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1. Introduction 
The heart is one of the organs of the circulatory system that carries essential elements to the body, 

such as oxygen and nutrients. Seniors people and people have the potential to have heart disease, and 

regular heart health monitoring is needed. One of the methods to analyze the condition of the heart is 

to analyze the electrocardiogram (ECG) signal, where the ECG signal is a biopotential electrical signal 

caused by the electrical activity of the heart. Pomprapa [1] explains that the impulse for cardiac 

contraction comes from the atrial sinus node (SA) as the pacemaker in normal conditions. The impulse 

spreads through the two atria causing the pressure in the atrial chambers to increase and forcing more 

blood to flow across the open atrioventricular (AV) valves into the ventricles. This depolarization causes 

the P wave. Meanwhile, ventricle depolarization causes a complex QRS that consists of Q, R and S waves. 

ARTICLE  I NFO 

 
ABSTRACT  

 

 
Article history 
Received March 29, 2023 
Revised May 21, 2023 
Accepted June 21, 2023 
Available online October 15, 2023 

 Heart disease is a heart condition that sometimes causes a person to die 

suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-

class Arrhythmia Detection has followed: QRS complex detection 

procedure and arrhythmia classification based on the QRS complex 

morphology. We proposed an edge device that detects QRS complexes 

based on variance analysis (QVAT) and the arrhythmia classification based 

on the QRS complex spectrogram. The classifier uses two-dimensional 

convolutional neural network (2D CNN) deep learning. We use a single 

board computer and neural network compute stick to implement the edge 

device. The outcomes are a prototype device cardiologists use as a 

supporting tool for analysing ECG signals, and patients can also use it for 

self-tests to figure out their heart health. To evaluate the performance of 

our edge device, we tested using the MIT-BIH database because other 

methods also use the data. The QVAT sensitivity and predictive positive 

are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, 

predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 

99.89%, and 99.55%, respectively. The experiment result of arrhythmia 

classification shows that our method outperforms the others. Still, for r-

peak detection, the QVAT implemented in an edge device is comparable to 

the other methods. In future work, we can improve the performance of r-

peak detection using the double-check algorithm in QVAT and cross-

check the QRS complex detection by adding 1 class to the classifier, namely 

the non-QRS class.  
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Repolarization of the ventricle causes a T wave. This event repeats itself continuously. One ECG period 

consists of a P wave, QRS complex wave, and T wave, as shown in Fig. 1. In normal heart conditions, 

the formation of P, QRS, and T waves reach 60 to 100 times in 1 minute, PR interval 120 to 200 ms, 

QRS interval 40 to 100 ms, and ST 80 ms [2]. 

 

Fig. 1.  A typical normal ECG signal 

Arrhythmia is a condition in which the heartbeat is irregular, intermittent, fast, and sometimes slow. 

People with heart disease who have arrhythmias cause their heart cannot pump enough blood through 

the body. A heart rate of fewer than 60 beats per minute is an indication that a person is suffering from 

bradycardia arrhythmia. Meanwhile, a heart rate that exceeds 100 beats per minute is a tachycardia 

arrhythmia. Cardiologists analyze ECG signals to detect and classify arrhythmia. Usually, they detect 

arrhythmia by observing the distance between R-peak to the next R-peak of the QRS complex and 

classify the arrhythmias by observing the morphology of the QRS complex. The accuracy of the ECG 

signal analysis depends on the cardiologist's expertise. 

Automatic arrhythmia detection has been studied by several researchers [3]–[12]. They used a 

heuristic [3]–[9] and machine learning [10]–[12] method to search for QRS waves. The algorithm 

proposed by Pan and Tompkins [3] is studied QRS complex detection based on a microprocessor with 

detection steps: noise removal using a bandpass filter, Derivative signal ECG, squaring signal, moving 

window integration, thresholding to find the region of interest (ROI) of QRS Complex. The authors 

[4] implement an adaptive threshold and step back to double-check the QRS complex using kurtosis 

coefficient. Kurtosis is a statistical parameter used to check the shape of the QRS complex. The use of 

kurtosis can reduce errors in detecting the QRS complex. They proved the superiority of their method 

compared to some previous research, such as Pan and Tompkins's method, by conducting experimental 

tests on the massachusetts institute of technology-beth israel hospital (MIT-BIH) Arrhythmia Database. 

Our previous research  used a heuristic algorithm running on a computer [6], the algorithm is QRS 

complex detection based on variance analysis and adaptive threshold (QVAT). The QVAT has several 

steps in detecting QRS complexes and R-peaks, including noise removal using a bandpass filter, variance 

analysis, adaptive threshold, and R-peak detection. We used analysis of variance to find features of the 

QRS complex in the ECG range. We use an adaptive threshold to obtain the R wave slope, which varies 

due to the artifacts, noise and differences in the varying ECG signals.  

