another 

technique, which is Test Case Prioritization (TCP), is applied to enhance the fault 

detection rate. For MBT in SPL, TCP is also used as a technique to improve 

effectiveness based on earlier fault detection. The lack of TCP implementation made 
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it difficult for faults to be revealed as soon as possible, thus making it possible for 

wrong products to be executed.  

Machado (2014) improved the effectiveness of test cases by prioritizing fault 

in test model by using mutation testing. Existing studies proposed a similarity-based 

technique by using string distance method to prioritize test cases from FM and delta-

oriented architecture model (Henard et al. 2016), (Al-Hajjaji et al. 2017), (Sahak 

2018). Devroey et al. (2017) also proposed generation and prioritization for SPL. 

However, in terms of TCP, they have reused TCP algorithm proposed by (Henard et 

al. 2016) in test cases generated from mathematical model, for example Markov Chain 

model.  

Moreover, in MBT for SPL, there is a lack of study that implemented TCP 

based on another test model, especially behavior model statechart. In terms of 

technique, similarity-based by using string distance to evaluate similarity of test cases 

is still in early phase. This is due to the lack of extensive view of efficiency of string 

distance implementation. Only a few string distances, which is Jaccard Distance and 

Jaro-Winkler hybrid with Hamming Distance, have been discovered. There is no 

justification on the evaluation of string distance applied in SPL. The string distance 

can help to reveal faults by measuring the similarity of test cases. The lack of 

implementation of string distance for similarity measure caused fault techniques to 

inefficiently detect faults. 

 In order to handle TCP, a technique was required to reorganize test cases 

sequence. There are three algorithms that have been previously discussed in similarity-

based, which are Local Maximum Distance, Global Maximum Distance and all-yes 

config. However, there is a lack of evidence to show that the proposed algorithm is the 

best algorithm to discover faults as early as possible. Furthermore, the cost of TCP 

(total execution time) for similarity-based technique also required evaluation to make 

sure the proposed technique is capable to balance trade-off between cost and 

effectiveness measure. The limited multi-objectives in TCP approach caused 

difficulties to revealed faults. However, in terms of execution times, it is still important 

to be evaluated to ensure time can be minimized.  
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Due to these reasons, three key issues have been identified in this study to be 

resolved in order to produce a good quality of test cases with trade-off between cost 

and effectiveness measures. The first involves process of test model development with 

variability consideration based on FM. The lack of inadequacy of model mapping 

caused variability and commonality in SPL to be not completely reflected in test model 

artefacts. Another concern in this study is the demand of SPL testing that aims to obtain 

test cases with trade-off between cost and effectiveness measure. However, there is a 

lack of techniques concerned with multi-objective test case measure in SPL test case 

generation and prioritization. In terms of test case generation, a good technique that 

can balance trade-off is seen to be important way to enhance test case quality. This is 

because the existing studies validate test cases based on single measure without 

implementation or other validation that is also important to be discovered. There is a 

lack of previous studies that discover fault detection rate from test cases generated in 

test model artefacts. However, TCP is one of the important techniques to discover 

faults as early as possible compared with other existing techniques. Thus, test case 

generation and prioritization were the main factors to achieve trade-off between cost 

and effectiveness in MBT for SPL.  

1.3 Problem Statement 

Based on analysis from existing studies in MBT for SPL, there is a demand of 

test cases to fulfill a good quality measure in terms of cost and effectiveness. In order 

to enhance cost and effectiveness of test cases in MBT for SPL, there are three 

important parts that need to be highlighted, which are statechart test model, generation 

and prioritization of test cases.  

First challenge is related to statechart test model development since it is the 

basic preparation to conduct SPL testing by using MBT. It requires a test model to 

represent SPL core assets based on requirements of products. The mapping between 

models is a challenge with respect to accurate generation of test cases. The 

implementation of single model, for example FM, can represent variabilities and 

commonalities in simplest ways. FM is based on taxonomic form commonly 
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represented as symbols. Mapping with other models such as requirement model can 

make FM information to be representable (Czarnecki and Antkiewicz 2005). The 

traceability link is required to map between two model components. In MBT, it is used 

to reflect SPL core assets in the test model for test case generation.  

Model transformation approach is used to create traceability link between two 

models. However, the implementation of model transformation approach to conduct 

traceability mapping caused lack of comprehensive views of creating traceability in 

clear ways (Anquetil et al. 2012), (Vale et al. 2017). This is important since it involves 

variability of products. FM constraints need to be validated in order to prevent an 

invalid generation (Lochau et al. 2012).  

