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ABSTRACT

Our daily life is becoming more and more reliant on services provided by the in-

frastructures power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures growsand a security breach in one

infrastructure can spill over to the others. The implication is that the security prac-

tices/analysis recommended for these infrastructures should be done in coordination.

This thesis, focusing on the power grid, explores strategies to secure the system that

look into the coupling of the power grid to the cyber infrastructure, used to manage

and control it, and to the gas grid, that supplies an increasing amount of reserves to

overcome contingencies.

The first part (Part I) of the thesis, including chapters 2 through 4, focuses on

the coupling of the power and the cyber infrastructure that is used for its control and

operations. The goal is to detect malicious attacks gaining information about the

operation of the power grid to later attack the system. In chapter 2, we propose a

hierarchical architecture that correlates the analysis of high resolution Micro-Phasor

Measurement Unit (µPMU) data and traffic analysis on the Supervisory Control

and Data Acquisition (SCADA) packets, to infer the security status of the grid and

detect the presence of possible intruders. An essential part of this architecture is

tied to the analysis on the µPMU data. In chapter 3 we establish a set of anomaly

detection rules on µPMU data that flag “abnormal behavior”. A placement strategy

of µPMU sensors is also proposed to maximize the sensitivity in detecting anomalies.

In chapter 4, we focus on developing rules that can localize the source of an events

using µPMU to further check whether a cyber attack is causing the anomaly, by

correlating SCADA traffic with the µPMU data analysis results. The thread that

unifies the data analysis in this chapter is the fact that decision are made without
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fully estimating the state of the system; on the contrary, decisions are made using

a set of physical measurements that falls short by orders of magnitude to meet the

needs for observability. More specifically, in the first part of this chapter (sections 4.1-

4.2), using µPMU data in the substation, methodologies for online identification of

the source Thevenin parameters are presented. This methodology is used to identify

reconnaissance activity on the normally-open switches in the substation, initiated

by attackers to gauge its controllability over the cyber network. The applications

of this methodology in monitoring the voltage stability of the grid is also discussed.

In the second part of this chapter (sections 4.3-4.5), we investigate the localization

of faults. Since the number of PMU sensors available to carry out the inference

is insufficient to ensure observability, the problem can be viewed as that of under-

sampling a “graph signal”; the analysis leads to a PMU placement strategy that can

achieve the highest resolution in localizing the fault, for a given number of sensors.

In both cases, the results of the analysis are leveraged in the detection of cyber-

physical attacks, where µPMU data and relevant SCADA network traffic information

are compared to determine if a network breach has affected the integrity of the system

information and/or operations.

In second part of this thesis (Part II), the security analysis considers the ade-

quacy and reliability of schedules for the gas and power network. The motivation for

scheduling jointly supply in gas and power networks is motivated by the increasing

reliance of power grids on natural gas generators (and, indirectly, on gas pipelines)

as providing critical reserves. Chapter 5 focuses on unveiling the challenges and

providing solution to this problem.
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CHAPTER 1

INTRODUCTION

Designing secure practices and schedules for the operation of the critical infrastruc-

tures cannot be achieved if one looks at these infrastructures as independent entities.

In fact, as the inter-dependency between these infrastructures increases, any practice

and schedule should be in coordination with the coupled entities. We focus on the

power system as the main critical infrastructure of interest and study the security

issues that might arise due the coupling of this grid with the cyber network and the

gas grid.

Power grid operation has heavily become reliant on the communication network

for information exchange and control of the assets. Adding this cyber layer on the top

of the physical power grid has introduced vulnerabilities in the grid since the common

industrial protocols that are used are not secure in design. Therefore, breaking into

this network by hackers means that the underlying physical grid is at a high risk to

be compromised or to be disrupted from doing its normal operation. For example,

the results of a successful cyber attack on the Ukraine power grid that occurred in

2015 were:

• 30 substations were switched off,

• about 230,000 people did not have electricity for a period from 1 to 6 hours.

Part I of this thesis that includes chapters 2 through 4 investigates the security

of the power distribution grid due to the coupling with the cyber network. More

specifically, an architecture is proposed in chapter 2 that receives physical data from

Micro Phasor Measurement Units (µPMUs) and cyber packets sniffed by the packet
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sniffers from the Supervisory Control and Data Acquisition (SCADA) to analyze and

cross-correlate the data based on a set of defined rules and decide whether an intrusion

has happened. Since this architecture heavily relies on the analysis of the data from

µPMUs for intrusion detection, a set of anomaly detection rules for distribution grid

are proposed in 3. Having an event detected is necessary but it is not sufficient most

of the times. In chapter 4, we focus on methods to localize the source of an event. The

results of the µPMU-based event source identification can then be compared to the

corresponding mirrored SCADA to check whether the two sources of information are

in agreement. In particular, we first discuss a “reconnaissance activity” identification

method for normally-open switches in the substation (sections 4.1-4.2). In the next

part of this chapter (sections 4.3-4.5), we investigate the localization of faults using

µPMU data, in an operating regime where the number of µPMU sensors available to

carry out the inference is insufficient to have observability.

The second part of this thesis investigates the coupling between the power and

gas grid and analyzes the security challenges that might arise due to this coupling.

The share of the gas-fired generators to produce electricity has been growing over the

past few years. Figure. 1.0.1 shows the share of each of the resources in producing

electricity in the US. It can be observed that natural-gas fired generators produce

a significant portion of electricity in the US. This observation has been quantified

in Figure. 1.0.2 and proves the point. It implies that the power grid would heavily

rely on the gas network to be able to produce enough electricity to serve the cus-

tomers. Therefore, a secure operation of the power network in terms of adequacy of

generation and reliability of the service cannot be guaranteed unless the schedule is

in coordination with the constraints of the gas network. Part II of this thesis that

includes chapter 5 is dedicated to investigate the impact of uncoordinated scheduling

of power and gas grid on security of the power grid and to propose a methodology
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Figure 1.0.1: How the US Generates its Electricity?

Figure 1.0.2: Share of U.S. Electricity Generation. source: U.S. Energy Information

Agency.

for security-constrained scheduling of power and gas grid.

The breakdown of introduction of each of these two parts are given in the following:
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1.1 Part I-Cyber-Physical Security of Power Distribution Grid

According to the U.S. Department of Homeland Security (DHS) reports, the so-

phistication and frequency of the attacks on the power grid are increasing [tec(2015)].

For example, a recent report on the Ukraine attack [cbc news Technology and Sci-

ence(2016)] showed how a failure in the communication network security resulted in

significant power outages. The Stuxnet malware or the sewage spill incident at the

Maroochy Water Station, due to the wireless attack, are other examples showcasing

how a misinformed control system can lead to catastrophic consequences.

Cyber security for energy delivery systems has, until now, focused primarily on the

transmission grid and on securely transferring bits of information about the condition

of power-grid elements (e.g., “Is this switch open or closed?”, “Which tap is selected

on this transformer?”) and preventing unauthorized access to sensor and control

packets. Once that access has been gained, there is little remediation action for

the power grid, other than a communications blackout and manual fieldwork. The

industry is seeking new approaches to this problem, also focusing on understanding

security at the distribution level, in anticipation to a growth in automation.

While transmission grids states have been tightly monitored and their behavior

at the physical level is reasonably well understood, the operators have been largely

blind towards the real time condition of the distribution grid. Hence, in tandem

with the effort of gaining situational awareness on the security of the system there

is a growing need and interest in the deployment of sensors, like the µPMUs that

can capture the state at the distribution level [Eto et al.(2015)]. These devices,

recently developed by PSL [Power Standards Lab(2016)], address both the technical

and economic barriers limiting the deployment of conventional PMUs, which are

aimed at the transmission grid, for the distribution level [von Meier et al.(2014)].
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Fig. 1.1.1a shows a sample µPMU device installed in the partner utility grid. These

devices sample at a rate of 120 samples/sec the three phase voltage and current

phasors. In comparison to SCADA that samples power flow and power injections

every 3-5 minutes, µPMU provides significantly more information, and often nuances

which are missed in SCADA data, as illustrated in the example in Fig. 1.1.1b. In this

example, the magnitude of the current measured by the SCADA meter is missing an

overcurrent event that µPMU could capture. This information may prove critical in

identifying cyber-attacks.

However, visualizing and interpreting raw sensor streams can be overwhelming for

DSOs, considering the large quantity of data that could flow in from different parts of

the grid [Kezunovic et al.(2013)]. Therefore, it is essential to mine the data collected

with analytic tools that can derive informative measurements and form automated

reports.

In chapter 2 of this dissertation, we propose an architecture for analysis of the

µPMU data and sniffed SCADA packets in a hierarchical manner to alarm the opera-

tor about a possible cyber attack on the grid [Jamei et al.(2016)]. Due to the critical

role of µPMUs in this framework, we establish a set of rules in chapter 3 that are

implemented in this architecture and look at the µPMU data at different levels of

aggregation to flag any anomalies [Jamei et al.(2017b), Jamei et al.(2017c)]. These

anamolous segments of data are filtered out for further co-analysis with the cyber

packets to distinguish between a natural anomaly and a malicious one.

In chapter 4, a set of rules are developed to localize an event and be able to

verify whether the SCADA-reported data is in agreement with the µPMU-based data

analysis. In particular, in sections 4.1-4.2 we fist propose a methodology for online

estimation of the Thevenin source parameters using µPMU data in balanced and

unbalanced grid [Jamei et al.(2017a)]. An application that relates this part of the
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(a)

(b)

Figure 1.1.1: (a) µPMU Instrument from Power Sensors Ltd, (b) Measurement Com-

parison of µPMU and SCADA

chapter to the cyber-physical security of distribution grid is when these parameters

are used to infer the status of the normally-open switch at the substation. The

point here is that an attacker may launch “reconnaissance activities” in the grid to

gauge his controllability over the assets. A point of interest for this type of attack
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would be the manipulation of the normally-open switch at a substation between two

parallel transformers since it does not interrupt/change the delivery of the power to

downstream feeder. Using µPMU data to estimate the Thevenin source parameters,

we can infer about the status of these switches and compare it to what SCADA data

represent to understand a possible breach in the system. However, the contribution

of this work goes beyond that and includes the application of these parameters in

monitoring the voltage stability index.

In the next part of this chapter (sections 4.3-4.5), we investigate the localiza-

tion of faults using µPMU data, in an operating regime where the number of sen-

sors available to carry out the inference is insufficient to have observability [Jamei

et al.(2018a),Jamei et al.(2018c)]. The problem can be viewed as that of sampling a

graph signal and the analysis leads to a µPMU placement strategy that can achieve

the highest resolution in localizing the fault, for a given number of sensors. In addi-

tion to verifying our theory, in our numerical analysis our strategy is leveraged in the

detection of cyber-physical attacks, where µPMU data and relevant SCADA network

traffic information are compared to determine if a network breach has affected the

integrity of the system information and/or operations.

1.1.1 Prior Work and Contributions

Intrusion Detection Architecture: The first steps in adding security in oper-

ational environments are typically to deploy firewalls and device-level authentication.

Encryption is often also added to enhance confidentiality and integrity of the message

content. Another common security mechanism on computer networks is intrusion de-

tection, in which network traffic is monitored and analyzed to detect activities that

either fit into a “known bad” category or deviate in a statistically significant way

from “normal.” The Tofino Security Appliance, the Digital Bond Quickdraw SCADA
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intrusion detection system, the Radiflow Secure Gateway, the Bro Security Frame-

work [Berthier et al.(2010)] are all examples of network intrusion detection systems

(IDSs) that can be applied to control systems.

Numerous examples have shown that all of these methods leave significant gaps in

security and safety [Slay and Miller(2008)]. It has been recognized that one of the rea-

sons for this is that most of these security methods are divorced from the knowledge

of the physics of the system, its safe operations and limits, and its current physical

operating point. This gap was recognized early on by e.g. [Cárdenas et al.(2011)].

Some of our own previous work for monitoring SCADA traffic expanded the notion

of intrusion detection by leveraging the laws of physics governing the grid and impos-

ing them as security constraints [McParland et al.(2014), Koutsandria et al.(2015)].

Nonetheless, these methods also remain blind to more sophisticated attacks. One

reason is that the data coming from SCADA systems are not updated with high fre-

quency, so events causing many changes in a short period of time can be missed. In

addition, attackers can inject false data at the device level, thus evading detection by

the IDS.

An underpinning of the activity described in our work is to design a security

framework in anticipation of the impending move towards Advanced Distribution

Management System (ADMS). ADMS limits the need for direct human intervention,

and when working properly, its functionalities enhance the reliability and safety of

the system. While ADMSs are developed with careful consideration for safe physical

operation, a number of their features make them uniquely vulnerable to cyber-attacks

[Tesfay et al.(2014)]. In ADMS, a SCADA network is responsible to collect the

information from field devices (e.g. switches, meters ...), and send back the according

control commands. The presence of such network opens up a large attack surface.

What makes the case even more challenging is that ADMS is an integrated network,
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so failures in one section could cascade into a large and widespread series of events.

In particular, communication that lacks end-to-end security can permit difficult-to-

detect interference between sub-systems that could cause them to function in ways

that threaten the safety and reliability of the power grid. Additionally, unlike modern

computer systems that are upgraded every three to six years, many of the CPSs, such

as electric power system equipped with ADMS are amalgam of decades-old and very

new components, operating side by side often with inconsistent operating controls,

algorithms and guidelines.

The work in [Mitchell and Chen(2014)] gives a detailed survey on the IDSs that

are designed to enhance the security of CPSs. Figure 1.1.2 obtained from this work

categorizes different approaches of designing an IDS for a CPSs. Our approach here

Figure 1.1.2: CPS Intrusion Detection Tree [Mitchell and Chen(2014)]

is a mix of auditing materials at the network level for the SCADA traffic anomaly

detection and behavior-specification based techniques, where the legitimate behavior

is defined and intrusion is detected when the system departs from this model.

To ensure that ADMS operates and fails in well-understood and controlled ways,

one needs to tightly monitor the parts most exposed to an attack. The level of

9



monitoring in CPSs is often a compromise between two competing design mandates:

least function (design systems as simple as possible to perform their grid management

functions); and robust monitoring (incorporate high-fidelity system status indicators

to enable detection of and response to cyber-security events). Our framework leans

towards the second predicament through the integration of µPMUs information in

the security architecture, which provides a clear image of the physical trail left by

cyber-physical-attacks.

µPMU Data Anomaly Detection: In the context of gaining awareness us-

ing synchrophaor data, recent work has focused on the PMU data utilization at

the transmission level to improve the Wide-Area Monitoring, Protection, and Con-

trol [Phadke and de Moraes(2008),Terzija et al.(2011)]. Distribution grids, however,

are still lagging in that respect, since tools for the transmission grid may not be di-

rectly applicable to the distribution grid due to a different operation environment,

such as load imbalances, untransposed lines, and the existence of single-phase and

two-phase laterals. Transmission operations and system wide analysis are concerned

with large imbalances in load and generation, and as a result frequency, whereas

distribution operations are concerned with localized, but frequent events such as

voltage imbalance, overloading, and outage management. Most of the prior research

on sensor data analytics (including SCADA and PMU measurements) is concerned

with detecting events on the grid transmission level. For example, Pan et al., [Pan

et al.(2015)] use data mining techniques on PMU measurements and audit logs for

event classification. A linear basis expansion for the PMU data is described by Chen

et al., [Chen et al.(2013), Xie et al.(2014)] for event detection application. A simi-

lar approach, based on Principal Component Analysis (PCA), is used in [Valenzuela

et al.(2013),Ge et al.(2015)] for event detection and data archival. Allen et al., [Allen

et al.(2014)] describe the use of voltage phasor angle differences between different
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PMU readings to detect events. Biswal et al., [Biswal et al.(2016)] use the strongest

signatures of event in PMU data for situational awareness enhancement. A study by

Brahma et al., [Brahma et al.(2016)] describes the real-time dynamic event identifica-

tion in power system using PMU data based on a data-driven and also physics-based

method.

Our approach for event detection using µPMU data is a combination of the data-

driven methods, as well as criteria resulting from analyzing the underlying physical

model of the system. Unlike model agnostic machine learning methods that look for

statistical anomalies in a feature space that is often heuristic, the anomalies that

algorithms in this chapter identify are defined in the context of power quality and

protection, in addition to what is imposed by the grid governing physical equations

(i.e. Kirchhoff Voltage and Current Laws). This, in turn, gives a DSO much greater

insight and help in the forensic analysis. Because of the important role played by

µPMU data in the framework, a µPMU placement optimization with limited number

of the sensors is described, to achieve the maximum sensitivity in detecting a change1.

Event Localization: The contributions and the review of the related work of

this chapter is divided into two sections, where the first section discusses Thevenin

estimation and substation normally-open switch monitoring and the second section

discusses the related works in the fault localization domain and cyber-security of the

fault detectors.

Thevenin Estimation: Many studies focus on estimating Thevenin parameters

from field sensors, such as PMUs. Most of these studies are at the transmission

level, where the grid is typically balanced. Vu et al. [Vu et al.(1999)] used the lin-

ear, least-square method to solve for the Thevenin parameters and employed the

1Note that PMU placement studies for state estimation are not applicable here since the state is

not directly observable by solely depending on the µPMUs due to the scarcity of sensors.
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Thevenin impedance to apparent load impedance ratio (well-known L-index) to mon-

itor the voltage stability margin. Using two consecutive phasor measurements, Smon

et al. [Smon et al.(2006)] employ Tellegen’s theorem and the notion of adjoint networks

to estimate the Thevenin circuit and apply this analytic to monitor grid stability. Tsai

et al. [Tsai and Wong(2008)] use recursive least-square to estimate Thevenin param-

eters and track the voltage stability margin. Corsi et al. [Corsi and Taranto(2008)]

propose adaptive identification of Thevenin voltage and impedance equivalents with

real-time voltage instability monitoring purposes. Wang et al. [Wang et al.(2013)]

estimate the equivalent Thevenin circuit of generators and incorporate the estimated

model to extend the traditional L-index. Yuan et al. [Yuan and Li(2014)] conduct

a comparative study between different PMU-based methods of Thevenin equivalents

identification in terms of how fast and accurate each method is. Others [Abdelkader

and Morrow(2012), Alinejad and Karegar(2016)] identify the adverse effect of quasi

steady-state condition in the grid on Thevenin parameter estimation, and propose

to estimate the off-nominal frequency and compensate for this phenomena to obtain

accurate solutions. The authors in [Parniani et al.(2006), Arefifar and Xu(2009)] es-

timate the Thevenin parameters in a non-linear least-square setting considering the

variations of the Thevenin voltage source angle. Using measurements from a load

busbar in an unbalanced distribution grid, Hart [Hart(1986)] proposes a method that

requires only RMS values of the voltage to estimate the Thevenin circuit in a three-

phase, 3- or 4-wire system.