Habib et. al. [10] used the convolutional neural network (CNN) deep learning method to detect the 

QRS complex. CNN Deep Learning has two input types, raw ECG and differentiated ECG. The CNN 

output proposed by Habib is classified into non-complex QRS signals and complex QRS signals. The 

use of hybrid machine learning for complex QRS detection was introduced by Yuen et al. [11]. The 

authors used WavletCNN to remove noise and artifacts and contrast the QRS complex features from 

other waves. Then the signal generated by WaveletCNN is input by ConvLSTM to get a QRS complex 
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wave. The author claims that the proposed machine learning architecture is very suitable for ECG 

wearables that have ECG signal data acquisition with lots of noise. 

Some research on arrhythmia classification classified it based on the morphology of the QRS complex 

waves [13]–[24]. Sharma and Dinkar [13] proposed a classification method based on the sine–cosine 

algorithm (SCA), a metaheuristic method to find optimal solutions. The authors start by reducing ECG 

noise using discrete wavelet transformation (DWT), which continued to find QRS complex features 

using the Linear Adaptive SCA (LA-SCA). Support vector machines (SVM) and deep neural network 

(DNN) use ECG data of complex QRS and RR intervals, to classify into 16 Arrhythmia classes. Hou et. 

al. [20] proposed long short-term memory (LSTM) and SVM to classify Arrhythmias. Input is QRS 

Complex which is processed by Auto Encoder (AE-LSTM). The AE-LSTM consists of an LSTM 

Encorder and Decorder that generate Complex QRS features. The features obtained by the autoencoder 

are used as SVM input to determine the arrhythmia class.  

A machine learning input that uses 1 ECG segment consisting of several QRS complexes was 

proposed [17]–[19] Plawiak and Acharya [17] used a 10-second ECG as segment input to determine the 

class of Arrhythmia. This method has the advantage of detection speed because each segment consisting 

of about 10 or 20 QRS complexes is processed directly. ECG segment input is processed by the deep 

genetic ensemble of classifiers (DGEC). The methods are hybrid machine learning, which consists of 

ensemble learning, deep learning and evolutionary computation. Li et. al. [19] classified arrhythmia from 

overlapping ECG segments that segment is 5 s ECG. The author uses overlapping input to overcome 

the problem of class imbalances. The authors use CNN as a classifier and add the residual network 

structure to the convolution layer. They use the residual network to avoid saturation during training. 

The author claims his method is suitable for classifying arrhythmias for different patients. 

Usually, health applications that use deep learning methods run on servers or cloud computing 

because deep learning processing requires a powerful processing unit. The input of the applications is 

from the sensor that collects patient data and then forwards it to the server. However, this technology 

has drawbacks, including a long delay in sending data and requires large bandwidth consumption. 

Edge technology enables distributed computing across small devices. In addition, edge computing 

has low latency and bandwidth usage compared to computing on a server. Some research on telehealth 

technology for cardiology system analysis also uses edge computing technology [25]–[30]. Lu et al. [25] 

propose an ECG device consisting of a mobile phone, an ECG sensor, the AD8232 model, and a 

microcontroller. Cardiology patients check independently through the ECG sensor, and then the 

microcontroller processes the data to be sent to the mobile phone via Bluetooth. The patient's phone 

forwards ECG data to the server. Then, the cardiologist analyzes the ECG using his mobile phone. Devi 

et. al. [26] used Arduino to implement the PTK algorithm to find the peak value of R, RR interval, and 

heart rate variability (HRV). These results are used as input to classifier arrhythmias machines running 

on cloud computing or server computers. Scrugli [27] implements edge computing on internet of 

medical things (IoMT) to classify arrhythmias using the ARM processor on the raspberry pi. The author 

classifies five types of arrhythmias using 1D CNN.   

Multi-class Arrhythmia detection is preceded by detection of QRS Complex waves followed by 

Arrhythmia classification based on QRS complex morphology. Previous research separated the detection 

of QRS complex waves and the classification of arrhythmias. In the implementation of cardiac test, it is 

important to know the arrhythmia class after it has been successfully detected. Arrhythmia classification 

based on the morphology of the QRS complex wave is generally processed using a powerful processing 

unit found in the hospital or the cloud. The powerful processing unit results in more costs or the 

detection of multi-class arrhythmias cannot be done by the patient independently.   

The proposed system consists of 1 Lead ECG signal acquisition and intel neural compute stick 

(INCS) running on a single board computer (SBC) as an edge processing unit. QRS complex detection 

and arrhythmia classification are processed using edge device. Using computing on edge devices can 

overcome delay, bandwidth and cost problems compared to cloud computing. The proposed study uses 

an algorithm based on variance analysis of the ECG sample data to detect the QRS complex and R-peak 
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called QVAT. The algorithm runs on an edge device which has the following steps: ECG filtering, 

variance analysis, adaptive threshold, QRS complex segmentation and the last step is the search for R-

peak using local maxima. Furthermore, the QRS complex wave as a 1-dimensional matrix is converted 

into a spectrogram in the form of a 2-dimensional matrix. The spectrogram is input for CNN 2D deep 

learning to classify arrhythmias. 

