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Abstract

Synthetic aperture radar is an important tool in a wide range of civilian and military imaging

applications. This is primarily due to its ability to image in all weather conditions, during

both the day and the night, unlike optical imaging systems. A synthetic aperture radar system

contains a step which is not present in an optical imaging system, this is image formation.

This is required because the acquired data from the radar sensor does not directly correspond

to the image. Instead, to form an image, the system must solve an inverse problem. In

conventional scenarios, this inverse problem is relatively straight forward and a matched filter

based algorithm produces an image of suitable image quality. However, there are a number of

interesting scenarios where this is not the case.

Scenarios where standard image formation algorithms are unsuitable include systems with

data undersampling, errors in the system observation model and data that is corrupted by radio

frequency interference. Image formation in these scenarios will form the topics of this thesis

and a number of iterative algorithms are proposed to achieve image formation. The motivation

for these proposed algorithms is primarily from the field of compressed sensing, which considers

the recovery of signals with a low-dimensional structure.

The first contribution of this thesis is the development of fast algorithms for the system

observation model and its adjoint. These algorithms are required by large-scale gradient based

iterative algorithms for image formation. The proposed algorithms are based on existing fast

back-projection algorithms, however, a new decimation strategy is proposed which is more

suitable for some applications.

The second contribution is the development of a framework for iterative near-field image

formation, which uses the proposed fast algorithms. It is shown that the framework can be used,

in some scenarios, to improve the visual quality of images formed from fully sampled data and

undersampled data, when compared to images formed using matched filter based algorithms.

The third contribution concerns errors in the system observation model. Algorithms that

correct these errors are commonly referred to as autofocus algorithms. It is shown that conven-

tional autofocus algorithms, which work as a post-processor on the formed image, are unsuitable

for undersampled data. Instead an autofocus algorithm is proposed which corrects errors within

the iterative image formation procedure. The proposed algorithm is provably stable and con-
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vergent with a faster convergence rate than previous approaches.

The final contribution is an algorithm for ultra-wideband synthetic aperture radar image

formation. Due to the large spectrum over which the ultra-wideband signal is transmitted, there

is likely to be many other users operating within the same spectrum. These users can produce

significant radio frequency interference which will corrupt the received data. The proposed

algorithm uses knowledge of the RFI spectrum to minimise the effect of the RFI on the formed

image.
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Chapter 1

Introduction

1.1 Background

Radar is an acronym for “radio detection and ranging”. The acronym refers to the application

for which radar was originally developed, which is the detection and location of objects using

radio waves. Since its initial development, radar technology has been applied to a vast array

of military and civilian applications. These applications include: weather-sensing, navigation,

terrain mapping and imaging. Radar remains a critical sensing modality because it can function

during both the day and the night and in all-weather conditions unlike passive optical-based

systems.

This thesis will concentrate on one important application of radar, which is imaging. Imag-

ing radar systems are used to approximate the reflectivity of the elements in a scene of interest.

More specifically, in this thesis, the focus will be on a type of imaging radar known as synthetic

aperture radar (SAR). SAR is an extremely versatile form of imaging radar which can pro-

duce high-resolution images without a large physical antenna aperture. SAR systems generate

two-dimensional (possibly three-dimensional) images from a collection of data which is one-

dimensional (range-only). This range-only data is collected from spatially separated locations

along a synthetic aperture. The complete collection of data is commonly referred to as a phase

history.

The procedure of forming an image from a phase history typically involves the application

of a series of linear operations. These operations approximate a matched filter. Matched filter

based approaches produce excellent images for most SAR applications, however, there are a

number of emerging applications of SAR where such methods do not perform so well. This

can be due to interrupted sampling along the synthetic aperture, spectral notches in the radar

signal, uncertainty in observation model or radio frequency interference. In these scenarios a

solution to the problem of producing an image from a phase history may require some form of

iterative method. These emerging applications of SAR and the development of iterative image
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formation algorithms will be the focus of this thesis.

The proceeding sections of this chapter will describe an overview of SAR and its various

forms of operation, in particular, those applications that will be consider in this thesis. There is

also a review of compressed sensing (CS) and sparse reconstruction (SR) theory. This theory will

be used extensively throughout this thesis to motivate and guide the development of iterative

image formation algorithms.

1.1.1 Synthetic Aperture Radar

The SAR imaging methodology was first developed in the 1950s and later appear in the open

literature in the 1960s [118, 19]. It was developed as a more effective means of producing radar

images than real-aperture imaging methods.

In real-aperture radar systems, an antenna with a large cross-range aperture is used to

produced an antenna footprint with a narrow beamwidth. This narrow footprint is scanned

along the scene of interest and an image is formed using knowledge of the beam locations and

their corresponding one-dimensional range profiles. Real-aperture systems are sometimes used

in air traffic control and ship navigation. In these systems the narrow beam is rotated in a circle

around the radar antenna and the real-aperture image is displayed in polar co-ordinates on a

plan position indicator (PPI). The problem with real-aperture systems is that the cross-range

resolution of the resulting image is entirely dependent on the antenna footprint. Therefore, to

produce a high cross-range resolution image, a large (often unfeasibly large) physical antenna

is required.

Unlike a real-aperture imaging system, a SAR system does not require a large cross-range

antenna aperture in order to produce a high cross-range resolution image. It instead uses

a smaller physical aperture antenna mounted to a moving platform (typically an aircraft or

a satellite) to synthesise a larger aperture. Also, in SAR, unlike real-aperture systems, the

cross-range resolution is independent of range.

There are three main modes of operation for SAR systems: stripmap, spotlight and scan.

Each mode differs in the way they synthesise an aperture. Each of these three modes of operation

are illustrated in Fig. 1.1.

Stripmap Mode SAR The first mode of SAR which was developed, was the stripmap mode.

In this mode the antenna footprint is swept along a scene of interest with a fixed antenna beam

direction relative to the platform velocity. This makes the synthetic aperture length dependent

on the cross-range antenna beamwidth. This is because the beamwidth determines the length

of the synthetic aperture for which any target in the scene is contained with in the antenna’s

footprint. Interestingly this means, for a stripmap mode system, the smaller the antenna the

higher cross-range resolution, which is the opposite case to a real-aperture imaging system. It
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is natural to use stripmap mode SAR to image a scene which consists of a long strip of terrain,

therefore, it is efficient at imaging large regions with a relatively coarse-resolution.

Spotlight Mode SAR In the 1970s the spotlight mode of SAR was developed [134]. In

spotlight mode the antenna beam is steered such that the antenna footprint on the ground

illuminates the same scene of interest at all platform locations. Spotlight mode SAR can be

used to create an image with a higher cross-range resolution, with the same physical antenna,

as that which would be achievable in the stripmap mode. This is because in spotlight mode

SAR the synthetic aperture length is not dependent on the antenna beamwidth, instead, the

cross-resolution continues to improve with an increasing synthetic aperture length. Spotlight

mode avoids limitations on the synthetic aperture length because the antenna is steered such

that the antenna footprint always contains the scatterers in the scene of interest at all platform

positions.

Spotlight mode is a flexible mode which can be used to image a single scene or multiple

scenes at a number of different viewing angles during a single pass. This is possible because

the SAR platform usually travels a longer distance than the synthetic aperture length which

is required to achieve the desired cross-range resolution. Therefore, the platform motion is in

excess of the required synthetic aperture length and this excess platform motion can be used to

generate additional images of a single scene or to image multiple scenes. If the system images

a single scene from multiple viewing angles, the multiple images can be used to determine the

scattering properties of targets that vary with observation angle. This additional scattering

information could be used to improve target detection and identification. It may also be useful

to use the excess platform motion to image multiple scenes of interest at a high resolution.

Scan Mode SAR

Scan mode SAR can be seen as a generalisation of the other two modes of SAR. It can be used

to trade off the benefits of the stripmap and spotlight modes. These benefits are the imaging

of large regions and imaging with high cross-range resolution. In scan mode the antenna is

steered such that the antenna footprint illuminates a strip or multiple strips of terrain at an

angle relative to the platform motion. Scan mode is usually more complex, operationally and

in terms of its processing, than spotlight and stripmap modes and is therefore less commonly

used than the other two modes of SAR.

Standard SAR Image Formation

The majority of SAR image formation algorithms, for all modes of SAR, can be considered

to be an approximation of a two-dimensional matched filter, where each pixel in the resulting

image is the result of a correlation of the phase history with the expected signal for a target at

that location.
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(a) (b) (c)

Figure 1.1: The main operational modes of SAR: (a) spotlight mode, (b) stripmap mode and
(c) scan mode

For stripmap mode, arguably the most commonly used algorithm for image formation is the

range-Doppler algorithm (RDA) [97]. The basic components of the RDA are range compression,

range cell migration correction (RCMC) and cross-range compression 1. RCMC is required so

that the matched filtering can be performed separately in range and cross-range. While the

RDA is only suitable for far-field scenes, there are also algorithms for image formation which

more accurately approximate a two-dimensional matched filter and can be used with a near-field

scene. They include the range migration algorithm (RMA) [21, 112, 93], the Fourier-Hankel

algorithm (FHA) [60, 71, 5] and the chirp scaling algorithm [109]. In these algorithms the

matched filtering is not performed separately in range and cross-range.

For the spotlight mode, the most commonly used image formation algorithm is the polar

format algorithm (PFA) [134]. The PFA uses the near-field scene approximation to simplify

the two-dimensional matched filter to a two-dimensional discrete Fourier transform (DFT)

from polar to Cartesian co-ordinates. This has been traditionally achieved, in a computation-

ally efficient manner, by using zero-padded FFTs and separable one-dimensional polynomial

interpolation. More recently, computationally efficient algorithms have been proposed for two-

dimensional non-uniform FFTs (NFFT) [54, 68, 62]. These algorithms can compute DFTs from

a uniform to an arbitrary grid and vice versa with the same order of complexity as a standard

FFT algorithm. These algorithms can be used to compute the PFA with high accuracy [61, 4].

The most accurate approximation to the true matched filter solution is achieved by what are

sometimes called time-domain algorithms or back-projection (BP) algorithms, named due to

their close relation to the BP algorithms in computed tomography (CT) [96]. It should be

noted that the spotlight mode image formation algorithms can also be used for the stripmap

mode with some preprocessing. Also if the aperture is linear, then the stripmap mode algo-

rithms can be used for the spotlight mode with some preprocessing.

Although the matched filter is the optimal linear algorithm for maximising the signal-to-

1“Compression” in the radar literature, refers to what is known as matched filtering in the signal processing
field.
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noise ratio (SNR) for a single target in the presence of additive white Gaussian noise, it is

not optimal for image formation [58]. This is because a SAR image will contain many targets

and the matched filter is only optimal for one. For this reason, the phase history is sometimes

filtered before applying a matched filter type algorithm, in order to maximise the SNR for all

the targets in the image. This filtering usually involves applying weights to the phase history.

Non-standard SAR Systems

There are a number of non-standard SAR scenarios in which standard SAR image formation

algorithms provide insufficient image quality. One such scenario is the case of phase history

undersampling. The missing data in an undersampled phase history can take various forms,

which include:

• Missing locations along the synthetic aperture. This corresponds to temporary inter-

ruptions in the acquisition of SAR data during the platform motion. This type of in-

terruption typically occurs when the radar antenna is needed for multiple tasks. For

example, the system is collecting SAR data from multiple ground patches (as in scan

mode) or multiple polarisations and cannot always maintain the required pulse repetition

frequency (PRF) or the system is passively sensing the air space (which is useful in a

military context) [116, 131, 124].

• Missing frequency bands in the spectrum of the radar signal. This type of missing data

occurs in ultra-wideband (UWB) SAR, where the spectrum of the transmitted signal

contains sub-bands where transmission is not allowed [48, 42, 87]. This usually occurs

when operating in the very high frequency (VHF) and the ultra high frequency (UHF)

spectra. In order to be able to operate a SAR system within these spectra, spectral

notches must be added to the transmitted signal to avoid the specified sub-bands.

• Arbitrary missing data. This will occur when samples are discarded from the acquired

data to reduce the amount of data stored on the acquisition platform. This may be done

in order to achieve a small amount of compression of the data. This may be useful on some

platforms, such as satellites, which have only a small amount of computational resources

or which have low storage capacities [14, 110].

When there is data undersampling, standard image formation algorithms will produce large

target sidelobes in the image.

Another scenario where non-standard methods are required is when there are significant

errors in the system observation model. To reconstruct a SAR image, knowledge of the acqui-

sition system is required. Such knowledge of a system cannot be perfectly known in practical

situations. Imperfect knowledge can result in errors that are perceived as phase errors in the

phase history. If they are not corrected, these phase errors can severely degrade the image
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quality. Methods for correcting these errors in a fully-sampled system are known as autofocus

algorithms. These methods are most commonly used as a post-processing method on the de-

graded image [132, 94, 76, 29]. Post-processing autofocus algorithms are successful at correcting

phase errors in fully-sampled scenarios, however, they may not be suitable for undersampled

SAR.

The last scenario that will be described also occurs in UWB SAR systems. In the VHF/UHF

spectrum, even within the bands where transmission is allowed, strong interference from other

users, particularly from narrow-band (amplitude modulation (AM) and frequency modula-

tion (FM)) transmitters, can deteriorate the dynamic range of the resulting SAR image. To

achieve a reasonable level of performance, a SAR system must include a method of radio fre-

quency interference (RFI) suppression. Unfortunately, RFI suppression will degrade an image

formed using a standard algorithm by introducing range sidelobes [87, 86, 79, 1, 66].

1.1.2 Compressed Sensing and Sparse Reconstruction

The theory of CS and SR provides a theoretical framework which suggests it is possible to

reconstruct some signals from a smaller number of linear measurements than suggested by

conventional sampling theory.

The conventional approach to sampling signals is based around the Nyquist-Shannon samp-

ling theorem. This theorem states that the sampling rate for real-valued signals must be at least

twice as large as the highest frequency present in the signal. This theory can also be extended

to many real world signals that do not have a highest frequency, e.g. images. For these signals

the standard practise is to use a low-pass filter, also known as an anti-aliasing filter, on the

signal before sampling. For this type of signal, the resolution of the sampled signal will be

determined by the bandwidth of the filter.

During the middle of the first decade of the twenty first century the theory of CS was

developed, largely motivated by the perceived inefficiencies in many conventional sampling

systems [24, 50, 27, 25]. In many sampling systems, a large amount of signal data are acquired,

however, a compression stage which follows the data acquisition discards a significant proportion

of these data. This leads to the question, “is it possible to combine the signal acquisition and

compression stages and only acquire the critical information about the signal, in just a small

amount of data?”. CS theory answers this question in the affirmative.

Some problems which are not strictly a CS problem are closely related. One such problem,

will be referred to as a SR problem. In a SR problem, the goal is to recover a signal from a

fixed sampling system, where the inversion from a conventional perspective is ill-posed. Prior

knowledge about the compressibility of the signal is used to make the inversion problem well-

posed. Much of the theory of CS is equally applicable to SR problems, where it can be used to

determine when a SR problem is likely to be well-posed.

28



There are a number of good tutorial style article on CS. They include [28] and [114]. In this

section, the key concepts and theoretical results of the CS literature will be provided.

The Sensing Problem

A discrete sampling of a linear observation system is considered. Such a system can be written

mathematically as

ym = 〈φm,x〉 , m = 1, · · · ,M. (1.1)

This equation states that M samples of a signal x are acquired by taking M inner products with

the sensing vectors {φ1, · · · ,φM}. Most commonly the signal is continuous, therefore, x and

φm are infinite dimensional vectors. Some common examples of sensing vectors are translated

Dirac delta functions, translated indicators functions or sinusoids.

Instead of considering continuous-time/space signals, it is usually more convenient to con-

sider discrete signals, therefore, x ∈ RN and φm ∈ RN are finite vectors. The reason for this

choice is because the CS theory for discrete signals is simpler and more developed than the the-

ory for continuous signals. Also, the discrete theory still provides important insights and tools

that can be extended to the continuous domain. It should also be noted that most of the CS

literature addresses real-valued signals, however, the results which will be given in the following

section are equally extendable to complex signals with slightly modified constants [27].

A discrete linear observation system can be written as

y = Φx, (1.2)

where, y ∈ RM are the measurements, x ∈ RN is the signal and Φ ∈ RM×N is the sensing

matrix with the vectors
{
φH

1 , · · · ,φ
H
M

}
as its rows.

CS addresses the undersampling problem where the number of measurements M is much

smaller than the dimension N of the signal. In this scenario, the linear system is under-

determined and without additional information there are infinitely many feasible signals x̂ that

match the observed measurements, i.e. y = Φx̂. In CS, this further information commonly

comes in the form of a sparse signal model and is used to select a unique solution x̂ from all

the feasible solutions.

Sparse/Compressible Signal Model

Sparsity expresses the idea that a signal can be represented using a small number of coefficients

in a particular basis. To express this concept mathematically, first observe that any signal x

can be uniquely represented in a basis [ψ1, · · · ,ψN ], e.g. a wavelet basis, with the sum
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x =
N∑
n=1

αnψn, (1.3)

where, α ∈ RN is the coefficient vector. If the signal is sparse in the selected basis, then only

K < N elements of α will be non-zero. The set of all K-sparse coefficient vectors is defined as

ΣK =
{
α ∈ RN : ‖α‖0 ≤ K

}
. (1.4)

In practice, most signals do not have exact sparse representations, instead, they are only

well approximated by a sparse signal. Such signals are refereed to as compressible signals. An

example of a compressible signal is an image. Images can be well approximated by a sparse

signal in a wavelet basis.

To give a mathematical definition of a compressible signal, it is convenient to define the

best K-sparse approximation αK of a coefficient vector α. The best K-sparse approximation

is the vector within ΣK that minimises ‖α−αK‖p. For all `p norms, αK can be computed

by thresholding all but the K largest magnitude elements of α [46]. For compressible signals

the distance between the signal and its best K-sparse approximation will decrease rapidly as K

increases. A mathematical definition of a compressible signal is frequently given as any signal

whose coefficients vector, with elements sorted in decreasing order, satisfies the inequality

|αk| ≤ C0k
−C1 , (1.5)

where C0 and C1 are positive real constants.

The knowledge that a signal is sparse, in particular orthogonal basis, changes the inversion

problem. If an orthogonal basis expansion of a sparse signal is included, the system model

becomes

y = ΦΨα = Aα, (1.6)

where, Ψ ∈ RN×N contains the basis vectors
{
ψH

1 , · · · ,ψ
H
N

}
as its rows. Now, instead of con-

sidering whether Φ embeds N -dimensional signals in the measurements, one instead considers

the embedding of K-sparse signals in these same measurements.

Sensing Matrices

In CS it is important to understand which classes of sensing matrices preserve the information

of sparse signals and whether they allow these sparse signals to be recovered by tractable

algorithms. The properties of classes of matrices are usually studied in terms of key desirable

properties. One of the most fundamental matrix properties, required for the unique embedding

of sparse signals in the measurements, is known as the spark [51].
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Definition 1.1.1. The spark of a matrix A is equal to the smallest number of columns of A

that are linearly dependent.

With this definition, the following theorem provides a necessary and sufficient condition, in

terms of the spark of a A, for which sparse signals are uniquely embedded in the measurements.

Theorem 1.1.2 ([51, Corollary 1]). If and only if the spark {A} > 2K then for any vector

y ∈ RM , there exists at most one signal α ∈ ΣK such that y = Aα.

The spark condition is suitable for the exact sparse problem, however, for the problem

of recovering approximately sparse signals a more restrictive property is required. One such

property is known as the null space property (NSP). Informally, it requires that signals that lie

in the null space of A do not have most of their signal energy concentrated in a small number

of their elements.

Definition 1.1.3. A matrix A has the mixed NSP in (p, q) of order K if there exists a positive

real constant C and an exponent s = 1/q − 1/p, where, 1 ≤ q ≤ p ≤ 2, such that for all

K ⊂ {1, · · · , N} and all h ∈ N (A) where #K ≤ K,

‖hK‖p ≤ Ck
−s ‖hKc‖q , (1.7)

The NSP can be used to not only guarantee the exact recovery of all K-sparse signals but

also can guarantee a robustness to non-sparse signals, including compressible signals. This

robustness is given in the following theorem.

Theorem 1.1.4 ([39, Theorem 8.1]). Given a norm ‖·‖p, a matrix A and a positive integer

K. If A satisfies the mixed NSP in (p, q) of order 2K with a constant C0/2 and an exponent

s = 1/q − 1/p, where, 1 ≤ q ≤ p ≤ 2, then there exists a recovery algorithm ∆ (·) such that

‖∆ (Aα)−α‖p ≤ C0K
−s ‖α−αK‖q . (1.8)

Conversely, the validity of Eq.(1.8) for an arbitrary recovery algorithm ∆ (·) implies that A has

the mixed NSP in (p, q) of order 2K with constant C0 and an exponent s.

Guarantees of the form as in Eq.(1.8) are called instance-optimal because they hold for all

instances of α [39]. A typical choice for the norms in the mixed NSP is p = 2 and q = 1 or

p = 1 and q = 1.

While the NSP can be used to analyse the suitability of a sensing system for exact sparse

and compressible signals, it cannot be used to analyse the system’s robustness to noise. To

analyse this problem an important property is the restricted isometry property (RIP).

Definition 1.1.5. A matrix A satisfies the RIP of order K if for all K-sparse vectors α there

exists a positive constant δK < 1 which satisfies the following inequalities:
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(1− δK) ‖α‖22 ≤ ‖Aα‖
2
2 ≤ (1 + δK) ‖α‖22 . (1.9)

The smallest constant δK for which this holds, defines the RIP constant.

When RIP holds, A approximately preserves the Euclidean distance of K-sparse signals,

which implies that K-sparse vectors cannot be in the null space of A. Hence, this implies that

the spark (A) ≥ K. The RIP also implies the NSP [57, Theorem 1.5]. Clearly, the RIP is a

more restrictive condition than the NSP and the spark.

The RIP is very useful because it can be used to guarantee the performance of practical

algorithms for reconstructing sparse and compressive signals from noisy measurements. Many

random matrices satisfy RIP with an overwhelming probability. These include A ∈ RM×N ,

where its elements are i.i.d. entries from a Gaussian, Bernoulli or any other sub-Gaussian

distribution. For these classes of matrices, A will satisfy an order 2K RIP with overwhelming

probability if

M ≥ CKlog (N/K), (1.10)

where, C is some constant depending on the class of the matrix [7, 90].