In this chapter, using the synchrophasor voltage and current measurements at the

substation, we propose methods for estimating the Thevenin source impedance and

voltage corresponding to substations delivering power to an unbalanced and balanced

feeder. The advent of µPMU sensors, which measure the three-phase voltage and

current phasor at different points over the distribution grid [von Meier et al.(2014)],
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enables analytics that are similar to the ones at the transmission level. However, the

extension to the distribution grid requires care, as distribution feeders are typically

unbalanced. In the unbalanced case, we take advantage of having non-zero negative

and zero sequence to estimate not only the voltage and positive sequence impedance

but also the zero sequence source impedance. It should be noted that the use of

synchrophasor data for Thevenin estimation is a side benefit of PMUs but it does not

mean that obtaining required input data for Thevenin estimation is not possible with

current facilities other than PMUs.

In the case of balanced grid, we propose a new method that is effective even when

the system of equations are close to be rank-deficient. In our proposed approach,

only the magnitude of the Thevenin voltage and Thevenin impedance are assumed

to be constant over a short window, and no assumption is made about the angle

of the Thevenin voltage source. This in fact improves the results as compared to

the methods that require the Thevenin voltage angle to be constant over a window

of samples; an assumption that is not valid in practice. In this sense, our work is

similar to the proposed methods in [Parniani et al.(2006), Arefifar and Xu(2009)].

We show how our method is successful in tracking the voltage stability index on

a load point at the transmission level. In addition, given growing concerns about

the security vulnerabilities of network-connected control systems in the distribution

grid, we show, through an example, how our Thevenin estimation can be useful to

detect specific types of cyber-attacks in a distribution substation. Specifically, in

this chapter, we discuss the detection of certain types of reconnaissance activity over

SCADA network by attackers—that is, subtle probes and manipulation of network-

connected substation components by an attacker to test degree of access and possible

broader physical impact on the distribution grid.

Fault Localization: PMU-based fault detection and localization is an active area
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of research. For example, Ardekanian et al., [Ardakanian et al.(2017)] exploit PMU

data to detect and localize a change in the admittance matrix of a power grid. Zhou et

al., [Zhou et al.(2017)] use PMU measurements for event detection in the distribution

grid with partial information. Our previous work [Jamei et al.(2017b)] proposes a hier-

archical architecture as the host for event detection rules in distribution system using

PMU data when scarce measurements are available. Farajollahi et al., [Farajollahi

et al.(2018)] use distribution level PMUs for general event detection and localization

by generating an equivalent circuit so that the event can be represented by the voltage

and current phasors.

Event detection by itself is necessary but insufficient most of the times and it is

important for the grid operators to have knowledge about the source of the event,

to be able to locate a faulty section for isolation and service restoration. Tackling

the localization problem becomes challenging when one considers in a regime where

the sensors are insufficient to have observability, which is usually the case in the

distribution feeders. This regime is important in general in an adversarial setting

where data injection attacks can leave operators with few trustworthy sensors [Kim

and Poor(2011)]. In this case, gaining information from a subset of sensors on what

is plausible can be very useful in identifying data stealth attack since all subsets of

sensors must agree on a common version of the facts.

Zhu et al., [Zhu et al.(1997)] propose an automated fault localization and diagnosis

for distribution grids. Using measurements from the substation, the method first find

a set of plausible locations for the fault. During the diagnosis, the set of possiblities are

ranked for the operator. The effect of the DC componenet in the phsor data and how it

can affect momentary fault localization process is invetsigate in the work by Min and

Santoso [Min and Santoso(2017)]. Kahyap et al., [Kashyap et al.(2015)] implement a

fault location and isolation algorithm in a distributed fashion, where the focus is put
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on the communication network. Lee [Lee(2014)] uses PMU voltage data to search for

a fault in a radial network in a timely manner. A graph marking approach is taken

by Dzafic et al., [Dzafic et al.(2018)] to spot the location of a fault. There are also

a number of non-parametric methods for fault localization that use spatio-temporal

patterns of the measurements. For example, Jian et al., [Jiang et al.(2014)] extract

the time-frequency features of frequency and voltage from a dictionary by matching

pursuit [Mallat and Zhang(1993)], which is then followed by a clustering method for

fault detection. Borghetti et al., [Borghetti et al.(2008)] perform wavelet analysis

on the voltage waveform generated during a fault-induced transients to obtain the

location of a fault in the distribution network. While the exploitation of temporal

patterns helps in the localization, they do not provide an understanding on how the

performance is affected by the grid parameters and the sensor deployment. In this

work we ignore temporal features (which can be always included) and take inspiration

from Brahma’s work [Brahma(2011)] in using pre and post fault measurements along

with the admittance/impedance matrix for fault localization.

Using a statistical approach, we first improve upon Brahma’s method and study

the fault localization problem with measurements that are too scarce for observability

(we refer to it as the under-sampled grid regime). Our main contribution is to show

that in an under-sampled grid faults can be resolved reliably at level of clusters that

typically form connected sub-graphs. These clusters depend both on the properties of

grid admittance matrix as well as the placement of the sensors. As a figure of merit,

the cluster level fault localization resolution can measured in terms of the maximum

size of all clusters in which the graph is divided. Leveraging the insights from our

analysis we propose a placement strategy that achieves the highest localization res-

olution over the grid, by clustering the graph in a number of connected components

equal to the number of measurements, with clusters sizes as even as possible. In this
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section of the chapter we also compare our method with [Brahma(2011)] to better

highlight the benefits of our statistical approach, and showcase its application in the

forensic analysis of cyber-physical attacks to a distribution Fault Location, Isolation,

and Service Restoration (FLISR) system [Uluski(2012)]. To the best of our knowl-

edge, the connection between the graph clustering and fault localization resolution

is new. However, we would like to acknowledge the graph clustering works in the

transmission grid (see e.g., [Wang et al.(2010)], [Sanchez-Garcia et al.(2014)]), in a

different context (not for fault localization). The results of this research is presented

in:

1.2 Part II-Coordinated Security-Constrained Scheduling of Power and Gas Grid:

There has been a significant growth in the share of gas-fired generators (especially

combined-cycle plants) for electricity production. The result of this trend is a strong

coupling between two of the largest infrastructures in a way that operation of one

can directly affect the other [Liu et al.(2009), Urbina and Li(2007)]. This becomes

even more important in the future, considering that expected gas-fired generation is

expected to increase by 230% by 2030 [Gruenspecht(2010)].

This issue is not just confined to the normal operation of the two grids. In fact,

coupling becomes more problematic when a contingency occurs in one, and affects

the other. Therefore, any security-constrained analysis should consider the inter-

dependency between the coupled systems. Chapter 5 has been dedicated to address

these issues and to present a coordinated methodology for secure scheduling of the

power and the gas grid [Jamei et al.(2018b)].
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1.2.1 Prior Work and Contributions

Interest in the coupling between the natural-gas and electric grids is relatively

recent. The aspects of this interdependence that have been explored in the literature

are briefly reviewed next. An early contribution is [Liu et al.(2009)] in which the

authors have formulated an electric grid Unit Commitment (UC) problem including

the natural gas grid constraints. The optimization is solved from an electric utility

perspective, but neither the co-optimization aiming to reach an Optimal Gas Flow

(OGF) and Optimal Power Flow (OPF) was considered nor the coordinated N-1

contingency analysis.

The focus of [Damavandi et al.(2011)] is incorporating a quasi dynamic model for

the gas grid in the UC problem. In [Qadrdan et al.(2014)], deterministic and stochas-

tic operating strategies are proposed to deal with an integrated gas and electricity

network under wind power forecast uncertainties. The authors in [Correa-Posada and

Sanchez-Martin(2014)] present a security-constrained optimal power and natural gas

flow. However, the spinning and non-spinning reserves, that are critical in studies

concerning gas-fired generators, are not considered. Also, the contingency analysis

is limited to the N-1 gas pipeline contingency. The authors in the paper simulate

only the contingencies for the pipelines in a loop, so that the grid stays connected

even after losing a pipeline. The issue is that the gas grid is largely radial, with

very few loops, and clearly the standard N-1 analysis is not well matched to radial

pipelines systems. The cascading effects of the gas-fired generators on the pressure

fluctuations in the gas network is investigated in [Chertkov et al.(2015b), Chertkov

et al.(2015a)]. Different coordination scenarios of gas and electric grid are proposed

in [Zlotnik et al.(2017)], using new methods to control gas flow dynamics to schedule

the day-ahead generators dispatch and compressors operation.
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The contributions in this work are as follows: First, a unified formulation for

Gas and Electric Grid Coordinated Unit Commitment (GECUC) is presented that

includes the spinning and non-spinning reserves, and deals with the non-linearity

of the gas grid constraints to transform the problem into a Mixed-Integer Linear

Program (MILP). Also, a coordinated N-1 generator contingency analysis is presented

that finds the contingency dispatch for the gas wells, storage, and generators when a

generator is lost.
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Part I

Cyber-Physical Security of Power

Distribution Grid
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CHAPTER 2

MICRO SYNCHROPHASOR-BASED INTRUSION DETECTION IN

AUTOMATED DISTRIBUTION SYSTEMS: TOWARDS CRITICAL

INFRASTRUCTURE SECURITY

Electric power distribution systems are undergoing many technological changes

and concerns are surfacing on possible additional vulnerabilities. Resilient cyber-

physical systems (CPSs) in general must leverage state measures and operational

models that interlink the physical and the cyber assets that compose them, to assess

the global state. In this chapter we describe a viable process of abstraction to obtain

this holistic system state exploration tool, through the analysis of data from Micro

Phasor Measurement Units (µPMUs) combined with the monitoring of Supervisory

Control and Data Acquisition (SCADA) traffic, and using semantics to interpret

these data that expresses the specific system physical and operational constraints in

both cyber and physical realms. We then formulate anomaly detection rules for this

architecture that looks into the µPMU data at different levels of aggregation to filter

out anamolous chunks of data for further analysis in order to distinguish between a

normal or a malicious anomaly.

2.1 Micro Synchrophasor Data: A Game Changer?

We believe deploying µPMUs can significantly increase the detection and classi-

fication capabilities of distribution operators. Many of the cyber-attacks aiming to

cause changes in the physical layer leave footprints or anomalies in the µPMU mea-

surements, such as voltage sags and swells, change of power flow direction, and electric

current events. Our basic idea is utilizing the µPMU measurements to correlate the

observed state of the system and the set of detected events through µPMU to form
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building blocks for the estimation of the grid security status. The knowledge about

the system topology and operation provides the rules to check the compliance of the

events seen in the µPMU measurements and in the network traffic, with the normal

behavior of the system, with some level of certainty.

While ADMS and in particular SCADA have potential existing security flaws

due to the use of traditional and outdated security measured, µPMUs, as a new

measurement device, are designed having modernized and advanced security practices

in mind. As the first step, they are placed on a separate network from SCADA, and are

designed to be read-only devices, and to communicate over secure protocols. However,

even if some of the µPMUs are compromised, since they only provide measurements

(in spite of SCADA, which also controls the devices and switches), many of the bad

data detection techniques (e.g. [Kim and Poor(2011)]) can be used to remove the false

data unless the number of compromised devices is large enough that data injection

attack is lost in the noise. In this regard, the optimally-placed µPMUs can not only

detect the bad data injection in SCADA meters but also can be used to identify the

bad data injection attack on a subset of µPMUs. To illustrate the use of µPMU data

in event detection and classification, we offer next an example based on the real data.

Specifically, on April-16-2015 a power quality event was captured by the µPMUs

installed at the partner utility grid shown in Fig. 2.1.1. The µPMUs data showed

that a voltage sag occurred, impacting all the µPMUs placed on two separate feeders.

The voltage and current phasor profiles during the event can be seen in Fig. 2.1.2a,

2.1.2b, respectively. Different hypotheses can be formulated about what caused the

voltage sag to happen, for example a local or remote transmission or distribution

level fault, with a possible protection operation ensuing. Given the brevity of the

event, it is extremely unlikely that SCADA data would have captured the sags. But

the enormous potential benefit of µPMU data in assessing security threats is best
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Figure 2.1.1: Partner Utility Distribution Grid One-Line Diagram

illustrated by the ability they offered to identify the likely source of the problem.

From Fig. 2.1.2a, 2.1.2b it is apparent that the severity of voltage sag is similar

for the µPMUs on both circuits at the same voltage level. In addition, all the µPMUs

captured the voltage sag simultaneously.

A distribution level fault at one feeder causing the simultaneous transients that

is transferred through sub-transmission to the other feeder is plausible only if the
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Figure 2.1.2: (a) Captured Voltage Sag by µPMUs, (b) Captured Current Phasor

during Voltage Sag by µPMUs
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transmission grid is not stiff with respect to transients happening at the distribution

feeders, which is usually not the case. Even if this is the case, the captured severity

would be more significant on the feeder that the fault happened compared to the

other that is not confirmed by the data. Another hypothesis is spreading of voltage

sag through the closed Normally Open (N.O.) breakers to the other feeder. This is

not corroborated by the data because the N.O. breaker between left and right side

are secondary action, which means another breaker should first clear the fault and

then this switch is closed to feed the healthy part of the grid. In that case, the sag is

already over when the switch gets closed. Even if the attacker tries to close the switch

before the fault clearance, the sag is transferred with a delay and different severity and

shape to the other side. The transmission level event is the most plausible scenario,

as it was visualized concurrently at all the two separate feeders, and is consistent with

the µPMU data.

2.2 All-embracing IDS Framework: How to Utilize All the Resources?

The analysis of this event revealed the ability of the µPMUs to capture the foot-

prints of a grid anomaly that led to physical impact. Based on this analysis we believe

that this new rich source of data, combined with knowledge of the grid configuration

and operations, allows to reason about different hypotheses and establish the likely

cause of an event in a way that would not have been possible using SCADA data

or network traffic alone. In addition, it is worth mentioning that, depending on the

type of events, some signatures would be more indicative than others of the situa-

tion. In the example we offered what the µPMU data cannot do is to clarify further

what happened at transmission level, where we have neither observations nor detailed

knowledge of the configuration and operations.

The abstraction of our µPMU-Based Intrusion Detection System (µPMU-IDS)
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architecture is shown in Fig. 2.2.1. In this figure, local and central IDS form the

two levels of IDS data processing, respectively. The correlation of the different data

sources including the real-time µPMU measurements at multiple sites, and monitored

SCADA traffic are checked at the central level constantly to draw conclusions about

the security state of the grid, while the algorithms at the local level focus on the data

coming from each individual sensor irrespective to the others to find anomalies. In

Section 2.2, we provide an example that illustrates how our data analytics differ from
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the standard network intrusion detection system.

The µPMU-IDS is designed to be scalable by partitioning the security rules hi-

erarchically. The rules are established based on the physical constraints implied by

the Physics of the grid in addition to the common cyber inspection in the computer

networks security. The filters used in µPMU-IDS generalize and automate the pro-

cess of hypothesis testing that we illustrated in the example we offered before, also

utilize the SCADA packets, and are based on encoding the semantics of the rules in

a decision tree that can be inspected automatically by the µPMU-IDS components.

The µPMU-IDS is an incarnation of the Bro Network Security Monitor framework

[Paxson(1999)]. Functionally, the Bro Network Security Monitor is the “glue” that

binds passive SCADA system state observations, results leveraged from µPMU data

archiving and analysis tools, and results obtained from circuit analysis activities.

Output from the Bro framework will be in the form of predefined software events

that can be customized to interact with commercial substation control systems.

Interestingly, the µPMU-IDS rules pertaining the physical state emulate the be-

havior of an expert in the field looking at the logged data. Even without cyber security

concerns this effort is important to address the big data issue, arising from the large

amount of sensors and controllers placed on the grid, which would overwhelm the

operators.

What Happens at Local and Central IDS Nodes?

Prior to forwarding the information for its aggregation, that data from each µPMU

(marked together with green star in Fig. 2.2.1) and SCADA packet sniffer are ana-

lyzed by an IDS node that executes local rules. Such rules inspect for the signatures

of anomalies in the phasor data streams of the corresponding µPMU and cyber pack-

ets. The rules on the µPMU data inspect the anomalies in the voltage magnitude,
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estimated grid frequency, current magnitude, active and reactive power. In addition,

the rules utilize the deviation from the steady-state Kirchhoff and Ohm’s law as an

indicator of transient behavior and possible changes in the physical parameters of the

grid. The formal description of these rules are presented in the following sections.

Their specific characteristic is that the analysis is agnostic of the cyber-physical in-

frastructure configuration, which means that these particular data analytics can be

applied broadly.

As an example, in the left side of Fig. 2.2.2 we show how specific rules on the

voltage magnitude can convert the data into inferences on various possible hypotheses.

On the left side of Fig. 2.2.2, the data are first classified depending on the deviation

from the nominal voltage and event time duration values. The way that some of the

analysis on the µPMU data lead to the selection of different hypotheses on some of

the voltage events in the local IDS is shown in the right side of Fig. 2.2.2.
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Figure 2.2.2: Decision Region and Hypotheses of the Voltage Magnitude Events in the

First Stage of the Local IDS.

The chunks of data containing the event, along with a description of the analysis

performed at the local level, are then collected via µPMU Data Collectors (UDCs)

and Packet Sniffer Data Collectors (PSDCs) and reported to the central nodes. The

analysis performed by these nodes that are higher in the hierarchy fuses the µPMUs
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measurements and the monitored SCADA traffic to infer the status of the system,

taking into account the cyber-physical infrastructure configuration. For example, if

the interruption is detected, the bidirectional fault detectors that should see the fault

must be checked to unveil a possible spoofing attack. The duration of the interruption

can also be compared with the protective load breaker time of operation to determine

if the breaker has tripped on time.