The main contributions of the study can be summarized as follows. A proposed heuristic-based QRS 

complex detection called QVAT is implemented on edge devices. Classifying arrhythmias based on the 

morphology of the QRS complex in the form of a 2D spectrogram matrix processed using an intel 

computing stick running on SBC as an edge device. The remainder of this paper is organized as follows. 

Section 2 of this paper is material and methods, covering the research description and methods used. 

Section 3 is the result and discussion. Section 4 is conclusions of the paper. 

2. Method 
The proposed system has several stages of procedures to get the results of detection and prediction 

of arrhythmia classification. Fig. 2 shows a block diagram of our proposed method. At the data 

acquisition stage, filtering of ECG values is needed before detecting the QRS complex using the QVAT 

method. The QVAT obtained the R-peak on the ECG signal that used the anchor point as input of 

deep learning CNN. R-peak is the median of the sample ECG data used as CNN input in the training 

process. We used the MIT-BIH arrhythmia database  [31] and data acquisition from the volunteers for 

the CNN dataset. ECG data from the MIT-BIH arrhythmia database has been sampled at 360 Hz with 

an average recording duration of 30 minutes resulting in 648000 datas. The dataset of the proposed CNN 

model is divided into three parts in the training process, namely 80% data for training, 10% data for 

validation, and 10% data for testing. The data is carried out by a training process using CNN, which will 

produce a classification model of arrhythmias.  

 

Fig. 2.  Proposed methodology 

The result of deep learning CNN is classifying 5 classes of arrhythmias see Fig. 3, including: normal 

(NOR), right bundle branch block (RBBB), left bundle branch block (LBBB), premature ventricular 

contraction (PVC) and fusion of ventricular and normal (FVN). 

   

(a)Normal (b) RBBB (c) LBBB 

  

 

                          (d) PVC   (e) FVN  

Fig. 3.  Class of arrhythmias 
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2.1. ECG Device 
The ECG device consists of sensors, AD8232, ADC ADS1115, Raspberry Pi 3 Model B+ and intel 

compute stick as shown in Fig. 4. The ADS1115 converts the analogue value obtained by the AD8232 

module into a digital value. This digital value has used an input of the Raspberry Pi 3 since it does not 

have analogue input pins. Intel neural compute stick speeds up the computational stage at the time of 

testing due to the limited ability of raspberries in computing. The power supply used in the device uses 

a 2S lithium-polymer battery using a regulator to lower the voltage to 5V with a maximum current of 

5A. The output of the device is a visualization of the predictive results of arrhythmia disease classification 

as shown in Fig. 5. There is a record button for acquiring ECG data and an analysis button for analyzing 

data acquisition results. 

  

(a) Main components (b) Device prototype 

Fig. 4.  Proposed ECG device 

 

Fig. 5.  User interface and ECG vizualization on edge device 

2.2. DataSet 
The data used in this study was taken from the MIT-BIH Arrhythmia Database, and primary data 

was taken from the proposed ECG data. The MIT-BIH Arrhythmia Database contains 48 recorded ECG 

signals taken from 47 patients. Each recording has a frequency of 360 Hz with an average recording 

duration of 30 minutes or 648000 data. Table 1 shows the dataset's samples of each type of arrhythmia. 

We balance the number of datasets of each class to have the same number by reducing the amount of 

data in the class that is too much, while the amount of class data is slightly augmented by using shifts 

from the existing data. So the total number of datasets in each class is 7129. The training, validation, 

and test datasets are 5703, 713, and 713. 
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Table 1.  Arrhythmia Class of MIT-BIH 

No. Arrhythmia Class Number of Samples 
1 Normal 75011 

2 RBBB 7211 

3 LBBB 8071 

4 FVN 802 

5 PVC 7129 

2.3. QVAT 
The initial procedure for classifying arrhythmias is the output of QRS complex detection. Some of 

the difficulties and challenges of the QRS complex detection are: the number of QRS complexes on the 

ECG recorded is huge, has a small magnitude, short duration, T waves as large as QRS complex waves, 

noise due to power supply, and muscle movement noise. To solve it, we use QVAT, which has several 

steps in detecting QRS complexes: filtering ECG signal, variance analysis, the adaptive threshold to find 

the ROI of QRS complex and then local maxima to predict R-peak. 