RIP can also been shown to hold for pairs of orthogonal bases. If A = RΦΨ, where, Φ and

Ψ are orthogonal bases and R selects M coordinates uniformly at random then if

M ≥ CK (logN)5
, (1.11)

then A satisfies an order 2K RIP with overwhelming probability [115].

Finally, RIP can also be shown to hold for sensing matrices of the form A = ΦΨ, where,

Ψ is a orthogonal basis and Φ is an M ×N random matrix with its entries drawn from one of

the previous mentioned distributions. For this class of matrix, with overwhelming probability,

A satisfies an order 2K RIP, provided M satisfies Eq. (1.10).

The spark, NSP and RIP all provide guarantees for the recovery ofK-sparse signals, however,

it appears that verifying that any particular matrix A satisfies any of these properties requires

an algorithm with a combinatorial computational complexity. This is because to verify any one

of the properties, one must inspect the properties of all
(
N
K

)
submatrices. Therefore, for a given

matrix, it may instead be preferable to use a alternative property that is easily computable and

also provides recovery guarantees. The coherence of a matrix is a property that satisfies this

criteria [126].

Definition 1.1.6. The coherence of a matrix A is given by the maximum correlation between
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any two of its columns ai,aj:

µ (A) = max
1≤i<j≤N

|〈ai,aj〉|
‖ai‖2 ‖aj‖2

(1.12)

The coherence of a matrix is always in the range µ (A) ∈
[

N−M
M(N−1) , 1

]
[135]. It can be used to

show the uniqueness of the exact sparse problem.

Theorem 1.1.7 ([125, Corollary 3.6]). For any vector y, if

K <

(
1 +

1
µ (A)

)
, (1.13)

then there exist at most one signal α ∈ ΣK , where, y = Aα.

Coherence can also be used to show a particular matrix A satisfies the RIP.

Lemma 1.1.8 ([57, Lemma 1.5]). If a matrix A has unit-norm columns and a particular

coherence then the matrix has an RIP of order K with δK = (K − 1)µ (A) for all K < µ (A)−1.

Reconstruction

The problem of recovering sparse or approximating compressible signals can be formulated as

the optimisation program

minimise
α̂

‖α̂‖0 subject to y = Aα̂. (1.14)

To solve this program requires a combinatorial computational complexity algorithm. Therefore,

instead of solving this problem, many practical signal reconstruction algorithms have been

proposed that have a polynomial time computational complexity. The two main classes of

tractable algorithms are convex relaxations and greedy methods.

Convex Relaxations A convex relaxation is where the `0-norm in Eq. 1.14 is replaced by

the convex `1-norm. The modified program is then given by

minimise
α̂

‖α̂‖1 subject to y = Aα̂. (1.15)

If A has an RIP then the solution to Eq. (1.15) has the following guarantee.

Theorem 1.1.9 ([23, Theorem 1.1]). If A has a RIP of order 2K with δ2K <
√

2− 1 then the

solution α̂ of Eq. (1.15) satisfies

‖α̂−α‖2 ≤ C0
‖α−αK‖2√

K
(1.16)

for some constant C0.
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If algorithms are to be useful in a practical setting, they need to be able to deal with

compressible signals and also with noise. The system equation with additive noise is given by

y = Aα+ n, (1.17)

where, n is a stochastic or deterministic error term. If A has an RIP then the solution to the

constrained optimisation program,

min
α̂
‖α̂‖1 subject to ‖y −Aα̂‖2 ≤ ε, (1.18)

is robust in the following sense.

Theorem 1.1.10 ([23, Theorem 1.2]). Assume that δ2K <
√

2 − 1 and ‖n‖2 ≤ ε. Then the

solution α̂ to (1.18) obeys

‖α̂−α‖2 ≤ C0 ‖α−αK‖1 /
√
K + C1ε (1.19)

for positive constants C0 and C1.

This result shows that a convex optimisation algorithm can be used to estimate a signal with

an error that is bounded by the sum of two terms. The first is an error term associated with

the approximation of α using a sparse vector, for exact sparse signals this will be zero. The

second term is proportional to the noise, for a noiseless system this will be zero. The constants

C0 and C1 are computable and are only dependent on the order 2K RIP constant δ2K .

Greedy Methods The other class of methods for the recovery of sparse signals are greedy

methods [88, 17, 40, 52, 101, 126]. They attempt to recover sparse signals by directly trying to

approximate the solution to Eq. 1.14. Greedy methods use iterative algorithms to approximate

the support (the locations of the non-zero elements) of the signal and their corresponding values.

Some greedy methods have be shown to have similar performance guarantees to those that have

been obtained for convex relaxation approaches [100, 16], and when implemented, many greedy

methods have a remarkably similar structure to the convex relaxation approaches. In this thesis

we are primary focused on the adaptions of convex relaxation approaches so we will not provide

any further details on greedy methods.

The theoretical results of CS that provide performance guarantees are largely motivational

for the SR problem. In practise the constants given in the performance bounds, for a given

achievable RIP constant, may be unreasonably large, however, from numerical work it appears

that, typically, these constants are small. This suggests the existing bounds are not tight or do

not reflect the average performance.
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1.2 Organisation

Chapter 2 In the second chapter of this thesis, a discrete observation model for a mono-static

spotlight-mode SAR system will be developed. This model will be used throughout the thesis

to develop image formation algorithms. We will then investigate fast algorithms for computing

the adjoint of this observation model in terms of their accuracy and computational complexity.

The fast algorithms are based on fast BP algorithms. A fast BP algorithm will be proposed,

which has a novel decimation strategy, and has a number of advantages over existing fast BP

algorithms.

Chapter 3 In the third chapter, a framework for iterative image formation will be proposed,

which makes use of the fast algorithms from the second chapter. This framework performs

near-field imaging with non-flat terrain. The performance of the image formation framework,

compared with standard image formation algorithms, will be investigated when the phase his-

tories are fully-sampled and also when they are undersampled. When the phase histories are

under-sampled the framework leverages image sparsity and uses tools from the CS field.

Chapter 4 The fourth chapter will consider errors in the system observation model when

there is phase history undersampling. The suitability of conventional algorithms (autofocus

algorithms) to correct these errors will be investigated. A novel sparsity-based autofocus algo-

rithm will be proposed which corrects errors within its iterative image formation procedure.

The performance of the algorithm will be investigated theoretical and through numerical ex-

periments.

Chapter 5 In the fifth chapter, ultra-wideband synthetic aperture radar image formation

will be considered. In particular the effect of RFI on image formation. A algorithm will be

proposed which uses knowledge of the RFI spectrum and image sparsity to minimise the effects

of the RFI on the formed image. The performance of this algorithm will be compared against

conventional linear filter based approaches.

Chapter 6 In the final chapter, the key results of this thesis will be summarised and future

research, which could build upon this thesis, will be discussed.

1.3 Contributions

The main contributions to this thesis are:

• Fast algorithms for the system observation model and its adjoint: we have

proposed fast near-field algorithms for the system observation model and its adjoint.

These algorithms are required by large-scale gradient based iterative algorithms for image
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formation. Two sets of algorithms are proposed, one set is based on existing fast back-

projection algorithms and the other set is based on a new decimation strategy which is

proposed in this thesis. The new decimation strategy reduces the image-element-wise

errors in the image which is not possible with existing algorithms.

• An iterative near-field image formation framework: utilising the proposed fast

algorithms, we proposed a framework for iterative image formation in the near-field. The

superior performance of the framework, relative to matched filter based algorithms, is

investigated using both simulated and real SAR phase histories.

• An Autofocus algorithm for undersampled SAR: practical SAR systems contain

errors in the system observation model which must be corrected using an autofocus algo-

rithm. We show that conventional post-processing autofocus algorithms are unsuitable for

undersampled phase histories. Instead, we propose an image formation algorithm which

corrects errors within the iterative image formation procedure. This proposed approach

improves the quality of the formed images and has a faster convergence rate than previous

approaches.

• Image formation and RFI mitigation for UWB SAR: due to the large spectrum

of UWB signals, RFI can significantly degrade UWB SAR image quality. A significant

problem with existing strategies for RFI suppression is that they introduce range sidelobes.

We propose an algorithm which uses knowledge of the RFI spectrum to suppress RFI

during image formation and does not introduce range sidelobes. The algorithms can also

reduce the effect of transmit notching on the formed image.
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835–840. Awarded third place in “best student paper award” contest.
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Chapter 2

Fast Synthetic Aperture Radar

Image formation

2.1 Introduction

The goal of SAR imaging is to form an image which will be an approximation of the reflectivity

of the elements in the scene. This image will consist of a finite number of complex samples.

Many algorithms have been proposed for SAR image formation, some of the most popular were

introduced in Section 1.1. Until recently, these algorithms were predominately approximations

of a matched filter. Arguably the most commonly encountered of these algorithms, for airborne

SAR, are the BP algorithm, the RMA and the PFA. Each algorithm has its advantages and

disadvantages, which are based around the trade off between image quality and computational

complexity. The BP algorithm is the most versatile of these algorithms and provides the best

image quality of all the commonly used matched filter based algorithms. This versatility means

it can be used for all types of synthetic apertures, chirp bandwidths, beamwidths and scene

terrains. In contrast, the RMA is only suitable for flat terrain and synthetic apertures that are

linear. While, the PFA is only suitable for far-field imaging. Unfortunately, the complexity of

the BP algorithm is much greater than the complexity of the other algorithms and therefore it

has seldom been used operationally.

New modalities of SAR, in particular UWB SAR, have renewed interest in the BP algorithm.

In these applications, the synthetic aperture can be very long which makes maintaining a linear

aperture challenging. Also, at large wavelengths, the antenna beam width is usually large,

making the imaging near-field. In these scenarios, the BP algorithm is the only matched filter

based algorithm suitable for image formation.

These types of applications have led many researchers to develop algorithms which are as

versatile as the BP algorithm but have a reduced complexity [104, 138, 128, 65, 89, 133, 136].
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These algorithms are usually referred to as fast BP algorithms. Fast BP algorithms have been

proposed which require O
(
N2 logN

)
operations for an N × N pixel image which is formed

from a phase history with N aperture positions. This is a reduced order of operations, when

compared to the BP algorithm which requires O
(
N3
)

operations. The reduced complexity

order is usually achieved by recursively splitting the image grid and correspondingly decimating

the phase history before performing the BP algorithm. In [128] and [65], the image grid is

recursively split in a quad tree structure and the phase history is decimated by combining close

aperture positions at each stage of recursion, with a beamforming like procedure in a polar co-

ordinate system. In [89, 133, 136], the image is also recursively split in a quad tree structure,

however, the phase history is decimated at each stage of recursion in a different manner to the

previous algorithms. The phase history is instead decimated independently in fast and slow

times. The algorithms presented in [133] and [136] were motivated by [10], which appeared

in the tomography literature, but are virtually identical to the algorithm presented in [89].

More recently, in [44], another algorithm has been proposed which has a different strategy for

achieving the same order of complexity. The authors state that their “butterfly” algorithm can

be considered to be a generalisation of the fast multipole method (FMM) [69]. Variations of

the FMM have previously been used to compute fast matrix vector products, for example the

FMM based NFFT [55].

In this chapter we will develop a general linear model for a mono-static spotlight-mode SAR

system and investigate how this model can be represented in a discrete form. We will then show

how approximations are used to reduce the complexity of a matched filter type algorithm. A fast

BP algorithm will then be presented which is based on those that are proposed in [89, 133, 136].

A novel fast BP algorithm will also be proposed, which is coined, the fast decimation-in-image

BP algorithm. The name was selected due to its relation to decimation-in-time FFT algorithms.

It is the natural dual of the other fast BP algorithm presented, which we coin as the fast

decimation-in-phase-history BP algorithm due to its relation to decimation-in-frequency FFT

algorithms. The performance of the fast BP algorithms, in terms of their image quality and

computational speed, will also be investigated.

2.2 A Mathematical Model for Synthetic Aperture Radar

In this section we will develop a mathematical model for a monostatic side-looking spotlight-

mode SAR system. The starting point for this model will be to consider the radio fre-

quency (RF) wave propagation. The developed wave propagation model will then be used

to model the transmission and reception of a linear frequency modulated (LFM) chirp signal.

A model of the dechirping and deskewing operations will then be developed. Finally, the mini-

mum fast-time sampling rate for the analogue dechirped and deskewed signal will be considered

as well as the minimum slow-time sampling rate necessary for a smooth synthetic aperture.
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2.2.1 Propagation Model

The development of an RF wave propagation model will follow closely, the development in [36]

and [37]. The starting point for this model will be Maxwell’s Equations:

∇×E = −∂B
∂t

(2.1a)

∇×H = J +
∂D
∂t

(2.1b)

∇ ·E = ρ (2.1c)

∇ ·B = 0, (2.1d)

Where, E is the electric field, D is the electric displacement field, B is the magnetic field, H

is the magnetising field, ρ is the charge density, J is the current density and t is time. As

illustrated in Fig. 2.1, if we assume that the propagation medium is free space (D = ε0E,

H = µ0B, J = 0 and ρ = 0, where, ε0 is the permittivity and µ0 is the permeability of free

space) then Maxwell’s equations imply the electromagnetic wave equation for the electric field:

(
∇2 − c−2

0

∂2

∂t2

)
E = 0, (2.2)

where, c0 = (µ0ε0)−1/2 is the propagation speed of electromagnetic waves in free space. Only

the propagating electric field is considered because in this model we will consider only a single

transmit and receive polarisation and will also ignore polarisation effects that occur as a result

of scattering. Therefore, it is sufficient to consider only the electric field. The Green’s function

of the wave equation for the electric field, is a function g (t, ~x) that satisfies the homogeneous

partial differential equation (PDE):

(
∇2 − c−2

0

∂2

∂t2

)
g (t, ~x) = −δ(t, ~x), (2.3)

where, ~x is a spatial co-ordinate. This Green’s function is given by:

g (t, ~x) =
δ (t− ‖~x‖ /c0)

4π ‖~x‖
. (2.4)

We can use this Green’s function to derive the transmitted field. If we assume the transmitter

is at a point ~x, and produces an electrical potential s (t), then the resulting field Ein (t, ~y), at

a position ~y, is given by:

Ein (t, ~y) = (g ∗ s) (t, ~y − ~x) =
∫
g (t− τ, ~y − ~x)s (τ) dτ

=
s (t− ‖~y − ~x‖ /c0)

4π ‖~y − ~x‖
.

(2.5)
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Now that we have a model of the transmitted field we will consider its scattering. If we

model scattering in terms of classical scattering theory, the electric field Etot at a scatterer is

equal to the sum of the incident Ein and the scattered field Esc, i.e. Etot = Ein+Esc. Therefore,

the scattered field at a position ~z from a scatterer at a position ~y satisfies:

(
∇2 − c−2

0

∂2

∂t2

)
Esc (t,~z) = −v (~y)

∂2

∂t2
E (t, ~y), (2.6)

where, v (~y) = c−2
0 − c (~y)−2 is the reflectivity of the scatterer at ~y and c (~y) is the wave speed

at ~y. Hence, using the Green’s function and Eq. (2.6), the resulting scattered field Esc (t,~z) at

a position ~z will be given by:

Esc (t,~z) =
∫ ∫

g (t− τ,~z− ~y)v (~y)
∂2

∂t2
Etot (τ, ~y) dτ d~y (2.7)

In SAR we are interested in determining the reflectivities v (~y) from the scattered field

Esc (t,~z). Therefore, to linearise the relationship between the two, we use the Born approx-

imation. This involves replacing the total field Etot, within the previous integral, with the

incident field Ein, resulting in:

Esc (t,~z) ≈
∫ ∫

g (t− τ,~z− ~y)v (~y)
∂2

∂t2
Ein (τ, ~y) dτ d~y

=
∫

v (~y)
4π ‖~z− ~y‖

∂2

∂t2
Ein (t− ‖~z− ~y‖ /c0, ~y) d~y

=
∫

v (~y)
(4π)2 ‖~z− ~y‖ ‖~y − ~x‖

∂2

∂t2
s (t− (‖~z− ~y‖+ ‖~y − ~x‖) /c0) d~y.

(2.8)

The Born approximation is extremely useful because it makes the relationship between the scat-

tered field Esc (t,~z) and reflectivities v (~y) linear, however, it ignores all second order scattering

interactions and therefore ignores multiple bounce scattering effects. The Born approximation

is used in virtual all work in radar imaging.

2.2.2 Linear Frequency Modulated Chirped Radar

The developed RF propagation model can be used to model the transmission and reception of a

LFM chirp. To do this we will make use of the ubiquitously used stop-and-hop approximation.

This approximation assumes that during the time of transmission and reception, the SAR

platform has an approximately constant position and therefore the fast and slow times can be

considered independently. This is a good approximation in SAR because the platform velocity

is much less than the velocity of the propagating RF wave.

An LFM chirp signal is given by Re {s (t)}, where,
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x⃗

y⃗

Ein

(a)

z⃗

y⃗

Esc

(b)

Figure 2.1: RF wave propagation model: (a) incident field and (b) scattered field.

s (t) = w (t) exp
(
j
(
ω0t+ αt2

))
, (2.9)

ω0 is the carrier frequency, 2α is the chirp rate and w (t) is a window function centred around the

fast-time t = 0, with a period Ts such that w (|t| > Ts/2) = 0. This window can be rect (t/Ts)

or a slowly varying function, e.g. Taylor window.

In this model we will consider monostatic radar, therefore, the transmitter and receiver are

located at the same position, i.e. ~z = ~x. At this position ~x, we denote the scene radius in

the range direction as Lu (~x), which is centred around a distance u0 (~x) from the transmitter.

The scene centre and radius are controlled by the antenna beam pattern. Incorporating these

details into Eq. 2.8, we get a model for the electric field at the receiver Er (t, ~x) which is given

by:

Er (t, ~x) = Re

{∫ +Lu(~x)

−Lu(~x)

A (t, u0 (~x) + u)p (u0 (~x) + u, ~x)s
(
t− t0 (~x)− 2u

c0

)
du

}
(2.10)

where,
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A (t, u0 (~x) + u) = (4π (u0 (~x) + u))−2

(
d2w

(
t− 2(u0(~x)+u)

c0

)
dt2

+

j2
dw
(
t− 2(u0(~x)+u)

c0

)
dt

(
ω0 + 2α

(
t− 2 (u0 (~x) + u)

c0

))
+

w

(
t− 2 (u0 (~x) + u)

c0

)(
j2α−

(
ω0 + 2α

(
t− 2 (u0 (~x) + u)

c0

))2
))
(2.11)

≈ −

ω0 + 2α
(
t− 2(u0(~x)+u)

c0

)
4π (u0 (~x) + u)

2

w

(
t− 2 (u0 (~x) + u)

c0

)

= a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
,

(2.12)

t0 (~x) = 2u0 (~x)/c0 is the two way delay from the platform to the scene centre and

p (u0 (~x) + u, ~x) =
∫
v(~y)δ (‖~y − ~x‖ − (u0 (~x) + u))δ (z (y1, y2)− y3)

bθ (~y, ~x)bφ (~y, ~x) d~y
(2.13)

are the accumulated reflectivities of scatterers at a range distance u0 (~x) + u from the platform

and

bφ (~y, ~x) = rect
(
φ (~y − ~x)− φ0 (~x)

Φ/2

)
(2.14a)

bθ (~y, ~x) = rect
(
θ (~y − ~x)− θ0 (~x)

Θ/2

)
, (2.14b)

as visualised in Fig. 2.2, model the antenna beam in the spherical coordinates, θ (~z) = cos−1 (z3/ ‖~z‖)

and φ (~z) = tan−1 (z2/z1), with a azimuth beamwidth of Θ and a polar beamwidth of Φ.

θ0 (~x) = θ (~y0 − ~x) and φ0 (~x) = φ (~y0 − ~x) are the angles associated with the centre of the

beam, where, ~y0 is a position on the scene surface which is used to centre the beam. This is a

very simplified model of an antenna beam pattern. In spotlight mode SAR, the beam centre

~y0 remains constant for all positions along the aperture. Scattering is assumed to occurs only

at the surface [y1, y2, z (y1, y2)]T, where, z (y1, y2) is the surface height at (y1, y2) .

Eq. (2.11) can usually be well approximated by Eq. (2.12). This is because the third term

dominates the first two terms in Eq. (2.11). Which is true because w (t) is a slowly varying

function in time and therefore its derivatives will be small. Also, the squared value of the carrier

frequency is generally much larger than the chirp rate, i.e. ω2
0 � 2α, so the j2α factor in the

third term can also be ignored.
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Figure 2.2: SAR antenna beam angles: (a) azimuth angles and (b) polar angles.

Finally, the scene radius and scene centre in the range direction can be explicitly defined as

2Lu (~x) = max {‖~y − ~x‖ : ~y ∈ Y~x} −min {‖~y − ~x‖ : ~y ∈ Y~x} (2.15a)

2u0 (~x) = max {‖~y − ~x‖ : ~y ∈ Y~x}+ min {‖~y − ~x‖ : ~y ∈ Y~x} (2.15b)

where, Y~x = {~y : bθ (~y, ~x)bφ (~y, ~x)δ (h (y1, y2)− y3) 6= 0} is the set of all reflectivities within

the antenna beam at a platform position ~x. The scene radius is half the distance between the

furthest and the closest scene element within the antenna beam in the range direction. The

scene centre is defined as the point between the furthest and the closest scene element.

Fig. 2.3(a) shows a time-frequency plot for a simulated Er (t, ~x) at a platform position ~x,

where the scene contains three targets.

2.2.3 Dechirping

To reduce the sampling requirements of the receiver analog-to-digital converter (ADC), a tech-

nique known as dechirping is commonly used in high resolution SAR systems. Therefore, we

will consider a dechirping operation in our model. The mathematical description of dechirping

and deskewing, which is to follow, is based on [29]. However, it is incorporated into our more

detailed propagation and scattering models.