An example of an attack scenario is now outlined to demonstrate the hypotheses

and process formulated in this work, and tested using the µPMUs and SCADA pack-

ets. This example also clarifies how the SCADA commands, along with the µPMU

data are leveraged in the anomaly detection. In the test case shown in Fig. 2.2.1, a

short circuit fault happens on the line connecting bus 5 to 7. In its normal operation,

a protection algorithm in substation 1 will detect the fault and use the relay on bus-1

breaker to deenergize the left feeder, at which point the load breakers placed on line

5-7 will receive a command to isolate the fault and finally energy will be restored to

the healthy part of the feeder, by closing the circuit breaker at bus 1. Assume that

a knowledgeable attacker has gained access to the network and the IP address of the

substation controller. For instance, in a first scenario, the attacker could stage a Man-

in-the-Middle attack jamming the command of the controller to the relay intended to

open the circuit breaker. A second possible scenario is that the attacker changes the

firmware of the relay at bus 1 (as in the Ukraine attack case [cbc news Technology

and Science(2016)]) and prevent it from tripping. The local IDSs, monitoring for

anomalies in the data from the µPMUs on the left feeder, will detect a transient and

alert the central IDS by sending the data through the UDC1 (see Fig. 2.2.1). The

packets sniffed by network taps placed on the links that connect the substation to

the relays operating the switches at bus 1 and line 5-7, are also sent to central IDS

from the sniffers through the PSDC1. Depending on the location of the sniffers, the
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analysis of the packets could reveal the man-in-the-Middle attack, corroborating the

anomaly detected from the µPMU. If not, the µPMU will still indicate that the fault

is not cleared, in spite of the opening command having been issued, revealing an at-

tack either to the relay in bus 1 firmware, like in the aforementioned second scenario,

or the other possible attack mentioned as the first scenario that is launched after the

sniffer. Notice that the latter would not be detectable from the packet analysis only.
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CHAPTER 3

ANOMALY DETECTION USING OPTIMALLY-PLACED µPMU SENSORS IN

DISTRIBUTION GRIDS

In this chapter, focusing on µPMU data, we propose a set of analytics and sensor

fusion primitives for the detection of abnormal behavior in the control perimeter. Due

to the key role of the µPMU devices in our architecture, an optimal µPMU placement

with limited number of sensors is also described that finds the best location of the

devices with respect to our rules. The effectiveness of the proposed methods are

tested through the synthetic and real µPMU data. The following notations are used

throughout the rest of the chapter:

j Imaginary unit.

IN N ×N identity matrix.

AT ,A∗, Transpose, conjugate,

AH and conjugate transpose of matrix A.

||A||, ||A||F 2-norm and F-norm of matrix A.

1m×n m× n size matrix with entries 1.

A† Pseudo-inverse of matrix A.

⊗ Kronecker product.

The algorithms for anomaly detection applied next to each µPMU sensor are

referred to as “local rules” and those that aggregate readings of multiple µPMUs

are referred as “central rules”. The design of these rules are in compliance with

the architecture presented in Figure. 2.2.1 as the local rules would sit in the local

IDSs and central rules would be hosted at the central IDS. For large grid sizes, the
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aggregation can occur in multiple steps, where mid-level stages analyze part of the

data and forward them upward.

The suite of algorithms that are proposed for the µPMU-IDS layers have the

following advantages in comparison to the present state of the art: (1) due to the

near-real-time analysis, analytic results can be used to prioritize the traffic flow from

the lower to higher layer, thus pushing forward reports of anomalies faster than data

that do not raise a flag and need to simply be accrued for historical purposes; (2) it

employs three-phase distribution grid equations rather than the more commonly-used

positive sequence solution, thus avoiding the errors arising due to poor modeling; (3)

a quasi steady-state condition is considered as the normal regime of operation rather

than the idealistic steady-state, which assumes there is no frequency drift. These

modeling aspects are clarified in our discussion next.

3.1 The µPMU Data in a Distribution Grid

Fig. 3.1.1 shows the π model of a distribution line that connects bus m to n.

Assuming normal conditions, the µPMUs are designed to capture samples of the
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Figure 3.1.1: π Model of a Distribution Line
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three phase voltage phasor, which is denoted by v[k] ∈ C3×1, and of the current

phasor i[k] ∈ C3×1 in specific sites of a distribution grid. Next we apply Kirchhoff’s

and Ohm’s law for a three-phase line in a quasi steady-state condition.

A well-known fact from signals and systems theory is that the relationship between

voltage and current through a passive circuit with a certain admittance matrix can be

represented as a multiplication in the frequency domain and as a convolution in the

time domain. Because the circuit is three phase, these will be represented by a Multi-

Input Multi-Output system. This fact also holds for the phasor of the signals. We

first define ymn(t) and yshmn(t) to denote the time domain equivalents of the matrices

Y mn(f + f0) and Y sh
mn(f + f0), respectively, where f0 is the main frequency of the

grid. In discrete time, the convolution relationship is as follows:

imn[k] =
N−1∑
r=0

ymn[r]vm[k − r]− ymn[r]vn[k − r] (3.1.1)

where ymn[r] = ymn[r] + yshmn[r] and it is assumed that yshmn[r] and ymn[r] are the

samples of yshmn(t) ? h(t) and ymn(t) ? h(t), respectively, and have finite support N

and are causal1.

Next, the form of this relationship during the quasi steady-state is shown, since

the steady-state in reality never happens, which in turn represents the governing

equations during a regime of operation that is referred to as “normal”.

The fundamental frequency of the voltage and current signals are always varying,

even in a normal state (although slowly and over a very small range), because of load-

1h(t) denotes the low-pass filter implemented in the µPMU to extract the base-band signal

and H(f) is its corresponding frequency response. It should be noted that the outputs of µPMU,

and their corresponding functions, are not the exact phasors if the bandwidth of the signal (volt-

age/current) is greater than 2f0, and are aliased. However, what we are interested in is to track any

data abnormality (instead of the exact grid state during the event). Therefore, as long as it is not

suppressing the anomaly, having aliasing is not an issue for our rules.
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generation imbalances, active power demand interactions, large generators inertia,

and the automatic speed controllers of the generators [Phadke and Thorp(2008)].

The effect observable is a change of grid operation regime from steady-state to quasi

steady-state. The off-nominal frequency therefore affects the phase angle captured by

phasor measurement devices. To highlight that mathematically, the phasor readings

vm[k] and imn[k] are decomposed as follows:

vm[k] = v̂m[k]ejβm[k]k, imn[k] = îmn[k]ejβm[k]k (3.1.2)

where v̂m[k] is the voltage phasor that is observed at nominal frequency, and îmn[k]

is the current phasor after removing the exponential term due to the off-nominal

frequency at bus m, βm[k], that represents the (time-varying) drift in the frequency

induced by the above-mentioned reasons.

Considering the Discrete Time Fourier Transform, we have:

Y mn(f + f0)H(f) = rect(Tsf)Ts

N−1∑
r=0

ymn[r]e−j2πrTsf (3.1.3)

where 1
Ts

= 120Hz is the µPMU output rate, and H(f) is the frequency response of

the filter h(t). Introducing:

Y mn(f0, k) ,
1

Ts
Y mn

(
f0 +

βn[k]

2πTs

)
H

(
βn[k]

2πTs

)
, (3.1.4)

we have that

Y mn(f0, k) =
N−1∑
r=0

ymn[r]e−jβn[k]r, (3.1.5)

and similarly Y mn(f0, k) =
∑N−1

r=0 ymn[r]e−jβm[k]r.

During the quasi steady-state the variations in v̂m[k] and βm[k] are negligible over

a window of N samples, which means v̂m[k−r] ≈ v̂m[k] and βm[k−r] ≈ βm[k]. Using
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this approximation, (3.1.1) can be re-written as:

imn[k] ≈
N−1∑
r=0

ymn[r]v̂m[k]ejβm[k](k−r)

− ymn[r]v̂n[k]ejβn[k](k−r)

= Y mn(f0, k)vm[k]− Y mn(f0, k)vn[k]

(3.1.6)

Equation (3.1.6) is Ohm’s law in the phasor domain and is the cornerstone for our

transients detection algorithm derived in the following section. The analysis above

explains through (3.1.6) why in the phasor domain, the equivalent effect of the quasi-

steady state conditions is that the admittances (3.1.4) fluctuate. The effect is usually

modest, because β[k] is small. However, during a severe transient or frequency in the

order of 10Hz the relationship (3.1.6) with the matrices in (3.1.4) does not hold, due

to the manifestation of the full dynamic behavior in (3.1.1).

In the following, the “local” and “central” rules are defined leveraging these

insights and the knowledge about power system operation. Note that our rules

are set up in a way that all the local engines are agnostic about Y mn(f0, k) and

Y mn(f0, k), and the sensor siting. However, it is assumed that the central engine

knows Y sh
mn(f0, k)|β[k]=0 and Y mn(f0, k)|β[k]=0 for the lines within its monitoring re-

gion and the difference from (3.1.4) is treated as equivalent to noise in the observation

model. Therefore, when dealing with central rules, we will simply use Y sh
mn and Y mn

to refer to Y sh
mn(f0, k)|β[k]=0 and Y mn(f0, k)|β[k]=0.

3.2 Data Analysis

Our rules monitor for abnormalities in the following quantities 1) voltage mag-

nitude, 2) current magnitude, 3) active power, 4) reactive power, 5) instantaneous

frequency drift, and 6) the validity of quasi steady-state equations. The “local rules”

just require the stream of phasors from a single µPMU, while the “central rules”
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combine multiple streams across µPMUs.

3.2.1 Local Rules

The “local rules” are applied at the lowest layer of the “anomaly detection archi-

tecture”, and run on systems adjacent to the µPMUs. Their common feature is that

they require no specific prior knowledge of the grid network parameters.

Table 3.1: Voltage Magnitude Anomalies

anomaly signature 2

voltage sag 0.1 ≤ |v| ≤ 0.9, T0/2 ≤ τ ≤ 60s

voltage swell 1.1 ≤ |v| ≤ 1.8, T0/2 ≤ τ ≤ 60s

interruption |v| < 0.1, T0/2 ≤ τ ≤ 60s

sustained interruption |v| < 0.1, τ > 60s

undervoltage 0.1 ≤ |v| ≤ 0.9, τ > 60s

overvoltage 1.1 ≤ |v| ≤ 1.8, τ > 60s

3.2.1.1 Voltage Magnitude Changes

The magnitude of the voltage varies within a small range that power quality standards

enforce during the normal operations [515(2009)]. Therefore, any large deviation from

that range indicates an abnormal condition. Table. 3.1 lists the anomalies that can

be observed in the voltage magnitude labeled by their severity and duration, denoted

by |v| and τ , respectively.

2The voltage magnitude is in p.u.

35



3.2.1.2 Current Magnitude, Active, and Reactive Power Changes

Even when the voltage magnitude is within the safe range discussed previously,

changes in active and reactive power can still happen due to the change of the load,

affecting current magnitude and the phase angle between current and voltage pha-

sors. Therefore, it is also of interest to track fast-changes of these quantities using

the method described in Section. 3.2.3.

The three phase apparent power can simply be computed as:

Smn[k] = Pmn[k] + jQmn[k] = diag(vm[k])i∗mn[k] (3.2.1)

where Pmn[k] and Qmn[k] are the three-phase active and reactive powers, respectively.

Note that for the sake of tracking a power flow change in the distribution grid, tracking

the active power and reactive power is preferable over monitoring the phase angle

difference, since the resistance of the lines is not negligible, and therefore the angle

difference does not necessarily indicate the direction of the power flow. We observed

this fact in our partner utility grid, when the voltage phase angle at one end of the

line was less than the angle at the other end, though the direction of the power flow

was not from the higher angle to the lower one.

Because physical changes in this class of data on the distribution grid can be

potentially indicative of negative behavior, it is important to determine the direction

(upward trend, downward trend or oscillation) of the change.

The anomalies related to fast changes are labeled in this class of data with surge,

drop, and oscillation for increasing, decreasing, and swinging trends respectively by

estimating the slope of the signal around the time of change.

While we have primarily introduced fast state changing events in both the dynamic

and transient realms, we must also consider events in the steady state time frame,

slower changing yet also potentially critical. An example of this could include a
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line rating or transformer load being slowly but consistently exceeded leading to

accelerated failure. During the quasi steady-state, the three phase current phasor

magnitude flowing in each line, i.e., |imn[k]|, should be less than or equal the line

rated current, |imn|max. This constraint is imposed as feeder limit, and the violation

is flagged as overcurrent.

3.2.1.3 Instantaneous Frequency Changes

For a µPMU at bus m, we propose to estimate adaptively the instantaneous local

frequency deviation from the nominal frequency during the quasi-steady state, using

the approach for instance in [Xia and Mandic(2012)] that is tailored to three-phase

distribution lines, to isolate abnormal changes in the estimated frequency.

3.2.1.4 Quasi Steady-State Regime Validity

As previously noted, when the grid is not in the normal quasi steady-state conditions,

the relationship between voltage and the current phasors represents its full dynamic

behavior, i.e. the grid is no longer well-approximated by the set of memory-less

algebraic equations. Therefore, it is proposed to check the validity of the quasi steady-

state regime to flag the presence of transients in the grid. At the local engines, (3.1.6)

provides the basis for our rule. For the line in Fig. 3.1.1, assuming that a µPMU is

installed at bus m means that imn[k], and vm[k] are both available.

Let α[k] be the diagonal matrix such that voltage phasors of bus m and bus n,

connected via a power line, are related through:

vn[k] = α[k]vm[k], (3.2.2)

Defining:

R
(mn)
iv [k] =

1

M − 1

M−1∑
r=0

imn[k − r]vHm[k − r], (3.2.3)
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R(nm)
vv [k] =

1

M − 1

M−1∑
r=0

vn[k − r]vHm[k − r], (3.2.4)

Assuming that α[k] remains constant over a window of M samples in the quasi-steady

state, one can write:

R(nm)
vv [k] ≈ α[k]R(mm)

vv [k] (3.2.5)

It can be assumed that the variation of Y mn(f0, k) is negligible over M samples in

normal operation and use (3.1.6) to write:

(
I3 −Y mn(f0, k) + Y mn(f0, k)α[k]

)R(mn)
iv [k]

R(mm)
vv [k]


︸ ︷︷ ︸

R
(mn)
k

≈ 0

Proposition 1. Correlation matrix R
(mn)
k is approximately rank-1 during the quasi

steady-state.

Proof. During the quasi-steady state along a distribution line, the following assump-

tions hold with a very good approximation for r = 0, 1, ...,M − 1:

v̂m[k − r] ≈ v̂m[k], βm[k − r] ≈ βm[k] (3.2.6)

Therefore, we can write:

R(mm)
vv [k] =

1

M − 1
(vm[k]⊗ Em[k])(vHm[k]⊗ EH

m[k])

=
1

M − 1
(vm[k]vHm[k])⊗ (Em[k]EH

m[k])

(3.2.7)

where Em[k] is defined as follows and represents the variations due to the off-nominal

frequency:

Em[k] = 13×1 ⊗
(
e−jβm[k](M−1) . . . e−jβm[k] 1

)
(3.2.8)
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which we can then write:

Em[k]EH
m[k] = (13×111×3)⊗ (M) = M13×3 (3.2.9)

and therefore:

R(mm)
vv [k] =

M

M − 1
(vm[k]vHm[k])⊗ (13×3) (3.2.10)

which accordingly means that:

rank(R(mm)
vv [k]) = rank(vm[k]vHm[k])× rank(13×3) = 1

Because:

rank(R
(mn)
k ) = rank((R

(mn)
k )HR

(mn)
k )

we analyze the rank of (R
(mn)
k )HR

(mn)
k here, where:

(R
(mn)
k )HR

(mn)
k =(R

(mn)
iv [k])HR

(mn)
iv [k]+

(R(mm)
vv [k])HR(mm)

vv [k]

(3.2.11)

From the structure of (3.2.6) during the quasi-steady state, we have:

R
(mn)
iv [k] = Ỹmn(f0, k)R(mm)

vv [k]

Ỹmn(f0, k) = Y mn(f0, k)− Y mn(f0, k)diag(α[k])

(3.2.12)

Substituting (3.2.12) in (3.2.11), we have:

(R
(mn)
k )HR

(mn)
k = (R(mm)

vv [k])HYmn(f0, k)R(mm)
vv [k] (3.2.13)

where:

Ymn(f0, k) = ỸH
mn(f0, k)Ỹmn(f0, k) + I
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Since the linear transformation of R(mm)
vv [k] does not increase its rank and since it

has already been shown that R(mm)
vv [k] is of rank-1 during the quasi-steady state, one

can conclude that:

rank(R
(mn)
k ) = rank((R

(mn)
k )HR

(mn)
k ) ≤

rank(R(mm)
vv [k])→ rank(R

(mn)
k ) = 1

(3.2.14)

Hence:

R
(mn)
k ≈ σ

(mn)
1 [k]u

(mn)
1 [k](ν

(mn)
1 [k])H →

R
(mn)
k (R

(mn)
k )H ≈ (σ

(mn)
1 [k])2u

(mn)
1 [k](u

(mn)
1 [k])H

(3.2.15)

where σ
(mn)
1 is the largest singular value of R

(mn)
k , and u

(mn)
1 and ν

(mn)
1 are the cor-

responding left and right singular vectors to that, respectively. Deviation from this

subspace structure can indicate that the line is experiencing a transient. We can

automate the detection of anomaly using this criterion by computing the following

cost minimization and tracking the fast changes in x[k] for each incidental line to a

bus with µPMU:

x[k] = min
u
||(I6 − uuH)R

(mn)
k (R

(mn)
k )H ||F

s.t. ||u|| = 1

(3.2.16)

In other words, x[k] measures the size of the residual that R
(mn)
k has in the space

orthogonal to the optimal u, which should be zero in the quasi steady-state and non-

zero otherwise. Since it has already been shown that R
(mn)
k is of rank-1 during the

quasi steady-state, the left singular vector corresponding to the largest singular value

of R
(mn)
k is the only quantity of interest to compute the metric, instead of computing

all the singular vectors. Therefore, also owing it to the small size of the matrix, the

method is not computationally very expensive.
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To conclude the local rules, a flowchart of the analysis performed at the local

engine next to µPMU at bus m is presented in Fig. 3.2.1. At each instant of time,

the phasor readings are received by the local engine and the introduced metrics above

are calculated. The pre-processed data are then passed to the local rules to check for

any violation. A violation could be trespassing pre-defined limits (e.g., the voltage

magnitude rule, or maximum current magnitude limit) or fast changes in a metric with

smooth behavior during the normal condition (e.g., quasi steady-state validity rule).

Once a violation is found in one of the metrics, the start time is recorded. The search

for anomaly continues until no new violation is found for a certain window of time

(“Count1 > T1”), and that specifies the end time of the anomaly. The type of anomaly

is then determined based on the behavior of the data between the start time and the

end time (e.g., active power surge, voltage interruption,...). The start time, end time

and the anomaly label is then sent upstream for further analysis/visualization, and

the parameters are reset for next event. If the number of detected violations related

to a certain event passes a pre-defined threshold (“Count2 > T2”), the end time is

replaced with a “Persistent” label, and the results are sent to the central engine,

without waiting for the end of the event to arrive. The reason is to be able to inform

the operator about the anomaly in time, and not waiting too long before something

more damaging happens.