We use the bandpass filter to reduce noise that causes errors in detection. Noise that may occur 

includes interference of electromagnetic waves due to using an alternating current (AC) power supply 

and noise due to body muscles activity. The variance amplifies the QRS at positive coordinates, while 

the adaptive threshold used localizes the QRS complex. The interval of the QRS complex on a normal 

ECG is 0.12 seconds. In other words, the length of the QRS complex is 40 samples with a frequency of 

360 Hz. Equation (1) represents the variance equation of the filtered ECG signal. Variance i is 

represented by var_i, y_(f_i ) is the filtered ECG signal i and (y_f ) ̅ is the average from i-20 to i+19. 

𝑣𝑣𝑣𝑣𝑟𝑟𝑖𝑖 = ∑
�𝑦𝑦𝑓𝑓𝑖𝑖−𝑦𝑦𝑓𝑓�����

2

40
𝑖𝑖+19
𝑖𝑖−20    (1) 

Localization of the QRS complex is used to find the position of the R-peak. We use the adaptive 

threshold because the ECG signal captured by the sensor has different characteristics. The result of this 

step is the ROI of the QRS Complex. Then, we continued to find R-peak in the ROI using the local 

maxima technique. 

2.4. Spectogram 
ECG is a time-domain-based signal, or ECG in discrete is a one-dimensional matrix function. We 

propose the classification of arrhythmias using a 2-dimensional (2D) CNN. Then, the 1-dimensional 

matrix of ECG is converted into using 2D matrix using short time fourier transform (STFT). The output 

of this method is the 2D matrix with time as the x-axis and frequency as the y-axis. This conversion is 

spectrogram. An ECG signal in continuous time with the window shifted all the time has an STFT 

according to (2). 

𝑋𝑋(𝜏𝜏,𝜔𝜔) = ∫ 𝑥𝑥(𝑡𝑡)𝑤𝑤(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑡𝑡∞
−∞    (2) 

Where w(t) is a Hann or Gaussian window function based on a time function centered in zero, and 

x(t) is an ECG signal with a continuous function. ECG signals with discrete-time, the STFT equation 

according to (3). 

X(m,ω) = ∫ x[n]w[n − m]e−jwt∞
n=−∞    (3) 

w(n) is the Hann window function based on a sample of ECG, and x(n)  is the discrete ECG signal. 

Let x(n) be the ECG sample signal of length N. The hanning window w(n) has length m where  m ≪n. 

In other words, the first, second, and third windows are x[0],x[1],x[2],…,x[m-1], x[1],x[2],x[3],…,x[m] 

and x[2],x[3],x[3],…,x[m+1], respectively. In our study, the windows size m is 64, and the overlap is 32. 

We use the input matrix 2D spectrogram as the input to the proposed CNN. The spectrogram is 

converted from the sample ECG with a duration of 0.5 seconds before and 0.5 seconds after the R-peak. 
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The dataset of CNN deep learning is 360 samples with an R-peak located in the middle because the 

dataset is the MIT-BIH arrhythmia database, which has a frequency of 360 samples per second. In other 

words, our proposed place of the R-peak is the 180th from 360 sample data. Fig. 6 is an example of the 

result of converting an ECG signal as a function of time into a spectrogram. More specifically, the 

Normal beat, and Right Bundle Branch Block Beat shown respectively: Fig. 6a, and Fig. 6b. The 

spectrogram is ECG spectrums 258 ×347 red, green and blue (RGB) pixel image. 

 

(a) 

 

(b) 

Fig. 6.  Spectrogram of arrhythmias: (a) Normal, (b) Right Bundle Branch Block Beat 

2.5. CNN Architecture 
Convolution neural network (CNN)  is a type of deep learning generally used to classify two-

dimensional data objects. The CNN architecture divides into input, feature learning, and classification. 

In the feature learning, CNN reduces the dimensions of the feature map using a pooling process whose 

output layer is called the pooling layer. The layer consists of filters of a specific size and stride. Stride 

determines the pooling shift has been done to the entire feature map area. Reducing the feature map 

size or downsampling to speed up computing and avoid overfitting. The pooling operation used in this 

research is max pooling. The output of the feature extraction process is converted into a 1-dimensional 

matrix known as flattening. The flattening matrix is used for the hidden layer, and the classification 

results are issued.  

The parameter of the training process is the batch size, and epoch. Batch size defines the number of 

samples distributed to the neural network in one iteration. Epoch is when the entire dataset has gone 

through the training process on the neural network until it is returned to the beginning for one round. 

Several epochs are needed to get the error (loss) as small as possible in the training process. In this study, 

a batch size of 80, the epoch is 100 times. After the validation process is carried out, the next step is 

testing.  The testing process is a process to predict the classification results through a weight model that 

has been built using the CNN architecture. We classify arrhythmias using a deep learning 2-dimensional 

convolutional network (2D CNN) with 23 layers. Table 2 is the proposed CNN architecture plus the 

input layer to become 24 layers. Input functions  consists of an Input layer and two dimensions Zero 

Padding (ZeroPadding2D). The layer's input is an ECG spectrogram, an RGB image (3-dimensional 

array) with 258×347 pixels. Zero Padding adds a value of 0 to the input matrix so that it does not lose 

features when performing convolution with the kernel filter. 

