49 research outputs found

    In-Soil Measuring of Sugar Beet Yield Using UWB Radar Sensor System

    Get PDF
    Yield mapping is a basic entity of the Precision Farming concept and provides crucial information about the success of cultivation. Several approaches to site-specific yield recording during the sugar beet harvest are known. Most of them are based on the weighing of sugar beets together with soil tare. Another real-time yield mapping approach with the option of plant population counting is based on estimating the mass of individual sugar beets on the basis of their maximal diameter. The main goal of the research was to develop and evaluate a yield recording procedure based on radar technology, which will provide non-invasive in-soil detection and identification of single sugar beets in order to enable the counting of individual sugar beets and determining of the single sugar beet root mass. Further goals were to enhance the radar technology for other applications in the agriculture, as a general goal, and to define applicability restrictions of practical utilisation of the system for the sugar beet and similar crops. The research activities have been divided into laboratory and field experiments. The results of the laboratory experiments have provided valuable information about the measuring system’s behaviour, which enabled the successful field measurements. The used method allowed the identification and detection of 90% to 96% of sugar beets under test in the various field conditions, with correlation coefficients between real sugar beet positions and detected positions of about 99%, and average positioning error from 1,1 to 3,6 cm. The correlation coefficients between single sugar beet root masses and recorded reflected energy amounts were for the majority of tests over 70%, and the best results have been on the level close to 90%. This project was a joint venture of the Institute for Agricultural Engineering from Bonn and the Technical University of Ilmenau.TeilflĂ€chenspezifische Ertragsmessung von ZuckerrĂŒben im Boden mittels UWB Radarsensorsystem Die Ertragskartierung ist ein wesentlicher Bestandteil des Konzeptes „Precision Farming“. Die Erntemasse von Kulturpflanzen ist fĂŒr den Landwirt eine elementare Information ĂŒber den Erfolg pflanzbaulicher Maßnahmen. Es sind mehrere Verfahren zur Ertragsermittlung von ZuckerrĂŒben wĂ€hrend der Ernte mit dem Bezug auf TeilflĂ€chen bekannt. Ein sensorischer Ansatz besteht in der PflanzenzĂ€hlung und Ermittlung der Masse der einzelnen ZuckerrĂŒben ĂŒber den maximalen Durchmesser. Das Hauptziel dieser Forschungsarbeiten war die Entwicklung und Bewertung eines berĂŒhrungslosen Ertragserfassungssystems fĂŒr ZuckerrĂŒben, das teilflĂ€chenbasiert eine ZĂ€hlung und Massebestimmung der EinzelrĂŒben ermöglicht. Die weiteren Ziele bestanden in der Weiterentwicklung der Radartechnologie fĂŒr andere Einsatzgebiete der Landwirtschaft und in der Bestimmung der Anwendbarkeitsgrenzen des Systems fĂŒr ZuckerrĂŒben und Ă€hnliche WurzelfrĂŒchte. Die ForschungsaktivitĂ€ten fanden im Labor und unter Feldbedingungen auf Versuchsparzellen eines typischen ZuckerrĂŒbenstandortes statt. Die Ergebnisse unter Laborbedingungen lieferten wertvolle Informationen, die erfolgreiche Feldmessungen ermöglicht haben. Die angewendete Methode hat in unterschiedlichen Messbedingungen eine 90% bis 96% erfolgreiche ZuckerrĂŒbenidentifikation ermöglicht, mit Korrelationskoeffizienten zwischen tatsĂ€chlichen und detektierten ZuckerrĂŒbenpositionen von um 99% und einem durchschnittlichen Positionierungsfehler von 1,1 bis 3,6 cm. Die Korrelationskoeffizienten zwischen der EinzelrĂŒbenmasse und der gemessenen reflektierten Energiemenge lagen im Bereich von ĂŒber 70% und die besten Ergebnisse erreichten Werte von 90%. Das Projekt wurde in der Zusammenarbeit des Instituts fĂŒr Landtechnik Bonn und des Instituts fĂŒr Kommunikations- und Messtechnik der Technischen UniversitĂ€t Ilmenau durchgefĂŒhrt