A description of dechirping is as follows. Firstly the received signal Er (t, ~x) is mixed with

45



two reference chirps:

rect
(

t− t0 (~x)
Ts + 4Lu (~x)/c0

)
cos
(
ω0 (t− t0 (~x)) + α (t− t0 (~x))2

)
(2.16a)

− rect
(

t− t0 (~x)
Ts + 4Lu (~x)/c0

)
sin
(
ω0 (t− t0 (~x)) + α (t− t0 (~x))2

)
. (2.16b)

The two resulting signals from the mixing are

rreal (t, ~x) =
1
2

Re
{∫ +Lu(~x)

−Lu(~x)

a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
p (u0 (~x) + u, ~x)

exp

(
jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
(

exp
(
j
(

2ω0 (t− t0 (~x)) + 2α (t− t0 (~x))2
))

+ 1
)
du

} (2.17a)

rimag (t, ~x) =
1
2

Im
{∫ +Lu(~x)

−Lu(~x)

a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
p (u, ~x)

exp

(
jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
(

exp
(
j
(

2ω0 (t− t0 (~x)) + 2α (t− t0 (~x))2
))
− 1
)
du

}
.

(2.17b)

rreal (t, ~x) and rimag (t, ~x) are then low-pass filtered to produce

yreal (t, ~x) =
1
2

Re
{∫ +Lu(~x)

−Lu(~x)

a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
p (u0 (~x) + u, ~x)

exp

(
jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
du

} (2.18a)

yimag (t, ~x) =
1
2

Im
{∫ +Lu(~x)

−Lu(~x)

a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
p (u0 (~x) + u, ~x)

exp

(
jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
du

}
.

(2.18b)

These two filtered signals are then used as the real and imagery parts of the complex dechirped

signal, y (t, ~x) = yreal (t, ~x) + jyimag (t, ~x), which is given by:

y (t, ~x) =
1
2

∫ +Lu(~x)

−Lu(~x)

a (t, u0 (~x) + u)w
(
t− t0 (~x)− 2u

c0

)
p (u0 (~x) + u, ~x)

exp

(
jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
du.

(2.19)
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Fig. 2.3(b) shows a time-frequency plot for a simulated version of the dechirped signal

y (t, ~x). For the example shown in this figure, the bandwidth of the received signal has been

reduced from 324 MHz to approximately 200 MHz by dechirping.

2.2.4 Deskewing

The time delay between the scattered field from close targets and far targets in the scene

is sometimes referred to as skew. If the scene size is large, a dechirped signal will contain

significant skew. Deskewing is a process which removes this skew from the dechirped signal.

Deskewing will remove the 2u/c0 term in the window function w (·) and also will remove the

exp
(
jα (2u/c0)2

)
term in Eq. 2.19 (known as the residual video phase (RVP)). The process

of deskewing is described in the following. The process involves taking a Fourier transform of

Eq. 2.19 with respect to t− t0 (~x), which results in

Ft−t0(~x) (ω, ~x) {y (t, ~x)} =
1
2

∫ +Lu(~x)

−Lu(~x)

A
(
ω +

4uα
c0

, u0 (~x) + u

)
p (u0 (~x) + u, ~x)

exp

(
−jα

(
2u
c0

)2
)

exp
(
−j 2u

c0
(ω0 + ω)

)
du,

(2.20)

where,

A
(
ω +

4uα
c0

, u0 (~x) + u

)
= Ft−t0(~x)

(
ω +

4uα
c0

, u0 (~x) + u

){

a′ (t− t0 (~x), u0 (~x) + u)w (t− t0 (~x))

}
,

(2.21)

and

a′ (t− t0 (~x), u0 (~x) + u) = −
(
ω0 + 2α (t− t0 (~x))

4π (u0 (~x) + u)

)2

. (2.22)

The Fourier transformed signal is then multiplied by exp
(
−jω2/4α

)
to produce

ỹ (ω, ~x) =
1
2

∫ +Lu(~x)

−Lu(~x)

A
(
ω +

4uα
c0

, u0 (~x) + u

)
p (u0 (~x) + u, ~x)

exp

−j
(
ω + 4uα

c0

)2

4α

 exp
(
−j 2u

c0
(ω0)

)
du

(2.23)

If we then take the inverse Fourier transform of Eq.(2.23) we get
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F−1
ω (t− t0 (~x), ~x) {ỹ (ω, ~x)} ≈ 1

2

∫ +Lu(~x)

−Lu(~x)

a′ (t− t0 (~x), u0 (~x) + u)w (t− t0 (~x))p (u0 (~x) + u, ~x)

exp
(
−j 2u

c0
(ω0 + 2α (t− t0 (~x)))

)
du

(2.24)

which is a good approximation if

∫
A (ω, u0 (~x) + u) exp

(
−j ω

2

4α

)
−A (ω, u0 (~x) + u) dω ≈ 0. (2.25)

Using this approximation will introduce a small amount of error into the model. The errors

introduced by this approximation can be viewed as a chirping of the frequency sidelobes of the

signal. Fig. 2.3(c) shows a time-frequency plot for a simulated version of the dechirped and

deskewed signal in Eq.(2.24). This chirping effect can be seen particularly at the edges of the

support of each chirp. These artifacts are usually negligible but can minimised, if required, by

using a windowed chirp waveform. It can also be seen that the returns from the three targets

are no longer skewed. In practice deskewing is done on the sampled dechirped signal, therefore,

a DFT and an inverse discrete Fourier transform (IDFT) are used instead of their continuous

versions.

2.2.5 Continuous Observation Model

Using the developed models for dechirping, deskewing and wave propagation and also defining

ku (t− t0 (~x)) =
2
c0

(ω0 + 2α (t− t0 (~x))) , (2.26)

after dechirping and deskewing our complete continuous SAR observation model can be given

by

ỹ (t, ~x) =
1
2
w (t− t0 (~x))(∫ +Lu(~x)

−Lu(~x)

a′ (t− t0 (~x), u0 (~x) + u)p (u0 (~x) + u, ~x) exp (−jku (t− t0 (~x))u) du

)
,

(2.27)

where, ∆ku = 4αTs/c0. Interestingly, Eq.(2.27) can be viewed as a weighted short spatial

Fourier transform of the accumulated reflectivities with a limited spatial Fourier support of

2
c0

(ω0 − αTs) ≤ ku (t− t0 (~x)) ≤ 2
c0

(ω0 + αTs) (2.28)
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Figure 2.3: A time-frequency plot of a simulated received signal from three targets at the
different stages of receiver processing. Where, ω0/2π = 308 MHz, α/π = 32.4 MHz/µs and
T = 10 µs. (a) is the unprocessed received signal. (b) is the received signal after dechirping.
(c) is the dechirped signal after deskewing.
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2.2.6 Phase History Sampling Requirements

In this section we will determine the minimum sampling rate requirements for slow and fast

times. In order to sample an analog signal without aliasing the Nyquist-Shannon sampling

theorem states that we must sample a complex signal at a rate greater or equal to its bandwidth.

Therefore, to determine a minimum sampling rate, we must determine the bandwidth of the

received signals in fast and slow times.

The bandwidth of the dechirped signal in Eq. (2.27), with respect to its fast-time, is approx-

imately equal to the difference between the maximum and minimum instantaneous frequencies

of its complex exponent, this is given by

ftmin (~x) ≈ 1
2π

max
{∣∣∣∣ ddt (−ku (t− t0 (~x))ua)− d

dt
(−ku (t− t0 (~x))ub)

∣∣∣∣ :

ua ∈ [−Lu (~x),+Lu (~x)] , ub ∈ [−Lu (~x),+Lu (~x)]
}

=
4Lu (~x)α
πc0

[samples / second] .

(2.29)

Determining the bandwidth with respect to the slow-time is not as straight forward as

for the fast-time. We denote slow-time as t̂, where t̂ = 0 is the slow-time at the begin-

ning of the synthetic aperture and t̂ = Tt̂ at the end. To simplify our analysis we will

assume that our platform motion is smoothly varying, such that its position ~x
(
t̂
)

with re-

spect to the slow-time t̂, can be well approximated about a time t̂0 by ~x′
(
t̂, t̂0

)
= ~x

(
t̂0
)

+

~v
(
t̂, t̂0

)
=
[
x1

(
t̂0
)

+ v1

(
t̂0
) (
t̂− t̂0

)
, x2

(
t̂0
)

+ v2

(
t̂0
) (
t̂− t̂0

)
, x3

]T
. The bandwidth of the sig-

nal in Eq. (2.27), with respect to its slow time is then approximately given by

ft̂min
≈ 1

2π
max

{∣∣∣∣−ku (t− t0)
d

dt̂

((∥∥~ya − ~x
′ (t̂, t̂a)∥∥− ∥∥~y0 − ~x

′ (t̂, t̂a)∥∥))+

ku (t− t0)
d

dt̂

((∥∥~yb − ~x
′ (t̂, t̂b)∥∥− ∥∥~y0 − ~x

′ (t̂, t̂b)∥∥))∣∣∣∣ :

t̂a ∈ [0, Tt̂] , t̂b ∈ [0, Tt̂] , ~ya ∈ Y~x′(t̂,t̂a), ~yb ∈ Y~x′(t̂,t̂b), t− t0 ∈
[
−Ts

2
,
Ts

2

]}
.

(2.30)

In order to find an analytic expression which approximates the bandwidth ft̂min
, we expand u

using a first order Taylor expansion. The derivative of u with respect to the slow-time then

becomes approximately given by:
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d

dt̂

(∥∥~y − ~x′ (t̂, t̂0)∥∥− ∥∥~y0 − ~x
′ (t̂, t̂0)∥∥) ≈ d

dt̂

{(∥∥~y − ~x (t̂0)∥∥− ∥∥~y0 − ~x
(
t̂0
)∥∥+

(
t̂− t̂0

)
(
v1

(
t̂0
) (
x1

(
t̂0
)
− y1

)
+ v2

(
t̂0
) (
x2

(
t̂0
)
− y2

)∥∥~y − ~x (t̂0)∥∥ −

v1

(
t̂0
) (
x1

(
t̂0
)
− y01

)
+ v2

(
t̂0
) (
x2

(
t̂0
)
− y02

)∥∥~y0 − ~x
(
t̂0
)∥∥

))}

=
v1

(
t̂0
) (
y01 − x1

(
t̂0
))

+ v2

(
t̂0
) (
y02 − x2

(
t̂0
))∥∥~y0 − ~x

(
t̂0
)∥∥ −

v1

(
t̂0
) (
y1 − x1

(
t̂0
))

+ v2

(
t̂0
) (
y2 − x2

(
t̂0
))∥∥~y − ~x (t̂0)∥∥

= sin
(
θ0

(
~x
(
t̂0
)))(

v1

(
t̂0
)

cos
(
φ0

(
~x
(
t̂0
)))

+

v2

(
t̂0
)

sin
(
φ0

(
~x
(
t̂0
))))
−

sin
(
θ
(
~y − ~x

(
t̂0
)))(

v1

(
t̂0
)

cos
(
φ
(
~y − ~x

(
t̂0
)))

+

v2

(
t̂0
)

sin
(
φ
(
~y − ~x

(
t̂0
))))

=
∥∥~v (t̂, t̂0)∥∥ (sin (θ0

(
~x
(
t̂0
)))

cos
(
φ0

(
~x
(
t̂0
))
− φ

(
~v
(
t̂, t̂0

)))
−

sin
(
θ
(
~y − ~x

(
t̂0
)))

cos
(
φ
(
~y − ~x

(
t̂0
))
− φ

(
~v
(
t̂, t̂0

))))
(2.31)

If we assume that the polar angle θ0

(
~x
(
t̂0
))

and the magnitude of the platform velocity∥∥~v (t̂, t̂0)∥∥ are constant in slow-time then we can compute an approximation of the worst-case

bandwidth which is given by:

ft̂min
≈

2 ‖~v‖ ku

(
Ts
2

)
π

sin
(
θ0 −

Θ
2

)
sin
(

Φ
2

)
[samples / second] (2.32)

This approximation is valid for virtually all systems where the beam is pointed downwards

towards the scene and therefore its antenna beam’s polar angle is in the range (π/2, π).

If we define a fast-time sample rate of ft > max {ftmin (~x), ~x ∈ X} and a slow-time sample

rate of ft̂ > ft̂min
, where, X =

{
~x
(
t̂
)

: t̂ ∈ [0, Tt̂]
}

is the set of all platform positions along

the synthetic aperture and define a fast-time sampling interval of Tt > Ts, the sampled phase

histories can be modelled as

Y =
{
ymn = ỹ

(
tm + t0

(
~x
(
t̂n
))
, ~x
(
t̂n
))}

, (2.33)

where, tm = (m− 1) /ft − Tt/2 for m = 1, · · · ,M and t̂n = (n− 1) /ft̂ for n = 1, · · · , N . The
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number of samples in fast and slow time will be M = bftTtc and N = bft̂Tt̂c, respectively.

2.2.7 Discrete Observation Model

Before forming a SAR image we must first define a discrete spatial grid onto which the image

will be formed. In this section we will assume that the scene lies on a flat plane at y3 = 0,

however, equivalent results could be derived for images on other smooth surfaces. We will also

choose the spatial grid to be independent in each axis y1 and y2.

In order to define a spatial grid for the image we first define its radius in terms of y1 and

y2, which are given by

2Ly1 = max {|ya1 − yb1| : ~xa ∈ X , ~xb ∈ X , ~ya ∈ Y~xa ∪ Y~xb , ~yb ∈ Y~xa ∪ Y~xb} (2.34a)

2Ly2 = max {|ya2 − yb2| : ~xa ∈ X , ~xb ∈ X , ~ya ∈ Y~xa ∪ Y~xb , ~yb ∈ Y~xa ∪ Y~xb .} (2.34b)

These radii are half the largest distance between scene elements that are in the antenna beam,

in each direction.

Due to the limited aperture length and the limited chirp bandwidth, the received signals only

contain significant energy in a limited region of the spatial Fourier domain of the reflectivities,

therefore, we define our SAR image to have an approximately limited spatial Fourier support.

The bandwidth of this limited spatial Fourier support will define the sample spacing of the

image’s spatial grid. The minimum sampling rate for the image’s spatial grid in y1 and y2 are

approximately given by:

fy1min
≈ 1

2π
max

{∣∣∣∣ku (t− t0)(sin (φ (~ya − ~xa)) cos (θ (~ya − ~xa))−

sin (φ (~yb − ~xb)) cos (θ (~yb − ~xb)))
∣∣∣∣ :

~xa ∈ X , ~xb ∈ X , ~ya ∈ Y~xa ∪ Y~xb , ~yb ∈ Y~xa ∪ Y~xbt− t0 ∈
[
−Ts

2
,
Ts

2

]}
[samples / metre]

(2.35a)

fy2min
≈ 1

2π
max

{∣∣∣∣ku (t− t0)(sin (φ (~ya − ~xa)) sin (θ (~ya − ~xa))−

sin (φ (~yb − ~xb)) sin (θ (~yb − ~xb)))
∣∣∣∣ :

~xa ∈ X , ~xb ∈ X ,Y~xa ∪ Y~xb , ~ya ∈ Y~xa ∪ Y~xb , t− t0 ∈
[
−Ts

2
,
Ts

2

]}
[samples / metre] ,

(2.35b)

We can now define the sample rates fy1 > fy1min
and fy2 > fy2min

and use them to define the
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three dimensional spatial grid as

~ykl =
[
l − 1
fy1

+ y01 − Ly1 ,
k − 1
fy2

+ y02 − Ly2 , 0
]T

, (2.36)

for, k = 1, · · · ,M ′ and l = 1, · · · , N ′, where M ′ = bfy22Ly2c and N ′ = bfy12Ly1c.

If we use a discrete SAR image model in Eq 2.33 we get the following discrete SAR obser-

vation model.

ymn ≈ wm
M ′∑
k=1

N ′∑
l=1

aklnbθ (~ykl, ~xn)bφ (~ykl, ~xn)xkl exp (−jku (tm)ukln), (2.37)

where,

• bθ (~ykl, ~xn) and bφ (~ykl, ~xn) model the antenna beam,

• ukln = ‖~ykl − ~xn‖−u0 (~xn) is the distance between each sample in the image to each plat-

form position minus the distance between the scene centre at the corresponding platform

position,

• akln = (4π (u0 (~xn) + ukln))−2 models the RF wave energy loss due to spreading in three-

dimensional space and

• wm = − 1
2w (tm) (ω0 + 2αtm)2 models the frequency dependency of scattering predicted

by our scattering model.

This can be written in matrix form as

Y = h (X) , (2.38)

where, h : CM ′×N ′ → CM×N is the linear map in Eq. 2.37, X ∈ CM ′×N ′
is the SAR image and

Y ∈ CM×N is the phase history. Using this model, the problem of reconstructing a SAR image

involves computing an estimate of X, from the measurements Y.

2.3 Matched Filter based Image Formation

In this section we will consider the standard SAR image formation algorithms that are based

on approximations of a two-dimensional matched filter. The matched filter for the forward

observation model h (·) is given by its adjoint hH (·). The direct computation of hH (·) which

we define as gmf (·) can be written as

X̂ = gmf(Y)

=

{
N∑
n=1

bθ (~ykl, ~xn)bφ (~ykl, ~xn)akln
M∑
m=1

wmymn exp (jku (tm)ukln)

}
kl

.
(2.39)
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The formed image, X̂, can be computed in this direct manner in O (M ′N ′MN) operations. This

order of operations is much too high for any realistically sized problems. Therefore, reduced

complexity algorithms are used to approximate the adjoint.

2.3.1 Back-projection Algorithm

The BP algorithm reduces the complexity of computing the adjoint by observing that it can be

written as

X̂ = gbp(Y) =

{
N∑
n=1

bθ (~ykl, ~xn)bφ (~ykl, ~xn)aklnpkln

}
kl

, (2.40)

where,

pkln =
M∑
m=1

wmymn exp (jku (tm)ukln). (2.41)

and that the elements of a matrix Pn = {pkln}kl can be approximated using a fast non-

uniform DFT algorithm. Traditional, zero padding and linear interpolation has been used

to approximate Pn in O (M log (M) +M ′N ′) operations. Modern NFFT algorithms can also

be used to approximate Pn with a specified accuracy [54]. They have a complexity order

which depends on the approximation error. To compute Pn with these algorithms requires

O ((M log (M) +M ′N ′ log (1/ε))) operations, where ε is the approximation error. Using this

approximation for Pn, X̂ can be approximated in O (M ′N ′N log (1/ε)) operations.

2.3.2 Polar Format Algorithm

The PFA further reduces the complexity of computing the adjoint of the observation model by

making a far-field approximation [76]. A far-field approximation assumes that the wavefront is

well approximated by a plane wave and therefore the distances in the range direction can be

given as,

ukln ≈ sin θ0 (~x)
((

k − 1
fy1

− Ly1
)

cos (φ0 (~xn)) +
(
l − 1
fy2

− Ly2
)

sin (φ0 (~xn))
)

= uff
kln,

(2.42)

which is an inner product between the image element locations and the normalised vector

between the platform position and the scene centre. Using the approximation uff
kln for ukln

and by ignoring the beam pattern, we get the following approximation for the adjoint.

X̂ = gpfa(Y) =

{
N∑
n=1

M∑
m=1

wmymn exp
(
jku (tm)uff

kln

)}
kl

. (2.43)
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phase history SAR image

(a)

phase history SAR image

(b)

Figure 2.4: Decomposition in the fast BP algorithms: (a) Decomposition in the decimation-
in-phase-history algorithm and (b) Decomposition in the decimation-in-image algorithm.

This summation is a two-dimensional non-uniform DFT. Like the one-dimensional case in the

BP algorithm, the two-dimensional non-uniform DFT in the PFA has been traditional approx-

imated using zero padding and linear interpolation. This requires O (M ′N ′ log (max {M ′, N ′}))

operations. It can also be approximated using a two-dimensional NFFT algorithm in

O (M ′N ′ log (max {M ′, N ′}) +MN log (1/ε)) operations.

2.3.3 Fast Back-projection Algorithms

When the far-field approximation is not suitable, it is still desirable to have an algorithm with

a smaller complexity than the BP algorithm. The RMA is an example of an algorithm that

does not make the far-field approximation, however, like the PFA, it ignores the beam pattern.

The RMA can approximate the adjoint in O (MN log (max {M,N})) operations. The RMA is

limited however to linear apertures and also must assume that the scene terrain is flat.

Fast BP algorithms, on the other hand, do not make the far-field approximation and can

accommodate beam patterns, non-linear apertures and non-flat scene terrains. They approx-

imate the adjoint in O (MN log (max {M,N})) operations [89, 133, 136]. They achieve this by

recursively decimating the phase history and splitting the image grid at each stage of recursion.

At the final stage of recursion, the BP algorithm is performed on a number of decimated phase

histories to produce each segment of the final image. This can be seen to be analogous with

the decimation-in-frequency FFT algorithms. In this section we will show why this decimation

is possible and describe an implementation of this type of fast decimation-in-phase-history BP

algorithm. We will also show how we can equivalently produce a fast decimation-in-image BP

algorithm.

Fast Decimation-in-phase-history Back-Projection Algorithm

The decomposition strategy used in the fast decimation-in-phase-history BP algorithm, which

uses a quad-tree structure, is visualised in Fig. 2.4(a). At the top of the figure we have the
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original phase history and its corresponding image grid. At the first stage of decomposition,

seen on the second line of the figure, the image grid is split into four even segments. The phase

history is accordingly decimated into four new phase histories with each corresponding to one

of the four image segments. At the second stage, this decomposition is repeated so there is now

16 image grid segments and their are 16 corresponding decimated phase histories. At the final

stage of decomposition, the BP algorithm is used to compute the value of the pixels in each

segment using only their corresponding decimated phase history.

Decimating in the phase history is possible because the required slow and fast time sampling

rates are dependent on the size of the image segment. Therefore, a small image segment does

not require the phase history to be sampled at as high a rate as for the entire image. In order

to provide a simple expression to describe the relationship between the image segment size and

the required phase history sampling rates, we will use a far-field approximation. It is important

to note that this approximation is not being used in the same way as in the PFA, here, it is

only used to analyse the algorithm. As stated earlier the far-field approximation assumes that

the scene is in the far-field and hence the wavefront is planar and therefore the distance in the

range direction is approximately given by Eq. 2.42. Under the fast-field approximation we can

provide a bound for the minimum sampling rate for the phase history slow and fast times with

respect to the size of the image segment, which is given by

ftmin ≤
4α
πc0

sin (θ0)
√
L2
y1 + L2

y2 (2.44a)

ft̂min
≤

2 ‖~v‖ ku

(
Ts
2

)
πu0

sin (θ0)
√
L2
y1 + L2

y2 . (2.44b)

where, ftmin is derived from Eq. (2.29) with Lu (~x) = sin (θ0)
√
L2
y1 + L2

y2 and ft̂min
is from

Eq. (2.32), where, sin
(

Φ
2

)
≈
√
L2
y1 + L2

y2/u0. and sin
(
θ0 − Θ

2

)
≈ sin (θ0). Importantly, both

sampling rates are linearly dependent on the SAR image radius.