The feature learning function that we propose consists of 5 learning features. Each learning feature 

has 1 to 2 convolution layers and 1 pooling layer. We use 5 feature learning to get many features from 

complex QRS, which uses input for the fully-connected layer as classifier. The process for extracting 

learning features is as follows. Feature Learning #1 consists of a 2-dimensional convolution layer with 

16 kernels, each with a size of 5×5 (Conv2D 16×5×5). The feature learning layer use Rectified Linear 

Unit (RELU) as an activation function. Therefore, we use 2 dimensions max pooling with size 2×2 as a 

pooling layer (MaxPooling2D 2×2). The result of Feature Learning #1 is a matrix measuring 129×173×16. 

Feature Learning #2 consists of 2 layers: Conv2D 32×3×3 and MaxPooling2D 2×2. The result of Feature 

Learning #2 is a matrix measuring 63×85×32. Feature Learning #3 consists of 3 layers: Conv2D 32×3×3, 

Conv2D 32×3×3, and MaxPooling2D 2×2. The result of Feature Learning #3 is a matrix measuring 

29×40×32. Feature Learning #4 consists of 3 layers: Conv2D 32×3×3, Conv2D 32×3×3, and 

MaxPooling2D 2×2. The result of Feature Learning #4 is a 12×18×32 matrix. Feature learning #5 consists 

of 3 layers: Conv2D 64×3×3, Conv2D 64×3×3, and MaxPooling2D 2×2. The result of Feature Learning 

#5 is a 4×7×64 matrix. 
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The classification function of the architecture is fully-connected layer (FC Layer) or multi-layer 

perceptron (MLP) networks. The classification consists of 1 flaten layer, 7 dense Layer, 1 output layer. 

The layer that functions as a classification starts from the flatten layer, which converts the feature 

learning output from a 4×7×64 matrix to a 1-dimensional matrix of 1792 or 1792 nodes. The dense #1 

layer to the dense #7 layer makes it a hidden layer on the FC layer with the relu activation function. The 

dense #1 layer uses the flatten layer's output as input and has an output of 512, repeating until the dense 

#7 layer has 8 output nodes. The output layer has 5 output nodes with the softmax activation function, 

which classify 5 arrhythmias. 

Table 2.  CNN 2D Model 

No Function Layer Filter/ 
Padding 

Shape 

1 Input  InputLayer           (258, 347, 3)  

2  ZeroPadding2D    (2,2)      (262, 351, 3)  

3 Feature Learning #1  Conv2D           (16,5,5)     (258, 347, 16) 

4  MaxPooling2D   (2,2)     (129, 173, 16)  

5 Feature Learning #2  Conv2D          (32,3,3)     (127, 171, 32)  

6  MaxPooling2D     (2,2)     (63, 85, 32)  

7 Feature Learning #3  Conv2D   (32,3,3)          (61, 83, 32)  

8  Conv2D          (32,3,3)       (59, 81, 32)  

9  MaxPooling2D     (2,2)       (29, 40, 32)  

10 Feature Learning #4  Conv2D           (32,3,3)       (27, 38, 32)  

11  Conv2D   (32,3,3)       (25, 36, 32)  

12  MaxPooling2D     (2,2)       (12, 18, 32)  

13 Feature Learning #5  Conv2D           (64,3,3)       (10, 16, 64)  

14  Conv2D           (64,3,3)       (8, 14, 64)  

15  MaxPooling2D   (2,2)       (4, 7, 64)  

16 Classification  Flatten              1792 

17  Dense                512 

18  Dense                256 

19  Dense       128 

20  Dense              64 

21  Dense                   32 

22  Dense                16 

23  Dense                8 

24  Output               5 

 

2.6. Performance metrics 
We measure the success of the proposed ambulatory ECG using metrics: accuracy (Acc), positive 

predictive (+P), sensitivity (Se), specificity (Spe), and F1-score. Our proposed device uses accuracy to 

measure the classification success rate in predicting the positive class. The calculation of accuracy 

according to (4). True Positive (TP) is the total number of class positives detected or classified correctly. 

True Negative (TN) is the number of negative classes correctly detected or classified by the algorithm. 

