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 Abstract—Automatic detection of premature ventricular 

contractions (PVCs) is essential for early identification of 

cardiovascular abnormalities and reduction of clinical workload. 

As the most prevalent arrhythmia, PVCs can cause cardiac 

failure or sudden death. The difficulty resides in extracting 

features that effectively reflect the electrocardiogram (ECG) 

signals. Transition networks (TN), which represent the transition 

relationships between various phases of a time series, are 

advantageous for capturing temporal dynamics. Therefore, in 

order to recognize PVCs, each heartbeat was firstly split into 

serval segments; then their statistical properties were calculated 

for the sequence construction; finally, network topology related 

features were extracted from TN constructed by these sequences 

of statistical properties, and input into decision trees-based 

Gentleboost for PVC recognition. The algorithm was trained on 

MIT-BIH arrhythmia database (MIT-BIH-AR), and tested on St. 

Petersburg Institute of Cardiological Technics 12-lead 

arrhythmia database (INCART), wearable ECG database 

(WECG), and noise stress test database by four evaluation 

metrics: sensitivity, positive predictivity, F1-score (F1) and area 

under the curve (AUC). The proposed algorithm achieved an 

average F1 of 0.9784 and AUC of 0.9975 on MIT-BIH-AR, and 

proved good generalization ability on INCART and WECG with 

F1=0.9633 and 0.9467, AUC=0.9887 and 0.9755, respectively. The 

algorithm also exhibited robustness and noise immunity as 

evidenced by tests on sensitivity of R-wave peak offset and noise, 

and real-world daily life conditions. Overall, the proposed PVC 

detection algorithm based on TN theory offered high 

classification accuracy, strong robustness, and good 

generalization ability, with great potential for wearable mobile 

applications. 

 
Index Terms—Electrocardiogram (ECG), Dynamic ECGs, 

Premature ventricular contractions, Transition network, 

Wearable. 

I. INTRODUCTION 

Public health has long focused on cardiovascular disease 
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(CVD), which caused more than 17 million deaths globally in 

2019, or 32% of global mortality, according to World Health 

Organization [1]. Cardiac arrhythmias, which are a prevalent 

type of CVD, refer to irregular heartbeats resulting from 

disorders in either the heart's origin or conduction pathways. 

These abnormalities can lead to sudden death and cardiac 

collapse due to excessive strain on the heart [2, 3]. As the 

most common cardiac arrhythmia, premature ventricular 

contractions (PVCs), originating in the ventricles of the heart, 

are often characterized by atypical QRS complexes with 

widened morphology in the electrocardiogram (ECG). PVCs 

have significant prognostic implications as they elevate the 

risk of heart failure, malignant arrhythmias, and sudden 

cardiac death [4]. Meanwhile, they can occur both in 

individuals without underlying cardiac conditions and those 

with pre-existing heart disease, with their prevalence reaching 

up to 75% during 24-hour or 48-hour ambulatory ECG 

monitoring [4, 5]. Clinicians typically detect PVCs by 

observing changes in heart rhythm and subtle morphological 

variations in ECG signals, which can be greatly simplified by 

automated ECG signal analysis, especially for long-term 

dynamic ECG records. 

Automated ECG signal analysis involves preprocessing, 

heartbeat segmentation, feature extraction, and classification. 

Classification outcomes heavily depend on proper feature 

extraction. There are two types of methods for extracting ECG 

signal features: deep learning-based automatic feature 

extraction and handcrafted feature extraction. Deep learning 

methods can extract and classify information automatically 

and has become popular in the healthcare applications. Peng et 

al. [6] utilized Convolutional Neural Network (CNN) and 

sequence-to-sequence model with attention mechanism based 

on bidirectional Long Short-Term Memory (LSTM) for a 5-

class classification including PVC on MIT-BIH Arrhythmia 

database (MIT-BIH-AR). Their model achieved an accuracy 

of 0.9928 and an F1-score (F1) of 0.957, with the only 

drawback being the large amount of training time and data 

required. Similarly, Hou et al. [7] utilized LSTM-based auto-

encoder network to extract ECG signal features for the 

classification of 5 heartbeat types, achieving the average 

accuracy and sensitivity (Se) of 0.9974 and 0.9935. Meng et al. 

[8] proposed a CNN model for wearable ECG classification 

and tested it on their own database with comparable 

performance. Although deep learning has great accuracy in 

ECG arrhythmia classification, the aforementioned research 

still struggles with computational complexity. In addition, 

deep learning’s black box nature makes it difficult to apply to 

high-risk decisions like cardiac diagnosis [9]. 
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Handcrafted features include morphological, statistical and 

wavelet features. Morphological characteristics are the most 

intuitive and extensively used features for PVC detection, as 

arrhythmias always present as simple alterations in ECG 

waveform. The most prominent waveform (P-QRS-T complex) 

in ECG determines its morphological representation: 

amplitude, duration, and area. M. Hammad et al. [10] 

extracted 13 morphological features, such as amplitude and 

duration of the QRS complex, for ECG signal classification. 

