

COST-EFFECTIVE MODEL-BASED TEST CASE GENERATION AND

PRIORITIZATION FOR SOFTWARE PRODUCT LINE

RABATUL ADUNI BINTI SULAIMAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

School of Computing

Faculty of Engineering

Universiti Teknologi Malaysia

NOVEMBER 2020

iv

DEDICATION

 To:

Ma Abah, the two main supporters that always concern on this journey

My husband, the secret of my happiness

The kids, Umar Aisy and Aisyah Aira, you are my sun, my moon and my

thousand stars.

Thanks for all your patience and understanding

v

ACKNOWLEDGEMENT

Bismillahhirahmanirahim, first and foremost, I would like to thank Allah

Almighty for giving me opportunity, patience and strength to finish my research.

I wish to express my gratitude and deepest appreciation to my supervisors,

Associate Professor Dr. Dayang Norhayati Abang Jawawi and Dr Shahliza Abdul

Halim for the guidance to complete my thesis. I would like to acknowledge everyone

that has assisted me throughout my doctoral study over the years.

I had been blessed with very understanding and helpful parent (ma abah) who

has always supported and prayed for me during my doctoral journey. Not forgotten is

my loving husband, Nik Mohd Fakrudin Bin Nik Mat, who was always supportive and

helpful throughout this journey with our two kids.

I also would like to extend my appreciation to all my research lab members

who always give their valuable comments and suggestion. Not forgotten, Universiti

Tun Hussein Onn (UTHM) and Ministry of Higher Education (MOHE), who give me

funding throughout this journey. Alhamdulillah.

vi

ABSTRACT

In Software Product Line (SPL), testing is used to manage core assets that

comprised variability and commonality in effective ways due to large sizes of products

that continue to be developed. SPL testing requires a technique that is capable to

manage SPL core assets. Model-based Testing (MBT) is a promising technique that

offers automation and reusability in test cases generation. However, there are

difficulties to ensure testing in MBT can achieve good test cases generation results

based on cost (size of test suite, total execution time) and effectiveness (coverage

criteria, fault detection rate) measures. This is due to lack of trade-off between cost

and effectiveness in test cases generated in MBT for SPL. This study aims to increase

quality of test cases based on cost and effectiveness by using generation and

prioritization approaches for MBT in SPL. This study focuses on three parts to enhance

quality of test cases. First, test model development based on traceability link. In order

to improve test cases quality, this study focused on implementation of hybrid-based

and hyper-heuristic based techniques to generate test cases. This is followed by Test

Cases Prioritization (TCP) technique that is based on dissimilarity-based technique

with string distance. These test cases generation and prioritization approaches are

evaluated by using two benchmarks - one test object and one real object. The results

are compared with other prominent approaches. The mapping approach showed

10.27% and 32.39% f-measure improvement against existing approach on e-shop

object, respectively. For test cases generation using hybrid-based approach, the

proposed approach outperformed existing approaches with 11.66% coverage, 17.78%

average execution time, and 45.98% average size of test suite on vending machine

object. The hyper-heuristic based approach NSGA-II-LHH outperformed other

proposed low-level heuristic approaches with 12.00% improvement on coverage,

46.66% average execution time and 42.54% average size of test suite. Furthermore,

evaluation of TCP approaches showed fault detection improvement of 21.60%,

10.40% and 12.20% and total execution time improvement of 48.00%, 22.70% and

31.80% in comparison with three existing approaches. The results revealed that

proposed model transformations, test cases generation and prioritization approaches

significantly improve cost and effectiveness measure in MBT for SPL.

vii

ABSTRAK

Dalam Barisan Keluaran Perisian (SPL), ujian digunakan untuk menguruskan

aset teras yang dibahagikan kepada kepelbagaian dan persamaan. Ujian Berasaskan

Model (MBT) ialah teknik yang memungkinkan automasi dan guna semula kes ujian.

Walau bagaimanapun, terdapat dua masalah yang menyebabkan MBT sukar mencapai

penjanaan kes ujian yang bagus dari segi kos (saiz suit ujian, jumlah masa

perlaksanaan) dan keberkesanan (kriteria liputan dan kadar kesalahan dikesan) iaitu

masalah ketidakseimbangan antara kos dan keberkesanan kes ujian yang dijana oleh

MBT. Objektif kajian ini ialah untuk meningkatkan kualiti kes ujian dari segi kos dan

keberkesanan dengan menggunakan kaedah penjanaan dan keutamaan dalam MBT

untuk SPL. Kajian ini memfokuskan kepada tiga bahagian dalam usaha untuk

meningkatkan kualiti kes ujian. Pertama, pembangunan model ujian berasaskan pautan

kebolehkesanan. Untuk memperbaiki kualiti kes ujian, kajian ini menumpukan kepada

pelaksanaan berasaskan hibrid dan hiper-heuristik untuk menjana kes ujian. Setelah

itu, Kes Ujian Keutamaan (TCP) yang berasaskan teknik ketidaksamaan dengan jarak

rantaian dijalankan. Ujian penjanaan dan keutamaan ini dinilai menggunakan dua

penanda aras – sebuah objek ujian dan sebuah objek sebenar. Keputusan kajian

dibandingkan dengan kaedah terdahulu. Teknik pemetaan menunjukkan peningkatan

10.27% dan 32.39% ukuran f untuk objek e-kedai. Untuk ujian penjanaan

menggunakan kaedah berasaskan hibrid, kaedah yang dicadangkan menunjukkan

11.66% liputan, 17.78% masa purata pelaksanaan dan 45.98% saiz purata suit ujian

untuk objek mesin layan diri. Ujian berasaskan hiper-heuristik NSGA-II mengatasi

pendekatan lain dengan 12.00% liputan, 46.66% masa purata pelaksanaan dan 42.54%

saiz purata suit ujian. Selain itu, penilaian terhadap kaedah TCP menunjukkan

peningkatan kadar pengesanan kesalahan 21.60%, 10.40% dan 12.20% manakala

jumlah masa pelaksanaan menurun sebanyak 48.00%, 22.70% dan 31.80% berbanding

tiga pendekatan sedia ada. Hasil kajian mendapati kaedah transformasi model, kaedah

penjanaan kes ujian dan kaedah keutamaan berjaya menurunkan kos serta

meningkatkan keberkesanan dalam MBT untuk SPL.

viii

TABLE OF CONTENTS

 TITLE PAGE

DECLARATION iii

DEDICATION iv

ACKNOWLEDGEMENT v

ABSTRACT vi

ABSTRAK vii

TABLE OF CONTENTS viii

LIST OF TABLES xvii

LIST OF FIGURES xix

LIST OF ABBREVIATIONS xxiii

LIST OF SYMBOLS xxiv

LIST OF APPENDICES xxvi

 INTRODUCTION 27

1.1 Overview 27

1.2 Problem Background 29

1.3 Problem Statement 33

1.4 Research Question 36

1.5 Research Goals and Objectives of the Study 37

1.6 Research Scope 38

1.7 Significance of the study 38

1.8 Research Organization 40

 LITERATURE REVIEW 43

2.1 Introduction 43

2.2 Software Product Line Testing 43

2.2.1 SPL Testing Process 44

2.3 Model-based Testing in SPL 45

2.3.1 Challenges in MBT for SPL 47

ix

2.3.1.1 Variabilities 48

2.3.1.2 Reusability of Test Model 48

2.3.1.3 Large Numbers of Products 49

2.3.1.4 Cost and Effectiveness Trade-off for 49

Test Cases

2.4 Traceability Dimension for Variability Management in 50

SPL

2.4.1 Requirement Traceability Directions 51

2.4.1.1 Forward Traceability 52

2.4.1.2 Backward Traceability 52

2.4.1.3 Bidirectional Traceability 52

2.4.2 Traceability Link Techniques in MBT for SPL 53

2.4.2.1 Metamodel 53

2.4.2.2 Model Transformation 54

2.4.3 Model Transformation Types for Traceability in 55

SPL

2.4.3.1 Model to Model Transformation 55

2.4.3.2 Model to Code Transformation 56

2.4.3.3 Model to Text Transformation 56

2.4.4 Summary of Works on Mapping based on 57

Traceability

2.5 Test Cases Generation in MBT for SPL 60

2.5.1 Issues in Test Case Generation in SPL 61

2.5.1.1 Model 61

2.5.1.2 Redundant Test Cases 62

2.5.1.3 Effectiveness of Testing 62

2.5.1.4 Cost of Testing 63

2.5.2 Types of Test Model 63

2.5.2.1 UML Model 64

2.5.2.2 Variability Model 64

2.5.2.3 Mathematical Model 67

2.5.3 MBT Test Cases Generation Technique in SPL 67

x

2.5.3.1 Coverage-based 67

2.5.3.2 Pairwise-based 68

2.5.3.3 Search-based 69

2.5.3.4 Adaptive Random 69

2.5.3.5 Fault-based 70

2.5.3.6 Hybrid-based 71

2.5.4 Comparison of Test Cases Generation Works 72

2.6 Regression Testing in MBT for SPL 76

2.7 Test Cases Prioritization in MBT for SPL 76

2.7.1 Goal of Test Cases Prioritization 78

2.7.1.1 Increase Effectiveness (Fault Detection) 78

2.7.1.2 Minimize Execution Time 78

2.7.1.3 Types of Technique 79

2.7.2 Test Cases Prioritization Approaches in SPL 79

2.7.2.1 Weight-based Prioritization 80

2.7.2.2 Similarity / Dissimilarity based 80

Prioritization

2.7.2.3 Delta-Oriented based Prioritization 81

2.7.2.4 Statistical-based Prioritization 81

2.7.2.5 Hybrid-based Prioritization 82

2.7.3 String Distance for Test Cases Prioritization 83

(TCP)

2.7.3.1 Jaccard Distance 83

2.7.3.2 Hamming Distance 84

2.7.3.3 Dice Similarity Distance 85

2.7.3.4 Jaro-Winkler Distance 85

2.7.3.5 Summary of String Distance 87

2.7.4 Types of Prioritization Algorithm in SPL 89

2.7.4.1 Local Maximum Distance 89

2.7.4.2 Global Maximum Distance 89

2.7.4.3 All-Yes Configuration 90

2.7.5 Comparison of Test Cases Prioritization Studies 91

xi

2.8 Overall Discussion 94

2.9 Chapter Summary 96

 RESEARCH METHODOLOGY 99

3.1 Introduction 99

3.2 Research Process 99

3.3 Research Methodology Phase 102

3.3.1 Phase 1: Theoretical Foundation 102

3.3.2 Phase 2: Research Framework and 102

Identification of Variables

3.3.3 Phase 3: Proposed Model Mapping Approach 103

3.3.4 Phase 4: Proposed Test Cases Generation 104

Techniques

3.3.5 Phase 5: Proposed Test Cases Prioritization 105

3.3.6 Phase 6: Empirical Evaluation on Test 106

Objects

3.3.7 Phase 7: Thesis Writing and Research 106

Contribution

3.4 Research Framework 106

3.5 Test Cases Generation Algorithm 111

3.5.1 Floyd Warshall Algorithm 111

3.5.2 Branch and Bound Algorithm 112

3.5.3 Best First Search (BFS) 113

3.5.4 Strength Pareto Evolutionary Algorithm 2 115

(SPEA 2)