The second challenge is related to test cases generation from statechart test 

model. It is associated with implementation of single measure criteria for test cases 

generation, for example, coverage criteria. It is used to discover coverage that can be 

covered by proposed approach based on test model artefacts. Nevertheless, it ignores 

the remaining validation measure, for example, the cost of testing is also important to 

be validated in test case generation. The single criteria is not able to represent it as a 

good test case (Inozemtseva and Holmes 2014), (Kazmi et al. 2017b). It required a 

trade-off between cost (size of test suite, total execution time) and effectiveness 

(coverage, fault detection capability) to ensure that the generated test cases gain a good 

quality measurement (Ahmed et al. 2020). Most existing approaches in MBT for SPL 

are concerned with a single objective at a time. This remains valid for certain cases; 

however, it does not reflect real-life problems in testing. However, trade-off issues can 

be improved by implementing multi-objective optimization for SPL testing (Henard et 

al. 2013), (Wang et al. 2014), (Abbas et al. 2016). 

In order to enhance effectiveness of testing, earlier fault detection also need to 

be measured. This is because the test cases generated from MBT are not considered 

test cases based on fault detection. This has caused test cases in test suite to be listed 

randomly without any consideration of fault detection rate. TCP is the one of the 

techniques that can reveal faults earlier by reordering test cases based on fault 

detection rate. However, there is a lack of studies that measured faults in MBT for 
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SPL. This has caused faults to be not considered as validation measure to evaluate 

effectiveness of test cases. Furthermore, in SPL, the proposed TCP approach highlights 

the concern of test cases from FM and mathematical model (Markov Chain) (Egyed et 

al. 2016), (Henard et al. 2016), (Schaefer et al. 2016), (Al-Hajjaji et al. 2017). There 

is a lack of TCP approach used to evaluate test cases from UML statechart test model 

artefacts. This is due to the previous studies that highlighted concern on effectiveness 

measure of UML statechart test model artefacts by using coverage criteria, for example 

structural-based coverage. This has led to faults to not be considered an effectiveness 

measure for test cases generated from MBT in SPL.  

The summary of problem to be highlighted in the study is summarized as per 

Figure 1.2. 

 

Figure 1.2: The recognized problems 

 

To evaluate effectiveness measure based on earlier fault detection rate, 

similarity and dissimilarity based prioritization approach is shown as a good evaluation 

method to evaluate faults. It starts with measuring distance between test cases in the 

test suite. Then, the proposed similarity or dissimilarity-based approach will reorder 

test cases based on fault detection rate. In order to ensure test cases can be evaluated 

based on cost and effectiveness measure, it also requires a balance trade-off based on 

cost (total execution time) and effectiveness (fault detection rate) to make sure the TCP 

fulfills the software testing demand.  Multi-objective optimization is required to ensure 

the trade-off issues in generation and prioritization approach can be improved. This is 

because multi-objective optimization offers different evaluation measure at a single 
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time. In addition, the technique can be tuned to ensure cost and effectiveness of test 

cases can be maximized and minimized.  

1.4 Research Question 

The aim of this research is to solve issues within the concept of MBT in SPL 

while targeting the accuracy of managing variability and enhancing the multi-

objectives criteria in test cases generation and prioritization.  

Derived from the research problem, the following are the formulated research 

questions: 

 

“How to minimize cost (size of test suite, total execution time) and maximize 

effectiveness (coverage and faults) measures for generation and prioritization 

approach in MBT based on statechart test model for SPL” 

 

To answer the main research questions, the following sub-question is addressed: 

RQ1: How can the traceability mapping approach for MBT in SPL be improved? 

RQ 1.1 How can the traceability mapping approach be reflected in explicit 

mapping between SPL statechart test model and test artefacts?  

RQ 1.2: What are the techniques involved in explicit mapping between SPL 

statechart test model and test artefacts? 

RQ2: How can the effectiveness of existing test case generation algorithms be 

increased?  

RQ 2.1: Can the hybrid-heuristic optimization problem handle trade-off 

between cost and effectiveness in test case generation for MBT in SPL? 
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RQ 2.2: Does the hyper-heuristic optimization problem handle trade-off 

between cost and effectiveness in test case generation for MBT in SPL? 

RQ3: How can earlier fault detection in test cases by using prioritization technique be 

discovered? 

RQ3.1: How can the existing similarity-based prioritization technique for 

accelerating fault with minimal execution time be enhanced? 

RQ 3.2: How can the existing similarity measurement by using string-based 

method for similarity-based prioritization be improved? 

1.5 Research Goals and Objectives of the Study 

The main goal of this research is to obtain increase in the quality of test cases 

based on cost (size of test suite, total execution time) and effectiveness (coverage, fault 

detection capability) by using generation and prioritization approach for MBT in SPL. 

This approach is able to ensure that the derivable test cases can minimize the cost and 

maximize effectiveness due to demand in SPL testing. 

To achieve the mentioned goals, the objective of this study are as follows: 

Objective 1: To propose a model transformation approach that can be used to provide 

explicit traceability mapping in MBT SPL. 

Objective 2: To propose hybrid test cases generation technique with trade-off between 

cost and effectiveness measurement.  

Objective 3: To propose a test case prioritization algorithm based on similarity-based 

with string distance measurement. 
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1.6 Research Scope 

The proposed research is mainly focused on MBT for SPL with three main 

scopes, which are traceability in model and test case generation and prioritization. 