    Metrics to evaluate compressions algorithms for RAW SAR data

    Get PDF
    Modern synthetic aperture radar (SAR) systems have size, weight, power and cost (SWAP-C) limitations since platforms are becoming smaller, while SAR operating modes are becoming more complex. Due to the computational complexity of the SAR processing required for modern SAR systems, performing the processing on board the platform is not a feasible option. Thus, SAR systems are producing an ever-increasing volume of data that needs to be transmitted to a ground station for processing. Compression algorithms are utilised to reduce the data volume of the raw data. However, these algorithms can cause degradation and losses that may degrade the effectiveness of the SAR mission. This study addresses the lack of standardised quantitative performance metrics to objectively quantify the performance of SAR data-compression algorithms. Therefore, metrics were established in two different domains, namely the data domain and the image domain. The data-domain metrics are used to determine the performance of the quantisation and the associated losses or errors it induces in the raw data samples. The image-domain metrics evaluate the quality of the SAR image after SAR processing has been performed. In this study three well-known SAR compression algorithms were implemented and applied to three real SAR data sets that were obtained from a prototype airborne SAR system. The performance of these algorithms were evaluated using the proposed metrics. Important metrics in the data domain were found to be the compression ratio, the entropy, statistical parameters like the skewness and kurtosis to measure the deviation from the original distributions of the uncompressed data, and the dynamic range. The data histograms are an important visual representation of the effects of the compression algorithm on the data. An important error measure in the data domain is the signal-to-quantisation-noise ratio (SQNR), and the phase error for applications where phase information is required to produce the output. Important metrics in the image domain include the dynamic range, the impulse response function, the image contrast, as well as the error measure, signal-to-distortion-noise ratio (SDNR). The metrics suggested that all three algorithms performed well and are thus well suited for the compression of raw SAR data. The fast Fourier transform block adaptive quantiser (FFT-BAQ) algorithm had the overall best performance, but the analysis of the computational complexity of its compression steps, indicated that it is has the highest level of complexity compared to the other two algorithms. Since different levels of degradation are acceptable for different SAR applications, a trade-off can be made between the data reduction and the degradation caused by the algorithm. Due to SWAP-C limitations, there also remains a trade-off between the performance and the computational complexity of the compression algorithm.Dissertation (MEng)--University of Pretoria, 2019.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Metrics to evaluate compressions algorithms for RAW SAR data

    Get PDF
    Modern synthetic aperture radar (SAR) systems have size, weight, power and cost (SWAP-C) limitations since platforms are becoming smaller, while SAR operating modes are becoming more complex. Due to the computational complexity of the SAR processing required for modern SAR systems, performing the processing on board the platform is not a feasible option. Thus, SAR systems are producing an ever-increasing volume of data that needs to be transmitted to a ground station for processing. Compression algorithms are utilised to reduce the data volume of the raw data. However, these algorithms can cause degradation and losses that may degrade the effectiveness of the SAR mission. This study addresses the lack of standardised quantitative performance metrics to objectively quantify the performance of SAR data-compression algorithms. Therefore, metrics were established in two different domains, namely the data domain and the image domain. The data-domain metrics are used to determine the performance of the quantisation and the associated losses or errors it induces in the raw data samples. The image-domain metrics evaluate the quality of the SAR image after SAR processing has been performed. In this study three well-known SAR compression algorithms were implemented and applied to three real SAR data sets that were obtained from a prototype airborne SAR system. The performance of these algorithms were evaluated using the proposed metrics. Important metrics in the data domain were found to be the compression ratio, the entropy, statistical parameters like the skewness and kurtosis to measure the deviation from the original distributions of the uncompressed data, and the dynamic range. The data histograms are an important visual representation of the effects of the compression algorithm on the data. An important error measure in the data domain is the signal-to-quantisation-noise ratio (SQNR), and the phase error for applications where phase information is required to produce the output. Important metrics in the image domain include the dynamic range, the impulse response function, the image contrast, as well as the error measure, signal-to-distortion-noise ratio (SDNR). The metrics suggested that all three algorithms performed well and are thus well suited for the compression of raw SAR data. The fast Fourier transform block adaptive quantiser (FFT-BAQ) algorithm had the overall best performance, but the analysis of the computational complexity of its compression steps, indicated that it is has the highest level of complexity compared to the other two algorithms. Since different levels of degradation are acceptable for different SAR applications, a trade-off can be made between the data reduction and the degradation caused by the algorithm. Due to SWAP-C limitations, there also remains a trade-off between the performance and the computational complexity of the compression algorithm.Dissertation (MEng)--University of Pretoria, 2019.TM2019Electrical, Electronic and Computer EngineeringMEngUnrestricte