3.5.5 Particle Swarm Optimization (PSO) 116

3.6 Test Cases Prioritization Algorithm 117

3.6.1 Local Maximum Distance Algorithm 117

3.7 Dissimilarity Measure Based on String Distance 118

3.8 Experimental Setup 120

3.8.1 Test Objects 120

3.8.1.1 Benchmark Test Objects 120

3.8.1.2 Vending Machine 122

3.8.1.3 e-shop 123

xii

3.8.1.4 Real Test Objects 124

3.8.2 Objectives Function 127

3.8.3 Parameter Settings 128

3.8.4 Method to Validate Approach 128

3.8.4.1 Model Consistency for Model 129

Mapping Approach

3.8.4.2 Pareto Analysis 130

3.8.4.3 Wilcoxon Rank-Sum 131

3.8.4.4 Kruskal Wallis Test 132

3.8.4.5 Average Percentage Fault Detection 132

(APFD)

3.9 Chapter Summary 133

 MODEL TO TEXT TRANSFORMATION 135

MAPPING APPROACH

4.1 Introduction 135

4.2 Development Plan for Model Mapping Approach 135

4.2.1 Mapping Model Definition 136

4.2.2 The Model Mapping Experimental Plan 141

4.2.3 The Model Mapping Approach Experimental 143

Design

4.2.3.1 Model to Text Transformation 144

4.2.3.2 .xml Document Types 144

4.2.3.3 .xml File Example 145

4.2.3.4 Traceability Rules 146

4.2.3.5 Traceability Generation 148

4.2.3.6 Traceability Queries 149

4.2.3.7 Traceability Views 150

4.3 Experimental Results 152

4.3.1 Analysis of Model Mapping Approach 152

4.3.2 Comparison of Proposed Approach with 155

Existing Approaches

4.3.3 Percentage improvement 157

4.3.4 Overall Discussion 158

xiii

4.4 Connection of Proposed Approach with Other 160

Objectives

4.5 Chapter Summary 160

 A HYBRID HEURISTIC ALGORITHMS FOR 163

MBT TEST CASES GENERATION FOR SPL

5.1 Introduction 163

5.2 Motivation 163

5.3 The Overview of Proposed Generation Approach 165

5.4 The Proposed Hybrid Test Cases Generation 166

Algorithm (FWA-BBA-BFS)

5.4.1 The definition and process flow of 168

FWA-BBA-BFS

5.4.2 The hybrid FWA-BBA-BFS generation 171

example

5.5 Experimental results 180

5.5.1 Analysis result of proposed algorithm 180

FWA-BBA-BFS

5.5.1.1 Analysis Effectiveness (Coverage) 181

Metric Measure

5.5.1.2 Analysis of Cost (Average Size of 182

Test Suite) Measurement

5.5.1.3 Average Cost (Execution Time) of 183

FWA-BBA-BFS

5.5.2 Discussion on Cost and Effectiveness Metrics 183

Implemented on the Proposed Hybrid

Algorithm (FWA-BBA-BFS)

5.6 Comparison between the Proposed and Existing 185

Algorithms

5.6.1.1 Percentage improvement 187

5.7 Technical Analysis 189

5.7.1 Difference of proposed and existing algorithms 189

5.7.2 Connection of proposed technique with other 192

objectives

5.8 Chapter Summary 192

xiv

 MULTI-OBJECTIVES TEST CASE 195

GENERATION USING HYPER-

HEURISTIC ALGORITHM

6.1 Introduction 195

6.2 Motivation 195

6.3 Hyper-Heuristic in Test Case Generation Approach 196

6.3.1 Selection and Acceptance Mechanism, ISR- 199

MCF

6.3.1.1 ISR-MCF Selection Operator 200

6.3.1.2 ISR-MCF with Low-Level Heuristic 202

6.3.2 Domain Barrier – Define Objectives Functions 204

6.3.3 Low-Level Heuristic Algorithms 204

6.3.3.1 NSGA-II with Low-level Heuristic 205

6.3.3.2 SPEA 2 with Low-level Heuristic 207

6.3.3.3 PSO with Low-level Heuristic 209

6.3.3.4 Integration of Crossover and 211

Mutation with Low-Level

Heuristics Algorithm

6.3.3.5 Crossover and Mutation of Low- 212

Level Heuristic

6.4 Experimental Results 213

6.4.1 Analysis Results 214

6.4.1.1 Analysis of Maximization Results 215

6.4.1.2 Analysis of Minimization Results 219

6.4.1.3 Discussion of Overall Proposed 222

Algorithm Results

6.5 Comparison between the proposed and existing 226

algorithm

6.5.1 Statistical Analysis of Proposed Hyper- 226

Heuristic with Existing Hyper-

Heuristic Approach

6.5.2 Difference between Proposed Hyper- 232

Heuristic with Existing Hyper-

Heuristic Approach

6.5.3 Connection between the Proposed Technique 235

with other Objectives

xv

6.6 Chapter Summary 236

 THE ENHANCEMENT OF PRIORITIZATION 237

ALGORITHM AND STRING DISTANCE

TECHNIQUE

7.1 Introduction 237

7.2 Motivation 237

7.3 The Proposed Prioritization Algorithm 238

7.3.1 Phase (I): Dissimilarity Measure: Dice with 239

Jaro-Winkler Algorithm

7.3.2 Phase (II): Test Cases Prioritization: Enhance 244

Local Maximum Distance Algorithm

7.4 Example of Measurement by using Enhance 246

Dice-Jaro-Wrinkler Measure

7.5 Experimental Results 248

7.5.1.1 Overall Prioritization Results 248

7.6 Comparison between the Proposed and Existing 252

Algorithms

7.6.1 Percentage Improvement of Average APFD 255

and Execution Time

7.6.2 Difference between the Proposed with 257

Existing Algorithm

7.7 Chapter Summary 258

 THE VALIDATION OF TEST CASES 259

GENERATION AND PRIORITIZATION

8.1 Introduction 259

8.2 Technical Analysis 260

8.2.1 Statistical Test Setup 260

8.2.2 Normality Test 261

8.2.3 Kruskal-Wallis Assumptions 264

8.2.4 Kruskal Wallis Non-Parametric Test 265

8.2.4.1 Kruskal-Wallis Test Results 266

8.2.4.2 Mean Rank Kruskal-Wallis 272

Post-Hoc Test Analysis

8.2.5 Discussion 276

xvi

8.3 Chapter Summary 278

 CONCLUSION AND FUTURE WORKS 281

9.1 Summary 281

9.2 Research Contribution 282

9.3 Threats to Validity 284

9.3.1 Internal Validity 284

9.3.2 Construct Validity 284

9.3.3 External Validity 285

9.4 Future Works 285

REFERENCES 287

APPENDICES 302

LIST OF PUBLICATIONS 311

xvii

LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1: Summary of existing studies on traceability in MBT 58

for SPL

Table 2.2: Comparison of existing studies on MBT for SPL 74

Table 2.3: Comparison of regression testing categories 77

Table 2.4: Summary of String Distance 88

Table 2.5: Summary of existing study for TCP in SPL 93

Table 3.1: Summary of Test Objects Selected 121

Table 3.2: List of Objective Functions 127

Table 3.3: Summary of Parameters Setting for Test Cases 129

Generation Algorithm

Table 4.1: Types of traceability relationship defined 147

Table 4.2: Description of dictionary link for synchronize synonym 148

Table 4.3: Artefacts Summary of Proposed Mapping Approach 152

Table 4.4: Details of mapping results 153

Table 4.5: Average summary of comparison approaches 156

Table 5.1: Example of vending machine object test cases generated 173

Table 5.2: List of score values of vending machine objects 178

Table 5.3: Sample of test cases measure based on tendency and 178

score values of vending machine object

Table 5.4: Result of FWA-BBA-BFS implementation 181

Table 5.5: Total execution time of FWA-BBA-BFS 183

Table 5.6: Comparison summary of existing and the proposed 191

algorithm

Table 6.1: List of mutation and crossover 211

Table 6.2: Average results based on coverage and cost- 215

effectiveness measurements

Table 6.3: Summary of strength and weaknesses of proposed 223

hyper-heuristic based technique

xviii

Table 6.4: Comparison between Low-Level Heuristics Implemented 225

Table 6.5: Fixed values for two-tailed hypothesis testing 228

Table 6.6: Summary of two-tailed t-test for PSO-LLH vs 229

Strickler et al., (2017)

Table 6.7: Summary of two-tailed t-test for NSGA-II-LLH vs 230

Strickler et al. (2017)

Table 6.8: Summary of two-tailed t-test for SPEA 2-LLH vs 230

Strickler et al. (2017)

Table 6.9: Comparison between hybrid heuristic and hyper-heuristic 235

based technique

Table 7.1: Dissimilarity Distance Results based on Vending 249

Machine Test Object

Table 7.2: Results of Proposed Dice-Jaro-Wrinkler Distance on 251

e-shop

Table 7.3: Mutant version for test model 251

Table 7.4: Summary for APFD of Original Version vs Mutant 252

Version Vending Machine Object

Table7.5: Summary for APFD of Original Version vs Mutant 252

Version e-shop Object

Table 7.6: Summary Rate of Fault Detected 252

Table 8.1: List of Comparison Types with Goal 262

Table 8.2: Skewness and Kurtosis Distribution of Educational Robotic 263

Object

Table 8.3: Assumption details for Kruskall-Wallis Test based for 252

Result Validation

Table 8.4: Kruskal-Wallis Hypothesis Summary 265

Table 8.5: Kruskal-Wallis Test Mean Ranks 271

Table 8.6: Kruskal-Wallis with Post Hoc hypothesis 272

Table 8.7: Kruskal Wallis with Post Hoc Analysis 274

Table 8.8: Kruskal-Wallis with Holm Bonferroni Correction Results 275

xix

LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 1.1: Overview of Challenges in MBT for SPL 29

Figure 1.2: The recognized problems 35

Figure 2.1: SPL Testing Process (Reis et al. 2006) 44

Figure 2.2: W-Model of SPL (Lee et al. 2012) 45

Figure 2.3: Overall MBT process adapted from (Utting 2010) 46

Figure 2.4: Model based testing process in SPL 47

Figure 2.5: Example of Feature Model from Simmonds, 2015 66

Figure 2.6: Pseudocode Local Maximum Distance Algorithm by 90

Henard et al. (2015)

Figure 2.7: Global Maximum Distance Algorithm by Henard 90

et al. (2015)

Figure 2.8: Pseudocode for All-Yes Config Algorithm by 91

Al-Hajjaji et al. (2016)