False Positive (FP) is the number of errors detecting the actual positive class. False Negative (FN) is the 

number of errors an algorithm detects the negative class, but the object is actually a positive class. Positive 

Predictive is the degree of reliability of the model or algorithm when providing a predictive value of the 

positive class. Percentage of +P is calculated using (5) which is the ratio of correct predictions in the 

positive class to all classification positive predictions. The +P metric is used if we measure the success of 

the classification in minimizing the false positive rate. The sensitivity is used to measure reliability or 

classification algorithm to correctly predict the data in the positive class. Sensitivity is defined as a 

comparison of the amount of data that is correctly classified in the positive class from all data in the 

positive class. Percentage of Se uses (6). The sensitivity is suitable if we measure the success of the 

classification in minimizing the false-negative rate. Specificity is reliability to predict data in the negative 



ISSN 2442-6571 International Journal of Advances in Intelligent Informatics 437 

 Vol. 9, No. 3, November 2023, pp. 429-444 

 

 Kurniawan et al. (Detection of multi-class arrhythmia using heuristic and deep neural network on edge device) 

class correctly. In other words, Spe is the sensitivity in the negative class. This metric is appropriate 

when we want to maximize the true negative rate. The Spe calculate uses (7).  We use the F1-score to 

measure the success of the classification at the false positive and false negative rates simultaneously 

according to (8). 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

   (4) 

𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (5) 

+𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (6) 

𝑆𝑆𝑆𝑆𝑒𝑒 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (7) 

𝐹𝐹1 − 𝑠𝑠𝐴𝐴𝑠𝑠𝑟𝑟𝑒𝑒 = 2×(+𝑇𝑇)×𝑆𝑆𝑆𝑆
(+𝑇𝑇)+𝑆𝑆𝑆𝑆

   (8) 

3. Results and Discussion 

3.1. R-peak Detection 
Define abbreviations and acronyms the first time they are used in the text, even after they have been 

defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be 

defined. Do not use abbreviations in the title or heads unless they are unavoidable. 

3.1.1. R-peak Detection using MIT-BIH Database 
The QVAT algorithm detects R-peak after it finds the QRS complex. We classified arrhythmias 

using CNN with R-peak as the input reference. Our algorithm detects R-peak in the MIT-BIH 

Arrhythmia dataset in records 100, 101, 103, 105, 106, 107, 108, 109, 111, 112, 114, 115, 116, 117, 118, 

119, 121, 122, 123, and 124 as a detection measure. The length of the ECG signal is 5 minutes (108,000 

samples) on each record. The results of r-peak detection from QVAT can be seen in Table 3.  

Table 3.  Comparison result of QRS detection methods 

No Rec TP FN FP Se(%) +P(%) 
1 100 370 0 0 100 100 

2 101 340 0 1 100 99.71 

3 103 354 0 0 100 100 

4 105 416 0 1 100 99.76 

5 106 331 0 0 100 100 

6 107 352 0 0 100 100 

7 108 277 6 0 97.88 100 

8 109 431 0 0 100 100 

9 111 348 0 2 100 99.43 

10 112 426 0 0 100 100 

11 114 275 0 0 100 100 

12 115 314 0 0 100 100 

13 116 388 6 0 98.48 100 

14 117 250 0 2 100 99.21 

15 118 363 0 1 100 99.73 

16 119 325 1 0 99.69 100 

17 121 302 0 0 100 100 

18 122 420 0 0 100 100 

19 123 247 0 0 100 100 

20 124 251 0 0 100 100 

Total 6780 13 7 99.81 99.90 

 

Under normal conditions, our proposed detection algorithm can detect various QRS complexes. 

However, there are several errors. It cannot detect the QRS signal because it has almost the same 

magnitude and shape as non-QRS signals. One of them is records 108 and 116. We have a significant 
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error, namely six errors each. But the error in predicting complex QRS against non-QRS signals in this 

algorithm is quite good. There is a maximum of 2 errors in records 111 and 117. The sensitivity, and 

positive predictive are 99.81% and 99.90%, respectively. The performance of the methods for detecting 

the QRS complex and the R-peak compared to the other methods is shown in Table 4. All selected 

methods have good detection, sensitivity Se and positive predictive +P is relatively high, above 97.07% 

and 95.43%.  The table shows that the complex QRS detection heuristic method has good Se and +P 

results when compared to the method using machine learning. The QVAT method implemented on the 

ECG device has a higher sensitivity Se and predictive positive +P than Pantomkins, Habib, and Yuen 

methods. However, the Rahul method has slightly better Se and +P than QVAT. Since Rahul method 

has a double-check process for the QRS complex using the kurtosis coefficient to reduce the error in 

detecting the complex QRS. This process is suitable for minimizing complex QRS errors but has an 

additional computational cost, increasing processing time. Double-check process for the verify QRS 

complex challenging to implement for real-time computations such as our algorithm running on an 

edge device. 

Table 4.  Comparison result of QRS detection methods 

No Method Author Method 𝑺𝑺𝑺𝑺 (%) +𝑷𝑷 (%) 
1. QVAT  This Study  Heuristic 99.81 99.90 

2. PTK [3] Pan and Tompkins Heuristic 99.54 99.74 

3. Rahul [4] Rahul et.al.  Heuristic 99.90 99.94 

4. Habib [10] Habib et.al. CNN 99.22 - 

5. Yuen [11] Yuen et. al. CNN, LSTM 97.07 95.43 

 

3.1.2. R-peak Detection using Volunteer Data 

We used our device to analyze the ECG of volunteers for 10 seconds. Our device uses a sample rate 

of 100 Hz, so the amount of data generated is 3000 ECG data. The acquisition data value range is positive 

from 0 to 1 mV. The result of the volunteer test is shown in Fig. 7, and the R-peak is detected to 

determine the annotation point. Fig. 7a is voluntary ECG raw data recorded on the proposed device. 