3.2.2 Central Rule

At higher levels of aggregation, the central engine in our case, the natural way

to relate the measurements is through the grid interconnection. For a grid with B

buses, let I[k] denote the vector of three-phase current injection phasors with size 3B,

and V[k] represent the vector of three-phase voltage phasor at all the buses, which

contains 3B elements. We define the measurement vector d[k] = (IT [k],VT [k])T .
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Figure 3.2.1: Local Engine Analysis Flowchart Next to µPMU at Bus m.
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During the steady-state, the following algebraic equation should hold:

Hd[k] = 0, H =

(
I3B −Y 3(B×B)

)
(3.2.17)

where Y is the admittance matrix of the grid that connects the current injection to

the bus voltages. During the quasi steady-state these equations are close to be homo-

geneous. Since the distribution grid is unbalanced, and the lines are not transposed

the set of equations that should be dealt with are three phase instead of working with

positive sequence [Kersting(2012)]. In this framework, we are also able to include the

laterals in the admittance matrix by putting the entries corresponding to the phases

that do not exist equal to zero.

It is assumed that H is known, K denotes the number of µPMUs that are available

and that each device has enough channels to measure the voltage and all incidental

current measurements of the bus on which it is placed. Therefore, having a µPMU

at bus m means that the entries in V[k] corresponding to vm[k] and entries in I[k]

corresponding to
∑

n:m∼n imn[k] are both available, where m ∼ n denotes that bus

m and n are connected through a line. Let T denote a matrix parsing the vector

d[k] into two parts corresponding to the unavailable measurements, du[k], and the

available measurements, da[k]:

T =

Tu

Ta

 → Td =

du

da

 , HTT =

(
Hu Ha

)
(3.2.18)

where K ′ = B −K and

Tu ∈ {0, 1}6(K
′×B), Ta ∈ {0, 1}6(K×B) (3.2.19)

Tu and Ta here are block diagonal matrices of size 6(K ′ × B) and 6(K × B) with

entries equal to 0 or 1. The former is supposed to select the unavailable current and

voltage phasors by having entries equal to 1 at corresponding locations, and the latter
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is supposed to pick the available phasors. Since TTT = I, we can rewrite (3.2.17) as

follows:

Hudu[k] + Hada[k] = 0→ (3.2.20a)

Hada[k] = −Hudu[k]. (3.2.20b)

Let first assume that we have enough µPMUs that satisfy K > B
2

. Therefore, the

matrix Hu would be a tall matrix and has a left null-space. Premultiplying both sides

of (3.2.20b) by the projector on the left null-space of Hu, we have:

(I −HuH
†
u)Hada[k] = 0 (3.2.21)

because (I −HuH
†
u)Hu=0. The equality in (3.2.20b) only holds during the steady-

state (and for quasi steady-state with a good approximation), which means that

equation (3.2.21) is homogeneous only in the steady-state (nearly-homogeneous in the

quasi steady-state), and non-homogeneous otherwise. The following metric should,

therefore, be close to zero only during normal operation and if H is unchanged:

x[k] =
||(I −HuH

†
u)Hada[k]||22

||da[k]||22
(3.2.22)

However, in reality, the number of available µPMUs, K � B
2

. In this case, Hu is a fat

matrix and, in general, is of full row rank, which in turn means that (I −HuH
†
u)=0,

and our criterion becomes trivial. However, HuH
H
u has generally a high condition

number, due to the weak grid connectivity. Therefore, both sides of (3.2.20b) can

be projected on the subspace spanned by the left singular vector, denoted by uu,s

corresponding to the smallest singular value of Hu expecting that uHu,sHudu[k] to be

small. Accordingly, when the quasi steady-state is the regime of operation, i.e., when

the equality in (3.2.20b) holds, it is expected that the following function to be small

and to vary smoothly:

x[k] =
|uHu,sHada[k]|2

||da[k]||2
. (3.2.23)
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The exit from this behavior is then marked as an anomaly in the central engine and

x[k] is the quantity that is proposed to be tracked for fast changes for this purpose.

The flowchart for the central engine is similar to the one for local engine to some

extent except that all the µPMU readings are required to form the central metric, and

the results from the local analysis are received by the central engine, and the analysis

results from this stage are not shipped anywhere, and are ready to be displayed for

the operator.

3.2.3 Fast Change Detection Method

As explained above, some of the criteria defined in the local and central rules

require tracking fast changes in the quantities that are defined, because severe vari-

ations in x[k] are signatures of an anomaly. From real data and simulations we

have verified that variations in the mean value for these quantities during the quasi

steady-state regime are extremely smooth. This observation prompted us to consider

changes in their mean value as the common statistical trade-mark of anomalies in all

of these quantities and to use the sequential two-sided Cumulative Sum (CUSUM)

algorithm [Page(1954), Basseville et al.(1993)] as a heuristic. The use of this algo-

rithm amounts to approximating the samples, for all the aforementioned quantities,

as outcomes of a Gaussian non-zero mean process with independent observations.

Although the observations are in fact temporally correlated, our objective (i.e. fast

change detection in mean) justifies the relaxation that the random process has inde-

pendent observation samples. The algorithm decides between two hypotheses H0: no

change in the mean, or H1: change in the mean, at time k.

A change is detected when the decision function of CUSUM crosses a pre-defined

threshold. Therefore, choosing a proper threshold would be essential for practical

applications. In this sense, our intrusion detection architecture falls into “semi-
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supervised behavior-based detection” category, where a collection of real data points

containing a variety of anomalies are required to train the detector and find the proper

threshold in the learning phase. Several metrics are proposed to evaluate the perfor-

mance of the CUSUM. The “average run length” proposed in [Page(1954)] and the

“worst case detection delay” proposed in [Lorden(1971)] are the two most popular

ones. Having the approximation of a Gaussian distribution, these metrics can be

computed accordingly.

We expect to see multiple change points during an event. Detection of multiple

change points is achieved by resetting the decision functions and cumulative sums to

zero after the change is detected, and continuing the inspection of upcoming samples.

The fast change anomaly is completed if no new changes are detected for a defined

window of time.

3.3 Optimal µPMU Placement

In tandem with the anomaly detection, the criterion that was described for the

central engine can be the basis to determine an optimal placement for the µPMUs.

As it was mentioned, the challenge here is that we cannot feasibly nor practically

deploy µPMUs at all nodes in the distribution system, therefore we consider a limited

deployment, where K � B
2

.

Ideally, we want the matrix Hu to have a left null-space for the criterion in (3.2.23)

to be zero in the steady-sate. Considering the high condition number of HuH
†
u, a

reasonable approach to find the optimal configuration is to minimize the norm in

(3.2.23) over all the possible placement configurations. Let first rewrite the defined

metric in (3.2.23):

x[k] =
dHa [k]HH

a uu,su
H
u,sHada[k]

||da||2
. (3.3.1)
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We desire our formulation to be only topology-dependent and not to be a function of

measurements. Therefore, the optimal placement problem is formulated as a min-max

optimization with the following structure:

Πopt = argmin
Π

λmax(W)

s.t.

(
Hu Ha

)
= H

(
TT
u TT

a

)
T = I2 ⊗ (Π⊗ I3),

W = HH
a uu,su

H
u,sHa, [Π]i,j ∈ {0, 1}∑

j

[Π]i,j = 1,
∑
i

[Π]i,j = 1

(3.3.2)

Since λmax(W) = maxda[k]
dHa [k]Wda[k]
||da[k]||2 , essentially we are choosing a placement that

minimizes the maximum value that our objective function can take over possible set

of available measurement vectors da[k].

An exhaustive search is required to find the global optimum of the optimization

problem in (3.3.2), which is exponentially complex, and therefore does not scale well.

This becomes a barrier when the size of the grid is large, i.e., in most of the real grids.

Therefore, we propose to employ a “Greedy Search” as an alternative to reduce the

time complexity to polylog, while accepting to be near-optimal. The pseudo-code of

the employed greedy search is illustrated in Algorithm. 3.1.

3.4 Numerical Results

In this section, we first find the optimal placement for our µPMUs based on (3.3.2)

and then test the effectiveness of the proposed anomaly detection criteria through

simulated data and real data, provided from the µPMUs that are installed in our

partner utility medium voltage (12.47 kV) grid.
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Algorithm 3.1: Greedy Search Pseudo-Code for Anomaly Detection Opti-

mal µPMU Placement in Application.

Initialization

K := Number of µPMUs;

P := ∅, // Set of selected placement locations;

L := Set of candidate placement buses;

begin

for n=1..K do

Cost← inf;

for each l ∈ L do

P := P ∪ {l};

given P , calculate λmax(W);

if λmax(W) < Cost then

lopt ← l;

Cost← λmax(W);

P := P \ {l};

P := P ∪ {lopt};

L := L \ {lopt};
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3.4.1 Synthetic Data

The IEEE-34 bus test case [Group(2010)] is simulated using the time-domain

simulation environment of DIgSILENT [Manual and PowerFactory(2009)] that deals

with differential equations rather than memory-less equations. The sampling rate is

selected to be equal to the sampling rate of the Analog-to-Digital Converter (ADC)

in a real µPMU, which is 512 × 60 Hz =30720 samples per sec.. We then processed

these time-domain data through our phasor estimation algorithm, that emulates a

two-cycle, P-class algorithm based on the IEEE C37.118.1 [for Power Systems Work-

ing Group(2011)] producing phasor samples at a rate of 120 Hz. The single-line

diagram of the test case is shown in Fig. 3.4.1. This case includes single-phase later-

als, voltage regulators, and untransposed lines, which all are modeled exactly in our

admittance matrix.
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Figure 3.4.1: IEEE 34-Bus Test Feeder Single-Line Diagram

Table. 3.2 compares the objective value for a random placement, “Greedy Search”

and “Exhaustive Search”, and the time complexity of each solver, assuming that

K = 3 µPMUs are available. The objective value of the “Greedy Search” and the

“Exhaustive Search”, and the set of the selected buses are close to each other, while
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Table 3.2: IEEE-34 Case Optimal µPMU Placement Result for K = 3

Random Greedy Exhaustive

Optimum Cost 1.7085 0.51477 0.51477

Buses with µPMUs {1,3,9} {7,19,31} {9,19,31}

Run Time – 2.84 s 290.266 s

the run time of the “Greedy Search” is 102.206 times faster. Hence, the “Greedy

Search” can be a very good choice to solve our optimal placement problem.

As expected, the placement rule tries to scatter the available µPMUs all over the

grid, in order to achieve the maximum possible coverage.

In order to investigate how the time complexity grows, and also analyze the results

of the placement criterion, the 123 standard test case in [Group(2010)] was used,

considering 20 µPMUs available (i.e., K = 20). Without loss of generality, the 123

test feeder was reduced to 70 buses to only include three-phase lines, and roll up all

the laterals (single-phase and two-phase lines). The reasoning behind this reduction

is that visibility on the main feeder is more important for us than the the visibility

on the laterals, considering the limited number of µPMUs. Using a machine with

60 Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz cores, it took 11.56 Sec for the

algorithm to place 20 µPMUs over 70 buses. Fig. 3.4.2 illustrates the location of

the optimally-placed µPMUs in the reduced grid. It can be observed from the figure

that the µPMUs are scattered over the grid to achieve the maximum sensitivity with

respect to different locations of anomalies.
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Figure 3.4.2: Optimally-Placed µPMUs on Reduced IEEE 123 Test Feeder.

3.4.1.1 Single-Line to Ground Fault-IEEE 34 Bus

In this simulation, the rules are tested for detecting anomaly with respect to a Single-

Line to Ground Fault (SLGF), which is a very common type of short-circuit fault in

the distribution grid. A SLGF was introduced on “Phase a” of line (25,26), which

then caused the fuse placed on the phase a of this line near bus 25 to melt down. Our

three µPMUs are placed on buses, 7, 19, and 31 based on the “greedy search” result

for the optimal placement criterion.

The results of the “voltage magnitude change” rule are shown in Fig. 3.4.3 for

µPMUs 7, and 19 for instance. Simply, the rule inspects the data for large deviations,

label them accordingly, and find the start time and the end time of the event, marked
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with blue and red stars.
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Figure 3.4.3: Voltage Magnitude Local Rule Result for SLGF.

Fig. 3.4.4 illustrates the metric value in (3.2.16) for the specified lines that is

inspected with M = 12 to check whether the grid is in the quasi steady-state or not.

The voltage and current data are first converted to per-unit system assuming Sb = 1

MVA. The start time of the detected changes are also marked, setting the CUSUM

detector parameters fixed in all the three local engines corresponding to each µPMU.

As it can be observed, there are two periods in which the grid manifests its dynamic:

the first one corresponds to the occurrence of the fault and the second matches with

the fuse meltdown. In addition, based on the severity of the transient that each

µPMU measures, the number of detected changes via CUSUM varies. In this case,

considering the location of the µPMUs and the location and type of the fault, the

most severe change appears in the metric corresponding to measurements from line

(19,20), while the changes in metric for line (31,32) is very small. Therefore, based on

the defined parameters on the detector, CUSUM finds quite a large number of change
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points in the former, while it is not set to be sensitive to the changes in the order that

appears in the latter. In fact, if the detector is set to be too sensitive, it can increase

“false alarms” in the system. Also note that due to the two-cycle calculation of the

phasor, and use of M samples to calculate the correlation matrix, the event appears

and disappears with a systematic delay.
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Figure 3.4.4: Quasi Steady-State Validity Checking for SLGF.

The other local rules also capture the anomaly, though with different severity and

behavior (we just show some of the results here for lack of space). In fact, many of the

local rules may detect the same event, though some rules are more informative than

others depending on the cause. Each triggered rule reports a start and an end time for

the event. Storing these time-tags for eventful segments of data helps understanding

their relationship.

The metric defined for our central engine is also illustrated in Fig. 3.4.5. The

delay in appearing and disappearing of the event in here is solely due to the two-cycle

phasor calculation.

It should be noted that the value of the metric in (3.2.23) during the quasi steady-

state is highly dependent on the number of µPMUs and the topology of the grid that

together determine the structure of Hu and Ha. However, the best placement of the
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Figure 3.4.5: Central Rule Inspection for SLGF.

µPMUs for a certain topology and number of µPMUs that makes the metric to be

as close as possible to zero, returns a certain objective value that can be used as the

baseline to determine what is a normal value for x[k] and what would be an anomaly.

3.4.1.2 Feeder Reconfiguration-IEEE 34 Bus

In this case, it is assumed that there is a normally-open line that connects node 13 to

21. This line is closed as part of a hypothetical feeder reconfiguration scheme when the

line 13-15 is opened. We run the simulation for 1.5 sec, and the feeder reconfiguration

happens at t = 0.75 sec. Fig. 3.4.6 shows the voltage phasor magnitude and the metric

related to the quasi steady-state validity check at the local level for the reconfiguration

event. As it can be seen, the event does not trigger any anomaly in the voltage

phasor magnitude. For example, if we wanted to solely rely on the raw phasor data

coming from µPMU 7 and not checking other metrics, this event would have been

missed because the current phasors measured by this µPMU also do not see significant

change, mainly because the downstream load of bus 7 has not changed. However,
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checking the validity of quasi steady-state for line 6-7 using the measured phasor

data by µPMU 7 clearly reveals the existence of an anomaly in the system.
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Figure 3.4.6: Voltage Magnitude and Quasi Steady-State Validity Check Rule for

Feeder Reconfiguration.

3.4.1.3 Case Study on Data Injection Attack

We illustrate here the resilience of the architecture to data injection attacks. For

this purpose, three data attack scenarios are investigated happening concurrently

with the SLGF event discussed previously. We consider the case of the attacker

manipulating the data of µPMU 7 in the first case, and µPMU 19 in the second case,

and finally µPMU 7 and 19 at the same time in the third case on their way to the

central engine. In all cases the data injected are a replay of the last available data set

before the anomaly starts. Setting the change detector parameters fixed for all the

three cases, Fig. 3.4.7 shows, for each case, the central rule and the start time of the

detected changes. As can be seen, since µPMU 19 is playing an important role for this
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event, having µPMU 7 compromised will not affect our central rule significantly (case-

1). However, when the µPMU 19 is compromised, the number of detected changes

reduce significantly (case-2), and when both µPMU 7 and 19 are compromised and

the only healthy data is coming from µPMU 31, the detector does not pick any fast

changes based on the set parameters. This also reveals the importance of tuning the

detector thresholds to have a certain “false alarm,” while maximizing the “detection”

probability. We wish to remark that in all the three cases, the local analytics that
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Figure 3.4.7: Central Rule for SLGF with Manipulated µPMU Data.

directly draw data from µPMUs will still flag the alarm, so buffering locally at the

site of the event these data can be an important way of helping understand what

communications were compromised in an ex-post analysis.

3.4.1.4 Optimal versus Non-Optimal Placement

As it was mentioned, the placement criterion tries to scatter the available µPMUs

over the grid to achieve the maximum coverage, and therefore make the central rule

more sensitive to anomalies.
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In order to compare the performance of an optimal versus non-optimal placement,

a load loss event is created on bus 24 of IEEE-34 test case at t = 0.4s. The µPMUs are

placed based on the random placement and greedy search result given in Table. 3.2,

corresponding to non-optimal and optimal placement, respectively. Fig. 3.4.8 shows

the central metric for these two cases. Since the relative change is what matters to our

detector, the metrics corresponding to two placements are brought on the same scale.

As it can be observed, since the µPMUs in the random placement are concentrated at

a certain area, events like this would not be very pronounceable in the central metric,

which could possibly lead to a “false-negative”.
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Figure 3.4.8: Central Metric Change of a Load Loss Event; Optimal versus Non-

optimal Placement.

3.4.2 Real Data

Fig. 3.4.9 shows the abstract one-line diagram of the partner utility grid and

the location of the installed µPMUs. The installed µPMUs sample the voltage and

current with a rate of 512× 60 Hz, and output the estimated phasors at 120 Hz rate.
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These devices achieve an accuracy of 0.001 deg resolution for phasor angle, 0.0002%

for phasor magnitude, and 0.01% for Total Vector of Error (TVE) [Power Standards

Lab(2016)]. The two feeders here are connected through the subtransmission grid.

Subtransmission 
Grid

Feeder 1

Feeder 2

PV Site

µPMU 1 

µPMU 2 

µPMU 3 

Figure 3.4.9: Location of Installed µPMUs in Our Partner Utility Grid.

Fig. 3.4.10 shows the voltage magnitude change rule inspected on the data from

these µPMUs over a certain time. The results of the fast change inspection on the

current magnitude of phase a and instantaneous local frequency at the substation

bus of feeder 2 are also illustrated in Fig. 3.4.11(a) and Fig. 3.4.11(b), respectively.