Figure 3.1: Research Process Flowchart 101

Figure 3.2: Adopted experimental process (Wohlin et al. 2012) 104

Figure 3.3: Research Framework 110

Figure 3.4: Basic pseudocode of matrix generated based on Floyd 112

Warshall Algorithm

Figure 3.5: Flowchart of Branch and Bound Algorithm 112

Figure 3.6: Flowchart of traverse nodes in Best First Search 114

Figure 3.7: Workflow of NSGA-II 115

Figure 3.8: SPEA 2 flowchart process 116

Figure 3.9: PSO flowchart process 117

Figure 3.10: Flowchart for Local Maximum Distance Algorithm 118

Figure 3.11: Vending Machine Feature Model 123

Figure 3.12: Vending Machine State Machine 123

Figure 3.13: E-Shop Feature Model 124

xx

Figure 3.14: E-Shop State Machine 125

Figure 3.15: Educational Robotics Feature Model 126

Figure 3.16: Educational Robotics State Machine 126

Figure 4.1: Development plan process for mapping approach 137

Figure 4.2: Model mapping relationship 140

Figure 4.3: Model Mapping Design Approach 142

Figure 4.4: .xml file format example from statechart model of 145

vending machine

Figure 4.5: Traceability Link Generator 148

Figure 4.6: Algorithm to query traceability relationship 151

Figure 4.7: Comparison of average f-measure of proposed 157

mapping with existing approaches

Figure 4.8: Percentage improvement of proposed mapping 158

approach against existing approaches

Figure 5.1: Overview of proposed approach for test cases 166

generation in SPL

Figure 5.2: Flowchart of FWA-BBA-BFS process 167

Figure 5.3: FWA-BBA-BFS hybrid proposed algorithm 172

Figure 5.4: Initialization step based on matrix form 173

Figure 5.5: First step to traverse nodes of the proposed algorithm 174

Figure 5.6: Example of branch traverse of FWA-BBA-BFA for TP1 179

Figure 5.7: Average effectiveness (coverage) of FWA-BBA-BFS 182

Figure 5.8: Average size of test suites 182

Figure 5.9: Average coverage for proposed algorithm compare 186

with existing studies

Figure 5.10: Average size of test suite of proposed algorithm 187

compared with existing works

Figure 5.11: Average time execution of proposed algorithm 187

with existing works

Figure 5.12: Percentage Improvement of Coverage Criteria 188

between Proposed Hybrid-Based Approach vs

Existing Approaches

xxi

Figure 5.13: Percentage Improvement of Average Execution 188

Time between Proposed Hybrid-Based Approach

vs Existing Approaches

Figure 5.14: Percentage Improvement of Average Size of Test 189

Suites between Proposed Hybrid-Based Approach

vs Existing Approaches

Figure 6.1: Conceptual component of hyper-heuristic algorithm 197

with selection and acceptance mechanism

Figure 6.2: Flowchart overview of hyper-heuristic test case 198

generation approach

Figure 6.3: ISR-MCF flowchart details process 200

Figure 6.4: Pseudocode of ISR-MCF Selection Operator 203

Figure 6.5: NSGA-II-LLH details flowchart process 206

Figure 6.6: SPEA 2-LLH details flowchart process 208

Figure 6.7: PSO-LLH details flowchart process 210

Figure 6.8: Pseudocode of crossover and mutation operators 213

Figure 6.9: Pareto distribution of NSGA-II-LLH of vending 216

machine

Figure 6.10: Pareto distribution of NSGA-II-LLH of e-shop object 216

Figure 6.11: Pareto distribution of PSO-LLH of vending machine 217

object

Figure 6.12: Pareto distribution of PSO-LLH of e-shop object 217

Figure 6.13: Pareto distribution of SPEA 2-LLH of vending 218

machine object

Figure 6.14: Pareto distribution of SPEA 2 of e-shop object 218

Figure 6.15: Pareto distribution of NSGA-II-LLH for size of test 219

suite and execution time based on vending machine

object

Figure 6.16: Pareto distribution of NSGA-II-LLH for size of test 220

suite and execution time based on e-shop machine

object

Figure 6.17: Pareto distribution of PSO-LLH for size of test suite 220

and execution time based on vending machine object

Figure 6.18: Pareto distribution of PSO-LLH for size of test suite 221

and execution time based on e-shop object

xxii

Figure 6.19: Pareto distribution of SPEA 2-LLH for size of test suite 221

and execution time based on vending machine object

Figure 6.20: Pareto distribution of SPEA 2-LLH for size of test suite 222

and execution time based on e-shop object

Figure 6.21: Percentage improvement and decaying of proposed 231

algorithm against existing algorithm on vending

machine object

Figure 6.22: Percentage improvement and decaying of proposed 231

algorithm against existing algorithm on e-shop object

Figure 7.1: The Proposed Prioritization Algorithm 239

Figure 7.2: The Proposed Enhance Dice-Jaro-Winkler Distance 243

Figure 7.3: The proposed enhancement in Local Maximum Distance 245

Figure 7.4: Pseudocode of Proposed Local Maximum Distance 246

Algorithm

Figure 7.5: Comparison Results of Proposed TCP Approach against 254

Existing Approach based on average APFD

Figure 7.6: Comparison Results of Proposed TCP approach against 255

Existing Approach based on average execution time

Figure 7.7: Average APFD based on Percentage Improvement of 256

Proposed Prioritization Approach against Existing

Approaches

Figure 7.8: Average Execution Time on Percentage Improvement 256

of Proposed Prioritization Approach against Existing

Approaches

Figure 8.1: Validation for test case generation and prioritization 261

approaches

Figure 8.2: Independent Samples Kruskal-Wallis Test Boxplot for 266

Time Generation against Types of Algorithms

Figure 8.3: Independent Samples Kruskal-Wallis Test Boxplot for 267

Average Coverage against Types of Algorithms

Figure 8.4: Independent Samples Kruskal-Wallis Test Boxplot for 268

Average Size of Test Suite against Types of Algorithms

Figure 8.5: Independent Samples Kruskal-Wallis Test Boxplot for 269

Average Prioritization Time against Types of Algorithms

Figure 8.6: Independent Samples Kruskal-Wallis Test Boxplot for 270

Average APFD against Types of Algorithms

xxiii

LIST OF ABBREVIATIONS

APFD - Average Percentage Faults Detected

BBA - Branch and Bound Algorithm

BFS - Best First Search

CIT - Combinatorial Interaction Testing

Dice-Jaro-Winkler - Dice-Jaro-Winkler

EA - Enterprise Architect

EMOA - Evolutionary Multi-Objectives Algorithms

FDC - Fault Detection Capability

FWA-BBA-BFS - Floyd Warshall Algorithm-Branch and Bound Algorithm-

Best First Search

FM - Feature Model

GA - Genetic Algorithm

ISR - Improvement Selection Rules

ISR-MCF - Improvement Selection Rules-Modified Choice Function

LLH - Low-Level Heuristic

MBT - Model-Based Testing

NSGA-II - Non-Dominated Sorting Genetic Algorithm II

NSGA-II-LLH - Non-Dominated Sorting Genetic Algorithm II-Low-Level

Heuristic

PEMOA - Preference-based + Evolutionary Multi-Objective

Algorithm

PSO - Particle Swarm Optimization

PSO-LLH - Particle Swarm Optimization-Low-Level Heuristic

SPEA 2 - Strength Pareto Evolutionary Algorithm 2

SPEA 2-LLH - Strength Pareto Evolutionary Algorithm 2-Low-Level

Heuristic

SPL - Software Product Line

TCP - Test Case Prioritization

UML - Unified Modelling Language

XML - Extensible Mark-up Language

xxiv

LIST OF SYMBOLS

𝐴𝑐𝑐𝑒𝑠𝑠𝑚 - Accessibility Matrix

𝛼 - Best generation of individuals

C - Cost

CP - Crossover Probability

𝛽 - Generation and previous generation comparison

→ - Implies

∈ - Intersection

𝐽𝑊(𝑇1, 𝑇2)𝑗 - Jaro-Winkler between two test cases

𝐽𝑎𝑟𝑜(𝑇1, 𝑇2)𝑑𝑗𝑤 - Jaro between two test cases

𝑄𝑢𝑒𝑢𝑒 - List of queue

ˆ - Lebesque measure

G - Maximum Generation

MP - Mutation Probability

MaxPT - Maximum Path

MinPT - Minimum Path

! - Not Equal

x - Number of objectives

𝑡𝑠𝑛 - Number of states covered

𝑡𝑠𝑡 - Number of states in test model

𝑠𝑐𝑜𝑟𝑒+𝑣𝑒, 𝑠𝑐𝑜𝑟𝑒−𝑣𝑒 - Positive and Negative score

𝑄𝑛𝑒𝑥𝑡 ∈ 𝑇𝑃𝑖 - Queue list of Test Cases

𝑟 ∈ 𝑅𝑖 - Reference vector

{𝐼𝑁𝐹|0} - Set of irrelevant values

f - Set of features

w - Set of nodes

c - Set of Constraints Considerations

PS - Set of Population Size

p - Set of Pareto Front

[𝑠, 𝑖],[𝑠, 𝑗] - Two states comparison

xxv

∑ 𝑠𝑐𝑜𝑟𝑒
- Total score

𝑡𝑚 - Test model

∑ 𝑃𝑀𝑠𝑐𝑜𝑟𝑒
- Total Permutation score

∑ 𝑀𝑎𝑥 𝑆𝑐𝑜𝑟𝑒

𝑛

𝑖=1

- Total Maximum Permutation

∑ 𝑀𝑖𝑛 𝑆𝑐𝑜𝑟𝑒

𝑛

𝑖=1

- Total Minimum Permutation

𝑛𝑥 - Total number of test cases in test suite

∆𝑡𝑖𝑚𝑒ℎ - Total execution time

𝑇𝑆(𝑥) - Total Coverage

δ - Time elapsed

𝑤 - Weight coefficient

xxvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Coverage values for Hybrid-based Technique 302

Appendix B Size of Test Suite values for Hybrid-based Technique 303

Appendix C Coverage values for Hybrid-based Technique 304

Appendix D Size of Test Suite values for Hybrid-based Technique 307

Appendix E Total Execution time values for Hybrid-based Technique 308

Appendix F Number of Faults detected from Test Cases Prioritization 309

Approach

Appendix G Total Execution time values from Test Cases Prioritization 310

Approach

INTRODUCTION

1.1 Overview

A Software Product Line (SPL) is one of the paradigms for systematic reuse

that guides organization to develop products from core assets rather than develop

products from scratch. There are two major activities in SPL that focus of core assets

development in domain engineering and product development in application

engineering. Development of core assets is based on identification of reusable assets.

In order to develop reusable core assets, SPL must have ability to exploit commonality

and manage variability. Due to the explosion in the number of products, SPL requires

an exhaustive testing technique to manage products. SPL testing is aimed to minimize

testing effort while at the same time produce effective testing results. One of the most

promising techniques is Model-Based Testing (MBT), which offers systematic

automation in test cases generation (Reuys et al. 2010). There are two main steps,

which are to obtain requirements to be presented in the test model and derive test cases.

It offers automated, rigorous and systematic testing early in the software life cycle

stage (modelling stage).

Among the challenges of MBT in SPL is to have a test model development that

consists of variability and commonality. Cooperation between variability model with

test model helps to realize this goal, which requires realization of variability, thus test

model can represent SPL core assets. Realization of variability and commonality is

important to be well defined in test model because the model will be used for test cases

generation. This makes SPL different compared with single system engineering, since

SPL features variability property, which is important to be reflected in test model.

Researchers addressed mapping linkage to trace between Feature Model (FM) with

requirement model. The link between two models is also known as a traceability link.

Approaches have been proposed that described the implementation of traceability link

28

in SPL scope (Cichos et al. 2011), (Oster 2012), (Wang et al. 2013), however, they do

not provide any ways to generate the trace link. Many studies proposed traceability

link based on model to code transformation (Shen et al. 2008), (Zheng et al. 2017) and

metamodel (Czarnecki and Helsen 2006), (Rose et al. 2012), (Machado 2014), (Font

et al. 2017). Nevertheless, there is lack of standard semantics definition for trace link

and it is represented in poor expressibility of the link and causes the misconception of

variability interpreted in the test model (Vale et al. 2017). One of the ways to overcome

the presentation of mapping linkage is to have a clear prerequisite traceability process

with proper guidelines. These guidelines can be used to represent model

transformation in traceability between variability and commonality with requirement

model.