The dependency between the required phase history sampling rates and the image segment

size is demonstrated in Fig. 2.5 and Fig. 2.6 using simulated phase history data. In this

simulation, two phase histories were generated, one from a scene with a radius of 70.71 metres

and the other from a scene with a radius of 35.36 metres. The first phase history has a fast-

time bandwidth of approximately 22 MHz and a slow-time bandwidth of approximately 3.5 Hz.

The second phase history has a fast-time bandwidth of approximately 11 MHz and a slow-time

bandwidth of approximately 1.75 Hz. This simulation shows that the bandwidth of the phase

history data, and hence the required sampling rates, approximately increases linearly with the

size of the scene.

The approximately linear dependency is used in the fast decimation-in-phase-history BP

algorithm. When the image is split into four image segments, the required sampling rate of

the phase history is halved. Therefore the phase history for this image segment can be deci-
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mated. To do this, the dechirp centre of the phase history must first be correct so that the

new dechirp centre is located at the centre of the image segment. This will require O (MN)

operations. The phase history may then be low-pass filtered and down-sampled by a half, in

slow and fast times, to decimate the phase history. This will also require O (MN) operations.

Therefore the number of operations required at each stage of decomposition is O (MN). To

repeat this decomposition, until each phase history contains just a single element, will require

O (MN log (max {M,N})) operations. For this completely decomposed problem, the num-

ber operations required to perform the BP algorithm for all of the image segments will be

O (M ′N ′). Therefore, the complexity of the fast decimation-in-phase-history BP algorithm is

O (MN log (max {M,N})).

The pseudo code for a fast decimation-in-phase-history BP algorithm with a single stage of

decomposition is given in Algorithm 1.

Algorithm 1 Fast decimation-in-phase-history BP algorithm X̂ = gfbp(Y)
Input: Y
Output: X̂

Y ← diag (w)Y
X̂← 0M ′,N ′

Ly1 ← Ly1/2
Ly2 ← Ly2/2
for a = 0, 1 do

for b = 0, 1 do
{ADJUST DECHIRP CENTRE}
~y′0 ← ~y0 + {(a− 1/2)Ly1 , (b− 1/2)Ly2 , 0}

T

Y′ ←
{
ymn exp

(
jku (tm)

(∥∥~y′0, ~xn∥∥− ‖~y0, ~xn‖
))}M,N

m=1,n=1

{DOWNSAMPLING}

Y′ ←
{∑2Mh+1

m′=1

∑2Nh+1
n′=1 hm′n′y

′
(2m−1−Mh+m′)(2n−1−Nh+n′)

}M/2,N/2

m=1,n=1

{BACK-PROJECTION ALGORITHM}
for n = 1, · · · , N/2 do
~x′ ← ~x2n−1

P← nfftn
(
Y′
)

for k = aM ′/2 + 1, · · · , (a+ 1)M ′/2 do
for l = bN ′/2 + 1, · · · , (b+ 1)N ′/2 do
x̂kl ← x̂kl + bθ

(
~ykl, ~x

′)bφ (~ykl, ~x′)akl(2n−1)pkl
end for

end for
end for

end for
end for

h ∈ CMh×Nh is a two-dimensional low pass filter and

nfftn
(
Y′
)
≈

M∑
m=1

y′mn exp (jku (tm)ukln). (2.45)
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Fast Decimation-in-image Back-Projection Algorithm

The decomposition strategy used in the fast decimation-in-image BP algorithm using a quad-

tree structure is visualised in Fig. 2.4(b). At the top of the figure we have the original phase

history and its corresponding image grid. At the first stage of decomposition, seen on the second

line of the figure, the phase history is split into four even segments and the image is decimated

into four new phase histories, with each corresponding to one of the four image segments. At

the second stage, this decomposition is repeated so there is now 16 phase history grid segments

and their are 16 corresponding decimated images. At the final stage of decomposition, the BP

algorithm is used to compute an image for each segment of the phase history. The images can

then be recursively upsampled and combined to produce a single image.

Decimating in the image is possible because the sampling rate of the scene is dependent on

the period of the slow and fast times. In order to provide a simple expression to describe this

relationship we will again make the far field approximation and also assume that aperture is

in the y2 direction and the slow and fast times are small enough such that the spatial Fourier

support is approximately rectangular. Again, it is important to note that these approximation

are only used to analyse the algorithm. Under these approximations we can provide a bound

for the minimum sampling rate for the image grid, which are given by

fy1min
≤ 2α
πc0

sin (θ0)Tt (2.46a)

fy2min
≤ ‖

~v‖ω0

πc0u0
sin (θ0)Tt̂. (2.46b)

In this scenario both sampling rates are linearly dependent on the SAR image radius. For the

more general case where these approximations do not apply we do not have a linear dependency,

however, it is still possible to have a practical decomposition strategy. This is demonstrated in

Fig. 2.7 using a simulated phase history data. In the simulation, the phase history has been

split into four segments. The BP algorithm was used to generate four images, one from each of

the phase histories. An image was also created from the full phase history. For the complete

phase history, the required sampling rates are approximately 1.75 samples per metre in y1 and

2.2 samples per metre in y2. For the phase history segments in Fig. 2.7(c) and Fig. 2.7(e),

the required sampling rates are approximately 0.9 samples per metre in y1 and 0.7 samples

per metre in y2. For the phase history segments in Fig. 2.7(d) and Fig. 2.7(f), the required

sampling rates are approximately 1 samples per metre in y1 and 1.1 samples per metre in

y2. This simulation shows that the required sampling rate for the image grid approximately

increases linearly with the period of the slow and fast times.

This property is used in the fast decimation-in-image BP algorithm. When the phase history

is split into four image segments, the required sampling rate of the image is approximately

halved, therefore, the image grid can be decimated. If the phase history is recursively split
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such that each phase history segment contains just a single element, the number of operations

required to perform the BP algorithm for all the images will be O (MN). The next stage of

the fast decimation-in-image BP algorithm is to combine the images. This combination can be

done recursively. At each stage groups of four images, which were formed from adjacent phase

history segments, are combined. To do this each image must first be upsampled by a factor

of two in y1 and y2. This can be done for all decimated images with O (M ′N ′) operations.

The images can then be combined. This procedure is repeated until there is just a single

image. The number of operations required to combine all images into a single image will

be O (MN log (max {M,N})) operations. Therefore the complexity of the fast decimation-in-

image BP algorithm is O (MN log (max {M,N})).

The pseudo code for a fast decimation-in-image BP algorithm with a single stage the de-

composition is given in Algorithm 2.

There are errors which are introduced by approximating the adjoint with a fast BP algo-

rithm. In both algorithms, the main source of error is due to the decimation and upsampling

of finite length data with finite length filters. Since the data (the phase history or the image)

is finite length, any decimating filter or upsampling filter will have “border effects” which will

produce errors. Since in practise a filter will be finite length, the filter will have associated

stopband and passband ripples and a transition bandwidth, which will also introduce errors.

In the decimation-in-phase-history algorithm, since the decimation is performed on the phase

history, the border effects and finite filter length errors will occur in the phase history domain.

For the decimation-in-image algorithm, because upsampling is performed on images, the border

effects and finite filter length errors will occur in the image domain.

To demonstrate the described errors, 4◦ of the “Gotcha Volumetric SAR Data Set, Version

1.0” (described in [30]) was used to form images using the BP algorithm as well as the two

fast methods with one and three stages of decomposition. The resulting images are shown in

Fig. 2.8. The filter used for decimating and upsampling, in both of the fast algorithms, was a

41 sample length low-pass Chebyshev filter with 100dB side-lobe attenuation.

The relative errors between the image formed using the BP algorithm and the other images

are shown in Fig. 2.9. Due to the source of the errors, the relative errors are displayed in the

wavenumber domain for the decimation-in-phase-history images and in the image domain for

the decimation-in-image images. The relative error is computed for each element in an image as

‖x̂− x‖2 / ‖x‖2, where x is an element from the reference BP image and x̂ is the corresponding

element from fast BP image.

The results in Fig. 2.9(a), Fig. 2.9(c), demonstrate the errors in the images formed using

the fast decimation-in-image BP algorithms. With one decimation stage the errors within the

image are approximately −100 dB and the border effects are highly concentrated on the edge

of the image. With three stages, the error within the image has increased to approximately

−90 dB and the border effects have also significantly increased.
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Algorithm 2 fast decimation-in-image BP algorithm X̂ = gfbp(Y)
Input: Y
Output: X̂

Y ← diag (w)Y
X̂← 0M ′,N ′

for a = 0, 1 do
for b = 0, 1 do
{SPLIT PHASE-HISTORY}
Y′ ←

{
y(aM/2+m)(bN/2+n)

}M/2,N/2

m=1,n=1

~x′ ←
{
~xbN/2+n

}N/2
n=1

{BACK-PROJECTION ALGORITHM}
for n = 1, · · · , N/2 do

X̂
′
← 0M ′/2,N ′/2

P← nfftn
(
Y′
)

for k = 1, · · ·M ′/2 do
for l = 1, · · · , N ′/2 do
~y′ ← ~y(2k−1)(2l−1)

x̂′kl ← x̂kl + bθ

(
~y(2k−1)(2l−1), ~xn

)
bφ

(
~y(2k−1)(2l−1), ~xn

)
a(2k−1)(2l−1)npkl

end for
end for

end for
{CENTRE IMAGE’S SPECTRAL SUPPORT}
~x0 ← ~xdN/2e+1

t0 ← tdM/2e+1

X̂
′
←
{
x̂′kl exp

(
−jku (t0)

(∥∥∥~y(2k−1)(2l−1) − ~x0

∥∥∥− ‖~y0 − ~xn‖
))}M ′/2,N ′/2

k=1,n=l

{UPSAMPLING}

X̂
′
←
{

if k ∧ l are odd then x′(k/2+1/2)(l/2+1/2) , else 0
}M ′,N ′

k=1,n=l

X̂
′
←
{∑2Mh+1

k′=1

∑2Nh+1
l′=1 hk′l′ x̂

′
(2k−1−Mh+k′)(2l−1−Nh+l′)

}M ′,N ′

k=1,l=1

{COMBINE IMAGES}
X̂
′
← {x̂′kl exp (jku (t0) (‖~ykl‖ − ~x0)− ‖~y0 − ~xn‖)}

M ′,N ′

k=1,n=l

X̂ = X̂ + X̂
′

end for
end for
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Figure 2.5: Simulated phase history from four targets located at [50, 50, 0]T m, [−50, 50, 0]T m,
[50,−50, 0]T m and [−50,−50, 0]T m (relative to the scene centre). The system parameter are:
carrier frequency ω0/2π = 308 MHz, chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs,
synthetic aperture [7,−3.5, 7]T km to [7, 3.5, 7]T km (relative to the scene centre) and platform
velocity 100 m/s. (a) is the phase history in the fast time and the slow time. (b) is the phase
history in the fast time spectrum and the slow time. (c) is the phase history in the fast time
and slow time spectrum. (d) is the phase history in fast time spectrum and slow time spectrum.

61



slow−time (sec)

fa
s
t−

ti
m

e
 (

µ
 s

e
c
)

 

 

−30 −20 −10 0 10 20 30

−6

−4

−2

0

2

4

6

−70

−60

−50

−40

−30

−20

−10

0

(a)

slow−time (sec)

fa
s
t−

ti
m

e
 s

p
e
c
tr

u
m

 (
M

H
z
)

 

 

−30 −20 −10 0 10 20 30

−15

−10

−5

0

5

10

15

−70

−60

−50

−40

−30

−20

−10

0

(b)

slow−time spectrum (Hz)

fa
s
t−

ti
m

e
 (

µ
 s

e
c
)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−6

−4

−2

0

2

4

6

−70

−60

−50

−40

−30

−20

−10

0

(c)

slow−time spectrum (Hz)

fa
s
t−

ti
m

e
 s

p
e
c
tr

u
m

 (
M

H
z
)

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−15

−10

−5

0

5

10

15

−70

−60

−50

−40

−30

−20

−10

0

(d)

Figure 2.6: Simulated phase history from four targets located at [25, 25, 0]T m, [−25, 25, 0]T m,
[25,−25, 0]T m and [−25,−25, 0]T m (relative to the scene centre). The system parameter are:
carrier frequency ω0/2π = 308 MHz, chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs,
synthetic aperture [7,−3.5, 7]T km to [7, 3.5, 7]T km (relative to the scene centre) and platform
velocity 100 m/s. (a) is the phase history in the fast time and the slow time. (b) is the phase
history in the fast time spectrum and the slow time. (c) is the phase history in the fast time
and slow time spectrum. (d) is the phase history in fast time spectrum and slow time spectrum.

62



y
1
 (m)

y
2
 (

m
)

 

 

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

−70

−60

−50

−40

−30

−20

−10

0

(a)

v
y1

 (1 m
−1

)

v
y
2
 (

1
 m

−
1
)

 

 

−2.5 −2 −1.5 −1 −0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−70

−60

−50

−40

−30

−20

−10

0

(b)

v
y1

 (1 m
−1

)

v
y
2
 (

1
 m

−
1
)

 

 

−2.5 −2 −1.5 −1 −0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−70

−60

−50

−40

−30

−20

−10

0

(c)

v
y1

 (1 m
−1

)

v
y
2
 (

1
 m

−
1
)

 

 

−2.5 −2 −1.5 −1 −0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−70

−60

−50

−40

−30

−20

−10

0

(d)

v
y1

 (1 m
−1

)

v
y
2
 (

1
 m

−
1
)

 

 

−2.5 −2 −1.5 −1 −0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−70

−60

−50

−40

−30

−20

−10

0

(e)

v
y1

 (1 m
−1

)

v
y
2
 (

1
 m

−
1
)

 

 

−2.5 −2 −1.5 −1 −0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−70

−60

−50

−40

−30

−20

−10

0

(f)

Figure 2.7: Images formed using the BP algorithm from a simulated phase history which
was generated using four targets located at [25, 25, 0]T m, [−25, 25, 0]T m, [25,−25, 0]T m and
[−25,−25, 0]T m (relative to the scene centre). The system parameter are: carrier frequency
ω0/2π = 308 MHz, chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture
[7,−3.5, 7]T km to [7, 3.5, 7]T km (relative to the scene centre) and platform velocity 100 m/s.
(a) is the resulting image and (b) is its spectrum. (c), (d), (e) and (f) are the spectra of images
formed using four evenly sized segments of the full phase history.
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Table 2.1: Image formation times (seconds)
N BP fast BP fast BP PFA

(dec.-in-image) (dec.-in-phase-history)
256 18.26 4.75 4.64 0.90
512 140.22 18.77 18.74 3.24
1024 1120.96 77.18 76.98 13.15
2048 9052.47 318.43 317.36 69.15

For the fast decimation-in-phase-history BP algorithms, the results in Fig. 2.9(b), Fig. 2.9(d)

demonstrate the errors in the formed images. With one decimation stage the errors within the

image’s spectral support are approximately −50 dB and there are border effects. With three

stages, the errors within the image’s spectral support have increased to approximately −40

dB and the edge effects have increased significantly. The errors associated with border effects,

unlike in the decimation-in-image images, are not concentrated on the edge of the image’s

spectral support. This is because targets have a spatially varying spectral support in a image

formed using the BP algorithm.

Clearly in this example scenario, the fast decimation-in-image BP algorithm has a better

performance, in terms of approximation error. This likely to be due to the circular aperture used

in the Gotcha data set. The error performance of the decimation-in-phase-history algorithm

could potentially be improved by interpolation the slow-time samples before they are decimated.

This however would add an additional computational cost to the algorithm.

To demonstrate the computational advantages of the fast BP algorithms, the computational

times for image formation were measured for different size phase histories and images. Images

were formed using the BP algorithm, the PFA and the fast decimation-in-phase-history and

decimation-in-image BP algorithms. Both the BP algorithm and the PFA made use of the

NFFT algorithm in [68], with a interpolation kernel length of 24 samples which is what is

suggested for double precision numerical accuracy. The image formation times were measured

on a single core of a 2.5 GHz Intel Xeon processor with N2 element images and N2 element phase

histories. The number of decomposition stages in the Fast BP algorithms was log2N − log2 64.

This number of stages was selected because through numerical simulation it was found to be

a good trade off between algorithm “speed up” and approximation error. Table 2.1 shows the

resulting image formation times in seconds.

For small images and phase histories, the fast BP algorithms only provides a modest speed

up when compared to the BP algorithm. However, as the problem size grows, the speed up

becomes more significant. It is also interesting to note that the ratio of image formation times

between the PFA and the fast BP algorithms is approximately constant for all problem sizes.

Since both algorithms have the same theoretical order of operations, this is an expected result.

It is also worth noting that the BP algorithm and the PFA were implemented in C code while

the decimation and upsampling code of the Fast BP algorithms were implemented in Matlab
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Figure 2.8: Images formed using the HH polarisation with angles 1− 4◦ of the eighth pass
of the Gotcha data set. The images contain 768 × 768 pixels. The antenna beamwidths were
limited to a 1.15◦ azimuth angle and a 0.57◦ polar angle. (a) was formed using the BP algorithm
and (b) is its wavenumber spectrum. (c) was formed using the fast decimation-in-phase-history
BP algorithm with one decomposition stage. (d) was formed using the fast decimation-in-
image BP algorithm with one decomposition stage.(e) was formed using the fast decimation-
in-phase-history BP algorithm with three decomposition stages. (f) was formed using the fast
decimation-in-image BP algorithm with three decomposition stages.
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Figure 2.9: Relative errors in the Fast BP algorithms with respect to the BP algorithm. (a)
is the relative error in the image in Fig. 2.8(d). (b) is the relative error in the wavenumber
spectrum of the image in Fig. 2.8(c). (c) is the relative error in the image in Fig. 2.8(f). (d) is
the relative error in the wavenumber spectrum of the image in Fig. 2.8(e).
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script. If this code was ported to C code, one would expect some additional image formation

time reduction, ideally close to the same speed as the PFA.

2.4 Summary

In this section we have developed a discrete SAR observation model and shown how standard

image formation algorithms can be seen to be an approximation of a matched filter based on

this model. Fast BP algorithms have been investigated and a novel fast BP algorithm has

been proposed. Fast BP algorithms are important for new modalities of SAR, such as UWB

SAR. The proposed fast decimation-in-image BP algorithm provides a similar level of speed

up to existing algorithms, however, it has other advantages. Firstly, the errors introduced by

the algorithm are concentrated on the edges of the image. This region usually contains the

smallest amount of energy in the image due to the antenna beam pattern. Therefore, making

the errors less significant. Also, since decimation and upsampling is most easily performed

on a uniform grid, if the aperture is non-linear or is irregularly sampled, decimation-in-phase-

history algorithms must first interpolate onto a grid before decimation. This is not required for

decimation-in-image algorithms because the image grid is defined to be uniform. This could be

a significant advantage for 3D SAR, where the multiple aperture passes will not be uniformly

distributed in altitude. A mixed decimation strategy could also be used to reduce the edge

effects, where, decimation could occur in both domains.
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Chapter 3

Iterative Image Formation

3.1 Introduction

With a linear observation model for a SAR system it is possible to consider the SAR image

formation as an inversion problem, instead of using an approximation of a matched filter to

form the image. Using the linear observational model developed in Chap. 2, in its discrete form,

the formation of an image is a inversion problem of the linear observational model

Y = h (X) , (3.1)

where, Y ∈ CM×N is the phase history with M range and N cross-range measurements,

X ∈ CM ′×N ′
is the SAR image and h (·) is the discrete linear observational model.

In many inversion problems, where the number of measurements is not equal to the dimen-

sional of the signal, the pseudoinverse h† (·) of the observational model h (·) is used to invert

the system. The pseudoinverse is typically approximated using a filtered matched filter based

algorithm.

When the linear observational model h (·) is rank deficient because of missing data, there

is no unique solution of Eq. (3.6). Instead, there is a set of solutions X that equally minimise

Eq. (3.6). The pseudoinverse solution is the solution X̂ ∈ X that minimises
∥∥∥X̂∥∥∥

F
. This

solution amounts to assuming that the missing data are zeroes. Since filtered matched filter

based algorithms approximate this solution, they also assume that the missing data are zeroes.

This assumption produces undesirable artifacts that may drastically reduce the quality of the

image and make further exploitation impossible. In order to improve the image quality, further

information must be included in the inversion problem. A standard signal processing approach

is to solve a regularised least squares (LS) optimisation program of the form

minimise
X

‖Y − h (X)‖2F + λP (X), (3.2)
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where, P (X) is a regularisation function. Typical examples of P (·) are `p and total vari-

ation (TV) norms. `p-norm regularisation functions with p ≤ 1 have been considered for SAR

in the context of superresolution [32, 33, 31, 61] and more recently for undersampled phase

histories [34, 83, 111, 107, 108]. TV-norms have also been considered for SAR for speckle

reduction [31, 107]. The use of `p norms has recently received considerable attention in the

context of CS because it theoretically justifies their use (especially in the case p = 1), when

the image can be modelled as collection of sparse targets. Motivated by CS, the intentional

undersampling and redesign of radar waveforms has also been considered [8, 59, 73].

The field of CS has motivated the development of several fast solvers for the `1 regularised

least squares problem (or one of its equivalent constrained optimisation forms) [63, 129, 41, 12,

13, 139]. Like conjugate gradient algorithms, these solvers require the iteration of the operators

h (·) and hH (·) and are therefore prohibitively slow unless fast implementations of the operators

are available. In previous work on iterative algorithms for SAR, the far-field model has been

used, therefore NFFT algorithms have been used to compute fast approximations of h (·) and

hH (·). However, in many of the applications where iterative algorithms may be useful, this

approximation is not suitable.