Observing the results of the analysis, the DSO can deduce that the cause of the event

is most probably located on feeder 2. Also, from the pre- and post-anomaly value of

the current magnitude, the DSO can conclude that some of the loads on this feeder

tripped due to the voltage sag. We just showed the results from some of the rules due

to the space limit but other rules can also flag the existence of anomaly on feeder 2.

All the metrics introduced and tested above are designed considering the specifi-

cations of a distribution grid. It should be noted that not all the proposed methods

in the literature for transmission grid are applicable in the distribution side. For ex-

ample, the phase angle difference in the distribution grid is known to be much smaller

than that in the transmission level. Therefore, as opposed to transmission grid that
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Figure 3.4.10: Voltage Magnitude Change Rule for Real Data.

this metric would work well for event detection [Allen et al.(2014)], it might not be a

proper metric to look at in the distribution grid, since the signal to noise ratio might

be small. The example next illustrates how the voltage angle difference metric could

have failed if it was used as a “local rule”. Using the data from two µPMUs installed

at two ends of a line at a second utility grid (not the one in Fig. 3.4.9), the voltage

magnitude captured by the µPMU at one end of the line is shown in Fig. 3.4.12(a)

and the voltage phasor angle difference between the two µPMUs at two ends of the

line is shown in Fig. 3.4.12(b). As it can be observed, the important event in this

period corresponds to the two voltage sags. However, the angle difference shows a

significant number of spikes without clearly marking these two events with the same
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Figure 3.4.11: Fast Change Tracking of Current Phasor Magnitude and Bus Instan-

taneous Frequency Drift for Real Data.

significance. Passing this metric to our detector, we would pick too many fast changes

that do not represent any specific event of interest, which therefore means an increase

in the number of “false positives”. All streams of interest were examined during this

period, including both the active and reactive power, and all anomalies detected were

in agreement with those visible in Fig. 3.4.12(a).

3.4.2.1 Case Study-Robustness Against Volatility

The increasing presence of renewable resources, like wind and solar, in the distribution

grid may raise some concerns about the robustness of the proposed rules to “false

alarms” due to their inherent volatility. However, our method is based on an adaptive

estimation of the data mean using an exponential window and, as shown in the

following numerical example, this makes the algorithm capable to only pick the fast

changes over a very short period of time, while being insensitive when the rate of

change is in the same order of that of renewable resources fluctuations. To show it
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Figure 3.4.12: Voltage Phasor Angle Difference Between Two µPMUs at Distribution

Grid.

numerically, we refer to two real events captured by µPMU 2 in the grid in Fig.3.4.9.

Fig. 3.4.13(a) shows a dramatic change of about -18.25% over 9 seconds in the PV

site active power injection due to the cloud effects, and Fig. 3.4.13(b) shows a step

change in the active power after the PV site went out of service. Setting the detection

parameters to be the same for both events, it can be seen that the detector flags no

event for the first case and finds multiple of fast changes in the second. This is ideal

since the events of our interest in the this context are of the second type, which should

be discriminated from the normal quasi steady-state behavior in the first case.

Considering the existence of different types of loads in the distribution grid, the

detector should also be able to differentiate between possible normal fluctuations in

the load profile and those that are caused by a rare event. To show the performance

of CUSUM for this case, real data of a µPMU installed behind a building with a

non-linear load is used. As it can be seen in Fig. 3.4.14, the fast change tracker of the

current magnitude does not pick the fluctuations due to the non-linear load behavior

as an event and only flags a segment of data that corresponds to a voltage sag in the
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Figure 3.4.13: Fast Change Tracking of Injected Active Power in the PV Site.

grid as an eventful segment.
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Figure 3.4.14: Fast Change Tracking of Current Magnitude for a Non-Linear Load.
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CHAPTER 4

EVENT LOCALIZATION FOR CYBER INTRUSION DETECTION

Even though event detection is an integral part of our cyber-security framework, it

is not sufficient for intrusion detection most of the times. To be able to correlate

the SCADA data with the analytics form µPMUs, one needs to localize the source of

the event to make sure which SCADA packets need to be checked. Inspired by this

requirement, we focus on localizing the source of two important types of events.

The first part of the chapter (sections 4.1-4.2) investigates methodologies to local-

ize a “reconnaissance activity” on the normally-open switch in the substation. In this

section, we propose methods using phasor measurement data to track Thevenin pa-

rameters at substations delivering power to both an unbalanced and balanced feeder.

We then show how tracking Thevenin source impedance can be employed in identi-

fying cyber attackers performing “reconnaissance” in a distribution substation.

With the goal to detect cyber intrusion on the fault detectors that are part of a

Fault Location, Isolation, and Service Restoration (FLISR) system, we develop fault

localization method, where a fault can be localized up to a cluster of neighboring

nodes when there is very few sensors in the grid. We prove that these clusters can be

inferred from the properties of the network and where the sensors are placed. Having

that identified, we propose an optimal PMU placement to achieve fault localization

with highest resolution over the grid. The method is integrated in our cyber-physical

security framework, where the results of PMU-based fault localization is correlated

with the SCADA-reported fault location to check the integrity of the SCADA data.
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4.1 Thevenin Equivalent Estimation

Fig. 4.1.1 shows the Thevenin equivalent circuit as seen from bus 1. This could

be a subtransmission or distribution substation. Due to the integration of PMUs

at the transmission level and µPMUs at the distribution level, measurements of the

three-phase voltage phasor, v[k], and the three-phase current phasor, i[k], are now

available at bus 1 at a very high rate. In steady-state, the following equation holds

thE

thZ

Bus1

Subtransmission/

Distribution Feeder

Transmission Thevenin 

Equivalent

PMU/μPMU

vi

Figure 4.1.1: Transmission Grid Thevenin Equivalent Seen from Substation

for the circuit:

v[k] = Eth[k]− Zth[k]i[k] (4.1.1)

Equivalently, in the sequence domain, we have:

vs[k] = Es[k]− Zs[k]is[k] (4.1.2)

Assuming transposed lines implies that the mutual coupling between the zero, positive

and negative sequence impedance at transmission level is zero. Hence, Zs has the

following form:

Zs =


Z0 0 0

0 Z1 0

0 0 Z2

 (4.1.3)
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In addition, since Eth is representing the generators voltage at the transmission, it can

be considered to be balanced, and therefore can be written in the sequence domain

as:

Es[k] =


0

E1[k]

0

 (4.1.4)

Therefore, we obtain the well-known decoupled set of equations as follows:
v0[k]

v1[k]

v2[k]

=


0

E1[k]

0

−

Z0[k] 0 0

0 Z1[k] 0

0 0 Z2[k]



i0[k]

i1[k]

i2[k]

 . (4.1.5)

4.1.1 Unbalanced Grid

Clearly, from (4.1.5), if the feeder connected to the substation is unbalanced (that

is the case most of the times in the distribution feeders), all the Thevenin parameters

can be estimated at each instant of time using the fact that Z1[k] ≈ Z2[k]:

Z0[k] = −v0[k]

i0[k]
, Z1[k] = −v2[k]

i2[k]
,

E1[k] =
v1[k]i2[k]− v2[k]i1[k]

i2[k]
.

(4.1.6)

In this formulation we are taking full advantage of the inherent unbalanced behav-

ior of the distribution grid that is usually considered a complication for many other

applications. In this context, this feature allows us to update our estimation with the

same frequency as the µPMU output rate. In addition, we are not only estimating

the positive sequence impedance but also the zero sequence impedance. It should be

noted that in some cases such as when the µPMU is placed after a Wye-Delta dis-

tribution transformer, the zero sequence current, i0 is zero at point of measurement,

which means that the zero sequence source impedance is infinite as expected.

65



4.1.2 Balanced Grid

When the grid is balanced, which is usually the case at the substations connecting

the transmission grid to a subtransmision circuit, the method discussed above does

not work. In this case, the only non-trivial equation in (4.1.5) is:

v1[k] = E1[k]− Z1[k]i1[k] (4.1.7)

Clearly, what we have in (4.1.7) is a single equation with two unknowns, E1[k] and

Z1[k], which does not have a unique solution. Therefore, we need to make appropriate

approximations. Without loss of generality, we set the voltage phasor angle in (4.1.7)

to zero and accordingly all the angles are reported relative to the voltage phasor

angle. We drop the subscripts in (4.1.7) for simplicity of notation in the rest of this

section. They will be reintroduced in the next sections.

Replacing the load in Fig. 4.1.1 with an equivalent apparent load impedance

ZL = RL + jXL and neglecting the Thevenin resistance of the transmission grid

in comparison with the Thevenin reactance, the corresponding phasor diagram is il-

lustrated in Fig. 4.1.2. It is worth to mention here that the effect of off-nominal




v

jXi

E

Figure 4.1.2: Phasor Diagram of the Equivalent Thevenin Circuit in Fig. 4.1.1 for

Balanced Grid.

frequency is an equal rotation in the vectors of the phasor diagram. Since we re-

port the phasor angles relative to the voltage, this modulation term is accordingly
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removed from the voltage, current and the modeled Thevenin voltage source. We

propose to use the following relationship based on the phasor diagram in Fig. 4.1.2.

Let A[k] = |E[k]| and iim be the imaginary component of the current, then we have:

A2[k]− v2[k]−X2[k]|i[k]|2 + 2iim[k]X[k]v[k]︸ ︷︷ ︸
r(A,X;k)

= 0 (4.1.8)

At each instant of time, there are infinite solutions for A and X as zeros of the

“residual function” r. Assuming that A and X are constant over a window of M

samples, and there is sufficient change in the feeder over this window, we form the

following over-determined homogeneous set of equations:

r(A,X; k −M + 1)

r(A,X; k −M + 2)

...

r(A,X; k)


︸ ︷︷ ︸

~r(A,X;k)

=



0

0

...

0


(4.1.9)

Note that we do not assume the angle φ is constant, and the assumptions made per-

tain exclusively to the Thevenin voltage magnitude and source reactance, which are

considered constant over the examined window. Having constant voltage magnitude

is reasonable since the Thevenin voltage source is representing the bulk grid, whose

automatic voltage regulators operate on time-scales longer than those examined here.

Our problem now translates into solving M non-linear quadratic equations. Taking

the squared-norm of the residual vector, ~r(A,X; k), in (4.1.9), we form the following

objective function:

f(A,X; k) =
1

2
||~r(A,X; k)||2 (4.1.10)

which is aimed to be minimized:

min
θ[k]

f(A,X; k) (4.1.11)
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where θ[k] = [A[k], X[k]]T . The Levenberg-Marquardt Algorithm (LMA) is used

to solve the non-linear least square problem. This method replaces the line search

method in Gauss-Newton with a trust region strategy. The LMA overcomes one

of the weaknesses of Gauss-Newton, i.e., the behavior when the Jacobian matrix of

the residual vector is rank-deficient, or is close to be rank-deficient [Nocedal and

Wright(2006)]. This is important in tracking the Thevenin parameter online since

the change in the data during some intervals may return a Jacobian matrix which is

ill-conditioned. The other advantage of the LMA as opposed to the Gauss-Newton

is when the initial guess is far from the minimizer. In this case, Gauss-Newton

converges very slowly or may not converge at all but LMA is proved to perform

better under certain conditions. The implementation of the LMA in our system is

shown in Algorithm. 4.1.

Note that in calculating PLM , we have used an ellipsoidal trust region in place

of a spherical trust region by using the term λdiag(JTJ) instead of λI as suggested

in [Seber and Wild(1989)], where I is the identity matrix. The reason is that our

problem is poorly scaled, or in other words the range of A and X are so different, and

therefore we may face numerical difficulties or produce solutions with poor quality.

The initial guess at time instant k can be provided by the estimated parameters at

time instant k-1, i.e., θ0[k]← θ[k − 1].

Compared to the methods in [Parniani et al.(2006), Arefifar and Xu(2009)], our

formulation leads to a smaller size of the Jacobian matrix, and therefore is compu-

tationally more efficient. Also, the mentioned advantages of LMA over the Gauss-

Newton method used in [Arefifar and Xu(2009)] still remains.
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Algorithm 4.1: Levenberg-Marquardt Algorithm (LMA) at time instant k

Input: ~r(A,X; k), and an initial guess θ0[k]

Output: Thevenin parameters at time k

begin

flag=1;

initialize ρ < 1, λ, and ε ;

θ[k]← θ0[k];

while flag==1 do

J = ∇~r(θ; k);

PLM = −(JTJ + λdiag(JTJ))−1JT~r(θ; k);

θnew[k]← θ[k] + PLM ;

if f(θnew; k) < f(θ; k) then

λ← ρλ;

θ[k]← θnew[k];

else

λ← λ
ρ
;

if f(θ; k) < ε then

flag ← 0;

φ[k] = sin−1(X[k]ir[k]/A[k])

return E[k], X[k];

69



4.2 Thevenin Estimation Results

In this section, we present the performance of the proposed Thevenin estimation

through the numerical results for both cases of unbalanced and balanced grid.

4.2.1 Unbalanced Grid Thevenin Parameter Estimation

We modified IEEE-34 test case for our simulation by connecting it to a voltage

source through a lumped transmission line representing the Thevenin impedance as

shown in Fig. 4.2.1. The simulation is done in the DIgSILENT software [Manual and

PowerFactory(2009)] with phasor report rate of 120 Hz. We intentionally imposed
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Figure 4.2.1: Modified IEEE-34 Bus Test Case One-Line Diagram.

the grid to work at off-nominal frequency of 59.9 Hz to simultaneously examine the

effect of the off-nominal frequency on our estimation performance. We expect that

our methodology for unbalanced grid will not be affected by off-nominal frequency

because the estimation at each instant of time only uses the samples at that time.

Table. 4.1 shows the estimated values for positive and zero sequence versus the actual

ones. The estimated values are very close to the actual, which indicates the successful

performance of the estimation. Fig. 4.2.2 shows the magnitude and the angle of the

estimated Thevenin voltage versus the actual values captured from the simulation. As

can be seen, the estimation of the Thevenin voltage is successful, and our algorithm

tracks the parameters even when the off-nominal frequency is non-negligible, which
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Table 4.1: Actual vs Estimated Thevenin Sequence Impedance

Estimated Actual

Z0 2.5533 + j9.4392 2.5716 + j9.4320

Z1 2.9922 + j10.92 2.99 + j10.8901

is clear from the voltage angle.
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Figure 4.2.2: Estimated Thevenin Voltage for Modified IEEE-34 Bus Under Off-

Nominal Frequency.

4.2.2 Balanced Grid Thevenin Parameter Estimation

In balanced case, we first simulated the 39-Bus New-England dynamic model

[Pai(2012)] using DIgSILENT software with a phasor report rate of 120 Hz. A very

slow load ramping event of +2%/sec is defined at load 16, while other loads are

kept constant. The reason of the slow ramping event is to show how our method

is suitable even under slow changes that is necessary for online application since

large changes may not always happen over a short window. Taking a sliding window
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of 30 samples, i.e., M = 30, Fig. 4.2.3 shows the estimated versus actual value of

the Thevenin impedance seen from bus 16. This window corresponds to 0.25 sec,

where the assumption of constant Thevenin voltage magnitude is valid with a very

good approximation. As can be seen, the estimates are very close to the actual values,
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Figure 4.2.3: Estimated Thevenin Reactance Seen from Bus 16 of New England Test

Case Using LMA Method.

which indicate that the LMA method can successfully track the Thevenin parameters.

We attribute the small residual error to the fact that we neglect the resistance.

Using the same sliding window size, the performance of the linear least-square

method under this slow rate of change is illustrated in Fig. 4.2.4. As shown, this

method completely fails to track the actual value of the Thevenin reactance in this

scenario. The reason is most probably due to the fact that the phase angle is assumed

to be constant over the window of samples.
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Figure 4.2.4: Estimated Thevenin Reactance Seen from Bus 16 of New England Test

Case Using Linear Least Square Method.

4.2.3 Voltage Stability Index Monitoring

An important application of the online Thevenin estimation algorithm is to mon-

itor the voltage stability index at a load point in the transmission level. We use the

voltage stability index in (4.2.1) that is employed in [Vu et al.(1999)] to test the effec-

tiveness of our Thevenin tracking method for a balanced grid. The index is defined

as follows:

L[k] =
X1[k]

|ZL[k]|
=
X1[k]|i1[k]|

v1[k]
(4.2.1)

where ZL[k] is the apparent load impedance at time k. Based on (4.2.1), the stable

and unstable regions are defined as follows:
Stable Region if L[k] ≤ 1

Unstable Region if L[k] > 1

(4.2.2)

For the numerical result, a ramping load event with load steps of +18%/sec is in-

troduced at all the load buses of the New-England 39 Bus test case until the grid
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Voltage Stability Monitoring at Bus 21
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Figure 4.2.5: Voltage Stability Index Monitoring at Bus 21.

goes unstable. Fig. 4.2.5(a) shows the estimated Thevenin impedance and the mag-

nitude of the apparent impedance. The voltage stability index (L) is also shown

in Fig. 4.2.5(b). From the figure it is evident that the oscillation in the voltage

starts when the magnitude of the apparent impedance meets the estimated Thevenin

impedance or, equivalently, when the voltage stability index (L) crosses 1. This point

corresponds to the maximum loadability of the system and the grid goes unstable be-

yond that. This is another indication that the Thevenin parameter is being tracked

correctly, due to L correctly determining the point of maximum loadability.

4.2.4 Reconnaissance Activity Identification

In this use-case we assume that the substation connected to the distribution feeder

is equipped with a normally-open spare transformer parallel to the main transformer,

to restore the delivery of the power to the feeder when the main transformer fails or
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requires maintenance. Inserting the spare transformer into service, while the main

transformer is also in service, has no adverse effect on the delivery of the power to

the feeder downstream. It is therefore appealing for an attacker to try and test its

ability to control the network through a compromised SCADA network, by changing

the service status of the backup transformer switch when the main transformer is

in service. The attacker may then mask this control action by spoofing the SCADA

packages sent to the control center. The question is “can we detect such an activity

with µPMU data?”

Suppose that we have a µPMU placed at the head of distribution feeder as shown in

Fig. 4.2.6. In this circuit, the dominant term in the Thevenin source impedance would

be due to the transformer impedance. Therefore, when the spare transformer switch

is toggled maliciously, while the main transformer is in service, the source impedance

will roughly reduces to half of its normal value. We propose to track the fast changes

in the estimated positive sequence of the Thevenin source impedance. When a fast

change is found, the magnitude of the change can be extracted to determine whether

it can be attributed to the spare transformer switch or not. From Fig. 4.2.7, when
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Figure 4.2.6: Modified IEEE-34 Test Case for Reconnaissance Attack Identification

the switch gets closed the estimated impedance is almost half of what it was before.