The second difficulty is regarding the quality of test cases generated from test

model artefacts. The quality of test cases covers two main aspects, which are the cost

of testing and effectiveness of test cases. The multi-objectives technique for MBT in

SPL testing is used to handle trade-off between cost and effectiveness measures in

generation and optimization techniques (Henard et al. 2015), (Wang et al. 2015),

(Abbas et al. 2016). A test case is classified as a good test case if trade-off can be

balanced between cost and effectiveness. The single-objectives measure, for example,

coverage criteria, can be used to represent effectiveness of test cases; however, lack of

cost measure caused the testing cost, for example total execution time and size of test

suite, to be ignored (Hemmati et al. 2010), (Devroey 2014).

In recent years, the multi-objectives technique has been proposed to cover

multiple test cases quality measure in SPL. Effectiveness of testing in MBT for SPL

is commonly measured by using coverage criteria. The third challenge is related with

lack of studies that implemented a multi-objective criterion that proved effective in

fault detection rate in test suites in MBT statechart for SPL. Effectiveness in fault

detection can be discovered efficiently by using Test Cases Prioritization (TCP)

Technique (Kazmi et al. 2017b). However, the lack of TCP implemented by using

multi-objective caused the fault to be unable to be revealed earlier. Thus, it highlights

the need for test cases generation and prioritization in order to balance a trade-off

between cost and effectiveness measure. Studies by (Henard et al. 2013), (Arrieta et

29

al. 2016), (Egyed et al. 2016) defined optimization based on generation and

prioritization problem by using Search-Based and Heuristic-Based Technique.

However, the cost-effectiveness of test suite is still in early phase since there are

arguments between the selection of efficient techniques that can give the best cost and

effectiveness for SPL testing. It showed the importance of optimization problem of

maximizing effectiveness and minimizing the cost for MBT in SPL testing. Summary

of challenges in MBT for SPL is illustrated in Figure 1.1.

Figure 1.1: Overview of Challenges in MBT for SPL

1.2 Problem Background

In SPL testing context, the explosion in the number of possible products caused

exhaustive testing to be infeasible. This issue gives challenge to select relevant subset

of product for testing. A basic way to conduct testing for SPL is by using standard

technique which are used in single system to be applied for SPL products. However,

this takes higher cost and time consumption to evaluate every single product. Thus,

there are techniques have been proposed previously to handle issues in SPL testing

including MBT. The basic idea of MBT is to systematically minimize effort by

exploiting knowledge of core assets. MBT for SPL is used to capture behavior of SPL.

30

 MBT process starts with the test model development which is build based on

requirement specifications. Then, test selection criteria will be defined to derive good

test cases. A good test case is one that can detect faults earlier with higher effectiveness

measure such as structural-based criteria (Utting 2006). In the scope of SPL testing,

previous implementation of MBT faced issues of test model development (Ajila and

Kaba 2004), (Czarnecki and Helsen 2006), (Heidenreich et al. 2008), (Shen et al.

2008), (Abbas et al. 2016), redundancy in test suites (Perrouin et al. 2010), (Wang et

al. 2015), (Lackner 2017), and quality measure, which are effectiveness of test cases

(Devroey 2014), (Machado 2014), (Lackner 2015), (Al-Hajjaji et al. 2017) and cost of

testing (Hemmati et al. 2010), (Ensan et al. 2012), (Papadakis et al. 2016).

At first, the test model needs to be developed based on core assets reflected in

requirement model. This development is related to the process of collection of core

assets into the test model. Traceability link is commonly used to handle the different

types of models. However, in the scope of SPL testing for derivation of test cases, it

required a mapping between models in domain engineering because test cases should

be generated in domain engineering before being considered ready to be reused in

application engineering. In traceability link for MBT in SPL, approaches have been

proposed related to the metamodel (Cavalcanti et al. 2011), (Font et al. 2017),

(Steghöfer et al. 2019), model transformation (Czarnecki and Helsen 2006),

(Heidenreich et al. 2008), (Rose et al. 2012), (Jessica et al. 2013), (Olsen and Oldevik

2013). Existing studies proposed model transformation approach to trace features in

FM with statechart (Czarnecki and Helsen 2006), (Heidenreich et al, 2008). These

model transformations proposed a process of conversion between FM into test model.

However, it faced a problem with scalability due to manual mapping process that

required tester to select the features to map with states. Furthermore, these approaches

did not fulfill the needs of SPL because the dependency constraints of FM existed were

ignored. This caused problem to maintain and evolve the large size of SPL core assets

due to tester demand for good quality of test cases based on cost and effectiveness

measures. Furthermore, there is a lack of comprehensive steps in development of

traceability link. It is very important to have a clear view of traceability link in order

to make sure the commonality and variability is undoubtedly defined in test model.

31

In MBT, redundancy of generated test cases also leads to a large size of test

suite and increase in total execution time. This is related with the cost (size of test

suite, total execution time) and effectiveness (coverage and fault detection) of test

cases that can cause scalability issue. Studies by (Reuys et al. 2010), (Cichos et al.

2011) and (Lackner 2017) applied coverage-based measures, for example all-states

and all-transition to generate test cases. The Ensan et al. (2012) discussed the

importance of trade-off between different coverage types. However, according to (Ur

et al. 2018), balance trade-off is not only represented in single measurement types, but

needs to be measured between cost and effectiveness of test cases.

For example, once tester has achieved the maximum target to find defects,

studies have been unable to ensure that these activities significantly reduce the testing

effort and cost. Furthermore, as highlighted by (Inozemtseva and Holmes 2014), a

good coverage test suite does not guarantee that the test suite is effective enough. This

fact is acceptable in SPL context. The Devroey (2014) proposed a single effectiveness

measure aimed to produce a good coverage-based generation. However, it faced

scalability issue due to the longer execution time for test case generation. Most existing

approaches in MBT for SPL focusing on test case measures were based on

effectiveness (coverage). However, due to cost (size of test suite and total execution

time), few cases have been evaluated (Cichos et al. 2011), (Arrieta et al. 2014),

(Devroey et al. 2014), (Papadakis et al. 2016). This brings room for improvement in

terms of trade-off between cost and effectiveness measure to improve the test case

results. Furthermore, the implementation of Search-Based Technique (SBT) in MBT

for SPL was designed to handle trade-off as optimization problem. SBT was based on

heuristic technique that consists of cost and effectiveness measures to be transformed

into objective functions. The goal of implementation of SBT in MBT for SPL is to

generate test cases that balanced trade-off between cost and effectiveness measure.

In order to improve effectiveness (faults detection) in test cases, another

technique, which is Test Case Prioritization (TCP), is applied to enhance the fault

detection rate. For MBT in SPL, TCP is also used as a technique to improve

effectiveness based on earlier fault detection. The lack of TCP implementation made

32

it difficult for faults to be revealed as soon as possible, thus making it possible for

wrong products to be executed.

Machado (2014) improved the effectiveness of test cases by prioritizing fault

in test model by using mutation testing. Existing studies proposed a similarity-based

technique by using string distance method to prioritize test cases from FM and delta-

oriented architecture model (Henard et al. 2016), (Al-Hajjaji et al. 2017), (Sahak

2018). Devroey et al. (2017) also proposed generation and prioritization for SPL.

However, in terms of TCP, they have reused TCP algorithm proposed by (Henard et

al. 2016) in test cases generated from mathematical model, for example Markov Chain

model.

Moreover, in MBT for SPL, there is a lack of study that implemented TCP

based on another test model, especially behavior model statechart. In terms of

technique, similarity-based by using string distance to evaluate similarity of test cases

is still in early phase. This is due to the lack of extensive view of efficiency of string

distance implementation. Only a few string distances, which is Jaccard Distance and

Jaro-Winkler hybrid with Hamming Distance, have been discovered. There is no

justification on the evaluation of string distance applied in SPL. The string distance

can help to reveal faults by measuring the similarity of test cases. The lack of

implementation of string distance for similarity measure caused fault techniques to

inefficiently detect faults.

 In order to handle TCP, a technique was required to reorganize test cases

sequence. There are three algorithms that have been previously discussed in similarity-

based, which are Local Maximum Distance, Global Maximum Distance and all-yes

config. However, there is a lack of evidence to show that the proposed algorithm is the

best algorithm to discover faults as early as possible. Furthermore, the cost of TCP

(total execution time) for similarity-based technique also required evaluation to make

sure the proposed technique is capable to balance trade-off between cost and

effectiveness measure. The limited multi-objectives in TCP approach caused

difficulties to revealed faults. However, in terms of execution times, it is still important

to be evaluated to ensure time can be minimized.

33

Due to these reasons, three key issues have been identified in this study to be

resolved in order to produce a good quality of test cases with trade-off between cost

and effectiveness measures. The first involves process of test model development with

variability consideration based on FM. The lack of inadequacy of model mapping

caused variability and commonality in SPL to be not completely reflected in test model

artefacts. Another concern in this study is the demand of SPL testing that aims to obtain

test cases with trade-off between cost and effectiveness measure. However, there is a

lack of techniques concerned with multi-objective test case measure in SPL test case

generation and prioritization. In terms of test case generation, a good technique that

can balance trade-off is seen to be important way to enhance test case quality. This is

because the existing studies validate test cases based on single measure without

implementation or other validation that is also important to be discovered. There is a

lack of previous studies that discover fault detection rate from test cases generated in

test model artefacts. However, TCP is one of the important techniques to discover

faults as early as possible compared with other existing techniques. Thus, test case

generation and prioritization were the main factors to achieve trade-off between cost

and effectiveness in MBT for SPL.

1.3 Problem Statement

Based on analysis from existing studies in MBT for SPL, there is a demand of

test cases to fulfill a good quality measure in terms of cost and effectiveness. In order

to enhance cost and effectiveness of test cases in MBT for SPL, there are three

important parts that need to be highlighted, which are statechart test model, generation

and prioritization of test cases.

First challenge is related to statechart test model development since it is the

basic preparation to conduct SPL testing by using MBT. It requires a test model to

represent SPL core assets based on requirements of products. The mapping between

models is a challenge with respect to accurate generation of test cases. The

implementation of single model, for example FM, can represent variabilities and

commonalities in simplest ways. FM is based on taxonomic form commonly

34

represented as symbols. Mapping with other models such as requirement model can

make FM information to be representable (Czarnecki and Antkiewicz 2005). The

traceability link is required to map between two model components. In MBT, it is used

to reflect SPL core assets in the test model for test case generation.

Model transformation approach is used to create traceability link between two

models. However, the implementation of model transformation approach to conduct

traceability mapping caused lack of comprehensive views of creating traceability in

clear ways (Anquetil et al. 2012), (Vale et al. 2017). This is important since it involves

variability of products. FM constraints need to be validated in order to prevent an

invalid generation (Lochau et al. 2012).