In this chapter, a framework for SAR processing using iterative algorithms is proposed, which

makes uses of the fast BP algorithms from Chap. 2. In this framework, iterative algorithms can

be used to reconstruct images with non-flat scene terrain from arbitrary trajectories within the

near-field. Using techniques from the CS literature, which are modified for the SAR inversion

problem, we demonstrate how the quality of an image formed from an undersampled phase

history can be substantially improved using an iterative algorithm.

3.2 Fast (Re/Back)-projection Algorithms

In order to develop a gradient-based iterative algorithm to solve a LS or a regularised LS

optimisation program there must be a fast means of computing h (X) and hH (Y), for arbitrary

X ∈ CM ′×N ′
and Y ∈ CM×N . In Chap. 2, fast algorithms for hH (Y) were proposed. The

techniques from this chapter can also be used to produce a fast decimation-in-phase-history

and decimation-in-image re-projection (RP) algorithm, which are fast approximations of the

observational model. A fast decimation-in-phase-history RP algorithm has been proposed for

use in iterative CT image formation algorithms [18].

The motivation for using fast RP and BP algorithms in iterative image formation algorithms,

rather than NFFT algorithms, is the same motivating SAR applications, where the far-field and

flat scene terrain approximation are not suitable, which leads to the development of fast BP

algorithms. These approximations are especially unsuitable in an iterative algorithm where we

wish to use additional information in terms of a signal model of the image.

A SAR scenario where the far-field approximation is not suitable occurs when the system has
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a wide beamwidth. This is likely to occur in systems that use a low-frequency carrier because

the antenna beamwidth is usually proportional to the wavelength of the transmitted signal. To

demonstrate this scenario, a phase history was simulated from a scene containing four targets

within a scene that is 1.4×1.4 km in size. A fast decimation-in-image BP algorithm and a PFA

was used to form two images from the simulated data. These images are shown in Fig. 3.1. The

image formed using the fast BP algorithm contains four point targets with their energy centred

on the correct target locations. In PFA image, on the over hand, the four targets are not centred

on the true target locations. Additionally, the energy of the targets is not concentrated on a

single centre and instead is blurred. The reason for this blurring and translation of the targets

can be understood by examining the wavenumber spectrum of the images. The wavenumber

spectrum of the fast BP image shows that spectral support is spatially varying, each of the four

targets has a spectral support that is unique. This is because the scene is large and therefore

the angles of observation for each of the target are significantly different. The PFA algorithm

implicitly approximates that each of the targets will have the same spectral support, which

clearly in this case, is not a good approximation. The blurring of targets will also detrimentally

effect the performance of CS based image formation algorithms that use a sparse image model.

Topographical variations of scene terrain can be incorporated into fast RP and BP algo-

rithms using information provided by digital elevation maps (DEM) with no additional com-

putational cost. This is not possible using other fast algorithms. When there is significant

scene terrain variation, and if it is not considered in the image formation, the quality of the

resulting image will be degraded [77]. The degradation will mean that the location and the

relative distance between targets in the image will be inaccurate. Also, it may lead to a blur-

ring of targets. To demonstrate this scenario, a phase history was simulated from a scene that

had a non-flat scene terrain. Two images were generated from this phase history using a fast

decimation-in-image BP algorithm. For one of the images, knowledge of the scene elevation

was used, while, for the other image the scene terrain was assumed to be flat. The resulting

images are shown in Fig. 3.2. For the image which assumed flat scene terrain, the four targets

are displaced from there correct locations. For the image that used terrain information, the

targets are at the correct locations. In this simulation the effect of the elevation is mainly a

translation of the target in the scene, however, with larger scenes and terrain variation, targets

will becomes blurred much like the target in Fig. 3.1(d). This will also effect the performance

of CS based image formation algorithms.

3.3 Pseudoinverse Image Formation

The pseudoinverse can be written as

X̂ = hH
([
hhH

]†
(Y)

)
, (3.3)
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Figure 3.1: Images formed using a simulated phase history which was generated using four
targets located at [500, 500, 0]T m, [−500, 500, 0]T m, [500,−500, 0]T m and [−500,−500, 0]T m
(relative to the scene centre). The system parameter are: carrier frequency ω0/2π = 308 MHz,
chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture [7,−3.5, 7]T km to
[7, 3.5, 7]T km (relative to the scene centre). (a) Image formed using the filtered BP Algorithm.
(b) Image formed using the filtered PFA Algorithm. (c) Zoomed image in (a). (d) Zoomed
image in (b). (e) wavenumber spectrum of image in (a). (f) wavenumber spectrum of image in
(b).
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Figure 3.2: Images formed using a simulated phase history which was generated using four tar-
gets located at [25, 25, 91.16]T m, [−25, 25, 91.16]T m, [25,−25, 91.16]T m and [−25,−25, 91.16]T

m (relative to the scene centre). The system parameter are: carrier frequency ω0/2π = 308
MHz, chirp rate α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture [7,−3.5, 7]T

km to [7, 3.5, 7]T km (relative to the scene centre). (b) Image formed using the filtered BP
algorithm without elevation knowledge. (a) Image formed using the filtered BP algorithm with
elevation knowledge.

where,
[
hhH

]
(·) is the pseudoinverse of h

(
hH (·)

)
. Due to the size of a typical SAR problem,

h† (·) can not practically be computed, instead, it can only be approximated. Conventional

filtered matched filter based algorithms, can be seen to be an approximation of this pseudo-

inverse. One commonly used filtered matched filter based image formation algorithm, which is

motivated by filtered BP techniques in CT, is computed as

X̂ = hH (Q ◦Y) (3.4)

where,

Q = diag
(

(sin (θ0 (~xn)))−1 (ω0 + 2α (mTs − Tt/2))
)

(3.5)

is a ramp filter [99] and hH (·) is approximated using one of the algorithms discussed in Chap. 2.

In this algorithm
[
hhH

]
(·) is approximated by an element-wise product of Q and Y.

Fig. 3.3 shows two images which were formed from a simulated phase history. The image in

Fig. 3.3(a) was formed using the BP algorithm and the image in Fig. 3.3(b) was formed using

a ramp filtered BP algorithm. The difference between the images is only minor. The filtered

BP image has slightly reduced sidelobes. Unlike in the related problem of CT, filtering only

provides minor improvements in the formed image, especially for narrow band systems.

Rather than approximating the pseudoinverse h† (·) with a filtered BP algorithm, an iterative

algorithm can be used to approximate the pseudoinverse solution. If h (·) is full rank, the

solution to the LS objective,
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Figure 3.3: Images formed using a simulated phase history which was generated using four
targets located at [25, 25, 0]T m, [−25, 25, 0]T m, [25,−25, 0]T m and [−25,−25, 0]T m (relative
to the scene centre). The system parameter are: carrier frequency ω0/2π = 308 MHz, chirp rate
α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture [7,−3.5, 7]T km to [7, 3.5, 7]T

km (relative to the scene centre). (a) Image formed using the BP algorithm. (b) Image formed
using the filtered BP algorithm.

minimise
X

‖Y − h (X)‖F , (3.6)

defines the pseudoinverse solution. An approximation of this solution can be achieved very

efficiently using a conjugate gradient algorithm. As was seen with the filtered BP algorithms,

when the phase history is uniformly sampled, such iterative methods only provide minor image

quality improvements. However, for irregularly sampled and nonlinear apertures an iterative

approximation of the pseudo inverse may provide significant improvement.

When defining a grid for the image, typically the sample spacing is defined to be slightly

smaller than the required sampling rate. This is so that the discrete model more accurately

approximates the continuous observational model. Due to this slight oversampling, the discrete

observational model h (·) is rank-deficient. Therefore, the pseudo inverse solution is X̂ ∈ X that

minimises
∥∥∥X̂∥∥∥

F
. This solution is not easily computable without using an expensive singular

value decomposition (SVD). Instead, the pseudo inverse solution can be approximated using a

filtered BP algorithm or alternatively by approximating the solution to the `F -norm regularised

LS optimisation program

minimise
X

‖Y − h (X)‖2F + λ ‖X‖2F , (3.7)

where, λ is a positive real scalar that controls the controls the effect of the regularisation.

As λ approaches 0, the solution of Eq. (3.7) approaches the pseudo inverse solution. This

optimisation program can also be approximated using a iterative conjugate gradient algorithm.
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Figure 3.4: Images formed using a simulated phase history which was generated using four
targets located at [25, 25, 0]T m, [−25, 25, 0]T m, [25,−25, 0]T m and [−25,−25, 0]T m (relative
to the scene centre). The system parameter are: carrier frequency ω0/2π = 10 GHz, chirp rate
α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture random locations between
[7,−0.3, 7]T km to [7, 0.3, 7]T km (relative to the scene centre). (a) Image formed using the
filtered BP algorithm (b) Image formed using the LSQR algorithm.

In most scenarios, forming an image by approximately solving Eq. (3.7) will offer little

benefits in image quality compared to using a filtered BP algorithm. However, one scenario

where it will offer improved image quality is when the synthetic aperture is sampled irregularly.

This is because in this scenario,
[
hhH

]
(Y) is not well approximated by Q ◦Y. To demonstrate

this scenario, a phase history was simulated, using an irregularly sampled linear aperture, using

a scene that contained four targets. The irregular sampling along the aperture was defined such

that the slow time measurements were given

t̂n = Tt̂N (n− 1 + U (−0.5, 0.5)) , (3.8)

for, n = 1, · · · , N . Two images were then formed, one using a filtered fast decimation-in-

image BP algorithm and the other using an iterative approximation of Eq. (3.7). The iterative

approximation was computed using the least squares QR (LSQR) algorithm, which is a conju-

gate gradient algorithm. The resulting images are shown in Fig. 3.4. The filtered fast BP image

has clearly visible cross-range sidelobe artifacts due to the irregular sampling. The `F -norm

regularised LS image, on the other hand, has removed these artifacts and the sidelobes are

now consistent with what is expected for the given aperture length. Image formation using

an iterative approximation to the `F -norm regularised LS may also improve the image quality

when the synthetic aperture is fully-sampled but highly non-linear.
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3.4 Sparsity based Iterative Image Formation

In this section we will present an image formation framework using a mix of `1 and `F -norm

regularisation, motivated by the theory of CS. The framework will be used to reconstruct real

world SAR images, which are made up of coherent reflectors from man-made object as well as

natural reflectors that exhibit speckle noise.

3.4.1 Image Properties

The theory of CS requires knowledge about the classes of signals to be recovered, which usually

comes in the form of a sparse signal model. Therefore before being able to use the tools of CS,

the properties of SAR images must be considered.

Statistical Properties

Similar to other coherent imaging systems, SAR images are corrupted by speckle noise. Sig-

nificant speckle noise occurs in SAR images when the wavelength of the carrier wave is small

compared to the resolution of the image. When this occurs, each element of the image can be

modelled as the sum of a large number of sub-elements. Each of these objects reflects a fraction

of the electromagnetic energy back towards the platform. Therefore, the reflectivity of each ele-

ment in the image is a summation of the reflectivities of each of the sub-elements. Depending

on the characteristics of the sub-elements, these sub-element summations of reflectivities may

interfere in different ways:

• Random interference: if the scene is rough at the scale of the wavelength, for a particular

image element, the summation will contain a large number of independent sub-elements.

The sum of the reflectivities is then a circularly symmetric complex Gaussian random

variable. Additionally, each of the image elements that contain randomly interfering sub-

elements, are also independent. This results in the multiplicative circularly symmetric

complex Gaussian noise model that is used for SAR images, which is often referred to as

speckle noise.

• Constructive interference: If the scene is smooth for a particular image element, the sub-

elements will have similar characteristics which will interfere constructively. This will

produce specular reflection. Specular reflection will only reflect significant electromag-

netic energy back to the platform if the scene surface is perpendicular to the incident

wave. However, due to multiple bounce scattering effects certain objects, e.g. corner

reflectors, result in large amounts of energy being reflected back to the platform. Cor-

ner reflectors and other objects that reflected large amounts of energy commonly occur

in man-made structures and vehicles. Therefore, the corresponding image elements have
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larger magnitudes than the image elements that are a result of random interference. Spec-

ular reflection is typically dominant in urban areas [49], where, corner reflection accounts

for most of the very large magnitude image elements.

3.4.2 Image Model

In a typical SAR image, most image elements can be modelled as the result of random sub-

element interference, and only a small number as constructive interference leading to very

large magnitude image elements. In order to understand the behaviour of image formation

algorithms, it is convenient to split the image into the two parts

X = Xs + Xbg, (3.9)

where, Xs corresponds to the few very “bright” image elements and Xbg are the lower

reflectivity “background” image elements which are contaminated by speckle noise.

If we consider the whole image, most of the pixels contain multiplicative speckle noise and

can therefore be modelled as non-stationary circularly symmetric complex Gaussian noise. In

terms of information content, this means that the image has a very high entropy and therefore

has a very low compressibility. This should mean that the image cannot be modelled as sparse

in any basis, which prevents us from using CS tools to form an image, containing speckle noise,

from an undersampled phase history.

If we consider the image in two parts, however, the part corresponding to the bright image

elements Xs is clearly sparse in the image domain and the sparse elements have a magnitude

which is typically much larger than the values of the background image elements Xbg. If

one considers the image formation of only the bright elements, the rest of the image can be

considered as noise. The tools of CS can then be used to recover the bright image elements

from an under-sampled phase history. In many applications the image formation of bright

image elements, which correspond to man-made structures and vehicles, is critical, especially

in military applications.

3.4.3 Image Formation of Bright Image Elements

One of the standard techniques from the CS literature, for the recovery of sparse signals or the

approximation of compressible signals from noisy monuments involves solving the convex basis

pursuit denoising (BPDN) optimisation program

minimise
X

‖X‖1 subject to ‖Y − h (X)‖F ≤ ε, (3.10)

where, ε is selected to be greater than the `F -norm of the additive noise. An equivalent program

to the BPDN is the least absolute shrinkage and selection operator (LASSO) optimisation
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program

minimise
X

‖Y − h (X)‖2F subject to ‖X‖1 ≤ τ (3.11)

where, τ is parameter that controls the sparsity of the image. There is a one-to-one map

between ε and τ for ε ∈
{∥∥Y − h (h† (Y)

)∥∥
F
, ‖Y‖2

}
. The Lagrangian of the LASSO is given

by the optimisation program

minimise
X

‖Y − h (X)‖2F + λ ‖X‖1 (3.12)

where, λ is the Lagrangian multiplier. The Lagrangian of LASSO is a `1-norm regularised LS.

This is a convenient formulation which has two main advantages. Firstly, it is unconstrained and

there are fast methods for solving unconstrained problems. Secondly, the parameter selection of

λ has only a fixed range of values λ ∈
[
0, 2

∥∥hH (Y)
∥∥
∞

]
, which also have a one-to-one relation

with ε ∈
{∥∥Y − h (h† (Y)

)∥∥
F
, ‖Y‖2

}
. This can make parameter selection easier. In practise ε

will not be known, however, research into the automatic selection of this parameter is a current

area of research [6, 11].

The image formation of the bright image elements Xs lends itself to the CS based frame-

work because the signal we are trying to reconstruct is approximately sparse. Using the CS

framework, Xs can be formed by solving Eq. (3.12). In our framework we treat the background

Xbg as well as the system noise as the total additive noise and therefore, λ is chosen accord-

ingly. Fast iterative algorithms can be used to approximate the solution to Eq. (3.12) using fast

RP and BP algorithms. Alternatively, Xs can also be formed using a greedy algorithm. For

example, IHT is a state of the art greedy algorithm which approximately solves

minimise
X

‖Y − h (X)‖2F subject to ‖X‖0 ≤ K. (3.13)

Super-resolution Effects

Image formation algorithms that promote sparse solutions have been used with fully-sampled

phase histories to produce mild super-resolution. This is because of the sharpening effect

on the bright image elements, which produces an extrapolation of the spectral support of an

image in the wavenumber spectral domain. This spectral extrapolation also occurs when the

phase history is undersampled. This super-resolution effect may not always desirable. In this

situation, the extrapolated spectrum can be removed by computing Xs ← h† (h (Xs)).

To demonstrate this effect, a phase history was simulated from a scene with four targets.

An image was then formed using an iterative approximation to Eq. (3.12). Another image

was generated by removing the extrapolated spectrum from the first image, where, h† (·) was

approximated using a filtered fast decimation-in-image BP algorithm. The two images are
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shown in Fig. 3.5. The targets in the first image are represented by four non-zero pixels, while

for the second image the targets have PSF which are what are expected for an image formed

using a standard image formation algorithm with given chirp bandwidth and synthetic aperture

length.

3.4.4 Image Formation of Background Image Elements

There is no possible sparse signal model for the background image elements because they

contain speckle noise. Therefore, CS techniques are not directly applicable. Instead we propose

forming the background image elements using an approximation of the pseudo inverse. This

can be achieved by applying the filtered BP algorithm to the phase history with the bright

image elements removed, i.e. hH (Q ◦Yr), where, Yr = Y − h
(
X̂s

)
, or by using an iterative

algorithm to solve the `F -norm regularised LS optimisation program

minimise
X

‖Yr − h (X)‖2F + λbg ‖X‖2F , (3.14)

where, λbg is a small value so that the solution is approximately the pseudo inverse solution.

Both solutions will not address the undersampling and the image quality of the background

elements will have large target sidelobes. The total image X̂ can then be formed by summing

the two image components, i.e.

X̂ = X̂bg + X̂s. (3.15)

The total formed image will still have poor contrast in the image elements that are affected

by speckle due to the undersampling. However, the overall image quality is likely to be improved

in all elements compared with images formed using standard methods. This is because using

a CS inspired approach improves the image formation of bright image elements, this not only

improves the image quality for these elements but also reduces their effect on the background

image elements. Using standard methods, a significant amount of energy from the bright image

elements is contained in their sidelobes and because bright image elements tend to have much

larger magnitudes than the background, this energy dominates the background of the image.

3.5 Experiments

To demonstrate the computational advantages of the fast BP algorithms in an iterative algo-

rithm, the computational times for image formation were measured for different size phase

histories and images. Images were formed using five iterations of the fast iterative shrinkage-

thresholding algorithm (FISTA) and five iterations of the LSQR algorithm. For each algo-

rithm an image was formed using four different algorithms for h (·) and hH (·), the RP and
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Figure 3.5: Images formed using a simulated phase history which was generated using four
targets located at [25, 25, 0]T m, [−25, 25, 0]T m, [25,−25, 0]T m and [−25,−25, 0]T m (relative
to the scene centre). The system parameter are: carrier frequency ω0/2π = 308 MHz, chirp rate
α/π = 32.4 MHz/µs, chirp period T = 10 µs, synthetic aperture [7,−3.5, 7]T km to [7, 3.5, 7]T

km (relative to the scene centre). Images were formed using the FISTA based sparse image
formation. (a) Image with full spectral support. (b) Image with projected spectral support.
(c) Zoomed image of (a). (d) Zoomed image of (b). (e) Wavenumber spectrum of image in (a).
(f) Wavenumber spectrum of image in (b).
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Table 3.1: LSQR image formation times (seconds)
N RP/BP fast RP/BP fast RP/BP PFA

(Dec. Image) (Dec. PH)
256 186.10 49.28 48.88 9.26
512 1480.23 198.74 198.74 37.13
1024 12515.03 813.81 812.61 172.03
2048 100037.91 3286.19 3287.67 767.19

Table 3.2: FISTA image formation times (seconds)
N RP/BP fast RP/BP fast RP/BP PFA

(Dec. Image) (Dec. PH)
256 236.03 62.13 61.96 11.77
512 1876.52 254.12 254.30 47.20
1024 16000.53 1031.99 1025.18 224.85
2048 127334.56 4168.90 4170.27 981.27

BP algorithm, the PFA and the fast decimation-in-phase-history and decimation-in-image BP

algorithms. Both the RP and BP algorithm and the PFA made used the NUFFT algorithm

with a interpolation kernel length of 24 samples. The image formation times were measured

on a single core of a 2.5 GHz Intel Xeon processor with N2 element images and N2 element

phase histories. The number of decomposition stages in the fast RP and BP algorithms was

log2N − log2 64. Table 3.1 and Table 3.2 show the resulting image formation times in seconds.

The computational cost of the LSQR algorithm is approximately 10-11 times that of the

equivalent image formation computational cost in Chap. 2 in Table 2.1. While, the computa-

tional cost of the FISTA algorithm is approximately 13-14 times slower. This is consistent with

the assumption that the main computational cost of iterative image formation algorithms comes

from the computation of h (·) and hH (·) at each iteration. The FISTA has a slightly greater

computational cost because it must additionally perform an elements-wise soft-shrinkage at

each iteration.

The number of iteration required to achieve an acceptable solution for the LSQR algorithms

like other conjugate gradient algorithms depends on the condition number κ of hH (h (·)) +

λ. Explicitly, the distance between the value at the ith iteration and the true solution is

O
((√

κ−1√
κ+1

)i)
[67]. For the FISTA algorithm this same distance at the ith iteration isO

(
i−2
)

[12].

In practice, we found that in most problems, an acceptable solution is achievable in a small

number of iterations, around ten.

To demonstrate the sparsity based iterative image formation framework for undersampled

data, images were reconstructed from the Gotcha data set, with subsets of the phase history set

to zero to simulate missing data. In the first experiment a 25% and 50% random subset of phase

history in the fast-time direction was zeroed. In the other experiment a 25% and 50% random

subset of phase history in the slow-time direction was zeroed. Images were reconstructed using

the BP algorithm and a FISTA-based and a IHT-based sparsity based iterative image formation
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Figure 3.6: Image formed using the HH polarisation with the angles 1− 4◦ of the eighth pass
of the Gotcha data set. The images contain 768 × 768 pixels. The antenna beamwidths were
limited to a 1.15◦ azimuth angle and a 0.57◦ polar angle. Image was formed using the filtered
BP algorithm

algorithm. For the FISTA-based algorithm, the bright elements were reconstructed using the

FISTA algorithm with λ = 0.005 · 2
∥∥hH (Y)

∥∥
∞. While for the IHT-based algorithm, the IHT

algorithm was used with K = 15000. In both sparsity based algorithms, after recovering the

bright image elements, the super-resolution effects were removed, using the method described

in Section 3.4.3. The background elements were then recovered using a fast filtered decimation-

in-image BP algorithm. The resulting images are shown in Fig. 3.7 and Fig. 3.8. For reference,

an image formed using the BP algorithm from the full phase history is shown in Fig. 3.6.