Considering the fact that the dominant term is due to the transformer and such

a change cannot be the consequence of change in the transmission grid topology,

75



the most plausible cause is the event that the spare transformer switch was closed.

Once such a change has been detected, the control center is notified to determine if

the change was a scheduled switch or an unexpected switch, potentially indicating

malicious behavior.
Estimated Positive Sequence Thevenin Impedance

0 0.1 0.2 0.3 0.4 0.5

Time (Sec)

0

1

2

3

4

5

R
e(

Z
1) 

O
h

m

Estimated
Actual (Switch Open)
Actual (Switch Close)

0 0.1 0.2 0.3 0.4 0.5

Time (Sec)

0

5

10

15

Im
(Z

1) 
O

h
m

Estimated
Actual (Switch Open)
Actual (Switch Close)

Figure 4.2.7: Online Tracking of the Thevenin Source Impedance using µPMU Mea-

surements

4.3 The Fault Localization Problem

Notation: In this part of the chapter: 1) IN N ×N identity matrix. 2) AT ,AH

transpose and conjugate transpose of A; 3) ||a|| is the 2-norm of vector a; 4) ||A||F

is the Frobenius norm of matrix A; 5) |A|, tr(A) are, respectively, determinant and

trace of A. 6) x ∼ N (µ,Σ) stands for x multivariate normal with expected value µ

and covariance Σ.

Fault localization is a two-step process that first detects a fault and then seek to

determine the location of said fault. This part of the cahpter focuses on the latter,

when a fault has already been detected (for instance using the method we presented

in [Jamei et al.(2017b)], that also provides an estimate of the beginning and end of

the transient event associated with the fault). To keep the formulation general for
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balanced and unbalanced grids with transposed/untransposed lines, we use the three

phase formulation of the Ohm’s law (instead of the sequence domain) so that single

and two phase lines can be considered. For a network of size N , let V and I denote

the nodal voltage and injection current M × 1 vectors:

V = [V T
1 , V

T
2 , ..., V

T
N ]T , I = [IT1 , I

T
2 , ..., I

T
N ]T

where Vi and Ii are column vectors of size 1, 2 or 3, depending on the number of

phases connected to bus i. From Ohm’s law:

I = YV (4.3.1)

where Y is the admittance matrix. The sources in the grid are modeled with their

Norton equivalent and their internal admittances are included in the Y matrix as well.

We wish to remark that even though the formulation is general, all the numerical

analyses are done using distribution grid test cases, and the algorithm has not been

tested against transmission case in our work.

Let us denote the pre-fault voltage and current as V0 and I0. If we assume that

a fault happens at bus j, we can decompose the nodal injection current post-fault as

IF + IE, where IE is a sparse vector containing the injected fault current at bus j in

its non-zero entries. The localization problem amounts to finding the most likely set

of indexes for these non-zero entries, given the observed measurements.

From (4.3.1), I0 = YV0 and when the measurements have stabilized during fault,

IF + IE = YVF where VF is the post-fault voltage1. Subtracting the pre-fault from

the post-fault equation:

(IF − I0) + IE = δI + IE = Y(VF −V0) = YδV (4.3.2)

1The assumption is that the post-fault data is recorded before any corrective protection measure

is taken so that the admittance matrix stays the same.
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4.3.1 The Statistical Measurements Model

Let us parse the equations (4.3.2) into those that are associated with available

PMU measurements and those that are not. Let K denote the total number of phases,

for which the nodal voltage and injection current are measured with PMUs. The ma-

trix Πa ∈ {0, 1}K×M is a selection matrix that picks the available measurements in

the voltage/current vector and Πu ∈ {0, 1}(M−K)×M selects the unavailable measure-

ments. Pre-multiplying both sides of (4.3.2) by Π = (ΠT
a | ΠT

u )T , and replacing Y

with YΠ−1Π (noting that Π−1 = ΠT ) we have:Πa

Πu

 (δI + IE) =

Πa

Πu

Y

(
ΠT
a ΠT

u

)Πa

Πu

 δV
δIa
δIu

+

IaE

IuE

 =

Yaa Yau

YT
au Yuu


δVa

δVu

 .

(4.3.3)

From (4.3.3), we obtain the two following set of equations:

δIa + IaE = YaaδVa + YauδVu (4.3.4)

δIu + IuE = YT
auδVa + YuuδVu (4.3.5)

Substituting δVu in (4.3.4) using (4.3.5) and reordering some terms:

z =

H︷ ︸︸ ︷(
I | − (Yaa −YauY

−1
uuYT

au)
)

s︷ ︸︸ ︷ δIa
δVa



=

D︷ ︸︸ ︷
(−I | YauY

−1
uu )

x︷ ︸︸ ︷IaE

IuE

+

C︷ ︸︸ ︷
YauY

−1
uu

ε︷︸︸︷
δIu

(4.3.6)

The term Cε can be viewed as a noise term, while the term Dx, in which x is a sparse

vector (i.e. the vector IE reordered) whose non-zero entries point to the sites of the

fault.
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Remark. Generally speaking, the noise term Cε will be relatively small, if the con-

stant impedance loads and capacitors/reactors are also included in the Y matrix,

instead of being modeled in the current injection vector. For constant power loads,

their equivalent admittance at the nominal voltage can be included in the bus admit-

tance matrix, and the deviation of the actual consumed power from the nominal can

be included in the nodal injection vector, so that a similar model can be adopted when

the assumption of constant power loads is more appropriate. This modeling implies

that the vectors IF and I0 are small and, accordingly, their difference δI is small as

well.

Assuming that2 ε ∼ CN (0, σ2
εI), whitening the noise term is appropriate. Let the

singular value decomposition of C be:

C = UΣWH (4.3.7)

where U is a (K × K̃), K̃ ≤ K containing the columns spanning the column space of

C, Σ is a diagonal matrix with non-zero singular values of C on its diagonal entries

and W is of size (M −K)× K̃ containing the columns spanning the row space of C.

Pre-multiplying z by Σ−1UH , we have:

y = Σ−1UHz = ε+ Fx (4.3.8)

where F = Σ−1UHD and the noise ε = WHε and, since W is semi-unitary, ε ∼

CN (0, σ2
εI).

We formulate the fault location hypotheses testing problem based on (4.3.8). Let

H` denote the hypothesis that a fault has occurred at location ` ∈ Ft, where Ft is a set

of candidate locations for a detected fault t. To better understand the structure of Ft,
2The pseudo-covariance matrix is assumed to be zero for all complex normally distributed vectors

so it is omitted from the definition for simplicity.
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consider the three-phase diagram in Fig. 4.3.1 of a sample 5-bus system including 3

three-phase nodes and two single phase nodes: suppose that detected fault t indicates

1a

1b

1c
4b

2a

2b

2c

3a

3b

3c

5a

Figure 4.3.1: Sample Three-Phase Line Diagram.

a three phase fault. The candidate fault locations are:

Ft =
{
{1a, 1b, 1c}, {2a, 2b, 2c}, {3a, 3b, 3c}

}
and buses 4 and 5 are excluded since they are single phase.

Let us assume that the noise variance σ2
ε is known. We also assume that: 1)

conditioned on the hypothesisH`, the sparse vector x has its non-zero entries normally

distributed. This can be captured by x|H` ∼ CN (µ`,Φ`), where µ` is a sparse vector

containing the expected value for the fault current under hypothesisH` at its non-zero

entries and Φl = E[xxH |H`] is a diagonal covariance matrix, which is only non-zero

at entries corresponding to the candidate location `. Thus:

Fx|H` ∼ CN (Fµ`,FΦ`F
H)

Assuming that Fx|H` and ε|H` are independent, we have:

y|H` ∼ CN (

m`︷︸︸︷
Fµ`,

Ψ`︷ ︸︸ ︷
σ2
εI + FΦ`F

H) (4.3.9)

80



Denoting by f(y|H`) the probability density function of y|H` and by λ`(y) = ln f(y|H`)

the log-likelihood function, the maximum likelihood (ML) detector of the fault loca-

tion is:

`∗ = argmax
`∈Ft

λ`(y)

= argmin
`∈Ft

(y −m`)
HΨ−1` (y −m`) + ln(πK |Ψ`|). (4.3.10)

In this case, the values of these non-zero entries in the mean and covariance are not

known but can be approximated. Suppose that there is a PMU installed at each

source node in the grid (e.g., substation, generators,...). Let the vectors Is,0 and

Is,F denote the sum of the current injected by each source for each faulty phase into

the grid during pre and post-fault condition, respectively. Fig. 4.3.2 shows one-line

diagram of a sample test case after a fault, which is supplied through sources 1 and 2.

There is a PMU installed next to each one measuring the three-phase line pre-fault

Source 1 Source 2

65I12I

1 2 3 4 5 6

PMU 1 PMU 2

Figure 4.3.2: Composition of Vectors Is,0 and Is,F .

currents I12,0 = (ia12,0, i
b
12,0, i

c
12,0)

T and I65,0 = (ia65,0, i
b
65,0, i

c
65,0)

T and post-fault currents

I12,F and I65,F . Assume that the fault detectors indicate that a fault is on phase b

and c. The vectors, Is,0 and Is,F are formed as follows for this fault:

Is,0 = [ib12,0, i
c
12,0]

T + [ib65,0, i
c
65,0]

T

Is,F = [ib12,F , i
c
12,F ]T + [ib65,F , i

c
65,F ]T

Forming the vectors Is,0 and Is,F for other types of fault follows a similar approach.

Note that if P denotes the number of faulty phases, the vectors Is,0 and Is,F are of
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size P × 1. We can use these vectors to estimate the values of the mean and the

covariance of the non-zero entries of IE. We first define matrix Al ∈ {0, 1}M×P that

is zero everywhere except for a block equal to the identity matrix IP corresponding to

the fault location indexed by l. For a given fault at node `∗, the value of the non-zero

entries in µ` equal approximately to the sum of the currents flowing from the sources

into the grid minus the current flowing into the grid before the fault occurred on the

corresponding faulty phases. Denoting by δIs = (Is,F − Is,0), no matter where the

fault is, we can use the following approximation:

µ` = E[x|Hl] = AlδIs (4.3.11)

Also, the variance can be set to be a certain percentage of the value |[δIs]j|2, i.e.

[Γs]jj = ρ|[δIs]j|2, where ρ accounts for the percentage approximation error made in

assuming that the fault current is completely accounted for by the source currents

change. Hence:

Φ` = AlΓsA
T
l → Ψ` = σ2

εI + FAlΓsA
T
l FH (4.3.12)

Before going through the discussion of the fault identifiability, it should be noted

that we have introduced faults at nodes, to have finite and countable number of

hypotheses. In reality, a fault occurs on a line. If the method was able to locate the

fault at full resolution, then the two nodes with the highest λl(y) would determine

the faulty line. However, as we discuss in the next section, the fault localization

method here can locate a fault with low-resolution up to a certain neighborhood of

the actual location, and therefore putting a fault on a line or on its closest node would

not change the end result.
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4.4 Fault Location Identifiability

If for a given fault at location `∗, the value of the metric λ`(y) in (4.3.10) is close to

λk(y) (k 6= `∗, ` = `∗), the location of the fault can be mis-identified due to different

sources of error such as approximation errors, noisy measurements, etc.

Definition. For each possible `∗ a cluster is a set of nodes for which λ`(y) ≈ λ`∗(y)

under y|H`∗.

We wish to investigate if the properties of the grid and the connection of the nodes

affect the closeness of the log-likelihood value in (4.3.10), using the Kullback-Leibler

(KL) divergence [Kullback and Leibler(1951)] of the two probability density functions

f(y|H`) and f(y|Hk). The KL divergence is:

DKL(f(y|H`)‖f(y|Hk)) = ln
|Ψk|
|Ψ`|

+ tr
(
Ψ−1k Ψ`

)
−K

+
(
F(Ak −A`)δIs

)H
Ψ−1k

(
F(Ak −A`)δIs

)
(4.4.1)

In this application the weighted mean of the observations is very large compared to

the noise σ2
ε . This leads to the following proposition, which is valid in our application:

Proposition 2. Let F̃k = FAkΓ
1/2
s , ξ = Γ−1/2s δIs and assume: ∀k ‖F̃k‖2F

σ2
ε
� 1. Then,

the following holds:

DKL(f(y|H`)‖f(y|Hk)) ≈
ξHF̃H

` Π̃
⊥
k F̃`ξ

σ2
ε

(4.4.2)

where Π̃
⊥
k = (I−F̃k(F̃

H
k F̃k)

−1F̃H
k ) is the projector onto the subspace orthogonal to the

columns of F̃k.

Proof. First, the first and the second terms in the KL divergence expression are just

a function of the covariance matrices. Therefore, the following approximation holds:

DKL(f(y|H`)‖f(y|Hk)) ≈ ‖F(Ak −A`)δIs‖2Ψ−1
k

(4.4.3)
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Second, we note that F(Ak−A`)δIs = (F̃k− F̃`)ξ and applying the matrix inversion

lemma and using the assumption
‖F̃k‖2F
σ2
ε
� 1:

Ψ−1k =
1

σ2
ε

(I − F̃k(σ
2
εI + F̃H

k F̃k)
−1F̃H

k ) ≈ 1

σ2
ε

Π̃
⊥
k (4.4.4)

Noting that by definition Π̃
⊥
k F̃k = 0, the statement follows.

Note that F̃k include a weighted subset of columns of the matrix F = Σ−1UHD

defined after (4.3.8). Let fk denote a column of the matrix F. Their correlation is

the absolute value of the cosine of the angle between them:

r`k =
|fH` fk|
||f`|| ||fk||

(4.4.5)

From what has been shown, as r`k increases for two locations ` and k, the divergence

of their corresponding hypotheses reduces and therefore it is more likely that they

are mistaken with each other. Locations with high correlation coefficient belong to

the same cluster.

What we wish for the design is to have the sizes of the classes of vectors with

high mutual correlation to be as even as possible, so that we can have the finest

localization resolution. The consequence that we draw from this observation is that,

it is desirable to have the matrix F with the flattest possible spectrum. It is worth

noting that the rows of F are orthogonal and its spectrum is easily relatable to the

placement. In fact, DDH = (I + CCH) since D = (−I | YauY
−1
uu ) = (−I | C) and,

because of (4.3.7):

FFH = Σ−1UH(I + CCH)UΣ−1 = (Σ−2 + I) (4.4.6)

which clearly indicates that in designing the placement we want as flat a spectrum

as possible for CCH = YauY
−1
uuY−Huu YH

au, since Σ−2 are the eigenvalues of its inverse.

This suggests to minimize the so called Shatten infinity norm of the matrix YauY
−1
uu ,
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which is the infinity norm ‖σ‖∞ of the vector σ containing the non-zero singular

values of YauY
−1
uu .

4.4.1 Optimal Phasor Measurement Unit Placement

Let P denote the set of all permutation matrices. We present the following place-

ment strategy:

Πopt = argmin
Π∈P

‖σ(YauY
−1
uu )‖∞

s.t. ΠYΠT =

Yaa Yau

YT
au Yuu

 (4.4.7)

From (4.4.7), the placement problem is combinatorial and exponentially complex

so it does not scale well. We use a greedy search as an alternative to reduce the

time complexity to polylog. The pseudo-code of the used greedy search is shown in

Algorithm. 4.2. In spite of the complexity of (4.4.7) it is possible to predict how

to obtain good placements looking at the structure of the graph, and particularly

of its natural clustering in sub-graphs with higher connectivity within themselves

(in network science, these sub-graphs are often referred to as communities). This

is because the spectral properties we are seeking can be tied to selecting nodes in

such a way that the sparsity patterns of the rows of Yau and of Yuu separate in

clusters. Since there are few observable nodes, the rank of the matrix Yau is limited

by its number of rows. The algorithm performs best if the rows of YauY
−1
uu are

as uncorrelated from each other as possible. Given the similarity of line parameter

values, low correlation is mostly attained by having non overlapping support among of

the rows in YauY
−1
uu . As the next example illustrates, this can be attained by having

Yuu as close as possible to a block diagonal matrix, where the diagonal blocks as

matched to the non zero portions of rows Yau. This is possible if the neighborhoods
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Algorithm 4.2: Greedy Search Pseudo-Code for PMU Placement.

Initialization

P := Number of available PMUs;

S := Number of source nodes;

P := {Source Nodes} //Nodes with PMU;

M := Set of candidate placement buses;

begin

for p=1..P-S do

Cost←∞;

for each m ∈M do

P := P ∪ {m};

given P , calculate ‖σ(YauY
−1
uu )‖∞;

if ‖σ(YauY
−1
uu )‖∞ < Cost then

mopt ← m;

Cost← ‖σ(YauY
−1
uu )‖∞;

P := P \ {m};

P := P ∪ {mopt};

M :=M\ {mopt};
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of the buses where the sensors are located, have the smallest intersection possible.

For example, for the system in Fig. 4.4.1, if the PMUs are placed at bus 2 and 5, the

1 2 3 4 5 6
34y 45y 56y12y

23y

Figure 4.4.1: One-Line Diagram of a Sample Radial Network

admittance matrix is partitioned in the following desirable way:

Y =



y2 0 −y12 −y23 0 0

0 y5 0 0 −y45 −y56

−y12 0 y1 0 0 0

−y23 0 0 y3 −y34 0

0 −y45 0 −y34 y4 0

0 −y56 0 0 0 y6


This design is clearly distancing the PMUs in the graph and dividing the network in

neighborhoods, each associated with one of the sensors immediate and two hop neigh-

bors where measurements are unavailable. The ambiguity that remains is confined

to a connected set of buses that are topologically close to the PMU sensors. Hence,

the optimum resolution for a certain grid is tied to the same intrinsic topological

properties that are studied in graph clustering.

4.5 Numerical results and applications

In this section, we first corroborate our technical discussion and then showcase its

application in the forensic analysis of cyber attacks to FLISR systems. In the numer-

ical simulations we use the IEEE-34 bus and 123 test feeders (c.f. [Kersting(2001)]).
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4.5.1 Sensor Placement and Identified Clusters

Before analyzing the results of the fault identification algorithm based on (4.3.10),

we identify the greedy-based placement for the PMUs based on (4.4.7). We highlight

the clustering by showing the values of r`k in (4.4.5) that exceed a certain threshold

τ through images (all r`k < τ are set to zero).