The second challenge is related to test cases generation from statechart test

model. It is associated with implementation of single measure criteria for test cases

generation, for example, coverage criteria. It is used to discover coverage that can be

covered by proposed approach based on test model artefacts. Nevertheless, it ignores

the remaining validation measure, for example, the cost of testing is also important to

be validated in test case generation. The single criteria is not able to represent it as a

good test case (Inozemtseva and Holmes 2014), (Kazmi et al. 2017b). It required a

trade-off between cost (size of test suite, total execution time) and effectiveness

(coverage, fault detection capability) to ensure that the generated test cases gain a good

quality measurement (Ahmed et al. 2020). Most existing approaches in MBT for SPL

are concerned with a single objective at a time. This remains valid for certain cases;

however, it does not reflect real-life problems in testing. However, trade-off issues can

be improved by implementing multi-objective optimization for SPL testing (Henard et

al. 2013), (Wang et al. 2014), (Abbas et al. 2016).

In order to enhance effectiveness of testing, earlier fault detection also need to

be measured. This is because the test cases generated from MBT are not considered

test cases based on fault detection. This has caused test cases in test suite to be listed

randomly without any consideration of fault detection rate. TCP is the one of the

techniques that can reveal faults earlier by reordering test cases based on fault

detection rate. However, there is a lack of studies that measured faults in MBT for

35

SPL. This has caused faults to be not considered as validation measure to evaluate

effectiveness of test cases. Furthermore, in SPL, the proposed TCP approach highlights

the concern of test cases from FM and mathematical model (Markov Chain) (Egyed et

al. 2016), (Henard et al. 2016), (Schaefer et al. 2016), (Al-Hajjaji et al. 2017). There

is a lack of TCP approach used to evaluate test cases from UML statechart test model

artefacts. This is due to the previous studies that highlighted concern on effectiveness

measure of UML statechart test model artefacts by using coverage criteria, for example

structural-based coverage. This has led to faults to not be considered an effectiveness

measure for test cases generated from MBT in SPL.

The summary of problem to be highlighted in the study is summarized as per

Figure 1.2.

Figure 1.2: The recognized problems

To evaluate effectiveness measure based on earlier fault detection rate,

similarity and dissimilarity based prioritization approach is shown as a good evaluation

method to evaluate faults. It starts with measuring distance between test cases in the

test suite. Then, the proposed similarity or dissimilarity-based approach will reorder

test cases based on fault detection rate. In order to ensure test cases can be evaluated

based on cost and effectiveness measure, it also requires a balance trade-off based on

cost (total execution time) and effectiveness (fault detection rate) to make sure the TCP

fulfills the software testing demand. Multi-objective optimization is required to ensure

the trade-off issues in generation and prioritization approach can be improved. This is

because multi-objective optimization offers different evaluation measure at a single

36

time. In addition, the technique can be tuned to ensure cost and effectiveness of test

cases can be maximized and minimized.

1.4 Research Question

The aim of this research is to solve issues within the concept of MBT in SPL

while targeting the accuracy of managing variability and enhancing the multi-

objectives criteria in test cases generation and prioritization.

Derived from the research problem, the following are the formulated research

questions:

“How to minimize cost (size of test suite, total execution time) and maximize

effectiveness (coverage and faults) measures for generation and prioritization

approach in MBT based on statechart test model for SPL”

To answer the main research questions, the following sub-question is addressed:

RQ1: How can the traceability mapping approach for MBT in SPL be improved?

RQ 1.1 How can the traceability mapping approach be reflected in explicit

mapping between SPL statechart test model and test artefacts?

RQ 1.2: What are the techniques involved in explicit mapping between SPL

statechart test model and test artefacts?

RQ2: How can the effectiveness of existing test case generation algorithms be

increased?

RQ 2.1: Can the hybrid-heuristic optimization problem handle trade-off

between cost and effectiveness in test case generation for MBT in SPL?

37

RQ 2.2: Does the hyper-heuristic optimization problem handle trade-off

between cost and effectiveness in test case generation for MBT in SPL?

RQ3: How can earlier fault detection in test cases by using prioritization technique be

discovered?

RQ3.1: How can the existing similarity-based prioritization technique for

accelerating fault with minimal execution time be enhanced?

RQ 3.2: How can the existing similarity measurement by using string-based

method for similarity-based prioritization be improved?

1.5 Research Goals and Objectives of the Study

The main goal of this research is to obtain increase in the quality of test cases

based on cost (size of test suite, total execution time) and effectiveness (coverage, fault

detection capability) by using generation and prioritization approach for MBT in SPL.

This approach is able to ensure that the derivable test cases can minimize the cost and

maximize effectiveness due to demand in SPL testing.

To achieve the mentioned goals, the objective of this study are as follows:

Objective 1: To propose a model transformation approach that can be used to provide

explicit traceability mapping in MBT SPL.

Objective 2: To propose hybrid test cases generation technique with trade-off between

cost and effectiveness measurement.

Objective 3: To propose a test case prioritization algorithm based on similarity-based

with string distance measurement.

38

1.6 Research Scope

The proposed research is mainly focused on MBT for SPL with three main

scopes, which are traceability in model and test case generation and prioritization.

Details of the research scope are as follows:

i) Model-based testing for SPL

Model-based in this study covers the scope of testing that starts with test model

development. It only covers representations of variability and requirements based

on behavior in the scope of test model statechart. The implementation of other test

model types are excluded from research.

ii) Traceability on MBT for SPL

The traceability link is based on the model transformation for SPL. Another

type of traceability link, which is metamodel transformation, is excluded from the

research since the focus is to map between two test models, which required

obtaining all the related model components that can be used to derive test cases.

1.7 Significance of the study

SPL core asset management is an important element that needs to be considered

before testing is conducted. It is found that constraints validation (Lochau et al. 2014)

and tracing process (Rose et al. 2012) are important elements in order to accurately

map test model component. Previous studies do not reflect comprehensive traceability

process for SPL in clear way since it implemented a single traceability approach. Thus,

the objective is to propose a model transformation approach that can be used to provide

explicit traceability mapping in MBT SPL.

The second contribution of this study is to facilitate a good test case evaluation

based on cost and effectiveness measures. This is due to the demand in SPL testing to

39

optimize the cost (size of test suite, execution time) (Wang et al. 2015), maximize

based on coverage (Devroey et al. 2014) and fault detection ability (Al-Hajjaji et al.

2017). Due to the lack of multi-objectives optimization in MBT for SPL, this study

proposed a test case generation approach with aim to enhance quality of test cases in

terms of cost and effectiveness. There are two different techniques compared in the

proposed approach, which are hybrid-heuristic and hyper-heuristic based for multi-

objectives optimization. In terms of test cases generation, the proposed approach will

cover the generation of test cases with maximum coverage and optimal cost (size of

test suite and execution time). Another concern is due to the lack of trade-off between

cost (time execution) and effectiveness (fault detection rate) in test cases from MBT

for SPL. Thus, the enhancement of prioritization approach based on prioritization

technique and string distance is used to overcome the problem of fault measurements

in test cases from MBT. In this light, following points are significant for current

research.

I. This research will help to give a complete traceability process based on

model transformation and formal method that is used to create

traceability link between variability model and requirement model.

II. This research helps to improve the process of mapping between models

by using traceability based on automated query.

III. This research provided the test case generation by using hybrid search-

based testing with consideration of cost (size of test suite, total

execution time) and effectiveness (coverage) measurements.

IV. This research attempts to find the suitable test cases generation

technique that can balance trade-off between cost and effectiveness

measure.

V. This research attempts to discover faults in test cases by using enhanced

prioritization technique and string distance based on dissimilarity

measure.

40

The cost (total execution time) and effectiveness (fault detection) are

considered to evaluate the prioritization algorithm proposed.

1.8 Research Organization

The thesis is organized in nine chapters as follows:

Chapter 1: Introduction: It gives an overview on the structure of the research. It

described the background of the study that brings the research problem to be discussed

and explained. Main sections, which are research question and research objectives, are

presented. The importance of this research is also elaborated in this chapter.

Chapter 2: Literature Review: It gives a discussion of the prior studies conducted in

the field of MBT and SPL. All related studies are classified, explained and analyzed

based on the problem defined in Chapter 1. The advantages and disadvantages of the

existing study are also presented.

Chapter 3: Research Methodology: It provides the descriptions of the research

framework, research process, case studies, techniques utilized in the current research.

Details of each section are described in this chapter.

Chapter 4: The proposed FM_STATE Model Mapping. This chapter described the

proposed model mapping approach based on the traceability link of FM and statechart.

The design, implementation and results of the study are discussed in this chapter.

Chapter 5: A Hybrid Heuristic Algorithm for MBT Test Cases Generation in SPL. This

chapter provides the proposed technique based on the three hybrid algorithms, which

are Floyds Warshall Algorithm (FWA), Branch and Bound Algorithm (BBA) and Best

First Search (BFS). The design, implementation, results, and existing study

comparison are discussed in this chapter.

41

Chapter 6: Multi-objectives Test Case Generation by using Hyper-Heuristic Algorithm

for MBT in SPL will describe the hyper-heuristic approach for MBT in SPL used to

generate test cases. This chapter describes the design, implementation and

experimental results of the proposed technique.

Chapter 7: Test Case Prioritization by using Hybrid Search Based Algorithm with

Similarity Distance describe the TCP technique implemented for MBT statechart. This

chapter includes design, implementation and experimental results. This experiment is

related to the two proposed generation algorithms.

Chapter 8: The test cases generation from Chapter 5 and 6 with TCP from Chapter 7

are used to evaluate the performance of the proposed approach. The strength and

weaknesses of the proposed techniques are also described.

Chapter 9: Conclusion and Future Work. The conclusion of the research is presented

while highlighting findings, issues and future works.

287

REFERENCES

Abbas, A., Siddiqui, I.F. Lee, S. U. J. (2016) "Goal-based Modeling for Requirement

Traceability of Software Product Line", Journal of Theoretical and Applied

Information Technology, 94(2).

Abbas, A., Siddiqui, I. F. and Lee, S. U. (2016) “Multi-Objective Optimization of

Feature Model in Software Product Line : Perspectives and Challenges”, Indian

Journal of Science and Technology, 9(December). doi:

10.17485/ijst/2016/v9i45/106769.

Ahmed, B., Enoiu, E., Wasif. A., Kamal, Z. (2020) “An evaluation of Monte Carlo-

based hyper-heuristic for interaction testing of industrial embedded software

applications”, Soft Computing. Springer Berlin Heidelberg. doi: 10.1007/s00500-

020-04769-z.

Ajila, S. A. and Kaba, A. B. (2004) “Using Traceability Mechanisms to Support

Software Product Line Evolution”, in International Conference on Information

Reuse and Integration, pp. 157–162.

Ajmal, F. (2018) Requirement Engineering and Software Testing : Forward and

Backward Traceability in requirement model and system model on the Basis of

Failed Test Cases and improved requirement.

Al-Hajjaji, M. (2014) “Scalable and Efficient Sampling for Product-Line Testing”,

Technical Report FIN-003-2014, University of Magdeburg, Germany, 2014.

Al-Hajjaji, M., Lily, S., Lachman, R. (2017) “Delta-Oriented Product Prioritization for

Similarity-Based Product-Line Testing”, Proceedings - 2017 IEEE/ACM 2nd

International Workshop on Variability and Complexity in Software Design, VACE

2017, pp. 34–40. doi: 10.1109/VACE.2017.8.

Al-shamri, M. Y. H. (2014) “Power coefficient as a similarity measure for memory-

based collaborative recommender systems”, EXPERT SYSTEMS WITH

APPLICATIONS. Elsevier Ltd, 41(13), pp. 5680–5688. doi:

10.1016/j.eswa.2014.03.025.