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms

    Get PDF
    undefine

    Discrimination Between Child and Adult Forms Using Radar Frequency Signature Analysis

    Get PDF
    In this thesis we develop a method to discriminate between adult and child radar signatures. In particular, we examine radar data measured from behind a wall, which introduces radar signal attenuation and multipath effects. To investigate the child/adult discrimination problem in a through-wall, multipath scenario, a previously developed free-space human scattering model was expanded to incorporate multiple paths, and the effects of transmission through, and reflections from, walls and ground. The ground was modeled as a perfectly reflecting surface, while the walls were modeled as homogeneous concrete slabs. Twenty-five reflection paths were identified, involving the direct paths, as well as reflected paths between the ground and an adjacent wall. All paths included two-way transmission through an obstructing wall

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Iterative synthetic aperture radar imaging algorithms

    Get PDF
    Synthetic aperture radar is an important tool in a wide range of civilian and military imaging applications. This is primarily due to its ability to image in all weather conditions, during both the day and the night, unlike optical imaging systems. A synthetic aperture radar system contains a step which is not present in an optical imaging system, this is image formation. This is required because the acquired data from the radar sensor does not directly correspond to the image. Instead, to form an image, the system must solve an inverse problem. In conventional scenarios, this inverse problem is relatively straight forward and a matched lter based algorithm produces an image of suitable image quality. However, there are a number of interesting scenarios where this is not the case. Scenarios where standard image formation algorithms are unsuitable include systems with data undersampling, errors in the system observation model and data that is corrupted by radio frequency interference. Image formation in these scenarios will form the topics of this thesis and a number of iterative algorithms are proposed to achieve image formation. The motivation for these proposed algorithms is primarily from the eld of compressed sensing, which considers the recovery of signals with a low-dimensional structure. The rst contribution of this thesis is the development of fast algorithms for the system observation model and its adjoint. These algorithms are required by large-scale gradient based iterative algorithms for image formation. The proposed algorithms are based on existing fast back-projection algorithms, however, a new decimation strategy is proposed which is more suitable for some applications. The second contribution is the development of a framework for iterative near- eld image formation, which uses the proposed fast algorithms. It is shown that the framework can be used, in some scenarios, to improve the visual quality of images formed from fully sampled data and undersampled data, when compared to images formed using matched lter based algorithms. The third contribution concerns errors in the system observation model. Algorithms that correct these errors are commonly referred to as autofocus algorithms. It is shown that conventional autofocus algorithms, which work as a post-processor on the formed image, are unsuitable for undersampled data. Instead an autofocus algorithm is proposed which corrects errors within the iterative image formation procedure. The proposed algorithm is provably stable and convergent with a faster convergence rate than previous approaches. The nal contribution is an algorithm for ultra-wideband synthetic aperture radar image formation. Due to the large spectrum over which the ultra-wideband signal is transmitted, there is likely to be many other users operating within the same spectrum. These users can produce signi cant radio frequency interference which will corrupt the received data. The proposed algorithm uses knowledge of the RFI spectrum to minimise the e ect of the RFI on the formed image

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202
    corecore