The resulting images using the sparsity based framework are visually improved. The recov-

ered bright image elements look almost visually identical to the same elements in the reference

image even with only half the phase history. For the background image elements, there is

less contrast compared to the reference image which degrades as the undersampling increases.

However, the image quality is still improved when compared with the fast BP image because

the energy from the bright image elements has been well recovered. The differences between

the visual image quality of the FISTA-based and IHT-based images are small.

3.6 Summary

In this chapter we have proposed an iterative image formation framework for SAR which is

based on fast RP and BP algorithms. Unlike existing iterative image formation algorithms,

the proposed framework can incorporate near-field scenes, non-linear apertures and non-flat

scene terrain. The framework can improve the quality of images formed from fully-sampled and

undersampled phase histories in some scenarios. When the phase history is undersampled the

framework can make use CS sparsity based techniques. These techniques were tailored to the

properties of real SAR images, namely speckle noise. Sparsity based image formation was show
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Figure 3.7: Images formed using the HH polarisation with the angles 1− 4◦ of the eighth pass
of the Gotcha data set with cross-range undersampling. The images contain 768 × 768 pixels.
The antenna beamwidths were limited to a 1.15◦ azimuth angle and a 0.57◦ polar angle. (b), (d)
and (f) were formed using a random 75% subset of the phase history cross-range samples. (a),
(c) and (e) were formed using a random 50% subset of the phase history cross-range samples.
(b) and (a) were formed using the filtered BP algorithm. (d) and (c) were formed using the
FISTA based sparse image formation. (f) and (e) were formed using the IHT based sparse
image formation
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Figure 3.8: Images formed using the HH polarisation with the angles 1− 4◦ of the eighth pass
of the Gotcha data set with range undersampling. The images contain 768 × 768 pixels. The
antenna beamwidths were limited to a 1.15◦ azimuth angle and a 0.57◦ polar angle. (b), (d)
and (f) were formed using a random 75% subset of the phase history range samples. (a), (c)
and (e) were formed using a random 50% subset of the phase history range samples. (b) and (a)
were formed using the filtered BP algorithm. (d) and (c) were formed using the FISTA based
sparse image formation. (f) and (e) were formed using the IHT based sparse image formation
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to improve the visual quality of images formed from a real undersampled phase history.
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Chapter 4

Auto-focus

4.1 Introduction

SAR image formation algorithms are usually based on exact knowledge of the linear observation

system, however, in practical situations, such a system cannot be perfectly known. Errors in

the model of the linear observation system can produce significant errors in the phase history.

Significant errors arise in the model of a SAR system because the round trip propagation

delay to a reference position in the scene must be estimated at each position along the aperture.

In spotlight mode SAR, this reference point corresponds to the scene centre. Errors that occur

in these estimates are primarily due to non-idealised propagation mediums and/or platform

position errors due to inaccuracies in the navigation system. If not corrected, phase errors can

degrade and produce distortions in the formed image.

Methods for correcting these errors in fully-sampled systems are known as autofocus algo-

rithms and are most commonly used as a post-processing method on the formed image. All

autofocus algorithms require a signal model for either the phase errors and the image or both.

Additionally, many algorithms make a far-field and small aperture angle approximation so that

the phase errors are constant along the range axis of the formed image. One of the earliest

autofocus algorithms to be developed was the mapdrift (MD) algorithm [29]. MD estimates

the phase errors based on a low-order polynomial model for the phase errors along the cross-

range direction. Phase gradient autofocus (PGA), one of the most commonly used algorithms,

requires the phase errors along the cross-range direction to vary smoothly and also requires the

image to contain isolated point scatterers [132, 75]. Recently another algorithm, multichannel

autofocus (MCA), has been proposed which requires the focused image to contain a known

region which is almost zero [94, 84]. All of these listed algorithms are post-processors and

although these methods have been very successful for correcting phase errors in fully-sampled

scenarios, they may not be suitable for undersampled SAR.

In undersampling scenarios, the inverse is ill-posed. As was mentioned in Chap. 3, to make
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this problem well-posed, an appealing idea is to apply the tools and theory of CS and SR.

However, the tools and theoretical results from CS also require exact knowledge of the linear

observation system. Therefore, the tools of CS cannot be directly used.

The algorithm proposed in this chapter for image formation and autofocus of a undersam-

pled phase history has similarities with the proposed method in [106]. Although the method

proposed in [106] primarily concentrates on the fully-sampled scenario it does demonstrate that

it is also applicable to the undersampled scenario. Both methods involve approximately solv-

ing the same non-convex problem, however, the algorithm proposed in this chapter has some

additional practical benefits. Firstly, it can be shown to be stable and it produces a sequence

that convergences to a connected set [137, Proposition B.3]. Secondly, it empirically converges

in a significantly smaller number of iterations.

A closely related problem which has been investigated in the signal processing literature in

the last few years is the problem of phase retrieval [26, 45, 85]. The goal of phase retrieval is to

recover a complex signal from magnitude only measurements. The SAR imaging and autofocus

problem is equivalent to the phase retrieval problem if we ignore all phase information due to a

belief that it is corrupted. In these papers, a technique known as “phase-lifting” is used to pose

a convex problem which is solved to recover the signal. This technique involves “lifting” the

signal so instead of recovering x ∈ CN the algorithm recovers X = xxH ∈ CN×N . This process

is likely to be very costly computationally and will likely make these techniques infeasible for

SAR systems.

The outline of this chapter is as follows. In Section 4.3 the expected performance of existing

post-processing autofocus methods in a SR framework is investigated. Inherent ambiguities in

the undersampled phase error problem are analysed in Section 4.4. An image formation algo-

rithm for undersampled SAR with phase errors is proposed in Section 4.5. Finally experimental

simulations in Section 4.6 are used to demonstrate the effectiveness of the proposed algorithm.

4.2 Observation model with Phase Errors

Consider the observation model for a SAR system after dechirping and deskewing developed in

Chapter 2 with one small modification. This modification involves swapping the dimensions of

the phase history Y ∈ CM×N such that the row dimension is now fast-time and the column

dimension is slow-time. This is done for notational convenience sake so the multiplication of

the phase history with the phase errors is a right-hand side (RHS) multiplication. This non-

standard convention is used only within this chapter. With this model, adding a delay error

τe in the dechirping and deskewing operations at each aperture position produces the following

discretised observation model [76].

Y = exp (jΦ) ◦ h (X) , (4.1)
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where,

Φ ∈ CM×N = {φmn} =
{(
ω0τem − ατe2

m

)
+ 2ατem

(
n− 1
ft
− Tt

2

)}
(4.2)

are the phase errors which result from the delay errors. If we neglect the effects of the linear

phase term, which is done in most systems because it usually has only a minor effect on the

image quality, the discrete SAR observation model with phase errors becomes

Y = diag (exp (jφ))h (X) , (4.3)

where,

φm = ω0τem − ατe2
m (4.4)

are the phase errors.

Clearly, without further assumptions, the problem of recovering φ and X from Y is ill-posed

if M = M ′ and N = N ′, since there are only M ′N ′ equations and M ′ (N ′ + 1) unknowns.

4.3 Sparse Image Formation with Post-processing Auto-

focus

Most post-processing autofocus methods make a far-field and small aperture angle approx-

imation in the SAR observation model [76], i.e. the image was formed using a separable two-

dimensional image formation algorithm such as RDA [120]. Under the separable approximation

and assuming we sample at exactly the Nyquist rate in range and cross range, the system can

be modelled as the following left-hand side (LHS) and RHS matrix multiplication:

Y = diag {exp (jφ)}AXB, (4.5)

where,

amn = exp
(
−j
(

2π
(m− 1) (n− 1)

M
− (m− 1)π − (n− 1)π +

Mπ

2

))
and

bmn = exp
(
−j
(

2π
(m− 1) (n− 1)

N
− (m− 1) (πω0αT − π)− (n− 1)

(
π +

Nπ

2
− 2ω0L/c0

)))

are the elements of the cross-range matrix A ∈ CM×M and the range matrix B ∈ CN×N ,

respectively, where, L is the scene radius. This can be derived by assuming that the spatial
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Fourier support is rectangular and offset from the origin by ω0/πc0 in the range spatial Fourier

dimension.

Under the assumption that A is essentially a Fourier matrix, we can rewrite the observation

model in Eq. (4.5) as Y = AΨXB, where, Ψ is a circulant matrix which may be viewed as a

filter in cross-range direction for each range bin.

When fully-sampled, recovering ΨX from Y is straight forward because A and B are in-

vertible. Post-processing autofocus algorithms can then recover X from the filtered image ΨX,

by using a signal model for Ψ and/or X.

When Y is undersampled in either range or cross-range the observation model will be:

Y′ = AΨXB′ (4.6)

or

Y′ = A′ΨXB, (4.7)

where, A′ ∈ CM×M ′
is a M < M ′ row subset of A and B′ ∈ CN ′×N is a N < N ′ column subset

of B. With this model, unlike in the fully-sampled situation, A′ and B′ are not invertible.

An estimate of ΨX can be reconstructed by solving an `1-norm regularised LS optimisation

program. CS results can then be used to analyse the expected reconstruction quality of this

estimate. If the undersampling is random in cross-range, the reconstruction of the filtered image

is stable, in the sense that the columns of the recovered filtered image Ψ̃X satisfy Eq. (1.1.9),

if the number of cross-range samples is greater than O
(
K log5 (M ′)

)
. For a fixed K, the

reconstruction error is dependent on the additive noise and the K-term approximations of the

columns of the filtered image. Larger phase errors will make these K-term approximations

worse and therefore increase the error in the reconstructed filtered image.

With an estimate of the filtered image, the image can be recovered by applying a standard

post-processing autofocus technique. The resulting image is given by

X̃ = Ψ̃
-1

Ψ̃X, (4.8)

where, Ψ̃
-1

= A-1 diag
{

exp(−jφ̃)
}

A is the phase error correction applied by the autofocus

algorithm and φ̃ are the estimated phase errors by the chosen algorithm. If the estimated

phase errors are the true phase errors then the error in the reconstructed image is given by

X− X̃ = Ψ-1E (4.9)

where, E = ΨX − Ψ̃X is the error in the estimated filtered image. Therefore, even with

knowledge of the true phase errors, the effect of correcting phase errors as a post-processing

step can result in a significant error in the reconstructed image. For this reason, in most cases,
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post-processing autofocus methods are unsuitable for undersampled SAR.

4.4 Uniqueness of Image Formation and Autofocus

It is well-known that there are inherent ambiguities in the autofocus problem which prevent

the problem having a unique solution. The formulation in Eq. (4.5) is known to be ambiguous

to constant and linear phase errors along the cross-range dimension [76].

A sparsity based necessary condition for the uniqueness of the autofocus problem can be

given which is dependent on the observation model h (·) and the signal model of the image X.

It is given as follows.

h
(
X̃
)

= diag {d}h (X) ⇐⇒ ∃β ∈ {β ∈ C : |β| = 1} : X̃ = βX, (4.10)

∀
(
X̃,X,d

)
∈
{

X̃ ∈ X ,X ∈ X ,d ∈ D
}
,

where,

X =
{

X ∈ CM
′×N ′

: ‖X‖0 ≤ K
}
,

i.e. we know the scene has at most K scatters, and

D =
{
d ∈ CM : |dm| = 1

}
is the set of all possible phase errors,

If Eq. (4.10) is satisfied then the problem is unique up to a scalar β multiplication of the

true X, i.e. X̃ = βX, and the solutions are given by the following program.

minimise
X,d

‖X‖0

subject to diag {d}Y = h (X)

d∗mdm = 1, m = 1, . . . ,M,

(4.11)

Eq. (4.10) states that the phase error free observation model h (·) must have the property

that the phase history of a sparse image cannot be equal to a phase error corrupted phase

history of a different sparse image.

Using ideas from the dictionary learning literature we can define a set of sufficient conditions

for the uniqueness of φ and X given Y′ = diag
{
d′
}
A′XB [2]. These conditions are as follows:

1. the spark condition: any 2KX columns of A′ are linearly independent
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2. the columns of X have exactly KX non-zero elements

3. for each of the
(
M
KX

)
possible KX-sparse supports, there are at least KX + 1 columns of

X

4. any KX + 1 columns of X which share the same support, span a KX-dimensional space

5. any KX + 1 columns of X, which have different supports, span a (KX + 1)-dimensional

space

Proposition 4.4.1 (see [2, Theorem 3]). If the above conditions hold then there is a unique

X̃ which satisfies Y′ = diag
{

d̃′
}

A′X̃B. Where uniqueness is up to a unit magnitude scalar β

and a circular permutation Pm of the true X, i.e. X̃ = βPmX

where, m ∈ Z and

P =



0 0 . . . 0 1

1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0


.

As is the case in dictionary learning, the richness condition 3 is completely unrealistic for

undersampled SAR. However, this condition is only sufficient and is likely to be very pessimistic.

It should also be noted that recovering the unique solution involves solving Eq. (4.11) which

requires combinatorial many operations to solve and is unsuitable for practical problems that

involve noise.

4.5 Sparse Image Formation and Autofocus

In this section our goal is to design an algorithm which performs sparse image formation and

autofocus and can be approximately solved in a polynomial time. To this end, motivated

by convex relaxation techniques, the non-convex function ‖X‖0 in Eq. (4.11) is replaced with

its closest convex function ‖X‖1 and the equality constraint is replaced with an inequality

constraint that accommodates noise. This results in

minimise
X,d

‖X‖1

subject to ‖diag {d}Y − h (X)‖F ≤ ε

d∗mdm = 1, m = 1, . . . ,M.

(4.12)
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Even though our objective function is now convex, Eq. (4.12) is still non-convex because the

inequality constraint is not linear and does not define a convex feasible set.

In order to use gradient based methods, which are usually used in large scale problems such

as SAR image formation, the objective must be smooth. Therefore, it is convenient to exchange

the inequality constraint and the objective in Eq. (4.12) to form the equivalent program

minimise
X,d

‖diag {d}Y − h (X)‖2F

subject to ‖X‖1 ≤ τ

d∗mdm = 1, m = 1, . . . ,M.

(4.13)

Even though this problem is still non-convex, importantly, in each set of variables X and d

–with the other fixed– there is a unique solution. This observation allows us to use a block

relaxation type method which can be used to approximate the solution and has been found to

be effective in the related problem of dictionary learning [137].

4.5.1 Block Relaxation

Block relaxation is optimisation strategy which splits the optimisation parameters into blocks.

The optimisation program is then solved by cycling through the blocks, solving based on a single

parameter block at a time. Block relaxation can be used to approximately solve Eq. (4.13) by

iteratively solving the problem based on a single parameter block, X or d, at a time. Therefore,

we must consider the solution of Eq. (4.13) for each parameter block.

Minimisation based on X

Consider Eq (4.13) when d is fixed, i.e.

minimise
X

f (X,d)

subject to ‖X‖1 ≤ τ,
(4.14)

where,

f (X,d) = ‖diag {d}Y − h (X)‖2F . (4.15)

A method used for solving Eq. (4.14) is a technique known as “majorisation minimisation”.

This technique replaces the objective function with a majorising surrogate function which is

much easier to solve. A function g is said to majorise f if f (ω) ≤ g (ω, ξ) and f (ω) = g (ω, ω),∀ω

and ξ ∈ Υ, where, Υ is the parameter space. A surrogate function can be derived for (4.15) by

expanding it as a Taylor series and bounding its curvature (d2f) [137]. This surrogate function
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is:

g
(
X,X‡,d

)
= ‖diag {d}Y − h (X)‖2F −

∥∥∥h (X)− h(X‡)
∥∥∥2

F
+ LX

∥∥∥X−X‡
∥∥∥2

F
, (4.16)

where, LX > ‖h (·)‖2. Replacing the objective function with its surrogate function, Eq. (4.14)

becomes

minimise
X,X‡

g
(
X,X‡,d

)
subject to ‖X‖1 ≤ τ,

(4.17)

which is a minimisation based on X and a surrogate parameter vector X‡. In this program, if

X is fixed, the minimum of Eq. (4.17) occurs at X‡ = X and if X‡ is fixed the minimum occurs

at

minimise
X

‖X−C‖F

subject to; ‖X‖1 ≤ τ,
(4.18)

where, C = X‡ + L−1
X hH

(
diag (d)Y − hH

(
X‡
))

. The solution of Eq. (4.18) is the projection

of C onto an `1 ball with a radius of τ . There are efficient methods to exactly compute this

projection [53].

By minimising Eq. (4.17) based on either X‡ and X in an alternating fashion, X‡ and X

will converge to the solution of Eq. (4.14) [15]. To solve this problem we need to select a valid

LX , however in practice, a feasible LX can be determined using a backtracking line search [12].

Minimisation based on d

Consider Eq. (4.13) when X is fixed, which (ignoring constant terms) is given by:

minimise
d

tr
(
−2 Re

{
diag

{
dH
}
h (X) YH

})
subject to d∗mdm = 1, m = 1, . . . ,M.

(4.19)

The unique solution of Eq. (4.19) can be found analytically by,

d = exp
(
j∠diag

{
h (X) YH

})
. (4.20)

94



A block relaxation of Eq. (4.13) is produced by solving Eq. (4.14) and Eq. (4.19) in an alter-

nating fashion which is described in Algorithm 3. Where, D solves Eq. (4.14). The approaches

used in [106], [105] and [81] are of this form. These types of methods are stable, assuming we

can solve D, i.e. we exactly solve Eq. (4.14) at each iteration. In practical algorithms where

only an approximate solution at each iteration is obtained, no stability analysis exists.

Algorithm 3 A (X,d)
Output: X,d

repeat
X‡ ← X
X← D (X,d)
d‡ ← d
d← exp

(
j∠diag

{
h (X) YH

})
until

∥∥∥X−X‡
∥∥∥

F

∥∥∥X‡∥∥∥−1

F
< threshold ∧

∥∥∥d− d‡
∥∥∥

2

∥∥∥d‡∥∥∥−1

2
< threshold

Another way to create a block relaxation is to use the surrogate parameter X‡ as an addi-

tional parameter block, i.e.

minimise
X,X‡,d

g
(
X,X‡,d

)
subject to; ‖X‖1 ≤ τ

d∗mdm = 1, m = 1, . . . ,M.

(4.21)

For this relaxation, as long as Eq. (4.21) is always solved based on X‡ after solving based

on X the solution for each sub-problem is easily computable and the complete algorithm is

known to be stable and guaranteed to converge to an accumulation point or a connected set

of accumulation points, see [137, Proposition B.3]. The pseudo code for this algorithm, when

phase minimisation occurs at each iteration, is in Algorithm 4. Where, Pτ (C) projects C onto

an `1 ball with a radius of τ .

Algorithm 4 B (X,d)

Input: Lx > ‖h‖2F
Output: X,d

repeat
X‡ ← X
C← X‡ + L−1hH

(
diag {d}Y − hH

(
X‡
))

X← Pτ (C)
d‡ ← d
d← exp

(
j∠diag

{
h (X) YH

})
until

∥∥∥X−X‡
∥∥∥

F

∥∥∥X‡∥∥∥−1

F
< threshold ∧

∥∥∥d− d‡
∥∥∥

2

∥∥∥d‡∥∥∥−1

2
< threshold

It is interesting to note that this algorithm can be seen as a generalisation of Algorithm 3.
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Table 4.1: System parameters for synthetic experiments
parameter value

carrier frequency (ω0/2π) 10 GHz
chirp bandwidth (αT/π) 150 MHz

scene radius (L) 50 m
number of targets 20

signal to noise ratio 0 dB

An additional benefit of Algorithm 4 is that it tends to converge faster than Algorithm 3. This

is because Algorithm 3 will oscillate around the optimum path.

4.6 Experimental Results

In these experiments we investigate the performance of the two different block relaxations,

Algorithm 3 and Algorithm 4, using undersampled phase histories that contain phase errors.

4.6.1 Quantitative Performance

In the first experiment, we investigate the empirical convergence rate and reconstruction perform-

ance of Algorithm 3 and Algorithm 4. In order to easily compare with post-processing autofocus

techniques, we considered the separable model in Eq. (4.5). In this experiment the scene consists

of a small number of constant amplitude point targets randomly placed in the scene. The under-

sampling consists of selecting a random subset of the fully-sampled synthetic aperture. Two dif-

ferent phase errors were considered: quadratic phase errors φm = γ ((m− 1) /M)2 which model

platform velocity measurement errors and normally distributed phase errors φm = N
(
0, γ2

)
.

The parameters for the synthetic model are in Table. 4.1.

Convergence

In this experiment, we compare the number of iterations it takes Algorithm 3 and Algorithm 4

to reach the stopping criterion when the threshold is 10−6. In order to fairly compare the two

algorithms, we compute the operation D in Algorithm 3 using the “majorisation minimisation”

method from Section 4.5.1. We also define the number of iterations in each algorithm to be

the total number of times the gradient of the objective function has to been computed with

respect to X. We select this definition because the main computational cost of both algorithms

is consumed by computing this gradient, therefore, the iterations count will closely relate to the

execution time of the algorithm. We choose to show the results for normally distributed phase

errors with γ = 10. This is because the type and magnitude of phase errors was found to have

only a minor effect on the results.

As expected, Fig. 4.1(a) shows that Algorithm 4 requires many less iterations than Algo-

rithm 3. This is likely to be due to the minimisation path of Algorithm 3 oscillating around
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Figure 4.1: Comparison of empirical convergence rates. (a) ‘�’ Algorithm 3 and ’×’ Algo-
rithm 4. (b) ‘�’ Algorithm 4 with continuation and ’×’ Algorithm 4.

Table 4.2: Continuation parameters
sampling
ratio (%) 20 26 32 38 44 50 56 62 68 74

I 30 20 10 5 3 2 1 1 1 1

the optimal minimisation path.

A technique known as continuation has been found to be useful for increasing the numerical

convergence rate of `1 sparse recovery algorithms when there is no phase errors [70]. Contin-

uation involves varying the value of τ during the iterations of the algorithm. The motivation

for this technique is based on the observation that the convergence rate depends on τ . The

smaller the value of τ , the faster the algorithm will converge. Therefore, we can start with a

small value of τ and increase its value in the following iterations until it reaches the desired

final value.