Anjorin, A. Oster, S., Zorcic, I. (2012) “Optimizing Model-Based Software Product

Line Testing with Graph Transformations”, Electronic Communications of the

EASST 11th International Workshop on Graph Transformation and Visual

288

Modeling Techniques (GTVMT 2012), 47.

Anquetil, N. Kulesza, U., Mitschke, R. (2010) “A model-driven traceability

framework for software product lines”, Software & Systems Modeling, pp. 427–

451. doi: 10.1007/s10270-009-0120-9.

Anquetil, N. Mitschke, R., Moreire, A. (2012) “A Model-Driven Traceability

Framework for Software Product Lines”, Software & Systems Modeling, pp. 427–

451.

Anquetil, N. Grammel, B., Galvao, I. (2015) “Traceability for Model Driven , Software

Product Line Engineering”, in ECMDA Traceability Workshop Proceedings, pp.

77–86.

Arif, T. (2015) “Exploring The Use Of Hybrid Similarity Measure”,

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY, 4(12), pp.

171–175.

Arrieta, A. Wang, S., Sagardui, G. (2016) “Test Case Prioritization of Configurable

Cyber-Physical Systems with Weight- Test Case Prioritization of Configurable

Cyber-Physical Systems with Weight-Based Search Algorithms”, in Proceedings

of the Genetic and Evolutionary Computation Conference 2016. doi:

10.1145/2908812.2908871.

Arrieta, A., Sagardui, G. and Etxeberria, L. (2014) “A model-based testing

methodology for the systematic validation of highly configurable cyber-physical

systems”, in 6th International Conference on Advances in System Testing and

Validation Lifecycle, VALID 2014, pp. 66–72.

Baller, H. Lily, S., Lochau, M. (2014) “Multi-objective test suite optimization for

incremental product family testing”, Proceedings - IEEE 7th International

Conference on Software Testing, Verification and Validation, ICST 2014, pp. 303–

312. doi: 10.1109/ICST.2014.43.

Baudry, B. LeGuen, H., Samih, H. (2014) “An Approach to Derive Usage Models

Variants for Model-Based Testing”, FIP International Conference on Testing

Software and Systems. Springer, Berlin, Heidelberg, pp. 80–96. doi: 10.1007/978-

3-662-44857-1_6.

Belli, F. Budnik, C., Hollman, A. (2016) “Model-based mutation testing - Approach

and case studies”, Science of Computer Programming. Elsevier B.V., 120, pp. 25–

48. doi: 10.1016/j.scico.2016.01.003.

Belli, F. and Hollmann, A. (2014) “Test Generation and Minimization with “ Basic ”

289

Statecharts”, (January 2008). doi: 10.1145/1363686.1363856.

Bertolino, A. (2007) “Software Testing Research: Achievements, Challenges,

Dreams”, Future of Software Engineering, (September), pp. 85–103. doi:

10.1109/FOSE.2007.25.

Boghdady, P. Badr, N., Hashem, M., (2011) “Test Case Generation and Test Data

Extraction Techniques”, International Journal of Electrical & Computer Sciences,

11(3), pp. 82–89.

Cartaxo, E. G., Neto, F. G. O. and Machado, P. D. L. (2007) “Test case generation by

means of UML sequence diagrams and labeled transition systems”, Conference

Proceedings - IEEE International Conference on Systems, Man and Cybernetics,

pp. 1292–1297. doi: 10.1109/ICSMC.2007.4414060.

Cavalcanti, Y.C., do Carmo Machado, i., da Mota, P.A., Neto, S., Lobato, L.L., de A.

(2011) “Towards Metamodel Support for Variability and Traceability in Software

Product Lines”, in Proceedings of the 5th Workshop on Variability Modeling of

Software-Intensive Systems, pp. 49–57. doi: 10.1145/1944892.1944898.

Cichos, H., Oster, S., Lochau, M. (2011) “Model-Based Coverage-Driven Test Suite

Generation for Software Product Lines”, Model Driven Engineering Languages

and Systems, 6981, pp. 425–439.

Cichos, H., Oster, S. and Lochau, M. (2011) “Extended Version of Test Suite

Generation for Software Product Lines”, International Conference on Model

Driven Engineering Languages and Systems, pp. 425–439.

Coutinho, B., Gadelha, E. and Emı, A. (2016) “Analysis of distance functions for

similarity-based test suite reduction in the context of model-based testing”,

Software Quality Journal, 24, pp. 407–445. doi: 10.1007/s11219-014-9265-z.

Czarnecki, K. and Antkiewicz, M. (2005) “Mapping Features to Models : A Template

Approach Based on Superimposed Variants Background : Feature Modeling”,

Proceedings of the 4th International Conference Generative Programming and

Component Engineering, GPCE 2005, pp. 422–437. Available at:

http://link.springer.com/chapter/10.1007/11561347_28.

Czarnecki, K. and Helsen, S. (2006) “Feature-based survey of model transformation

approaches”, IBM Systems Journal, 45(3), pp. 621–645. doi: 10.1147/sj.453.0621.

Damiani, F., Lienhardt, M. and Paolini, L. (2019) “A formal model for Multi Software

Product Lines”, Science of Computer Programming. Elsevier B.V., 172(644298),

pp. 203–231. doi: 10.1016/j.scico.2018.11.005.

290

Deb, K. Agrawal, S., Pratap, A. (2000) “A Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization : NSGA-II”, International conference

on parallel problem solving from nature, pp. 849–858.

Devroey (2017) Behavioural model-based testing of software product lines. University

of Namur.

Devroey, X., Perrouin, G., Cordy, M. (2014) “A Variability Perspective of Mutation

Analysis”, Proceedings of the 22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pp. 841–844.

Devroey, X. (2014) “Behavioural Model Based Testing of Software Product Lines”,

Software Product Line Conference, (August), pp. 1–8. Available at:

https://www.researchgate.net/profile/Xavier_Devroey/publication/265211912_Be

havioural_Model_Based_Testing_of_Software_Product_Lines_Research_Abstrac

t/links/540581380cf23d9765a6f0dc.pdf.

Devroey, X., Perrouin, G., Legay, A., (2014) “Coverage Criteria for Behavioural

Testing of Software Product Lines”, Proceedings of the 6th International

Symposium On Leveraging Applications of Formal Methods, Verification and

Validation (to appear), pp. 336–350. doi: 10.1007/978-3-662-45234-9_24.

Devroey, X., Perrouin, G., Legay, A. (2017) “Dissimilar Test Case Selection for

Behavioural Software Product Line Testing”, in. doi: 10.1145/1235.

Devroey, X., Perrouin, G., Cordy, M. (2017) “Statistical prioritization for software

product line testing : an experience report”, Software & Systems Modeling. Springer

Berlin Heidelberg, 16(1), pp. 153–171. doi: 10.1007/s10270-015-0479-8.

Devroey, X., Perrouin, G. and Schobbens, P.-Y. (2014) “Abstract test case generation

for behavioural testing of software product lines”, 18th International Software

Product Line Conference, SPLC 2014, pp. 86–93. doi: 10.1145/2647908.2655971.

Dice, L. R. (1943) “The biotic provinces of North America”, in The biotic provinces

of North America, p.440.

Dragan Gaševic, Ralf Lämmel, E. van W. (2010) “Engineering a DSL for Software

Traceability”, in Software Language Engineering, p. 153.

Egyed, A. Segura, S., Lopez-Herrejon, R. (2016) “Multi-objective test case

prioritization in highly configurable systems: A case study”, Journal of Systems and

Software, 122, pp. 287–310. doi: 10.1016/j.jss.2016.09.045.

Emília, A. and Barbosa, V. (2015) Similarity-based test suite reduction in the context

of Model-Based Testing. Universidade Federal de Campina Grande.

291

Engström, E., Runeson, P. (2015) “Software Product Line Testing - A Systematic

Mapping Study”, Information and Software Technology, (October), pp. 2–13. doi:

10.1007/978-3-642-29578-2.

Ensan, F., Bagheri, E. and Gasevic, D. (2012) “Evolutionary Search-based Test

Generation for Software Product Line Feature Models”, in International

Conference on Advanced Information Systems Engineering, pp. 613–628.

Etien, A. (2008) "Fine Grained Traceability for an MDE Approach of Embedded

System Conception", in Oldevik, J. Aagedal, JØ (eds.) ECMDA Traceability

Workshop (ECMDATW), pp. 27–38.

Fang, C. and Chen, Z. (2014) “Similarity-Based Test Case Prioritization Using

Ordered Sequences of Program Entities”, Software Quality Journal, 22.2, pp. 335–

361.

Farrag, M. (2013) Colored Model Based Testing for Software Product Lines (CMBT-

SWPL). Technical University of Ilmenau.

Ferreira, T. Kuk, J., Pozo, A. (2016) “Product selection based on upper confidence

bound MOEA/D-DRA for testing software product lines”, 2016 IEEE Congress on

Evolutionary Computation, CEC 2016. IEEE, pp. 4135–4142. doi:

10.1109/CEC.2016.7744315.

Floyd, R. W. (1962) “Algorithms 97”, Communications of the ACM, pp. 344–348.

Font, J. Arcega, L. (2017) “Leveraging variability modeling to address metamodel

revisions in Model-based Software Product Lines”, Computer Languages, Systems

& Structures. Elsevier, 48, pp. 20–38. doi: 10.1016/j.cl.2016.08.003.

Gao, L., Mishra, S. K. and Shi, J. (2012) “An extension of branch-and-bound algorithm

for solving sum-of-nonlinear-ratios problem”, pp. 221–230. doi: 10.1007/s11590-

010-0232-8.

García, B. and Navas, A. (2010) “An automated Model-based Testing Approach in

Software Product Lines Using a Variability Language”, in Fraunhofer Institute for

Open Communication Systems.

Gargantini, A. and Vavassori, P. (2012) “CITLAB: A laboratory for combinatorial

interaction testing”, Proceedings - IEEE 5th International Conference on Software

Testing, Verification and Validation, ICST 2012, pp. 559–568. doi:

10.1109/ICST.2012.141.

Gebizli, C. S. and Sozer, H. (2016) “Model-Based Software Product Line Testing by

Coupling Feature Models with Hierarchical Markov Chain Usage Models”,

292

Proceedings - 2016 IEEE International Conference on Software Quality, Reliability

and Security-Companion, QRS-C 2016, pp. 278–283. doi: 10.1109/QRS-

C.2016.42.

Groher, I. and Voelter, M. (2011) “Aspect-Oriented Model-Driven Software Product

Line Engineering”, in Transactions on aspect-oriented software development VI,

pp. 111–152.

Heidenreich, F., Kopcsek, J. and Wende, C. (2008) “FeatureMapper: mapping features

to models”, International Conference on Software Engineering, 30, pp. 943–944.

doi: 10.1145/1370175.1370199.

Heider, W. et al. (2010) “Simulating evolution in model-based product line

engineering”, Information and Software Technology. Elsevier B.V., 52(7), pp. 758–

769. doi: 10.1016/j.infsof.2010.03.007.

Hemmati, H., Arcuri, A. and Briand, L. (2010) “Reducing the Cost of Model-Based

Testing through Test Case Diversity”, IFIP International Conference on Testing

Software and Systems. Springer, Berlin, Heidelberg, (2), pp. 63–78.