4.5.1.1 IEEE-34 Bus Test Feeder

The one-line diagram of the test-case is shown in Fig. 4.5.1, where a 100 kW generator

is added at bus 848. This grid is unbalanced and radial and has untransposed lines

and one phase laterals. Also, without loss of generality, only the nodes at the same

voltage level have been studied. As did the placement on the reduced network, where
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812 814
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850

816

818

820

822

824 826

828 830 854 856

852

R2

832

838

862

840836860834858

864
842

844

846

848

Substation

DG1

Figure 4.5.1: Reduced IEEE-34 Test Case with Added Generator.

the laterals are rolled up to avoid putting a PMU on a single phase node. Assuming

that there are 4 PMUs available i.e., P = 4, Table. 4.2 shows the greedy-based

location of the sensors and the random placement used as a comparison. Since this

is a small case, we are able to do the exhaustive search to understand how well the

greedy search has performed. For this purpose, we calculated the relative optimality

gap that shows a value of 0.75% for the greedy-based search versus 7.61% for the
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Table 4.2: PMU Locations for IEEE-34 Bus

Test Case #PMUs Greedy-based sites Random sites

IEEE-34 4 800-830-848-840 800-814-816-848

random case that puts the greedy-based to fall below 1% optimality gap.

It is clear from the locations in Fig. 4.5.1 according to Table. 4.2 that the sensors

are placed to cover the grid. Fig. 4.5.2(a) shows the thresholded correlation (4.4.5)

of the columns of F corresponding to phase-A for the greedy-based placement in

Table 4.2 and Fig. 4.5.2(b) is the same quantity for the F that corresponds to the

random choice. Since high correlation leads to low KL divergence, the clusters of light

gray values effectively represent fault locations that are hard to discriminate. The

larger the cluster, the lower the resolution. Hence, Fig. 4.5.2(b) clearly illustrates

the impact on the resolution of a bad sensor siting, when compared to the clustering

that emerges in Fig. 4.5.2(a). The correlation coefficients heat-map for the columns

Random Placement
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Figure 4.5.2: Correlation of Columns of F for IEEE-34 Bus Case Related to Phase-A

for a) Greedy-based Location b) Random Location with τ = 0.814

corresponding to phase-B and phase-C in the matrix F have a similar pattern as

in Fig. 4.5.2. To corroborate our conjecture that the placement is affected by the

89



intrinsic topology of the graph and its clusters, in Fig. 4.5.3 we highlight the set of

buses that exhibit high correlation based on the greedy-based placement, by building a

graph adjacency matrix such that its `k entry [A]`k = u(r`k−τ)3 using the correlation

coefficients of columns of F corresponding to phase-A and overlaying it on the IEEE-

34 test case topology. As we predicted, the highly correlated nodes are those that are

800 802 806 808 812 814

828 830 854

832

858 834 860 836 840

862

850 816 824

852

848
822

846
820

844
818

864 842

Figure 4.5.3: Adjacency Matrix Graph for Correlation Coefficients of Columns of F

with τ = 0.814 Corresponding to Phase-A.

located in a neighborhood of each other.

4.5.1.2 IEEE-123 Bus Test Feeder

The analysis of the larger IEEE-123 test case, with a greedy-based assignment of

10 PMUs, returns the results in Table 4.3. Once again, we did the placement after

rolling up the single and two-phase laterals and only nodes at the same voltage level

are analyzed. The one-line diagram and node numbering of this case can be found

in [Kersting(2001)]. The PMUs in this case also are spread over different areas of

the grid topology to form communities of neighboring nodes of comparable sizes.

3u(x) is the step function u(x) = 1 if x > 0 and u(x) = 0 else.
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Table 4.3: Greedy-based Sensor Locations for IEEE-123 Bus

Test Case #PMUs Greedy-based Location

IEEE-123 10 149-81-61-56-105-250-86-151-72-57

The thresholded heat-map given in Fig. 4.5.4 based on the placement of Table 4.3,

highlights the balance across clusters.

Optimal Placement
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1

Figure 4.5.4: Correlation of Columns of F for IEEE-123 Bus Case Related to Phase-A

for Greedy-based Location with τ = 0.814

4.5.2 Fault Localization Algorithm

The synthetic PMU data for this experiment were generated using the OpenDSS

software [Dugan(2012)]. We first record the pre-fault data were using a power-flow

snapshot and then we introduce a fault in the dynamic mode to represent the behavior
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of the grid after a fault occurs. Note that the tap changers usually have a delay for

15-30 seconds in order to respond to a change so the voltage and current data should

be recorded before the tap value changes, so that the admittance matrix stays the

same before and after the fault.

4.5.2.1 IEEE-34 Bus Test Feeder

Fig. 4.5.5 shows the value of the log-likelihood function λ`(y) for different hypotheses

when a single-phase to ground fault occurs at phase-A of bus 820. As our analysis
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Fault Location Candidate Bus

Figure 4.5.5: Log-Likelihood Value for Fault at Bus 820-Phase-A

indicated, using the metric in (4.3.10) shown in Fig. 4.5.3 it becomes readily apparent

that one can narrow down the location of the fault up to a certain resolution, since a

cluster of nodes return very close log-likelihood value. These are also the nodes that

correspond to high values of r`k with respect to the actual location of the fault. To

further test and verify the fault localization method, we introduce different types of

fault and show the results of the fault localization in Table 4.4 under the greedy-based

placement.
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Table 4.4: Identified Fault Locations for IEEE-34 Bus Case

Fault Type Exact Fault Location Locations with High-

est λ`(y)

LLL 816 814,816,850

A-G 822 814,816,818,820,822,850

BC-G 852 832,852,858

AC-G 836 836,840,862

AB-G 808 800,802,806,808

4.5.2.2 IEEE-123 Bus Test Feeder

We extend the analysis of the fault localization algorithm to IEEE-123 test case for

different types of fault after the placement of the sensors on the locations in Table 4.3.

Fig. 4.5.6(a) shows the log-likelihood value of different hypotheses for a three-phase

fault at bus 160. Part of the correlation coefficients heat-map that illustrates the

correlation of the columns that have high correlation with bus 160 is snipped out of

Fig. 4.5.4 and is illustrated in Fig. 4.5.6(b). As expected, the neighboring nodes that

also have high correlation with bus 160 are those which have the closest log-likelihood

value in our metric and can be mis-identified as the fault location.

Other types of faults and the potential locations with highest λ`(y) are summa-

rized in Table 4.5.

We introduce faults at different locations of the grid and the results show that the

fault is identifiable up to the resolution of the clusters of neighboring nodes identified

with the correlation coefficients. An interesting case is the two-phase fault at node

57 (last row in Table 4.5), where the fault is identifiable with a high resolution. This

is consistent with our claims, since the coefficients r`k reveal that there is no other
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Figure 4.5.6: a) Log-Likelihood Value for Three-Phase Fault at Bus 160 and b) Cor-

relation of Corresponding Columns of F-phase A.

node with very high correlation with this specific node.

4.5.2.3 Comparison with the State of the Art

Our approach in using the pre and post-fault samples and treating the fault as a

current injection improves upon the work in [Brahma(2011)] through its statistical

underpinning. To show this, we introduce a two-phase fault at bus 836-A-C and the

results are shown in Fig. 4.5.7. The original method in [Brahma(2011)] is designed as

a minimization problem to find the fault location so we changed it to a maximization

by adding a negative sign to make a better visual comparison with our method. The

results clearly show that our described method can locate the fault more accurately

than the algorithm in [Brahma(2011)].

Besides this improvement, investigating the reason behind this ambiguity is miss-

ing in [Brahma(2011)], whereas we have investigates this matter theoretically and

analytically in our work. In addition, we have presented a sensor placement strategy

here to place the sensors at nodes that would return the highest fault localization
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Table 4.5: Identified Fault Locations for IEEE-123 Bus Case

Fault Type Exact Fault Location Locations with High-

est λ`(y)

LLL 42 40,42,44,47,48

A-G 108 105,108,109,300,110,

111,112,113,114

BC-G 89 86,87,89,91,93,95

AC-G 50 47,48,49,50,51,151

AB-G 57 57

resolution.

4.5.3 Application to Cyber-Physical Intrusion Detection

We leveraged the insights from this work to enhance our network intrusion detec-

tion system testbed hosted at Lawrence Berkeley National Lab (LBNL) [Gentz(2017)]

and incorporate additional rules to monitor for cyber attacks that interfere with the

normal operations of FLISR systems [Uluski(2012)]. Our testbed (see Fig. 4.5.8) is

defined as a hierarchical architecture to fast-detect the presence of attacks against

networked devices controlling physical systems by correlating analytic results from

SCADA traffic (which includes traces from fault detector communications) with

PMUs deployed sparsely over a distribution system [Gentz(2017)].
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Figure 4.5.7: Fault Localization for Fault at Bus 836-A-C Using a) Method in

[Brahma(2011)] b) Described Method.

4.5.3.1 The FLISR System Operations and Vulnerabilities

FLISR systems detect the location of a permanent fault 4 in a feeder and automati-

cally restore service to customers in the healthy section of the feeder. To do so they

employ directional fault detectors, installed at every line in a distribution feeder, that

communicate the occurrence of a fault and its direction to a distribution manage-

ment system (DMS). The DMS analyzes these data and, once the faulted section

is identified, issues commands to a predetermined set of switches to first isolate the

faulted section and then restore service to the non-faulted areas [Uluski(2012)], so as

to minimize the service disruption. Consider the one-line diagram of a sample radial

network shown in Fig. 4.5.9 to describe how FLISR works. The network is connected

to a substation at bus 1 and a distributed generation is connected to bus 6. Fault

detectors and normally-closed switches are connected at the end of every line. When

a fault happens at line 3− 4, all the fault detectors detect the presence of this fault

4Temporary faults that clear themselves below a certain time threshold do not trigger the FLISR

operation.
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such that fault detectors at buses 1, 2 and 3 indicate that the fault is in their right

side, whereas fault detectors at buses 4, 5 and 6 indicate the fault is to their left.

Fault localization analysis at the DMS using this information identifies the faulted

section to be line 3 − 4. The DMS, therefore, sends control signals to automatically

open switches to the right of bus 3 and to the left of bus 4 splitting the network into

two parts and restoring service to customers on both sections.

Fault detector data is transmitted to the DMS through a wide area network using

industrial protocols such as DNP3 [IEEE(2012)] or Modbus [Modbus(2004)] which

are not designed with security concerns in mind. Therefore, a dedicated attacker

can tamper with fault detector data either remotely, through a compromised network

device (e.g., a router), or by physically connecting herself to an exposed section of

the communication network. For instance, the tampering can lead the DMS analysis

to pick the wrong location for an actual fault or hide the presence of a fault.

Although such attacks can be partially prevented by enabling photographically

authenticated communication on top of the stated communication protocols, such a

measure does not prevent the whole spectrum of possible cyber attacks. Therefore, a

more robust approach, that does not merely rely on cryptographic solutions, is desired

that is capable of detecting the presence of an attacker. The analysis we carried out

in this part of the chapter shows that, even with a very limited number of sensors

scattered in the systems, the PMU localization performed using (4.3.10) enhances an

operator’s confidence about the fault localization information (or the lack of thereof)

extracted from fault detectors data, by giving an additional means to verify the

trustworthiness of the SCADA messaging, albeit at a lower spatial resolution. In the

next section we illustrate the effectiveness of the forensic analysis on FLISR attacks

carried out using a experiment, with simulated streaming SCADA and PMU data, to

our LBNL testbed in Fig. 4.5.8.
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4.5.3.2 Intrusion Detection on Fault Detectors

In our simulation to demonstrate intrusion detection on fault detectors, we use the

modified IEEE 34-bus system shown in Fig. 4.5.10. We introduce a two-phase AC-

G fault at line 860 − 836. Our PMU data analytic results correctly indicate the

fault to be in Zone D. We generate simulated SCADA data for each fault detector

in the network using the openDNP3 library [Open DNP3 Group and others(2012)]

that implements the DNP3 communication protocol. In our simulation, we modify

the packets from some of the fault detectors (those at buses 834 and 860) so that

the SCADA data analytics indicate the fault is at line 834− 842, which is in zone C.

The inconsistent results from the PMU data analytics and the SCADA data analytics

raise an alarm about a possible cyber-attack on the fault detectors.
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Figure 4.5.8: LBNL Stream-Processing Architecture for Real-time Cyber-physical Se-

curity (SPARCS) used in our experiments [Gentz(2017)], [Peisert et al.(2017)], [Peisert

et al.(2018)]. Its components are: 1) The Bro IDS, the industry-standard, network

monitoring framework; 2) a publish-subscribe messaging system called RabbitMQ

used to transfer PMU and SCADA data and analysis results; 3) the Cassandra

database, used for permanent archiving of all data; 4) The Elasticsearch database,

which collects analysis results and receives events notifications in real time; 5) Bea-

gleBone Black (BBB) devices that receive synchrophasor data at a rate of 120 sam-

ples/sec, and analyze 1 sec. worth of data at a time to rapidly detect a cyber-physical

event [Jamei et al.(2016)].
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Figure 4.5.9: Diagram of a Sample Radial Network with a Fault in Line 3− 4.
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Figure 4.5.10: Output Mismatch as a Result of an Attack on SCADA data
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CHAPTER 5

GAS AND ELECTRIC GRID UNIT COMMITMENT WITH COORDINATED

N-1 GENERATOR CONTINGENCY ANALYSIS

The inter-dependency between the gas and electric grid is growing as the re-

liance on the gas-fired generators increases. Strong coupling between two large in-

frastructures requires a coordinated planning and operational framework. In fact,

the constraints of both grids must be respected, while their objective functions are

co-optimized. In this chapter, we present a new formulation for Gas and Electric

Grid Coordinated Unit Commitment (GECUC). We apply the standard DC power

flow approximation and propose a new formulation to relax the non-linear gas grid

constraints so that the GECUC can be mapped into a Mixed-Integer Linear Program

(MILP). In addition, the N-1 generator contingency security constraints are extended

to include the gas grid constraints and find the required reserve from gas wells and

generators after the loss of a generating unit.

Throughout the chapter, for simplicity of notation, the following convention is

made unless explicitly otherwise mentioned: ∀t ≡ ∀t ∈ T ,∀w ≡ ∀w ∈ W ,∀g ≡ ∀g ∈

G,∀i ≡ ∀i ∈ Vg,∀k ≡ ∀k ∈ Eg, ∀b ≡ ∀b ∈ Ee, ∀q ≡ ∀q ∈ Q.

AT and [A]m denotes the transpose and m-th element of A, respectively, and finally

T = |T |.

5.1 Gas Network

The following components comprise the natural gas grid.

Suppliers and Loads: Gas is injected or withdrawn at different points in the

gas grid. Most of the gas is supplied by the wells. The gas loads could be residential,

commercial, or industrial (gas-fired generators are in the third category). Unlike for
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electric power systems, gas can be stored in some locations during the off-peak hours

and withdrawn during the peak hours. These locations therefore play the role of

supplier during some hours and of load during the other hours.

Pipelines: Similar to power grid lines, the pipelines in a natural gas grid are

designed to deliver gas from suppliers to loads. Generally speaking, gas grids are

radial or very weakly-meshed.

Compressors: Since the gas pressure drops over the gas pipeline, compres-

sors are placed at different points of the grid (usually every 50-100 miles) [Misra

et al.(2015)] to increase the gas pressure. Some compressors use part of the natural

gas to run their engines, and others use electricity. Gas pipelines with compressor are

referred to as active pipelines, which also form the set Eag ⊆ Eg, while the pipelines

without a compressor are referred to as passive pipelines.

5.1.1 Steady-State Gas Flow Equations

For a passive pipeline k that is defined “from” bus i “to” bus j, the relationship

between the gas flow over the line and the nodal pressure at two ends is as follows

[Misra et al.(2015)]:

π2
i − π2

j = hkfk|fk|, ∀k ∈ Eg\Eag . (5.1.1)

where the constant hk depends on the pipeline friction factor, diameter, length, gas

compressibility factor, gas constant, and gas temperature. The relationship in (5.1.1)

can be extended to include active pipelines, i.e.,

ρ2kπ
2
i − π2

j = hkfk|fk|, ∀k ∈ Eg. (5.1.2)

where ρk is the compression ratio of line k, that is the ratio of the compressor outlet

and inlet square pressure. Clearly, for passive pipelines, ρk = 1, and therefore (5.1.2)
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reduces to (5.1.1). In eq. (5.1.2), it is assumed that the compressors are placed at the

“from” node of the pipelines for simplicity of notation. However, the model is simply

extendable to more general cases.

5.1.2 Optimal Gas Flow (OGF) Problem

Similar to the Optimal Power Flow (OPF) in the electric grid, the objective of the

OGF is to find the economic hourly schedule of the gas wells/storage, while respecting

the constraints of the gas grid. Throughout the chapter, it is assumed that the gas

wells are always committed. For simplicity, the gas storage is modeled similar to a

gas well, which allows for zero production unlike the gas well , which the minimum

production is constrained based on a contract, but the inter-temporal constraints of

the storage have not been considered. The problem is then formulated as:

Minimize:
∑
t∈T

∑
w∈W

dwGw(t) + dresw rgw(t) (5.1.3)

Subject to:

Gw(t) ≥ Gmin
w , ∀t, w (5.1.4a)

Gw(t) + rgw(t) ≤ Gmax
w , ∀t, w (5.1.4b)

rgw(t) ≥ 0, ∀t, w (5.1.4c)∑
w∈W

rgw(t) ≥ βgas
∑
i∈Vg

Li(t), ∀t (5.1.4d)

∑
w∈W(i)

Gw(t) +
∑
k∈µ+i

fk(t)−

∑
k∈µ−i

fk(t) = Li(t)

∀t, i (5.1.4e)

πmini ≤ πi(t) ≤ πmaxi , ∀t, i (5.1.4f)

ρk(t)πi(t) ≤ πmaxpipe ∀t, k ∈ Eag (5.1.4g)
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π2
i (t) = π2

s , ∀t, i ∈ Ws (5.1.4h)

ρ2k(t)π
2
i (t)− π2

j (t) = hkfk(t)|fk(t)|, ∀t, k (5.1.4i)

The gas production at each well/storage is limited by the contracts and the capacity of

the production, which is imposed by (5.1.4a) and (5.1.4b). For a storage, the minimum

limit would be zero. The gas nodal balance constraint is imposed by (5.1.4e). Similar

to the electric grid, we define a variable rgw(t) to account for an increase in the gas

demand, when a contingency of a base-load generator in the electric grid happens,

and as a result some of the gas generators are re-dispatched/committed to make up

for the lost generator, especially in the form of non-spinning reserve. It is assumed

that the summation of the potential reserve over all the wells/storage at each hour

should be greater than βgas ∈ (0, 1) times of the net gas base-case load at that hour.

