7,409 research outputs found

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users

    Noise Mitigation Analysis of a Pi-Filter for an Automotive Control Module

    Get PDF
    This paper has been reproduced on " InCompliance" magazine, May issue http://www.incompliancemag.com/ then "Issue Archive

    Security Analysis of Interdependent Critical Infrastructures: Power, Cyber and Gas

    Get PDF
    abstract: Our daily life is becoming more and more reliant on services provided by the infrastructures power, gas , communication networks. Ensuring the security of these infrastructures is of utmost importance. This task becomes ever more challenging as the inter-dependence among these infrastructures grows and a security breach in one infrastructure can spill over to the others. The implication is that the security practices/ analysis recommended for these infrastructures should be done in coordination. This thesis, focusing on the power grid, explores strategies to secure the system that look into the coupling of the power grid to the cyber infrastructure, used to manage and control it, and to the gas grid, that supplies an increasing amount of reserves to overcome contingencies. The first part (Part I) of the thesis, including chapters 2 through 4, focuses on the coupling of the power and the cyber infrastructure that is used for its control and operations. The goal is to detect malicious attacks gaining information about the operation of the power grid to later attack the system. In chapter 2, we propose a hierarchical architecture that correlates the analysis of high resolution Micro-Phasor Measurement Unit (microPMU) data and traffic analysis on the Supervisory Control and Data Acquisition (SCADA) packets, to infer the security status of the grid and detect the presence of possible intruders. An essential part of this architecture is tied to the analysis on the microPMU data. In chapter 3 we establish a set of anomaly detection rules on microPMU data that flag "abnormal behavior". A placement strategy of microPMU sensors is also proposed to maximize the sensitivity in detecting anomalies. In chapter 4, we focus on developing rules that can localize the source of an events using microPMU to further check whether a cyber attack is causing the anomaly, by correlating SCADA traffic with the microPMU data analysis results. The thread that unies the data analysis in this chapter is the fact that decision are made without fully estimating the state of the system; on the contrary, decisions are made using a set of physical measurements that falls short by orders of magnitude to meet the needs for observability. More specifically, in the first part of this chapter (sections 4.1- 4.2), using microPMU data in the substation, methodologies for online identification of the source Thevenin parameters are presented. This methodology is used to identify reconnaissance activity on the normally-open switches in the substation, initiated by attackers to gauge its controllability over the cyber network. The applications of this methodology in monitoring the voltage stability of the grid is also discussed. In the second part of this chapter (sections 4.3-4.5), we investigate the localization of faults. Since the number of PMU sensors available to carry out the inference is insufficient to ensure observability, the problem can be viewed as that of under-sampling a "graph signal"; the analysis leads to a PMU placement strategy that can achieve the highest resolution in localizing the fault, for a given number of sensors. In both cases, the results of the analysis are leveraged in the detection of cyber-physical attacks, where microPMU data and relevant SCADA network traffic information are compared to determine if a network breach has affected the integrity of the system information and/or operations. In second part of this thesis (Part II), the security analysis considers the adequacy and reliability of schedules for the gas and power network. The motivation for scheduling jointly supply in gas and power networks is motivated by the increasing reliance of power grids on natural gas generators (and, indirectly, on gas pipelines) as providing critical reserves. Chapter 5 focuses on unveiling the challenges and providing solution to this problem.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Small Scale Harmonic Power System Stability

    Get PDF

    Monitoring and regulation of voltage dips in the distribution network

    Get PDF

    Monitoring and regulation of voltage dips in the distribution network

    Get PDF

    MATLAB

    Get PDF
    Conventionally, the simulation of power engineering applications can be a challenge for both undergraduate and postgraduate students. For the easy implementation of several kinds of power structure and control structures of power engineering applications, simulators such as MATLAB/(Simulink and coding) are necessary, especially for students, to develop and test various circuits and controllers in all branches of the field of power engineering. This book presents three different applications of MATLAB in the power system domain. The book includes chapters that show how to simulate and work with MATLAB software for MATLAB professional applications of power systems. Moreover, this book presents techniques to simulate power matters easily using the related toolbox existing in MATLAB/Simulink

    Constraint-Aware, Scalable, and Efficient Algorithms for Multi-Chip Power Module Layout Optimization

    Get PDF
    Moving towards an electrified world requires ultra high-density power converters. Electric vehicles, electrified aerospace, data centers, etc. are just a few fields among wide application areas of power electronic systems, where high-density power converters are essential. As a critical part of these power converters, power semiconductor modules and their layout optimization has been identified as a crucial step in achieving the maximum performance and density for wide bandgap technologies (i.e., GaN and SiC). New packaging technologies are also introduced to produce reliable and efficient multichip power module (MCPM) designs to push the current limits. The complexity of the emerging MCPM layouts is surpassing the capability of a manual, iterative design process to produce an optimum design with agile development requirements. An electronic design automation tool called PowerSynth has been introduced with ongoing research toward enhanced capabilities to speed up the optimized MCPM layout design process. This dissertation presents the PowerSynth progression timeline with the methodology updates and corresponding critical results compared to v1.1. The first released version (v1.1) of PowerSynth demonstrated the benefits of layout abstraction, and reduced-order modeling techniques to perform rapid optimization of the MCPM module compared to the traditional, manual, and iterative design approach. However, that version is limited by several key factors: layout representation technique, layout generation algorithms, iterative design-rule-checking (DRC), optimization algorithm candidates, etc. To address these limitations, and enhance PowerSynth’s capabilities, constraint-aware, scalable, and efficient algorithms have been developed and implemented. PowerSynth layout engine has evolved from v1.3 to v2.0 throughout the last five years to incorporate the algorithm updates and generate all 2D/2.5D/3D Manhattan layout solutions. These fundamental changes in the layout generation methodology have also called for updates in the performance modeling techniques and enabled exploring different optimization algorithms. The latest PowerSynth 2 architecture has been implemented to enable electro-thermo-mechanical and reliability optimization on 2D/2.5D/3D MCPM layouts, and set up a path toward cabinet-level optimization. PowerSynth v2.0 computer-aided design (CAD) flow has been hardware-validated through manufacturing and testing of an optimized novel 3D MCPM layout. The flow has shown significant speedup compared to the manual design flow with a comparable optimization result
    • …
    corecore