Henard, C. Papadakis, M., Perrouin, G. (2013) “Multi-objective Test Generation for

Software Product Lines”, in Proceedings of the 17th International Software

Product Line Conference, pp. 62–71.

Henard, C. Papadakis, M., and Harman, M. (2015) “Combining Multi-Objective

Search and Constraint Solving for Configuring Large Software Product Lines”, in

Proceedings of the 37th International Conference on Software Engineering, pp.

517–528. doi: 10.1109/ICSE.2015.69.

Henard, C. (2015) Enabling Testing of Large Scale Highly Configurable Systems with

Search-based Software Engineering : The Case of Model-based Software Product

Lines Dissertation Defense Committee. Universite Du Luxemborg.

Henard, C. Papadakis, M., Perrouin, G. (2016) “Bypassing the Combinatorial

Explosion : Using Similarity to Generate and Prioritize T-wise Test Configurations

for Software Product Lines”, Proceedings of the National Academy of Science, no.

37, pp. 10442–10447.

Her, J. S. Oh, S. (2017) “A framework for evaluating reusability of core asset in

product line engineering”, Information and Software Technology, 49, pp. 740–760.

doi: 10.1016/j.infsof.2006.08.008.

Hervieu, A. and Baudry, B. (2011) “P ACOGEN : Automatic Generation of Pairwise

Test Configurations from Feature Models”, International Symposium on Software

293

Reliability Engineering, pp. 120–129.

I.Machado (2014) Fault Model-Based Variability Testing (Ph.D. Thesis).

Universidade Salvador.

Inozemtseva, L. and Holmes, R. (2014) “Coverage Is Not Strongly Correlated with

Test Suite Effectiveness”, in Proceedings of the 36th International Conference on

Software Engineering, pp. 435–445.

Jaccard, P. (1929) “Considerations sur le coefficient générique et sa signification

floristique et phytosociologique”, Bulletin de la Société Botanique de France, 76.1,

pp. 47–66.

Jacelyn Simmonds, M. C. B. (2015) “Modeling Variability in Software Product

Family”, Journal of Software, 16(1), p. 37. doi: 10.1360/jos160037.

Jakubovski Filho, H. L., Ferreira, T. N. and Vergilio, S. R. (2019) “Preference based

multi-objective algorithms applied to the variability testing of software product

lines”, Journal of Systems and Software. Elsevier Inc., 151, pp. 194–209. doi:

10.1016/j.jss.2019.02.028.

Jawawi, Dayang N. A, Zaki, Rosbi Mamat, Fakhitah Ridzuan, Muhammad

Khatibsyarbini, M. Z. M. (2015) “Introducing computer programming to secondary

school students using mobile robots”, in 10th Asian Control Conference (ASCC),

pp. 1–6.

Jessica, D. Jennifer, P., Fern, C., (2013) “Model-to-Code transformation from Product-

Line Architecture Models to AspectJ”, in Euromicro Conference Series on Software

Engineering and Advanced Applications, pp. 98–105. doi: 10.1109/SEAA.2013.11.

Jirapanthong, Waraporn, Zisman, A. (2009) “XTraQue: traceability for product line

systems Journal”, Software and Systems Modeling, pp. 117–144. doi:

10.1007/s10270-007-0066-8.

Jirapanthong, W. and Zisman, A. (2009) “XTraQue : traceability for product line

systems”, Software & Systems Modeling, 1, pp. 117–144. doi: 10.1007/s10270-007-

0066-8.

Kanstrén, T. Puolitaival, O. (2012) “Experiences in setting up domain-specific model-

based testing”, 2012 IEEE International Conference on Industrial Technology,

ICIT 2012, Proceedings, pp. 319–324. doi: 10.1109/ICIT.2012.6209957.

Kazmi, R. Jawawi, D., Mohamad, R. (2017a) “Effective Regression Test Case

Selection”, ACM Computing Surveys, 50(2), pp. 1–32. doi: 10.1145/3057269.

Kazmi, R., Jawawi, D., Mohamad, R. (2017b) EFFECTIVE REGRESSION TEST

294

CASE SELECTION TECHNIQUE USING WEIGHTED AVERAGE SCORING.

Universiti Tekologi Malaysia.

Kennedy, J. and Eberhart, R. (1995) “Particle Swarm Optimization”, in Proceedings

of ICNN’95-International Conference on Neural Networks, pp. 1942–1948.

Kesserwan, N. Dssouli, R., Bentahar, J. (2019) “From use case maps to executable test

procedures : a scenario-based approach”, Software & Systems Modeling. Springer

Berlin Heidelberg, 18(2), pp. 1543–1570. doi: 10.1007/s10270-017-0620-y.

Kim, J. (2014) “A Comparison of Software Product Line Traceability Approaches

from End-to-End Traceability Perspectives”, International Journal of Software

Engineering and Knowledge Engineering, 24(4), pp. 677–714. doi:

10.1142/S0218194014500260.

Kolb, R. (2014) “A Risk-Driven Approach for Efficiently Testing Software Product

Lines”, 5th GPCE Young, Researches Workshop, Erfurt, Germany, (August 2003).

Lackner, H. (2015) “Model-based product line testing: Sampling configurations for

optimal fault detection”, Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9369,

pp. 238–251. doi: 10.1007/978-3-319-24912-4_17.

Lackner, H. (2017) Domain-Centered Product Line Testing. Humboldt-Universität zu

Berlin.

Lapeña, R., Pérez, F. and Cetina, C. (2017) “On the Influence of Models-to-Natural-

Language Transformation in Traceability Link Recovery among Requirements and

Conceptual Models”, in ER Forum/Demos, pp. 271–284.

Lee, J., Kang, S. and Jung, P. (2020) “Test coverage criteria for software product line

testing: Systematic literature review”, Information and Software Technology.

Elsevier B.V., p. 106272. doi: 10.1016/j.infsof.2020.106272.

Lee, J., Kang, S. and Lee, D. (2012) “A survey on software product line testing”,

Proceedings of the 16th International Software Product Line Conference, Volume

1, pp. 31–40. doi: 10.1145/2362536.2362545.

Lee, K., Kang, K. C. and Lee, J. (2007) “Concepts and Guidelines of Feature Modeling

for Product Line Software Engineering”, International Conference on Software

Reuse, pp. 62–77. doi: 10.1007/3-540-46020-9_5.

Lity, S. Seidl, C., Nahrendorf, S. (2018) “175 % Modeling for Product-Line Evolution

of Domain Artifacts”, ACM Computing Machinery, (1), pp. 27–34.

Lity, S. B. (2019) Model-Based Product-Line Regression Testing of Variants and

295

Versions of Variants. Technische Universitat Braunschweig.

Lizhang, X. L. (2014) “An Evolutionary Methodology for Optimized Feature

Selection in Software Product Lines”, in Proceedings of the International

Conference on Software Engineering and Knowledge Engineering, SEKE, pp. 2–5.

Lochau, M. Oster, S., Goltz, U. (2012) “Model-based pairwise testing for feature

interaction coverage in software product line engineering”, Software Quality

Journal, 20(3–4), pp. 567–604. doi: 10.1007/s11219-011-9165-4.

Lochau, M. Lily, S., Lachmann, R. (2014) “Delta-oriented model-based integration

testing of large-scale systems”, Journal of Systems and Software. Elsevier Inc.,

91(1), pp. 63–84. doi: 10.1016/j.jss.2013.11.1096.

Lochau, M. Burdek, J., Holzle, S. (2017) “Specification and automated validation of

staged reconfiguration processes for dynamic software product lines”, Software and

Systems Modeling. Springer Berlin Heidelberg, 16(1), pp. 125–152. doi:

10.1007/s10270-015-0470-4.

Luiz, H. Filho, J., Ferreira, T. (2018) “Incorporating User Preferences in a Software

Product Line Testing Hyper-Heuristic Approach”, 2018 IEEE Congress on

Evolutionary Computation (CEC). IEEE, pp. 1–8.

Machado, I., McGregor, J., Cavalcanti, Y. (2014) “On strategies for testing software

product lines: A systematic literature review”, Information and Software

Technology. Elsevier B.V., 56(10), pp. 1183–1199. doi:

10.1016/j.infsof.2014.04.002.

Mamun, A. Al, Djatmiko, F. and Das, M. K. (2016) “Binary Multi-objective PSO and

GA for Adding New Features into an Existing Product Line”, 19th International

Conference on Computer and Information Technology (ICCIT). IEEE, pp. 581–

585. doi: 10.1109/ICCITECHN.2016.7860263.

Manning, C. D. (2015) Introduction to Information Retrieval. Available at:

http://www.math.unipd.it/aiolli/corsi/0910/IR/irbookprint.pdf%5Cnfiles/601/irboo

kprint.pdf.

Marcus, A. and Maletic, J. I. (2005) “RECOVERY OF TRACEABILITY LINKS

BETWEEN SOFTWARE”, International Journal of Software Engineering and

Knowledge Engineering, 15.05, pp. 811–836.

Marino, J., Alexandre, V. and Júnior, D. S. (2019) “A systematic mapping addressing

Hyper-Heuristics within Search-based Software Testing ☆”, Information and

Software Technology. Elsevier B.V., 114(September 2018), pp. 176–189. doi:

296

10.1016/j.infsof.2019.06.012.

Morgan, S. P. (1998) “Richard Wesley Hamming”, Notices of the AMS, 45.8.

Nebut, C. Fleurey, F., Traon, Le. (2010) “A Requirement-Based Approach to Test

Product Families”, International Workshop on Software Product-Family

Engineering, pp. 198–210. doi: 10.1007/978-3-540-24667-1_15.

Olimpiew, E.M. Gomaa, H. (2008) “Model-based Test Design for Software Product

Lines”, Software Product Line Conference, (January), pp. 173–178.

Olimpiew, E. M. and Gomaa, H. (2009) “Reusable Model-Based Testing”,

International Conference on Software Reuse, pp. 76–85.

Olsen, G. K. and Oldevik, J. (2013) “Scenarios of Traceability in Model to Text

Transformations”, European Conference on Model Driven Architecture-

Foundations and Applications, pp. 144–156.

Oster, S. (2012) Feature Model-based Software Product Line Testing, Phd Thesis.

Technische Universität. Available at: http://tuprints.ulb.tu-darmstadt.de/2881/.

Oster, S. (2012) Feature Model-based Software Product Line Testing. Technische

Universität.

P. Asirelli, M.H. ter Beek, S. G. (2009) “Deontic Logics for Modeling Behavioural

Variability”, in Proceedings of the 3rd International Workshop on Variability

Modelling of Software-intensive Systems, pp. 71–76.

Papadakis, M., Klein, J. and Traon, Y. Le (2016) “Assessing Software Product Line

Testing via Model-based Mutation: An Application to Similarity Testing”,

International Conference on Software Testing, Verification and Validation

Workshops, (November), pp. 188–197. doi: 10.1109/ICSTW.2013.30.

Perrouin, G. Sen, S. (2010) “Automated and scalable T-wise test case generation

strategies for Software Product Lines”, ICST 2010 - 3rd International Conference

on Software Testing, Verification and Validation, pp. 459–468. doi:

10.1109/ICST.2010.43.

Perrouin, G., Oster, S., Sen, S. (2011) “Pairwise testing for software product lines:

comparison of two approaches”, Software Quality Journal, 20(3–4), pp. 605–643.

doi: 10.1007/s11219-011-9160-9.