In order to further improve the convergence rate of our algorithm we experimented with

such a continuation scheme. Although we did not see any singularity in the modified algorithm

with this setting, the convergence and stability would need to be proved in the future.

In this simulation we used a continuation scheme that involved changing τ during the first I

iterations by the empirical rule τi = iτ/I for i = 1, . . . , I. The selection of a “good” I depends

on the undersampling so we used the values of I in Table 4.2, which were selected empirically

for each undersampling percentage.

Fig. 4.1(b) shows a small improvement in performance when continuation is used. Another

method for reducing the required number of iterations would be to use a more aggressive step

size [9], similar to that used is other iterative `1 sparse recovery algorithms [129, 63]. Using this
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type of step size, the stability of the algorithm cannot be guaranteed, but in practise it may

also be useful.

Reconstruction Error

In order to assess the image reconstruction performance of the autofocus methods we define

an image quality metric. Since the autofocus problem is ambiguous to scalar multiplication

by β ∈ {β ∈ C : |β| = 1} and cyclic permutation, we define a metric that is immune to these

ambiguities. We will refer to this metric as relative SNR and define it as

minimise
β,n

10 log10


∥∥∥X̃∥∥∥2

F∥∥∥X̃− βPmX
∥∥∥2

F


 ,

Fig. 4.3 shows the performance of the sparse image formation with post-processing autofocus

and Algorithm 4 with different phase errors. We do not show the results of Algorithm 3 because

the results are virtually identical to that of Algorithm 4. The magnitude of the corresponding

filters for each of the phase errors, the rows of Ψ, are shown in Fig. 4.2.

To provide an empirical upper-bound, we also show the image formation performance that

can be achieved with oracle knowledge of the phase errors and also the locations of the targets,

we refer to this as the oracle image formation. The oracle image formation recovers an image

as follows: it first corrects the phase errors in the phase history such that it has no phase

errors. It then uses the known location of the targets to perform a LS estimate of the target

reflectivities. This problem is overdetermined since there are K reflectivities and MN , MN >

K, measurements.

The sparse image formation with post-processing autofocus is performed as is described

in Section 4.3. Firstly, an `1-norm spectral projected gradient (SPG) method [15] is used to

recover the filtered image Ψ̃X then the image is recovered from the filtered image using the

reference phase errors φ̃.

These reference phase errors are selected slightly differently for the two different types of

phase errors. When the phase errors are quadratic, φ̃ is selected to be equal to the true phase

errors, even for the phases associated with unobserved measurements. This is because the CS

reconstruction tends to approximate the blurred image. However, when the phase errors are

random, φ̃ is selected to be equal to the true phase error at the M indices corresponding to

the observed aperture measurements and 0 at all indices corresponding to unobserved aperture

measurements. The reason for this difference is because for the random phase errors, unlike

quadratic phase errors, each of the phase errors is independent. This means that the phase errors

associated with the unobserved measurements have no effect on the sparse image formation

algorithm, therefore, it does not make sense to use them in Ψ̃
-1

. In comparison, setting the

unobserved phase errors to zero slightly increases the reconstruction performance.
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Figure 4.2: Phase error induced filters (the rows of Ψ for quadratic and random phase errors
with different γ). Quadratic: (a) γ = 0.1 (c) γ = 1 (e) γ = 10. Random: (b) γ = 0.1 (d) γ = 1
(f) γ = 10.
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Figure 4.3: Image formation performance performance versus undersampling ratio: ‘◦’ oracle
image formation, ‘�’ Algorithm 4 and ‘×’ sparse image formation and post-processing autofocus
with reference phase errors. Quadratic: (a) γ = 0.1 (c) γ = 1 (e) γ = 10. Random: (b) γ = 0.1
(d) γ = 1 (f) γ = 10.
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To understand the results of Fig. 4.3, the sources of errors in the reconstructed image should

be considered. The three sources of errors in a reconstructed image are the additive noise, the

undersampling and the phase errors. For the oracle reconstruction the only source of error

is due to the additive noise. The performance degrades with the sampling ratio because the

denoising effect of the LS estimate degrades as the ratio MN/K decreases. For the sparse image

formation with autofocus, the sparse image formation will try to minimise the errors associated

with the undersampling and also will implicitly denoise. This process will be more successful

if the filtered image is approximately sparse. The post-processing autofocus will then try to

reduce the errors associated with the phase errors. Algorithm 4 also minimises the effect of

undersampling and phase errors and implicitly denoises.

As predicted in Section 4.3, as the phase errors increase, the performance of sparse image

formation with post-processing autofocus decreases. It is also interesting to note that this

method’s performance is better for quadratic phase errors than for random phase errors. This

is because the filter corresponding to the quadratic phase errors is approximately sparse while

than the filter corresponding to the random phase errors is not. Hence, the sparse image

formation for quadratic phase errors is more effective at reducing the errors associated with the

undersampling and the additive noise.

The performance of Algorithm 4, which is in contrast to the performance of sparse image

formation with post-processing autofocus, is consistently good for both types of phase errors.

In fact, it achieves a performance, even with large phase errors, that is similar to a sparse image

formation without phase errors. The SNR gap between the performance of Algorithm 4 and

the oracle image formation is primarily due to the shrinkage effects of `1-minimisation. This

gap could potential be reduced by an additional procedure known as “debiasing” [63].

4.6.2 Qualitative Performance

In these experiments we wish to show that the presented algorithm works on realistic simulations

of our two motivating scenarios, i.e. multifunction and UWB SAR. The scene used in both

simulated scenarios consists of four point targets which reflect back an equal amount of energy.

UWB SAR

As mentioned previously, under sampling occurs in a UWB SAR system when notches are

introduced into the transmitted chirp in order to avoid interference with other users. In this

simulation, we used a notched linear frequency chirp, which had a spectral density that is given

in Fig. 4.4. The chirp contains five notches which equate to a nulling of approximately 20% of

the chirp spectrum. The other parameters of the simulation are given in Table 4.3.
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Figure 4.4: Power spectral density of notched linear frequency chirp.

Table 4.3: System parameters for simulated UWB SAR
parameter value

carrier frequency (ω0/2π) 308 MHz
chirp bandwidth (αT/π) 324 MHz

IF bandwidth 20 MHz
altitude 7000 m

stand-off distance 7000 m
aperture length 7000 m

number of aperture samples 200
scene radius (L) 75 m

number of targets 4
signal to noise ratio 0 dB

timing errors N (0, 0.8) ns
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Table 4.4: System parameters for simulated multifunction SAR
parameter value

carrier frequency (ω0/2π) 10 GHz
chirp bandwidth (αT/π) 600 MHz

IF bandwidth 30 MHz
altitude 7000 m

stand-off distance 7000 m
aperture length 250 m

number of aperture samples 300
scene radius (L) 75 m

number of targets 4
signal to noise ratio 0 dB

timing errors N (0, 25) ps

Multifunction SAR

In this simulation a randomly undersampled aperture of an X-band SAR system is used to

simulate a multifunction SAR system. The phase history contains a 50% random subset of the

fully-sampled aperture. The other parameters of the simulation are given in Table 4.4.

For both scenarios, three SAR images were formed using different image formation methods.

One image in each scenarios was generated using filtered fast decimation-in-image BP algorithm

without any form of autofocus. Another was generated using 20 iterations of an `1-norm SPG

method again without any form of autofocus. The last image was created using 20 iterations of

the modified Algorithm 4 which uses continuation with I = 15. The final value of τ was selected

to be the sum of the absolute values of the target reflectivities. However, the reconstruction

performance was found to be not particularly dependent on this parameter. In a real system

a suitable τ could be selected with only a coarse degree of parameter tuning. In the iterative

reconstruction algorithms both the observation model and its adjoint (h (·) and hH (·)) are

computed using the fast decimation-in-image BP and RP algorithms.

The resulting images from both simulation scenarios are contained in Fig. 4.5 and Fig. 4.6.

Fig. 4.5(a) and Fig.4.6(a) demonstrate the adverse effects of phase errors and undersampling.

The sidelobes of the four targets contain a large amount of energy which deteriorates the SAR

image quality. The images in Fig. 4.5(c) and Fig.4.6(c), which were produced using an `1-norm

SPG method, have an improved visual quality over the previous images due to the sparsity

promoting algorithm. However, due to the model inaccuracies there are a large number of non-

zeros pixels that may be mistaken for additional targets. Finally, Fig. 4.5(e) and Fig.4.6(e) show

the results of Algorithm 4. In these images the energy from each target is highly concentrated

around the target locations. It is clear that in these scenarios Algorithm 4 can produce a

visually improved SAR image, with a sparse number of point targets, from a phase history that

is undersampled and contains model inaccuracies.
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Figure 4.5: UWB SAR image formations: (a) was formed using filtered BP algorithm, (c) was
formed using an `1-norm SPG method and (e) was formed using Algorithm 4. (b), (d) and (f)
are a zoomed in view of (a), (c) and (e) around the origin, respectively.
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Figure 4.6: Multifunction SAR image formations: (a) was formed using filtered BP algorithm,
(c) was formed using an `1-norm SPG method and (e) was formed using Algorithm 4. (b), (d)
and (f) are a zoomed in view of (a), (c) and (e) around the origin, respectively.
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4.7 Summary

We have investigated the effects of phase errors on an undersampled SAR system. We have

shown that post-processing autofocus algorithms are typically unsuitable when there is under-

sampling and a sparse image formation method is employed. Instead, phase errors should be

corrected during the image formation.

We have proposed a new algorithm that corrects phase errors within the image formation

algorithm. Algorithm 4, which is an algorithmically stable generalisation of a recently proposed

non-convex sparsity based autofocus method, performs consistently well for a variety of phase

errors and undersampling ratios and was found empirically to converge in a much smaller

number of iterations.

We have also demonstrated through additional realistic simulations that Algorithm 4 could

be used in practical non-standard SAR image formation systems to produce sparse SAR images

from undersampled phase histories which contain model inaccuracies.

Although we have concluded that post-processing autofocus algorithms are typically un-

suitable for undersampled SAR, there may be some instances where they may warrant further

consideration. In the scenario where the undersampling is only in the range dimension, for

example the UWB scenario, a sparsity based algorithm could be used to perform range com-

pression and then a standard image formation algorithm could be used to form the final image

which could then be autofocused using a standard post-processing algorithm. CS theory sug-

gests that this will be sub-optimal, however, these types of methods may be justified as a means

of reducing complexity. Further research into autofocus and image formation algorithms for

undersampled data, where there are specific system constraints, could be an avenue for future

research.
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Chapter 5

Ultra-Wideband Synthetic

Aperture Radar

5.1 Introduction

UWB SAR systems that use the VHF/UHF bands find civilian and military applications pri-

marily due to the foliage penetration property of large wavelength RF waves [98]. A major

problem for VHF/UHF SAR systems are radio, television and communications systems. The

presence of these systems can produce two types of RFI. One occurs when the SAR system

interferes with other users. The second occurs when other users interfere with the SAR system.

The first type of RFI is strictly regulated and therefore certain specified bands must be avoided.

The second type of interference occurs within the bands where transmission is allowed. Strong

interference from other users within these bands, particularly from narrowband (AM and FM)

transmitters, can deteriorate the dynamic range of the resulting SAR image.

In most areas of the world it is not possible to get a license to operate a UWB radar

unless it satisfies the relevant guidelines on spectrum compliance. Critical frequencies must be

avoided to prevent interference to civilian and governmental communications systems. To avoid

these critical frequencies, two main strategies exist. These strategies are frequency jump burst

and notched LFM chirp waveforms. A frequency jump burst system uses narrowband pulses

to jump from one frequency sub-band to the next avoiding the proscribed frequencies. The

Swedish CARABAS UWB SAR system uses this type of waveform [72]. For a notched LFM

chirp waveform the standard LFM chirp is used with spectral notches added. The centre and

width of these notches are selected such that the system meets the power spectral requirements

at the proscribed frequencies. A notched LFM chirp is used for systems that require fine range

resolution. An example of a system that uses this waveform is the ERIM P-3 UWB SAR [117].

The effect of the missing frequencies in the transmit waveform is to increase the sidelobes
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levels in the formed image. There have been a number of methods proposed to decrease these

introduced sidelobes. These include windowing based methods [48] and sparsity based algo-

rithms [34, 102].

To achieve a reasonable level of performance, a VHF/UHF SAR system must include a

method of RFI removal/suppression. RFI suppression is usually achieved by estimating and

subtracting the RFI [92, 66] or linearly filtering each radar return, e.g. [86, 1, 123, 91]. Estimate-

and-subtract methods assume that the RFI consists of a small number of very narrow-band

signals which can each be well approximated by a sine wave. These methods estimate each

signals amplitude, frequency and phase and then subtract them from the radar return. The

effectiveness of these methods depend heavily on the narrow-band approximation of the inter-

ferers. They also have a large computational complexity if the RFI is dense and made up of

a large number of interferers. For this reason it is often preferable to use linear filtering. One

problem with a filtering based approach is that the filtering can produce large range sidelobes

in the formed image. This is due to the large signal suppression that occurs within the spec-

tral regions where the signal is dominated by RFI. To avoid these negative effects, sidelobe

suppression methods are proposed in [86] and [1].

In this chapter we propose a new SAR image formation algorithm which simultaneously

suppresses RFI and produces a SAR image without introducing large range side lobes. The

method is tailored for SAR systems that use dechirp-on-receive. Dechirp-on-receive is primarily

used to reduce the required sample rate of the receiver’s ADC but also has the advantage that

it removes a large proportion of the RFI [66]. The proposed method achieves the desired

outcomes by leveraging the approximate sparsity of SAR images (where sparsity implies only a

small number of image pixels have a magnitude which is significant). The method is therefore

most similar to the method proposed in [1] which uses a greedy algorithm to leverage the image

sparsity. The approximate sparsity of a SAR image is a valid assumption if the scene is made

up of point-like targets in clutter. Image sparsity based methods have previously been applied

to SAR systems without RFI [34, 102]. The algorithm can also be used minimise the effects

of transmit notching. Therefore, our method can be seen to be an extension of these sparsity

based methods to include RFI suppression.

5.2 Ultra-wideband Observational Model

5.2.1 Notched Linear Frequency Modulated Chirp on Transmit

When designing a notched LFM chirp signal for the transmitted signal of a UWB SAR system,

the centre frequencies of the notches and their notch bandwidth, that are required to avoid

interference, will be known. The design of the transmitted waveform, therefore, can be generated

deterministically and be synthesised for transmission using a digital waveform generator.
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Figure 5.1: Transmitter notching of LFM chirp.

The spectrum of a standard complex LFM chirped signal

s (t) = rect (t/Ts) exp
(
j
(
ω0t+ αt2

))
, (5.1)

where, Ts is the chirp period, ω0 is the carrier frequency and 2α is the chirp rate, is given by

S (ω) =

[√
jπ

α
exp

(
−j (ω − ω0)2

4α

)]
∗
[
Ts sinc

(
Tsω

2

)]

≈
√
jπ

α
rect

(
ω − ω0

2αTs

)
exp

(
−j (ω − ω0)2

4α

)
.

(5.2)

Therefore, to introduce a single notch into the spectrum of the chirp signal we can subtract the

region of the spectrum that corresponds to the desired notch. This is written in the Fourier

domain as

S̃ (ω) = S (ω)−
√
jπ

α
rect

(
ω − ω1

2πB1

)
exp

(
−j (ω − ω0)2

4α

)
, (5.3)

where, ω1 is the centre frequency of the notch and B1 is the bandwidth of the notch.

This procedure is illustrated visually in Fig. 5.1. The full LFM chirp signal is added to the

negative of the notching signal to produce a LFM signal that contains a notch in its spectrum

at the desired centre frequency and notch bandwidth. This process is repeated for each notch

that is required.

Clearly, the adding of notches to the transmitted LFM chirp will effect the range sidelobes in

the SAR image if it formed using standard image formation algorithms. This is demonstrated

in Fig. 5.2. Five notches where added to a LFM chirp to produce a notched LFM chirp. The

result of these notches is that the range ambiguity function of the notched LFM chirp has much

larger sidelobes than the range ambiguity function of the original LFM chirp. This effect will

increase with an increasing size and number of notches.

In a dechirp-on-receive SAR system, the received signal undergoes a process of dechirping

and sometimes deskewing before the phase history is stored or sent to the image formation
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Figure 5.2: Spectrum and range ambiguity function of LFM and notched LFM chirp. The
parameter for the LFM chirp are: centre frequency is 308 MHz, the chirp bandwidth is 324
MHz, the chirp period is 10 µs. The parameters for the notches are: the notch centre frequencies
of the notches are 175, 330, 389, 416 and 448 MHz, the notch bandwidths are 15, 7, 13, 20
and 10 MHz. (a) is the spectrum of the LFM chirp signal. (b) is the range ambiguity function
of the LFM chirp signal. (c) is the spectrum of the notch LFM chirp signal. (d) is the range
ambiguity function of the notched LFM chirp signal.
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processor. The effect of the notches on the received signal, using the model developed in

Chapter 2 for a dechirp-on-receive SAR system, is approximately given by

ỹ (t) ≈ |S (ω0 + 2αt)| y (t), (5.4)

where, y (t) is the signal that would have been received if there where no notches. This effect is

demonstrated visually in Fig. 5.3, where the received signal contains returns from three targets.

The spectral notches in the transmitted signal appear as notches in the fast-time of the received

signal.

Using a model for the transmit notching, a discrete observation model for a notched LFM

chirp SAR system, after it has been dechirped and deskewed, is given by

Y = diag (s)h (X) , (5.5)

where,

sm =
∣∣∣∣S (ω0 + 2α

(
m− 1
ft

− Tt
2

))∣∣∣∣ (5.6)

models the effect of the transmit notching.

5.2.2 Radio Frequency Interference

A further refinement of the observation model for UWB SAR is to include additive components

of the phase history that are not a result of reflections from the scene. These components

include RFI and other forms of additive noise. The model then becomes

Y = diag (s)h (X) + N, (5.7)

where, N ∈ CM×N models the dechirped and deskewed RFI and noise.

To understand how RFI appears in N, consider a single deterministic RFI tone

srfi (t) = A exp (jωrfit), (5.8)

where, A is the complex magnitude and ωrfi is the frequency of the tone. After dechirping and

deskewing the signal resulting from the RFI tone is approximately given by

srfi (t) ≈ A
√

π

jα

ωif

2π
exp

(
j

(ωrfi − ω0)2

4α

)
sinc

(
ωif

(
t−
(
ωrfi−ω0

2α

))
2

)
, (5.9)

where, ωif is bandwidth of the intermediate frequency filtered which occurs are the dechirp-

ing [66]. The effect of the intermediate frequency bandwidth is two fold, the larger the band-

width the closer the RFI tone is to an impulse and the smaller the bandwidth the less the
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Figure 5.3: Range returns from three targets with a notched LFM chirp before and after
dechirping and deskewing. The parameter for the LFM chirp are: centre frequency is 308 MHz,
the chirp bandwidth is 324 MHz, the chirp period is 10 µs. The parameters for the notches
are: the notch centre frequencies of the notches are 175, 330, 389, 416 and 448 MHz, the notch
bandwidths are 15, 7, 13, 20 and 10 MHz. Targets are located at 0, +400 and −400 m (relative
to the centre of the scene). (a) is a spectrogram of the received signal before dechirping and
deskewing. (b) is a spectrogram of the received signal after dechirping and deskewing. (c) is
the spectrum of the received signal from just the target at 0 m after dechirping and deskewing.
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Figure 5.4: Range returns from three targets with a LFM chirp and five RF interferers, before
and after dechirping and deskewing. The parameter for the LFM chirp are: centre frequency
is 308 MHz, the chirp bandwidth is 324 MHz, the chirp period is 10 µs. Targets are located at
0, +400 and −400 m (relative to the centre of the scene). RF interferers at 208, 258, 308, 358
and 408 MHz. (a) is a spectrogram of the received signal before dechirping and deskewing. (b)
is a spectrogram of the received signal after dechirping and deskewing.

amplitude of the RFI tone. If the srfi (t) is the total RFI and its Fourier transform is given by

Srfi (ω), then the RFI signal after dechirping and deskewing is approximately given by

s̃rfi (t) ≈
[

1
2π
Srfi (ω0 + 2αt) exp

(
jαt2

)]
∗
[√

π

jα

ωif

2π
sinc

(
ωift

2

)]
, (5.10)

If srfi (t) is a random signal then the E
(
|s̃rfi (t)|2

)
will be the PSD of srfi (t) convolved with a

squared sinc function.

The effect of dechirping and deskewing on the RFI is demonstrated visually in Fig.5.4. In

this example the received signal contains returns from three targets and the PSD of the RFI

contains three impulses at five different frequencies. Before dechirping the RFI consists of five

discrete frequencies. After dechirping and deskewing, the RFI is concentrated into five discrete

time instances. It is also clear that the IF filter has also removed some of the RFI.

5.3 Linear Filter based RFI Suppression

A linear filter based RFI suppression algorithm applies a filter to each radar return. The filter

is selected such that the phase history is as close to the true phase history, without RFI, as

possible. After filtering, the image is formed using a standard image formation algorithm. This

can be written as

X̂ = g(H vec (Y)), (5.11)
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where, H = diag ([H1, · · · ,HN ]) is a block diagonal matrix which contains the N filters for

each radar return and g(·) is a standard image formation algorithm. If the entries of each nn

and yn are stationary then the optimal filter in the minimum mean squared error (MMSE)

sense will be the Wiener filter Hn = I −Qnn

(
Qyn

+ Qnn

)-1

, where, Qnn and Qyn
are the

covariance matrices of each column of N and Y, respectively.

In practise, an approximation of the Weiner filter can be computed using estimated statistics

of the RFI which are obtained during the receiver “dead-time” (when there is no energy from

radar signal being received, only RFI). Due to the properties of the dechirping and deskewing

operations analysed in previous section, the RFI in each fast-time sample is approximately

independent (this approximation depends on the IF bandwidth). Therefore, the RFI covariance

matrices are approximately diagonal and can be estimated from the squared magnitudes of the

samples of the dead-time returns. Multiple dead-time measurements can also be combined to

improve the variance of these estimates. As has been suggested in other work, many methods

can also be used to improve the RFI covariance estimates such as methods that use prior

information or a parametric model [1].

