955 research outputs found

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Detection of multi-class arrhythmia using heuristic and deep neural network on edge device

    Get PDF
    Heart disease is a heart condition that sometimes causes a person to die suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-class Arrhythmia Detection has followed: QRS complex detection procedure and arrhythmia classification based on the QRS complex morphology. We proposed an edge device that detects QRS complexes based on variance analysis (QVAT) and the arrhythmia classification based on the QRS complex spectrogram. The classifier uses two-dimensional convolutional neural network (2D CNN) deep learning. We use a single board computer and neural network compute stick to implement the edge device. The outcomes are a prototype device cardiologists use as a supporting tool for analysing ECG signals, and patients can also use it for self-tests to figure out their heart health. To evaluate the performance of our edge device, we tested using the MIT-BIH database because other methods also use the data. The QVAT sensitivity and predictive positive are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experiment result of arrhythmia classification shows that our method outperforms the others. Still, for r-peak detection, the QVAT implemented in an edge device is comparable to the other methods. In future work, we can improve the performance of r-peak detection using the double-check algorithm in QVAT and cross-check the QRS complex detection by adding 1 class to the classifier, namely the non-QRS class

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    An Improved Firefly Optimization Algorithm for Analysis of Arrhythmia Types

    Get PDF
    Irregular heartbeats rhythm is the result of arrhythmia condition which can be a threat to life if not treated at the early stage. If it is necessary to know the type of arrhythmia to treat the patient appropriately. The traditional method is complex and an efficient algorithm is required to diagnose. An improved firefly optimization algorithm is proposed to analyze arrhythmia types. Four performance measures confirm the model's effectiveness and experimental evaluation shows that it achieves a sensitivity of 86.27%, accuracy of 86.14%, precision of 87.52%, and specificity of 87.37% in arrhythmia-type classification. The algorithm can effectively classify the arrhythmia types with high accuracy and specificity

    Efficient Premature Ventricular Contraction Detection Based on Network Dynamics Features

    Get PDF
    Automatic detection of premature ventricular contractions (PVCs) is essential for early identification of cardiovascular abnormalities and reduction of clinical workload. As the most prevalent arrhythmia, PVCs can cause cardiac failure or sudden death. The difficulty resides in extracting features that effectively reflect the electrocardiogram (ECG) signals. Transition networks (TN), which represent the transition relationships between various phases of a time series, are advantageous for capturing temporal dynamics. Therefore, in order to recognize PVCs, each heartbeat was firstly split into serval segments; then their statistical properties were calculated for the sequence construction; finally, network topology related features were extracted from TN constructed by these sequences of statistical properties, and input into decision trees-based Gentleboost for PVC recognition. The algorithm was trained on MIT-BIH arrhythmia database (MIT-BIH-AR), and tested on St. Petersburg Institute of Cardiological Technics 12-lead arrhythmia database (INCART), wearable ECG database (WECG), and noise stress test database by four evaluation metrics: sensitivity, positive predictivity, F1-score (F1) and area under the curve (AUC). The proposed algorithm achieved an average F1 of 0.9784 and AUC of 0.9975 on MIT-BIH-AR, and proved good generalization ability on INCART and WECG with F1=0.9633 and 0.9467, AUC=0.9887 and 0.9755, respectively. The algorithm also exhibited robustness and noise immunity as evidenced by tests on sensitivity of R-wave peak offset and noise, and real-world daily life conditions. Overall, the proposed PVC detection algorithm based on TN theory offered high classification accuracy, strong robustness, and good generalization ability, with great potential for wearable mobile applications
    corecore