The pressure limit at each node and pressure limit of the pipelines are imposed by

Eq. (5.1.4f),(5.1.4g). Finally, the pressure at the slack node is fixed.

The only non-linearity in the OGF appears in Eq. (5.1.4i) due to the quadratic

terms and the absolute value. In order to deal with the absolute value term, we first

define the following auxiliary variables:

fk(t) = f+
k (t)− f−k (t), f+

k (t) ≥ 0, f−k (t) ≥ 0 ∀t, k (5.1.5)

where f+
k (t) should be non-zero only when the flow is in the positive direction, oth-

erwise f−k (t) should be non-zero. To enforce this, we define:

zk(t) =


1 if fk(t) > 0

0 else

(5.1.6)

Therefore, after adding the following set of constraints to the problem:

0 ≤ f+
k (t) ≤M1Zk(t), ∀t, k (5.1.7a)
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0 ≤ f−k (t) ≤M1(1− Zk(t)), ∀t, k /∈ Eag (5.1.7b)

f−k (t) = 0, ∀t, k ∈ Eag (5.1.7c)

we can rewrite Eq. (5.1.4i), (5.1.4e) as:∑
w∈W(i)

Gw(t) +
∑
k∈µ+i

(
f+
k (t)− f−k (t)

)
−

∑
k∈µ−i

(
f+
k (t)− f−k (t)

)
= Li(t)

∀t, i (5.1.8a)

ρ2k(t)π
2
i (t)− π2

j (t) = hk
(
f+2

k (t)− f−2

k (t)
)
, ∀t, k (5.1.8b)

In the added constraints above, M1 is a parameter and is chosen to be a big enough

value for the flow. Also, constraint Eq. (5.1.7c) is added to account for the fact

that the active pipelines only pass the flow in one direction. The advantage of this

reformulation is that the flow direction has been implicitly considered using linear

constraints. However, new variables including new binary variables have been intro-

duced that can add to the complexity of the problem. Also, the number of constraints

of the problem has increased compared to the non-linear formulation.

The only remaining non-linearity is due to the quadratic terms. For the pressure,

it is easy to define the auxiliary variables as follows:

π2
i (t) = π̃i(t)⇒ π̃mini ≤ π̃i(t) ≤ π̃maxi , ∀t, i (5.1.9)

ρ2k(t)π̃i(t) ≤ π̃maxpipe ∀t, k ∈ Eag (5.1.10)

π̃i(t) = π2
s , ∀t, i ∈ Ws (5.1.11)

However, the same approach cannot be used for the flow terms as the flow itself (and

not the squared flow) appears in the gas nodal balance constraint. We use a piece-

wise linearization formulation of the flows f+2

k and f−
2

k over a range [0,M2] in this

case. The following constraints are therefore added to the problem:

γ+k (t) ≥ α[n]f+
k (t) + β[n], ∀t, k, n (5.1.12)
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γ−k (t) ≥ α[n]f−k (t) + β[n], ∀t, k, n (5.1.13)

where γ+k (t) and γ−k (t) are approximations of f+2

k (t) and f−
2

k (t) over a range M2,

respectively. α[n] and β[n] are the coefficients of the piece-wise linearized quadratic

curve. The constraint Eq. (5.1.8b) is then rewritten as:

ρ2k(t)π
2
i (t)− π2

j (t) = hk
(
γ+k (t)− γ−k (t)

)
, ∀t, k (5.1.14)

The objective function in Eq. (5.1.3) should also change accordingly in order to make

sure γ+k (t) and γ−k (t) does not sit above the second order curve as follows:

Min
∑
t∈T

( ∑
w∈W

dwGw(t) + dresw rgw(t)

+
∑
k∈Eg

a1γ
+
k (t) + a2γ

−
k (t)

) (5.1.15)

where a1 and a2 are the weights of the added terms in the objective function.

5.2 GECUC Formulation

The GECUC problem formulation brings the OGF and UC problem under a

unified framework. In the numerical results, we show how solving a UC irrespective

to the gas grid constraints can result in infeasible scheduled grid operation. The

optimization problem can then be formulated as follows1:

Min
∑
t∈T

(∑
g∈G

(
CxT

g Xg(t) + CrT

g Rg(t) + cnlg ug(t)

+ cstg vg(t)
)

+
∑
w∈W

(
dwGw(t) + dresw rgw(t)

)
+
(∑
k∈Eg

a1γ
+
k (t) + a2γ

−
k (t)

))
(5.2.1)

where the q-th element of vector Xg(t) with size |Q|, corresponds to the power pro-

duction at time t of generator g for segment q, Pg,q(t) and the corresponding element

1AT is the transpose of vector A.
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in vector Cx
g is the cost related to it. For generator g at time t, the generation reserve

vector is defined as:

Rg(t) = [rrug (t), rrdg (t), rsg(t), r
ns
g (t)]T

where the elements correspond to the regulation-up, regulation-down, spinning, and

non-spinning reserve, respectively. Accordingly, the cost related to each reserve is

defined in the vector Cr
g.

The minimization is subject to the power grid and gas grid constraints that are

presented in the following sections.

5.2.1 Power Grid Constraints

The power grid constraints are split into three parts. The first part goes over the

production and reserve level requirements. The second part describes the ramp-rate

limits, and finally the third part explains the constraints on commitment variables.

1) Production and Reserve Limits

Pg(t) = 1T .Xg(t), ∀t, g (5.2.2a)

[Xg]q.ug(t) ≤ [Xg(t)]q ≤ [Xg]q.ug(t), ∀t, g, q (5.2.2b)

Pg(t) + [1, 0, 1, 0].Rg(t) ≤ Pmax
g .ug(t), ∀t, g (5.2.2c)

Pmin
g .ug(t) ≤ Pg(t)− [Rg(t)]2, ∀t, g (5.2.2d)∑
g∈G

[Rg(t)]m ≥ βel
∑
n∈Ve

dn(t), ∀t,m = 1, 2 (5.2.2e)

∑
g∈G

[Rg(t)]3 ≥
1

2
max
g

(Pmax
g ), ∀t (5.2.2f)

[0, 0, 1, 1].
∑
g∈G

Rg(t) ≥ max
g

(Pmax
g ), ∀t (5.2.2g)∣∣∣∣∣∣

∑
n∈Ve

PFR
b,n

 ∑
g∈G(n)

Pg(t)− dn(t)

∣∣∣∣∣∣ ≤ Plmax,ab ,∀t, b (5.2.2h)
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∑
g∈G

Pg(t) =
∑
n∈Ve

dn(t). ∀t (5.2.2i)

The vectors Xg and Xg are defined as follows:

Xg = [Pmin
g , 0, 0, ..., 0]T ,

Xg = [Pmin
g , Pmax

g,2 , Pmax
g,3 , ..., Pmax

g,q , ..., Pmax
g,|Q|]

T

where Pmax
g,q is generator g production upper-limit corresponding to segment q of the

piece-wise constant cost-function. Note that in this constraint, the generation for

segment 1 is forced to be equal to Pmin
g .

Constraints (5.2.2b)-(5.2.2d) ensures that generator g does not violate its gener-

ation limits. Constraints (5.2.2e)-(5.2.2g) define the requirements on the amount of

spinning and non-spinning reserves, and constraints (5.2.2h)-(5.2.2i) are the power-

flow model.

2) Ramp-Rate Limits

Provided generation reserve is limited by the ramp-rate limits of the genera-

tors, and are enforced through constraints (5.2.3a)-(5.2.3f). Constraints (5.2.3g) and

(5.2.3h) on the other hand impose the hourly inter-temporal constraint on the gen-

erators.

0 ≤ [Rg(t)]m ≤ [Sg]1.ug(t), ∀t, g ∈ Ga,m = 1, 2 (5.2.3a)

[Rg(t)]m = 0 ∀t, g /∈ Ga,m = 1, 2 (5.2.3b)

[1, 0, 1, 0].Rg(t) ≤ [Sg]2.ug(t), ∀t, g (5.2.3c)

0 ≤ [Rg(t)]4 ≤ [Sg]2.(1− ug(t)), ∀t, g ∈ Gf (5.2.3d)

[Rg(t)]4 = 0, ∀t, g /∈ Gf (5.2.3e)

0 ≤ [Rg(t)]3, ∀t, g (5.2.3f)

Pg(t)− Pg(t− 1) ≤ [Sg]3.ug(t− 1) + [Sg]5.vg(t), (5.2.3g)
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Pg(t− 1)− Pg(t) ≤ [Sg]3.ug(t)+

[Sg]4.(vg(t)− ug(t) + ug(t− 1)). ∀t, g
(5.2.3h)

For generator g, the ramp-rate limit vector is defined as:

Sg = [s5g, s
10
g , s

60
g , s

SD
g , sSUg ]T

where the elements correspond to the generator 5-minute, 10-minute, 60-minute, shut-

down, and start-up ramp-rate limit, respectively.

In these constraints, the time horizon over which the commitment problem is

solved is treated cyclically, i.e.,

t− s ≡ T − (t− s) ∀ s ≥ t. (5.2.4)

3) Commitment Variable Constraints

The explicit constraints on the unit commitment variables are presented in eqs. (5.2.5a)-

(5.2.5d). Similar to the previous part, the time horizon is cyclical in these equations.

ug(t) ∈ {0, 1}, 0 ≤ vg(t) ≤ 1, ∀t, g (5.2.5a)

vg(t) ≥ ug(t)− ug(t− 1), ∀t, g (5.2.5b)

t∑
s=t−UTg+1

vg(s) ≤ ug(t), ∀t, g (5.2.5c)

t∑
s=t−DTg+1

vg(s) ≤ 1− ug(t−DTg), ∀t, g (5.2.5d)

5.2.2 Gas Grid Constraints

Constraints (5.1.4a)-(5.1.4d),∑
w∈W(i)

Gw(t) +
∑
k∈µ+i

(
f+
k (t)− f−k (t)

)
−

∑
k∈µ−i

(
f+
k (t)− f−k (t)

)
−
∑
g∈S(i)

Pg(t)ηg = Li(t),

∀t, i (5.2.6)
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Constraints (5.1.7a)-(5.1.7b), and (5.1.9)-(5.1.14).

Compared to the nodal balance constraint in (5.1.4e), the new nodal balance

constraint of the gas grid in (5.2.6) includes the demand of the gas-fired generators

supplied from the gas grid, where Pg(t) is also a variable for the electric grid. This

equation is, in fact, what couples the two infrastructures.

Based on the current common practice, it is assumed that the compressor ratio is

set by the operator heuristically rather than being optimally chosen, and is imported

in the formulation as a parameter over the normal operation.

5.3 Coordinated N-1 Generator Contingency Analysis

Coordinated scheduling of the two infrastructures over the normal operation is

necessary but not sufficient. This becomes more evident when we look at the problem

in the context of N-1 generator contingency analysis, where losing a large generator

usually means a sudden increase in natural-gas demand. The increase is due to the

re-dispatch/commitment of the gas-fired generators to support the grid with spinning

and, more critically, non-spinning reserves. Therefore, it is important to make sure

that the planned contingency dispatch respects the constraints of the gas and electric

grid using a coordinated N-1 generator contingency analysis.

The following constraints are then added to the GECUC formulation to account

for N-1 generator contingency analysis.

5.3.1 Power Grid Constraints

Constraint (5.3.1a) enforces the power flow in the lines to stay within the rate-c

limit after a generator contingency occurs. The required contingency reserve and the

limits on the available contingency reserve are imposed through constraints (5.3.1b)-
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(5.3.1e). ∣∣∣∣∣ ∑
n∈Ve

PFR
b,n

 ∑
g∈G(n)

(Pg(t) + rcg(t))− dn(t)

−
PFR

b,n(c)Pg=c(t)

∣∣∣∣∣ ≤ Plmax,cb , ∀t, b, c

(5.3.1a)

∑
g∈G

rcg(t) = Pg=c(t), ∀t, c (5.3.1b)

rcg=c(t) = 0, ∀t, c (5.3.1c)

0 ≤ rcg(t) ≤ [0, 0, 1, 1].Rg(t), ∀t, g, c (5.3.1d)

Pmin
g .ug(t) ≤ Pg(t) + rcg(t), ∀t, g, c (5.3.1e)

5.3.2 Gas Grid Constraints

For each contingency , c, and time t, the required contingency gas reserve after loss

of a generator and the limits on the gas pressure and the available gas reserve during

the contingency are imposed through constraints presented in (5.3.2a)-(5.3.2k).

0 ≤ rgcw(t) ≤ rgw(t), ∀w (5.3.2a)∑
w∈W

rgcw(t) =
∑
g∈Gw

rcg(t)ηg, (5.3.2b)

∑
w∈W(i)

(Gw(t) + rgcw(t)) +
∑

k∈µ+(i)

(
f c

+

k (t)− f c−k (t)
)

−
∑

k∈µ−(i)

(
f c

+

k (t)− f c−k (t)
)

−
∑
g∈S(i)

(Pg(t) + rcg(t))ηg = GLi(t),

∀i (5.3.2c)

ρ2k(t)π̃
c
i (t)− π̃cj(t) = h(k)(γc

+

k (t)− γc−k (t)), ∀k (5.3.2d)

γc
+

k (t) >= α[n]f c
+

k (t) + β[n], ∀k, n (5.3.2e)

γc
−

k (t) >= α[n]f c
−

k (t) + β[n], ∀k, n (5.3.2f)
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f c
−

k (t) = 0, ∀k ∈ Eag (5.3.2g)

0 ≤ f c
+

k (t) ≤M1.Z
c
k(t), ∀k (5.3.2h)

0 ≤ f c
−

k (t) ≤M1.(1− Zc
k(t)), ∀k /∈ Eag (5.3.2i)

π̃mini ≤ π̃ci (t) ≤ π̃maxi , ∀i (5.3.2j)

ρ2k(t)π̃
c
i (t) ≤ π̃maxpipe , ∀k ∈ Eag (5.3.2k)

5.4 Numerical Results

In this section, we first show how an uncoordinated UC and OGF can lead to

an infeasible solution. We then show how solving GECUC for the base-case would

mitigate the problem. Finally, we include the coordinated contingency analysis in the

formulation of the GECUC.

In the simulation, the RTS-96 test case is considered as the power grid [Force(1999)].

The modified Belgium high-calorific gas grid in Fig. 5.4.1 is considered in this study,

with original grid data found in [De Wolf and Smeers(2000)]. The following modifi-

cations/assumptions are made in the gas grid data-set:

• All the gas wells/storage maximum production limits are increased by 75% to

account for the increased demand due to gas-fired generators,

• The given gas load data is the net demand for a day that is first divided by 24

to obtain average hourly load. This hourly value is considered as the mean of a

Gaussian random demand with standard deviation equal to 10−3 of the mean

value to consider for daily variations.

• The average hourly load of node 20 is assumed to be 1.5×104m3/h higher than

the given value.

• It is assumed that node 18 has a load with mean value 105m3/h, and therefore
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Figure 5.4.1: Belgium High-Calorific Natural Gas Grid.

the minimum pressure is changed from 0 in the main data-set to be equal to

minimum pressure of node 10.

• The values for hij are converted to hourly basis from daily basis.

• In the original data-set, there are a few parallel pipelines that are removed in

the modified case. For parallel pipelines with different properties, the one with

smaller diameter is removed.

• 50 MW gas-fired generators in RTS are modeled as combined cycle with effi-

ciency 50%.

• 20 MW gas-fired generators in RTS are modeled as only gas turbines with

efficiency 35%.

• It is assumed that 1 ft3 of natural-gas can produce energy equal to 1109 BTU .
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5.4.1 Uncoordinated UC and OGF Results

In this case, the UC is first solved and the gas-fired generators dispatch is sent to

the OGF as parameters from the UC. The location of the gas fired generators that

are assumed to be supplied from the Belgium grid are listed below:

Gas Node # RTS Bus # Generators IDs

12 101 1,2 (of 4)

18 102 1,2 (of 4)

20 122 1,2 (of 6)

6 322 3,4,5 (of 6)

Also, the compressor ratios are assumed to be: ρ8−9(t) = 1, ρ17−18(t) = 1.25.

The UC is solved with MIP Gap=0.1%, using GUROBI solver. In Fig. 5.4.2

top, the dispatch of some of the gas generators supplied from the studied gas grid is

presented. From Fig. 5.4.2 bottom, it can be observed that if this schedule were to be

implemented, the gas-flow limit on pipeline 17-18 would be violated. This flow limit

has been obtained assuming one end has the maximum pressure and the other end

has the minimum pressure, and therefore the flow in he pipeline is at its maximum.

This situation may not be attained because of the limits that other nodes put on

the pressure. For this uncoordinated scenario, what would happen in practice is a

shortage in gas-delivery due to the pressure drop. This example highlights the fact

that uncoordinated scheduling of the gas and electric can lead to infeasibility.

5.4.2 GECUC Results

In this case, with the same generator locations and assumption as the unco-

ordinated case, we run the optimization using the unified formulation with MIP

Gap=0.1%. Comparing the generators dispatch in this case to the uncoordinated
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Figure 5.4.2: Uncoordinated UC and OGF.

Table 5.1: Electric Grid UC Cost

Uncoordinated $2.9484M

Coordinated $2.9676M

case, it can be seen that the uncoordinated case changes the gas-fired generators

profile. Sometimes they are not committed to respect the gas grid constraints. In-

tuitively, this should have come at the expense of higher electric grid UC cost. As

expected, the cost in the coordinated case is higher than that of uncoordinated (c.f.

Table. 5.1) but the results are feasible for both gas and electric infrastructures.
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Figure 5.4.3: Dispatch results for GECUC.

5.4.3 GECUC with coordinated N-1 Generator Contingency Analysis Results

In the scenario, the GECUC is solve along with the coordinated N-1 generator

contingency analysis. The following gas-fired generators in RTS are assumed to be

supplied from the Belgium Grid:

Gas Node # RTS Bus # Generators IDs

20 101 1,2 (of 4)

18 102 1,2 (0f 4)

12 122 1,2,3 (of 6)

6 322 3,4,5 (of 6)

Also, the compressor ratios are assumed to be: ρ8−9(t) = 1, ρ17−18(t) = 1.25 To

illustrate a case, where coordinated N-1 generator contingency analysis is necessary,

the assumed list of gas-fired generators supplied by the Belgium Grid is different in
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here compared to part A.

Fig. 5.4.4 illustrates the reserves that need to be activated in the gas wells/storage

and gas-fired generators when generator 90 is out of service. It can be noted that the

gas reserve pattern successfully tracks the pattern of the gas-fired generators activated

reserve to meet the required demand.
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