The signal of which the noise is reduced using a bandpass filter. The cut-off frequency of the high pass 

filter is 3 Hz, and the cut-off frequency of the low pass filter is 45 Hz. The result of this process is shown 

in Fig. 7b. The following process is variance analysis. The process uses input from the filtered ECG 

according to (1). The output of this step is depicted in Fig. 7c. The local adaptive threshold is used to 

find the ROI of the QRS complex. The threshold selects a different threshold value for each sample of 

ECG based on the analysis of 1-second ecg data before the data. The output of the adaptive threshold is 

shown in Fig. 7d. The R-peak is searched based on the most significant value of the ECG signal with 

the limits according to the results of the adaptive threshold. We call this the ROI of the R-peak. The 

ECG signal, equipped with the peak notation of the R in each wave of the QRS complex, is shown in 

Fig. 7e. 

3.2. Arrhytmias Classification 

We classify arrhythmias using a deep learning 2-dimensional convolutional network (2D CNN). The 

classification dataset is the MIT-BIH Arrhythmia database with Modified Lead II (MLII) data. The 

dataset is divided into three sub-data: training, validation, and testing datang. The training, validation, 

and test data numbers are 5703, 713, and 713, respectively. This experiment requires a training process 

using 100 epochs. At the end of the training process the accuracy levels of the training and validation 

datasets are 100% and 99.58%. While the data loss from the training and validation dataset has a value 

of 4.835e-12 or close to 0 and 0.0482.  

The accuracy result of the testing datasets was 99.82%. This result is obtained from a correct 

detection number (out of 713 data) for Normal (NOR), Right Bundle Branch Block (RBBB), Left 

Bundle Branch Block (LBBB), Fusion of Ventricular and Normal (FVN), Premature Ventricular 

Contraction (PVC) of respectively 713, 712, 711, 710 and 703, as depicted Table 5. Our classifier is 100 

% in Accuracy (Acc), Predictive Positive (+P), Sensitivity (Se), Specificity (Spe), and F1-score in class 
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Normal. And a little error in the RBBB, LBBB, FVN, and PVC classes. The total Acc, Se, +P, Spe, and 

F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 7.  Volunteer Data Test: (a) Raw ECG, (b) Filtered ECG, (c) Variance signal analysis, (d) Result of 

treshold, and  (e) R-peak detected 
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 A comparison of our work to the other arrhythmia classifier, including Sharma et. al. [13], Hou et. al. 

[20], Plawiak et. al. [17], and Li et. al. [19] has shown in Table 6. All methods were tested using the MIT-BIH 

arrhythmia database with different input segment lengths, number of classes, architecture, and methods. 

Configuration of the proposed that uses 2D CNN with 24 layers running on the raspberry PI edge device has 

better performance than other classier. The result shows that our proposed device can detect multiclass 

arrhythmias. 

Table 5.  Result of Arrhythmia Classification 

No. Class TP TN FN FP Acc(%) Se(%) +P(%) Spe(%) F1-
score(%) 

1  Normal    713 2852 0 0 100 100 100 100 100 

2  RBBB 712 2849 3 1 99.89 99.58 99.86 99.96 99.72 

3  LBBB 711 2852 0 2 99.94 100 99.72 99.93 99.86 

4  FVN 710 2844 8 3 99.69 98.89 99.58 99.89 99.23 

5  PVC 703 2847 5 10 99.57 99.29 98.60 99.65 98.94 

Total 3549 14244 16 16 99.82 99.55 99.55 99.89 99.55 

Table 6.  Comparison result of arrhythmia classification 

No
. 

Author Method Input Clas
s 

𝑨𝑨𝑨𝑨𝑨𝑨 𝑺𝑺𝑺𝑺 𝑺𝑺𝑺𝑺𝑺𝑺 +𝑷𝑷 

1  This Study  24 layer  

2D CNN  

2D ECG 

Spectrogram  

5 99.8

2 

99.5

5 

99.8

9 

99.5

5 

2 Sharma and Dinkar 

[13] 

SVM+DNN with SCA Filtered ECG using 

DWT 

16 99.1

1 

97.9

7 

- 98.5

5 

SVM+DNN with LA-

SCA 

Filtered ECG using 

DWT 

16 99.3

9 

98.0

1 

- 98.6

4 

3 Hou et. al. [20] LSTM 1D QRS Complex  5 99.7

4 

99.3

5 

99.8

4 

- 

4 Plawiak and Acharya 

[17] 

DL + GA 10 s ECG 17 99.3

7 

94.6

2 

99.6

6 

- 

5 Li et. al. [19] CNN 5s ECG 5 94.5

4 

93.3

3 

80.8

0 

- 

 

3.3. Execution Time 
Our experiments were conducted using the same software implemented in Python running on 

different processing devices. The device used is the Personal Computer i7 with a 240 GHz CPU 

compared to the Intel Movidius compute stick running on the Raspberry Pi 3 Model B+, the processor, 

ram, storage and operating system specifications of the two devices tested are listed in Table 7.  