Details of the research scope are as follows: 

i) Model-based testing for SPL 

Model-based in this study covers the scope of testing that starts with test model 

development. It only covers representations of variability and requirements based 

on behavior in the scope of test model statechart. The implementation of other test 

model types are excluded from research. 

ii) Traceability on MBT for SPL 

The traceability link is based on the model transformation for SPL. Another 

type of traceability link, which is metamodel transformation, is excluded from the 

research since the focus is to map between two test models, which required 

obtaining all the related model components that can be used to derive test cases. 

1.7 Significance of the study 

SPL core asset management is an important element that needs to be considered 

before testing is conducted. It is found that constraints validation (Lochau et al. 2014) 

and tracing process (Rose et al. 2012) are important elements in order to accurately 

map test model component. Previous studies do not reflect comprehensive traceability 

process for SPL in clear way since it implemented a single traceability approach. Thus, 

the objective is to propose a model transformation approach that can be used to provide 

explicit traceability mapping in MBT SPL. 

The second contribution of this study is to facilitate a good test case evaluation 

based on cost and effectiveness measures. This is due to the demand in SPL testing to 
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optimize the cost (size of test suite, execution time) (Wang et al. 2015), maximize 

based on coverage (Devroey et al. 2014) and fault detection ability (Al-Hajjaji et al. 

2017). Due to the lack of multi-objectives optimization in MBT for SPL, this study 

proposed a test case generation approach with aim to enhance quality of test cases in 

terms of cost and effectiveness. There are two different techniques compared in the 

proposed approach, which are hybrid-heuristic and hyper-heuristic based for multi-

objectives optimization. In terms of test cases generation, the proposed approach will 

cover the generation of test cases with maximum coverage and optimal cost (size of 

test suite and execution time). Another concern is due to the lack of trade-off between 

cost (time execution) and effectiveness (fault detection rate) in test cases from MBT 

for SPL. Thus, the enhancement of prioritization approach based on prioritization 

technique and string distance is used to overcome the problem of fault measurements 

in test cases from MBT. In this light, following points are significant for current 

research.  

I. This research will help to give a complete traceability process based on 

model transformation and formal method that is used to create 

traceability link between variability model and requirement model.  

II. This research helps to improve the process of mapping between models 

by using traceability based on automated query.  

III. This research provided the test case generation by using hybrid search-

based testing with consideration of cost (size of test suite, total 

execution time) and effectiveness (coverage) measurements.  

IV. This research attempts to find the suitable test cases generation 

technique that can balance trade-off between cost and effectiveness 

measure. 

V. This research attempts to discover faults in test cases by using enhanced 

prioritization technique and string distance based on dissimilarity 

measure. 
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The cost (total execution time) and effectiveness (fault detection) are 

considered to evaluate the prioritization algorithm proposed.  

1.8 Research Organization 

The thesis is organized in nine chapters as follows: 

 

Chapter 1: Introduction: It gives an overview on the structure of the research. It 

described the background of the study that brings the research problem to be discussed 

and explained. Main sections, which are research question and research objectives, are 

presented. The importance of this research is also elaborated in this chapter.  

Chapter 2: Literature Review: It gives a discussion of the prior studies conducted in 

the field of MBT and SPL. All related studies are classified, explained and analyzed 

based on the problem defined in Chapter 1. The advantages and disadvantages of the 

existing study are also presented.  

Chapter 3: Research Methodology: It provides the descriptions of the research 

framework, research process, case studies, techniques utilized in the current research. 

Details of each section are described in this chapter. 

Chapter 4: The proposed FM_STATE Model Mapping. This chapter described the 

proposed model mapping approach based on the traceability link of FM and statechart. 

The design, implementation and results of the study are discussed in this chapter.  

Chapter 5: A Hybrid Heuristic Algorithm for MBT Test Cases Generation in SPL. This 

chapter provides the proposed technique based on the three hybrid algorithms, which 

are Floyds Warshall Algorithm (FWA), Branch and Bound Algorithm (BBA) and Best 

First Search (BFS). The design, implementation, results, and existing study 

comparison are discussed in this chapter. 
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Chapter 6: Multi-objectives Test Case Generation by using Hyper-Heuristic Algorithm 

for MBT in SPL will describe the hyper-heuristic approach for MBT in SPL used to 

generate test cases. This chapter describes the design, implementation and 

experimental results of the proposed technique.  

Chapter 7: Test Case Prioritization by using Hybrid Search Based Algorithm with 

Similarity Distance describe the TCP technique implemented for MBT statechart. This 

chapter includes design, implementation and experimental results. This experiment is 

related to the two proposed generation algorithms. 

Chapter 8: The test cases generation from Chapter 5 and 6 with TCP from Chapter 7 

are used to evaluate the performance of the proposed approach. The strength and 

weaknesses of the proposed techniques are also described. 

Chapter 9: Conclusion and Future Work. The conclusion of the research is presented 

while highlighting findings, issues and future works.
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