For simplicity, if we consider an idealised problem where there is no transmit notching and

the image formation algorithm is the pseudoinverse, then we can define an error bound on the

image formation error due to the RFI. If an image is formed as X̂ = h† (Hvec (Y)) then

∥∥∥X− X̂
∥∥∥

F
≤
∥∥h† (·)

∥∥ (‖(I−H) vec (h (X))‖F + ‖Hvec (N)‖F) , (5.12)

where, X is the true image. This can be compared with a bound for an image formed without

linear filtering. If an image is formed as X̂ = h† (Y) then

∥∥∥X− X̂
∥∥∥

F
≤
∥∥h† (·)

∥∥ ‖N‖F . (5.13)

If we compare the two error bounds we can observe the effect of the linear filter. The filter

H reduces the error term which is dependent on N but also introduces an error term which is

dependent on the SAR image X. This error is seen in the image as sidelobes.

5.4 RFI-aware Sparse Image Formation

Ideally, we want an image formation algorithm for UWB SAR to minimise the effect of the

RFI without introducing errors which are dependent on the image (sidelobes). Therefore, we

propose solving a modified BPDN optimisation program. The BPDN is modified such that it

makes use of the RFI covariance estimate. This modified program is given by
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X̂ = minimise
X

‖X‖1

subject to ‖Y − diag (s)h (X)‖QN
-1 ≤ ε,

(5.14)

where,

‖R‖QN
-1 =

〈
vec (R) ,QN

-1 vec (R)
〉

(5.15)

is a weighted Frobenius norm, QN = diag
([

Qn1
, · · · ,QnN′

])
is a diagonal matrix whose

elements contain an estimate of the RFI covariance, and ε ≥ ‖N‖QN
-1 .

The motivation for Eq. 5.14 comes from two main factors. The `1-norm objective is used

because we want to promote sparse images and the weighted Frobenius norm constraint is used

because we want the estimated image to match the measurements in a metric that takes into

account the knowledge of the RFI. An equivalent optimisation program to Eq. 5.14 is

X̂ = minimise
X

‖X‖1

subject to
∥∥QN

-1 vec (Y − diag (s)h (X))
∥∥

2
≤ ε,

(5.16)

The solution of which can be obtained using any of the iterative algorithms which are used to

solve the BPDN or any of its equivalent formulations.

Like in the previously proposed sparse image formation algorithms, the super resolution

effects in the formed image X̂ can be removed by computing

X̂← g
(
h
(
X̂
))
. (5.17)

In order to define an error bound for the proposed algorithm, again we will ignore transmit

notching. Additionally, an assumption on h (·) is also made. It is assumed that h (·) satisfies a

modified RIP which we define as

C (1− δ2K) ‖X2K‖2F ≤ ‖h (X2K)‖2QN
≤ C (1 + δ2K) ‖X2K‖2F , (5.18)

for all ‖X2K‖0 ≤ 2K, where, 0 < δ2K < 3/
(
4 +
√

6
)

and C is a positive constant [64]. It can

be deduced from the theory of partial Fourier sampling that this property holds asymptotically

with overwhelming probability if h (·) is a two-dimensional Fourier transform and there are

I = O
(
MN − Slog5 (MN)

)
randomly positioned point interferers [115]. Although these two

conditions will not hold for a real SAR system, the conditions will likely be close enough to the

real system as to provide a motivating theory. With this assumption an error bound for the

RFI-aware sparse image formation (the solution to Eq. 5.16) is given by
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∥∥∥X− X̂
∥∥∥

F
≤ C1 ‖N‖Q-1

N
+ C2K

−1/2 ‖X−XK‖1 , (5.19)

where, C1 and C2 are constants that depend only on δ2K and C. Also, XK is X restricted to

its largest K elements. This error bound shows that if the SAR image is well-approximated by

a sparse number of non zeros elements, the second term will be small and the image formation

error will be almost optimally dependent on N up to a constant C1.

5.5 Experiments

In this section we wish to demonstrate the effectiveness of the proposed algorithm on a simulated

UWB SAR system with transmitter notching and receiver RFI. The simulation models a system

which transmits a notched LFM chirp with five notches. The simulated scene consists of twenty

randomly located targets which reflect back an equal amount of energy. Before the dechirp

operation, RFI and white noise was added to each of the simulated radar returns. The RFI

contains 80 randomly located narrowband interferers. The narrowband interferers are model

as random signals with PSDs given by

sinc2
(
π
(
40 · 10−6

)
(ω − 2πfintf)

)
(5.20)

where, fintf is the centre frequency of the interferer. A detailed set of parameters used in the

simulation are listed in Table. 5.1.

Using the simulated phase history, images were formed using three different image forma-

tion methods. The first method used the fast decimation-in-image BP algorithm without RFI

suppression. The second method used linear filtering with a Wiener filter followed by the fast

decimation-in-image BP algorithm. Finally we used two variants of our proposed RFI-aware

sparse image formation method. The first variant is the algorithm proposed in Section. 5.4.

The second variant is a modified version of the first variant but promotes sparsity in the range

compressed signal rather than in the final image. Existing RFI suppression algorithms work in

this domain, including a recently proposed sparsity based method [103]. Solutions of Eq. (5.16)

where approximated using the FISTA algorithm [12] using the fast decimation-in-image RP

and BP algorithms. Also, each RFI covariance matrix was estimated using the average of ten

simulated dead-time measurements.

Fig. 5.5 shows the resulting four images. The image formed without RFI suppression is

heavily contaminated with RFI and the targets are barely visible. The image formed using

Wiener filtering is substantially better, however, the filtering has introduced sidelobes which

could potentially be misinterpreted as additional targets. The image formed using the range

compression based RFI-aware sparse image formation is again a further improvement. However,

there is still image dependent errors. Finally, the RFI-aware sparse image formation image has
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Table 5.1: System parameters for simulated UWB SAR
parameter value

carrier frequency (ω0/2π) 308 MHz
altitude 7000 m

number of targets 20
chirp bandwidth (αT/π) 324 MHz

stand-off distance 7000 m
number of interferes 80

IF bandwidth 60 MHz
aperture length 7000 m

signal to noise ratio (SNR) 60 dB
scene radius (L) 75 m

number of aperture samples 300
signal to interference ratio (SIR) -30 dB
transmit notch centre frequencies 175, 330, 389, 416 and 448 MHz

transmit notch bandwidths 15, 7, 13, 20 and 10 MHz

the best visual image quality. The transmit notching and receiver RFI seems to have almost

no visual impact on the formed image.

To quantitatively assess the quality of each SAR image a constant false alarm rate (CFAR)

target detector was used on each image with a constant probability of false alarm rate of

0.0001%. For each dimension, the cell under test was selected to be four pixels with 20 guard

pixels and two background pixels to estimate the detection threshold. The CFAR sliding window

was moved across the image and the corresponding detection results are shown in Fig. 5.6. The

RFI-aware sparse image formation algorithm had the best detection performance, detecting

all twenty targets. For the range compression RFI-aware sparse image formation algorithm,

however, six targets were missed. The Wiener filtering method missed nine targets and finally

the fast BP algorithm with no RFI suppression missed all the targets.

5.6 Summary

In this Chapter we considered image formation for UWB SAR. We proposed a novel algorithm to

address the two main issues that arise in UWB SAR. These issues are transmitter notching and

RFI at the receiver. The proposed RFI-aware sparse image formation algorithm is an iterative

algorithm which is based on techniques from CS. However, the proposed algorithm makes use

of the estimated statistics of the RFI to improve the suppression of the interference. When the

images are sparse, this algorithm will have close to optimal performance. Like linear filtering

based methods, the RFI-aware sparse image formation algorithm does not assume that the RFI

is very narrow band and therefore is applicable to many sources of RFI. The performance of the

proposed algorithm was demonstrated to visually improve the image quality over linear filter

based RFI suppression strategies and was also shown to produce images that had better target

detection rates. It was also shown that sparsity based range compression algorithms will have
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Figure 5.5: SAR images formed from simulated phase histories with RFI: (a) fast BP algorithm
with no RFI suppression, (b) Wiener filtered followed by the BP algorithm, (c) RFI-aware sparse
image formation and (d) range compression RFI-aware sparse image formation.

an inferior performance.
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Figure 5.6: CFAR detections in red: (a) BP with no RFI suppression, (b) Wiener filtered
followed BP, (c) RFI-aware sparse image formation, (d) range compression RFI-aware sparse
image formation.
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Chapter 6

Conclusion and Future Work

In this thesis we have investigated iterative image formation algorithms for SAR. Iterative

algorithms approach SAR image formation as an inversion problem. This is in contrast with

standard image formation algorithms, which approach the same problem from a matched filter

perspective, which is not optimal.

Previous work on iterative algorithms have tended to use simplified observation models, in

particular, models that make the far-field approximation. This is done to make their algorithms

computationally feasible. However, to fully utilise the potential of iterative algorithms for real

SAR systems, the observational models should be as close to the physical system as possible.

Towards this goal, in Chap. 2 we developed a SAR model, starting from Maxwell’s equations.

To incorporate the developed observation model into an iterative image formation frame-

work, reduced complexity algorithms were used. These algorithms were based on the recently

developed fast BP algorithms, including the fast decimation-in-image BP algorithm which was

proposed in Chap. 2 of this thesis. These algorithms can be used to compute the observation

model and its adjoint, which are required in an iterative algorithm, in an accurate manner

with the same order of complexity as far-field algorithms. Unlike most other algorithms, these

algorithms can incorporate many model features that are not normally included in iterative

algorithms, they include: near-field scenes, non-linear apertures and non-flat scene terrain.

The developed fast RP and BP algorithms were used in Chap. 3 to create a versatile frame-

work for iterative SAR image formation. This framework was used as a basis to address specific

SAR imaging problems in the remainder of the thesis. The problems which were considered

were selected because in the these particular scenarios, standard image formation algorithms

perform inadequately. The scenarios considered were: phase history undersampling, irregular

sampling of a synthetic aperture, observational model errors and UWB SAR. All of the algo-

rithms proposed, except for the algorithm proposed for irregular sampling, are developed by

viewing SAR image formation as a SR problem. This essentially assumes that the SAR image is

made up of sparse number of bright image elements and the rest of the image is lower amplitude
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background image elements. By viewing the problem as a SR problem, many of the tools of

CS can be used. These tools are based around iterative algorithms.

In Chap. 3, we solved a LS problem using a conjugate gradient algorithm to improve the

image formation when the synthetic aperture is fully but irregularly sampled. We also consider

image formation when there is undersampling in fast and slow time. To minimise the effects of

the undersampling, we proposed forming the image in two parts. The first part, which contains

the bright image elements, that are a result of specular reflection. The second part, which

contains the background image elements. The background elements are the image elements that

contain significant speckle noise. The image formation for the first image part was approached

as a SR problem. Therefore, algorithms from the CS literature were used. Two algorithms

were used for comparison, a greedy algorithm, IHT, and a convex relaxation algorithm FISTA.

For the second part of the image, the fast BP algorithm was used. Using a publicly available

SAR data set it was shown that the images formed using the proposed algorithms improved

the visual image quality of the resulting images.

In Chap. 4, we considered the problem of errors in the observation model, in particular when

there is phase history undersampling. In this scenario, the standard approach of applying an

autofocus algorithm on the formed image was inappropriate. We instead proposed an iterative

algorithm which approximated the solution to a non-convex `1-norm regularised LS optimisa-

tion program. This algorithm, unlike standard methods, corrects model errors during image

formation. Although non-convex, the algorithm is provably stable and convergent with a rate

that is faster than existing algorithms.

In Chap. 5 we addressed the issues of RFI in UWB SAR. The two main issues, which

occur due to RFI, are transmit notching and RFI at the receiver. Transmit notching occurs

because spectral notches must be added to the chirp signal so the SAR system does not interfere

with other users of the UWB spectrum. RFI at the receiver occurs because there are many

other users in the UWB spectrum that will produce RFI at the receiver of the SAR system.

We considered the transmit notching as undersampling of the phase history, while, the RFI

at the receiver was treated as shaped noise. Using our model for both issues we proposed

using an iterative algorithm which approximated the solution to a weighted LS with `1-norm

regularisation. The weighting was used to account for the spectral density of the RFI and the

`1-norm regularisation was added to improve the condition of the inversion problem which was

deteriorated by the notching and RFI. The proposed algorithm was shown to have an improved

image quality compared to existing linear filter based algorithms.

6.1 Recommendations and Future Work

With the increase in computing power and the development of fast algorithms for increasingly

accurate SAR observation models, iterative algorithms will soon become feasible for image
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formation in practical SAR systems. Using an iterative framework opens up the possibility of

using SAR techniques for radar imaging in new and useful scenarios which could form the focus

of future work. These scenarios include: three dimensional SAR imaging [20], long aperture

SAR [130, 35, 95] and bistatic and multistatic SAR [47, 78, 121]. In these scenarios, standard

image formation algorithms cannot address the particular peculiarity of the systems.

Three dimensional SAR imaging is challenging because a two dimensional synthetic aperture

must be formed. Typically it is very hard to meet the sampling requirements of the second

vertical dimension of the aperture. Iterative sparsity-based have been shown to resolve some of

the issues but the research in this subject is still young [140].

When the synthetic aperture is long, the scattering response of a target is not constant over

the entire aperture. This reduces the effective magnitude of a target formed using standard

image formation methods. Iterative algorithms have been proposed which use a simplified

model for the observation model and target scattering [130, 35]. A detailed study with more

realistic models, would be of great interest.

In this thesis we only consider monostatic SAR, however, the proposed algorithms could

be extended to the more general bistatic and multistatic cases. In these more general con-

figurations, iterative algorithms may improve the image quality compared to standard image

formation methods, in much the same way that iterative algorithms improved the image for-

mation from irregularly sampled apertures in this thesis.

In this thesis we did not address the effects of undersampling on images effected by sig-

nificant speckle. Some work has been undertaken to address a similar problem in holographic

imaging [38]. The work involves taking a statistical perspective of the problem and aims to esti-

mate the variance of the image elements effected by speckle. Statistical methods for estimating

image elements effected by speckle has been consider for the fully sampled case [43].

There has been recent concern expressed in the radar community about modelling discrete

SAR images as sparse [127]. This is because if we model the image as point targets, these

points will not lie exactly on grid points. In the CS literature there has been work to devise

algorithms that address this off-the-grid issue [122, 56]. Interestingly, in this thesis we have not

found this to be a major issue. However, it is an area the surely warrants further research.

While this thesis has gone some of the way to reduce the complexity of iterative algorithms,

there is further work to be done to develop these algorithms to a point were they can be used

in practical system, potentially in real-time. One avenue of research towards this goal would

be to consider speeding up the iteration of an algorithm as a whole rather than considering

the observation model and its adjoint separately. For a model using a far-field approximation,

a fast algorithm has been proposed which computes both at once [3]. A similar algorithm for

the near-field would be extremely useful. Additionally, values that are repeatedly computed in

the fast RP and BP algorithms could potential be computed once and stored in memory, which

would trade redundant computation for an increased memory usage. Additional modification
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to the fast RP and BP algorithms could be considered, which could provide similar speed ups

but reduce errors due to the decimation. These algorithms could involve a mixed decimation-

in-image and decimation-in-phase-history algorithm. Also, instead of using regular grids for

decimation, alternative grids could be used such as Chebyshev grids, which were used in [44].

Additionally, parallel computing architectures such as Graphical Processing Units (GPU) could

be used for additional speed up [113].

A related problem to SAR is synthetic aperture sonar (SAS). SAS is a relatively new tech-

nology, the first working system was only developed in the last ten years. SAS has adopted

much of its techniques from SAR, including Fast BP algorithms [22, 74, 119]. Therefore, much

of the work in this thesis could potentially be adopted for similar problems in SAS.
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Appendix A

Synthetic Aperture Radar

Simulator

In this appendix we will describe the simulator which was used extensively throughout this

thesis to generate simulated phase histories. The simulator models a mono-static SAR system

and can be used in most modes including spotlight, stripmap or scan. The simulator is based

on the model of SAR developed in Chap. 2 and consists of two main components: a model of

the SAR transmission and reception and a model of the SAR receiver.

A.1 Radio Frequency Transmission and Reception

The simulator models the relationship between the transmitted LFM chirp signal and the

received back-scatter using a point target model. This relationship is parametrised by the

values of the elements in Table A.1. Under this model, the transmitted signal is scattered

isotropically by K point targets located in the scene. These K reflectors have an associated

complex reflectivity. The reflected signal from each scatterer is model as a delayed version of

the transmitted chirp, where the delay is given by 2 ‖~yk − ~xn‖ /c0. In addition to this delay,

the signal is also multiplied by the target reflectivity vk and attenuated by (4π ‖~yk − ~x‖)
−2.

The model of the received signal is computed at the sample times tm in fast-time, where,

tm = FtTs (m− 1− bM/2c) /M, (A.1)

and M = dFtFfBTse. Therefore, the received signals at each of the specified positions along

the synthetic aperture are computed as
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Table A.1: Transmission and reception simulation parameters
parameter description

f0 carrier frequency
B chirp bandwidth
Ts chirp period
Ft simulation time oversampling factor
Ff simulation frequency oversampling factor
N number of cross-range samples

{~xn}Nn=1 cross-range locations
{ ~y0n}

N
n=1 dechirp centres

{ ~ybn}
N
n=1 antenna beam centres

Θ antenna polar beamwidth
Φ antenna azimuth beamwidth
K number of targets

{~yk}
K
k=1 target locations

{vk}Kk=1 target reflectivities

Table A.2: Receiver simulation parameters
parameter description

BIF intermediate frequency bandwidth
Gt phase history time oversampling factor
Gf phase history frequency oversampling factor

ymn ←
K∑
k=1

rect
(
φ (~yk − ~xn)− φ (yb − ~xn)

Φ/2

)
rect

(
θ (~yk − ~xn)− θ (yb − ~xn)

Θ/2

)
(4π ‖~yk − ~xn‖)

−2 rect ((tm − τk) /Ts)s (tm − τk)vk,

(A.2)

where, τkn = 2ukn

c0
is the delay to the scene centre and

s (tm) = rect (tm/Ts) exp
(
j
(
2πf0tm + π (B/Ts) t2m

))
(A.3)

is the transmitted chirp.

A.2 Analogue Receiver

In the simulator we model an analogue dechirp-on-receive system. The system model of this type

of receiver is parametrised by the values of three additional elements described in Table A.2.

With these parameters specified, we can define the sample times t′m in fast-time for the simulated

phase histories as

t′m = GtTs (m− 1− bM ′/2c) /M ′, (A.4)

where, M ′ = dGtGfBTse. To model the dechirping that occurs in an analogue receiver, we
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Table A.3: Notched LFM parameters
parameter description
Nnotch number of notches

{fnotchn}
Nnotch
n=1 notch centre frequencies

{Bnotchn}
Nnotch
n=1 notch bandwidths

compute

ymn ← Re
{
ymn cos

(
−2πf0 (tm − τkn)− π (B/Ts) (tm − τkn)2

)}
+

j Re
{
ymn sin

(
−2πf0 (tm − τkn)− π (B/Ts) (tm − τkn)2

)}
.

(A.5)

The dechirped signals are then low-pass filtered in fast-time with the bandwidth specified by

BIF, to simulate an analog IF filter. The signal is also interpolated from the simulation fast-

times tm to the phase-history fast-times t′m, which simulates a receiver ADC and produces the

simulated sampled phase history.

Finally, the phase is deskewed by first taking a DFT of the phase history in the fast-time

and then by multiplying by a quadratic phase term exp
(
−j πTsf

2
m

B

)
, where

fm = (m− 1− bM ′/2c) /GtTs and finally by taking a IDFT.

A.3 Timing Errors

In Chap. 4, timing errors in the SAR observational model are investigated. To model the timing

errors in the simulator, specified timing errors τen are introduced into the simulated received

signals in Eq. (A.2). This is achieved by defining tm = τen + FtTs (m− 1− bM/2c) /M in

Eq. (A.2).

A.4 Notched Linear Frequency Modulated Chirp

In Chap. 4 and Chap. 5 we investigate the image formation performance of algorithms when

the transmitted signal is a notched LFM chirp. To simulate spectral notching of a transmitted

LFM chirp, the model of the transmitted signal in Eq.(A.3) is modified. In the simulator,

notching is parametrised by the value of the elements in Table A.3. Using these parameters the

transmitted chirp is modelled as

s (tm) = rect (tm/Ts) exp
(
j
(
2πf0tm + π (B/Ts) t2m

))
−
Nnotch∑
n=1

Nn (tm) , (A.6)

where,

Nn (t) =
∫ √

jπ

α
rect

(
ω − 2πfnotchn

2πBnotchn

)
exp (jωt) dω (A.7)
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Table A.4: RFI parameters
parameter description
Nintf number of interferers

{fintfn}
Nintf
n=1 interferers’ centre frequencies

{Tintfn}
Nintf
n=1 interferers’ window length

{Pintfn}
Nintf
n=1 interferers’ power

Pn white noise power

A.5 Radio Frequency Interference

In Chap. 5 we investigate RFI at the receiver of a SAR system. To simulate receiver RFI, we

add RFI to the simulated received signal in Eq. (A.2). In the simulator, RFI is parametrised

by the values of the elements in Table A.4. Using these parameters, we first computed the PSD

of the simulated RFI. This PSD is computed by

Sintf (ω) =
Nintf∑
n=1

Pintfn sinc2 (πTintfn (ω − 2πfintfn)) + Pn. (A.8)

Each RFI signal is then simulated as

sintf (t) =
∫
Sintf (ω)W (ω) exp (jωt) dω (A.9)

where, W (ω) is a Fourier transform of an instance of a unit variance circularly-symmetric

complex Gaussian time series.

A.6 Limitations of the Simulation

The simulator used within this thesis models a real SAR system with enough accuracy to

provide interesting insight into the performance of the developed algorithm. However, it also

has some obvious limitations. A list of the most important limitations are given below.

• Point target simulator. Targets are modelled as points and therefore more complex target

models are not used.

• Speckle Targets. The simulator does not model speckle. Background image elements that

are effected by speckle would usually makes up a large component of real SAR images.

• Constant reflectivity targets. The model of the targets does not model reflectivity fluctu-

ation. Also, the reflectivity of a target is not dependent on frequency or viewing angle.

• Antenna beam pattern. The antenna is modelled as having an ideal constant gain direc-

tional beam pattern that does not change with frequency.
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