Reis, S., Metzger, A. and Pohl, K. (2006) A reuse technique for performance testing

of software product lines, Proceedings of the International. Workshop on Software

Product Line Testing.

Reuling, D. Burdek, J., Rotarmel, S. (2015) “Fault-based product-line testing”, SPLC

297

- International Conference on Software product lines, pp. 131–140. doi:

10.1145/2791060.2791074.

Reuys, A. Kamsties, E., Pohl, K. (2010) “Model-Based System Testing of Software

Product Families”, International Conference on Advanced Information Systems

Engineering, pp. 519–534. doi: 10.1007/11431855_36.

Rose, L. and Matragkas, N. (2012) “A Feature Model for Model-to-Text

Transformation Languages”, 2012 4th International Workshop on Modeling in

Software Engineering (MISE). IEEE, pp. 57–63. doi:

10.1109/MISE.2012.6226015.

Ross, P. (2003) “HYPER-HEURISTICS”, in Algorithm for Sofware Engineering.

Boston, MA: Springer, pp. 529–556

S.Kang, J.Kim, J. lee (2014) “A comparison of software product line traceability ap-

proaches from end-to-end traceability perspectives”, International Journal of

Sofware Engineering Knowledge Engineering, 24(04), pp. 677–714.

SA Halim; DN Jawawi, M. S. (2019) “SIMILARITY DISTANCE MEASURE AND

PRIORITIZATION ALGORITHM FOR TEST CASE PRIORITIZATION IN

SOFTWARE PRODUCT LINE TESTING”, Journal of Information &

Communication Technology, 18.1.

Saeed, A., Ab Hamid, S. H. and Mustafa, M. B. (2016) “The experimental applications

of search-based techniques for model-based testing: Taxonomy and systematic

literature review”, Applied Soft Computing Journal. Elsevier B.V., 49, pp. 1094–

1117. doi: 10.1016/j.asoc.2016.08.030.

Sahak, M. (2018) Effective similarity based test case prioritization technique for

software product lines. Universiti Teknologi Malaysia.

Saikia, A. Baruah, R., Sarma, U. (2018) “Jaro Winkler Fuzzy match algorithm to

calculate a similarity index between two strings using open source platform”,

INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN

MULTIDISCIPLINARY FIELD, 4(8), pp. 138–143.

Samih, H and Guen, H. (2014) “Deriving usage model variants for model-based

testing: An industrial case study”, Proceedings of the IEEE International

Conference on Engineering of Complex Computer Systems, ICECCS, pp. 77–80.

doi: 10.1109/ICECCS.2014.19.

Samimi-dehkordi, L., Zamani, B. and Kolahdouz-rahimi, S. (2019) “Leveraging

product line engineering for the development of domain-specific metamodeling

298

languages ☆”, Journal of Computer Languages. Elsevier, 51(February), pp. 193–

213. doi: 10.1016/j.cola.2019.02.006.

Sánchez, Ana B., Sergio Segura, A. R.-C. (2014) “A Comparison of Test Case

Prioritization Criteria for Software Product Lines”, IEEE Seventh International

Conference on Software Testing, Verification and Validation, pp. 41–50. doi:

10.1109/ICST.2014.15.

Sayyad, A. S. (2013) “On the Value of User Preferences in Search-Based Software

Engineering : A Case Study in Software Product Lines”, in Proceedings of the 2013

International Conference on Software Engineering, pp. 492–501.

Schaefer, I. et al. (2016) “Fine-grained test case prioritization for integration testing of

delta-oriented software product lines”, 1(212), pp. 1–10. doi:

10.1145/3001867.3001868.

Schaefer, I. and Seidl, C. (2018) “175% Modeling for Product-Line Evolution of

Domain Artifacts”, Proceedings of the 12th International Workshop on Variability

Modelling of Software-Intensive Systems, (1), pp. 27–34. doi:

10.1145/3168365.3168369.

Shen, L., Peng, X. and Zhao, W. (2008) “A Comprehensive Feature-Oriented

Traceability Model for Software Product Line Development”, in ECMDA

Traceability Workshop Proceedings, pp. 77–86.

Steghöfer, J. Brink, C. (2019) “A Generic Traceability Metamodel for Enabling

Unified End-to-End Traceability in Software Product Lines”, in 34th ACM/SIGAPP

Symposium on Applied Computing, pp. 2344–2353.

Strickler, A. Guen, H. (2016) “Deriving products for variability test of Feature Models

with a hyper-heuristic approach”, Applied Soft Computing Journal. Elsevier B.V.,

49, pp. 1232–1242. doi: 10.1016/j.asoc.2016.07.059.

Strickler, A. Kuk, J., Vergillio, S., (2017) “Hyper-Heuristic Based Product Selection

for Software Product Line Testing”, (may), pp. 34–45.

Sulaiman, R. A., Jawawi, D. and Halim, S. A. (2018) “Coverage-based approach for

model-based testing in Software Product Line”, International Journal of

Engineering and Technology(UAE), 7(4). doi: 10.14419/ijet.v7i4.15.21373.

Szasz, N. and Vilanova, P. (2008) “Statecharts and Variabilities”, VaMoS, pp. 131–

140.

Tsafarakis, S., Marinakis, Y. and Matsatsinis, N. (2011) “Particle swarm optimization

for optimal product line design”, International Journal of Research in Marketing.

299

Elsevier B.V., 28(1), pp. 13–22. doi: 10.1016/j.ijresmar.2010.05.002.

Tumeng, R. A. (2017) Test case prioritization with requirements change using string

metrics. Universiti Teknologi Malaysia.

Ur, S. Khan, R., Lee, S. (2018) “A Systematic Review on Test Suite Reduction :

Approaches , Experiment ’ s Quality Evaluation , and Guidelines”, IEEE Access.

IEEE, 6(ii), pp. 11816–11841. doi: 10.1109/ACCESS.2018.2809600.

Utting, M., Pretschner, A.Legeard, B. (2010) “A taxonomy of model-based testing

approaches”, Software Testing Verification and Reliability, 24(8), pp. 591–592. doi:

10.1002/stvr.

Utting, Mark, B. L. (2010) Practical model-based testing: a tools approach. Elsevier.

Utting, M. and Legeard, B. (2006) A Taxonomy of Model-Based Testing.

Vale, T. Santana, E., Almeida, D. (2017) “Software product lines traceability : A

systematic mapping study”, Information and Software Technology. Elsevier B.V.,

84, pp. 1–18. doi: 10.1016/j.infsof.2016.12.004.

Varshosaz, M. and Mousavi, M. R. (2019) “Comparative Expressiveness of Product

Line Calculus of Communicating Systems and 1-Selecting Modal Transition

Systems”, (Sofsem), pp. 490–503. doi: 10.1007/978-3-030-10801-4_38.

Varshosaz, M. and Schneider, G. (2017) Test Models and Algorithms for Model-Based

Testing of Software Product Lines.

Varshosaz, M., Schneider, G. and Mostowski, W. (2019) Modeling and Model-Based

Testing of Software Product Lines. Halmstad University Press.

Voelter, M. and Groher, I. (2013) “Product Line Implementation using Aspect-

Oriented and Model-Driven Software Development”, in 11th International

Software Product Line Conference Product, pp. 233–242. doi:

10.1109/SPLINE.2007.23.

Wang, S. Gotlieb, A., Ali, S. (2012) “Automated Selection of Test Cases using Feature

Model for Product Lines : An Industrial Case Study”, (October).

Wang, S. Gotlieb, A., Ali, S. (2013) “Using feature model to support model-based

testing of product lines: An industrial case study”, Proceedings of the International

Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, pp.

75–84. doi: 10.1109/QSIC.2013.51.

Wang, S. Gotlieb, A., Ali, S. (2014) “Multi-Objective Test Prioritization in Software

Product Line Testing : An Industrial Case Study”, Proceedings of the 18th

International Software Product Line Conference, 1, pp. 32–41.

300

Wang, S. (2014) “Systematic Product Line Testing : Methodologies , Automation , and

Industrial Application”, (November).

Wang, S. Gotlieb, A., Ali, S. (2016) “A systematic test case selection methodology for

product lines: results and insights from an industrial case study”, Empirical

Software Engineering. Empirical Software Engineering, 21(4), pp. 1586–1622. doi:

10.1007/s10664-014-9345-5.

Wang, S. and Ali, S. (2013) “Minimizing Test Suites in Software Product Lines Using

Weight-based Genetic Algorithms”, Proceedings of the 15th annual conference on

Genetic and evolutionary computation. ACM, 2013, pp. 1493–1500.

Wang, S., Ali, S. and Gotlieb, A. (2015) “Cost-effective test suite minimization in

product lines using search techniques”, Journal of Systems and Software. Elsevier

Ltd., 103, pp. 370–391. doi: 10.1016/j.jss.2014.08.024.

Wang, Y., Xing, Y., Gong, Y. (2014) “Optimized Branch and Bound for Path-wise

Test Data Generation”, International Journal of Computers Communications &

Control 9.4, 9(4), pp. 497–509.

Weißleder, S. (2010) Test Models and Coverage Criteria for Automatic Model-Based

Test Generation with UML State Machines DISSERTATION. Diss. Humboldt

University of Berlin.

Weißleder, S. and Lackner, H. (2013) “Top-Down and Bottom-Up Approach for

Model-Based Testing of Product Lines”, Electronic Proceedings in Theoretical

Computer Science, 111(Mbt), pp. 82–94. doi: 10.4204/eptcs.111.7.

Weißleder, S., Sokenou, D. and Schlingloff, B.-H. (2008) “Reusing State Machines

for Automatic Test Generation in Product Lines”, 1st Workshop on Model-based

Testing in Practice (MoTiP “08), 6, p. 10. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.5699&rep=rep1&t

ype=pdf#page=21.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A. (2012)

"Experimentation in software engineering". Springer Science & Business Media.

Xhevahire Ternava (2017) "Handling Variability at the Code Level : Modeling ,

Tracing and Checking Consistency". Universiite Cote d Azur.

Xing, Y. (2014) “An Intelligent Method Based on State Space Search for Automatic

Test Case Generation”, Journal of Software, 9(2), pp. 358–364. doi:

10.4304/jsw.9.2.358-364.

Xing, Y. Gong, Y., Wang, Y. (2015) “A Hybrid Intelligent Search Algorithm for

301

Automatic Test Data Generation”, 2015.

Yoo, S. and Harman, M. (2012) “Regression testing minimization , selection and

prioritization : a survey”, Software testing, verification and reliability, 22.2(March

2010), pp. 67–120. doi: 10.1002/stvr.

Zamli, K. Z., Alkazemi, B. Y. and Kendall, G. (2016) “A Tabu Search hyper-heuristic

strategy for t-way test suite generation”, Applied Soft Computing Journal. Elsevier

B.V., 44, pp. 57–74. doi: 10.1016/j.asoc.2016.03.021.

Zheng, Y., Cu, C., & Asuncion, H. U. (2017) “Mapping Features to Source Code

through Product Line Architecture: Traceability and Conformance”, in IEEE

International Conference on Software Architecture (ICSA), pp. 225–234.

Zisman, A. (2012) “Using Rules for Traceability Creation”, Software and Systems

Traceability, (2010), pp. 147–170. doi: 10.1007/978-1-4471-2239-5.

Zitzler, E., Laumanns, M. and Thiele, L. (2001) SPEA2 : Improving the Strength

Pareto Evolutionary Algorithm.