Table 7.  Specifications of  Processing Unit 

 Computer Raspberry Pi 
Processor I7 CPU @2.40GHz 

GPU NVIDIA GeForce 

GTX 1050 Ti 2GB 

Quad-core ARM Cortex-A53 

CPU @1.40GHz 

Intel Movidius 4GB 

CPU @700 MHz 

RAM 16 GB 1 GB 

Storage SSD 128 GB microSD 16 GB 

Operating System Windows 10 64-bit Raspbian 32-bit 

 

The test scenario is QRS Complex detection and Arrhythmia classification from ECG with a total 

sample data of 1000, 1400, 1800 and 3600. The digital ECG signal has a sampling rate of 100 Hz. The 

order of execution as follows. QRS complex data to find R-peak using the algorithm proposed by QVAT. 

Transforming the Complex QRS ECG signal from a 1-dimensional matrix to a 2-dimensional 
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spectrogram. CNN 2D Deep Learning in this test is used to predict arrhythmias from the QRS complex 

in the form of a spectrogram. The execution time of the training process is not included in this 

experiment. From the ECG processing experiment with a recording length of 36 seconds or 3600 ECG 

digital data, the I7 personal computer executed 3.16 times faster than the execution of the Raspberry Pi 

3 Model B. The results of the overall execution time can be seen in Table 8. 

Table 8.  Comparison of  Raspberry Pi and Computer Execution Time 

Number of  
ECG Data 

Execution Time (second) 
Computer Raspberry Pi 

1000 5.88 16.01 

1400 7.59 21.51 

1800 9.65 27.37 

3600 20.13 63.59 

3.4. Future Works 
In the future works, We can further improve the robustness of the proposed R-peak detection 

algorithm (QVAT).  First, We add a double-check algorithm in QVAT based on historical RR intervals 

to decrease FN. And reduce the false detection of QRS complex in the non-QRS complex (FP) by 

adding 1 class of non-QRS complex in the classification process as a correction. The execution time 

using edge computing can be accelerated using the latest edge technologies. Our proposed model can be 

employed in a clinical scenario as shown in Fig. 8. The patient records his heart activity using the 

proposed ECG device. Arrhythmias are detected by the distance of one R-peak to the next R-peak. An 

arrhythmia is a heart abnormality if the distance from R to R is more than 1.67 seconds or less than 1.0 

seconds since the normal heart rate beats between 60 to 100 beats per minute. We classified arrhythmias 

based on the morphology of the QRS complex. Furthermore, the ECG signal and arrhythmia 

classification are sent and stored in the Server. The doctor at the hospital diagnoses heart conditions 

based on the ECG graph and arrhythmia classification. He gives treatment or sends messages to the 

patient to meet him for further examination if he finds an abnormal ECG. 

 

Fig. 8.  An illustration of the application of the proposed ECG system 

4. Conclusion 
This study proposes an Edge device that detects and classifies arrhythmias using a heuristic algorithm 

and Deep Learning CNN 2D. Our edge device uses intel stick as deep learning processing running on a 

raspberry pi that detects and classifies arrhythmias smoothly in the test scenario. We tested the 

robustness of the detection and classification using the MIT BIH dataset. Our proposed heuristic 
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algorithm is called QVAT. The average sensitivity and positive prediction of the detection test are 

99.81% and 96.90%, respectively. Our proposed device classifies arrhythmias into five classes: Normal, 

RBBB, LBBB, FVN, and PVC. The classification is based on the QRS complex morphology. The input 

of Deep Learning 2D CNN is an ECG spectrogram. The classification accuracy, sensitivity, prediction 

positive, specificity, and F1-score consisting of Normal, RBBB, LBBB, FVN, and PVC are 99.82%, 

99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experimental result of arrhythmia classification 

shows that our method outperforms the method proposed by Sharma, Hou, Plawiak, and Li. Our edge 

device that implements QVAT as an R-peak detection is better than Pan Tomkins, Habib, and Yuen. 

However, the Rahul method is slightly better than QVAT. The execution test of our proposed methods 

is running the same ECG data and the script on the computer and the edge device. The ratio execution 

time of a personal computer's (processor I7) is 3.16 times faster than edge device. 
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