Their computationally efficient algorithm obtained an overall 

accuracy of 0.99 on MIT-BIH-AR, relying heavily on ECG 

signal quality and the accuracy of fiducial point detection. 

Sokolova et al. [11] proposed a rule-based PVC detection 

algorithm using heart rhythm and 6 different QRS shape 

metrics, achieving 0.827 Se and 0.8297 positive predictivity 

(P+) on MIT-BIH-AR. Interestingly, the combination of 

traditional morphological features and features extracted by 

other analysis methods could achieve enhanced classification 

performance. Chen et al. [12] combined ECG P-QRS-T 

segment morphological features with principal component 

analysis (PCA) and dynamic time warping algorithm (DTW) 

attributes to classify arrhythmias. Their approach achieved an 

accuracy rate of 0.978. Raj et al. [13] selected RR-interval 

features and extracted morphological features through discrete 

orthogonal stockwell transform and PCA for multiple 

arrhythmia classification including PVC, obtaining the overall 

accuracy, Se and P+ of 0.9882, but with a long computational 

time. Allami et al. [14] incorporated 3 morphological and 7 

statistical parameters into the Cascade Forward Neural 

Network (CFNN) for PVC identification, but their model 

lacked anti-noise testing in noisy environments. 

Owing to the intricate nature of the cardiac system and the 

nonlinearity exhibited by ECG signals, an increasing number 

of studies have incorporated nonlinear analysis techniques into 

healthcare applications. In recent years, nonlinear time series 

analysis has notably employed complex network-based 

methodologies, which have emerged as a significant research 

area. Complex networks serve as a powerful tool for revealing 

interdependencies among elements within a system. In this 

context, nodes in the network represent the elements under 

consideration, and edges represent their interrelationships. 

When applied to time series analysis, the nodes and edges of a 

network typically represent distinct data points or patterns 

derived from the time series, along with their temporal 

associations [15]. The fundamental concept involves mapping 

time series data onto complex networks and subsequently 

quantifying the dynamics of the time series using various 

topological statistics. Three principal approaches for mapping 

time series onto complex networks are proximity networks, 

visibility graphs, and transition networks [16-18]. Among 

these approaches, transition networks stand out as their nodes 

correspond to restricted discrete states (patterns) within the 

time series, with connections based on temporal transitions 

between these states (patterns). Transition networks primarily 

describe the transition relationships and nonlinear dynamic 

behavior among the states (patterns), thus retaining sufficient 

temporal information to effectively capture the dynamic 

characteristics in the sequence. Therefore, the ECG signals 

were analyzed from the perspective of transition networks in 

this study. Several studies have demonstrated the effectiveness 

of transition networks in accurately capturing the dynamics of 

time series, particularly in distinguishing ECG signal 

segments in different health conditions. Parlitz et al. [16] used 

ordinal pattern statistics and symbolic dynamics to 

differentiate congestive heart failure patients from healthy 

individuals. McCullough et al. [17] devised an ordinal pattern 

network based on order patterns derived from relative 

magnitudes in fixed-length time series, successfully 

distinguishing ECG segments related to normal sinus rhythm, 

ventricular tachycardia, and ventricular fibrillation. Weng et al. 

[18] utilized a transition network to discriminate between 

healthy and pathological conditions in the human heart system. 

In conventional feature-based methods mentioned above, 

widely used features, such as width, amplitude, and area, are 

typically extracted from multiple segments based on identified 

fiducial points. These features aim to capture the variations in 

the ECG waveform within a single heartbeat [10, 12, 14]. 

However, these extracted features heavily rely on a highly 

precise P-QRS-T detection algorithm and focus primarily on 

limited pre-defined linear information. Consequently, they 

may overlook potential hidden information and nonlinear 

relationships present in the data. In contrast, transition 

networks are constructed by tracking the succession of states 

over time, enabling a more straightforward capture of the 

dynamic temporal characteristics exhibited by time series data. 

To fully explore the dynamic characteristics of ECG signals, a 

new feature extraction method and detection algorithm for 

PVC recognition based on the theory of transition networks 

was proposed. Specifically, the statistical properties of each 

intra-beat segment are mapped into transition networks, 

allowing for the extraction of topological statistics to aid in 

PVC identification. As transition networks inherently maintain 

the temporal information within a heartbeat, the resulting 

topological statistics serve as representations of the network 

structure that can effectively reflect the nonlinear dynamic 

properties inherent in ECG signals. 

This paper introduces a novel application of transition 

networks for beat-to-beat heartbeat classification in ECG 

signal analysis, expanding upon existing network-related 

studies. The main objective and challenging problem 

addressed in this research is to determine an appropriate 

method for mapping the ECG waveform onto transition 

networks while ensuring that the networks retain sufficient 

information to effectively capture the dynamics of the original 

signals. The proposed classification algorithm adopts a 

computationally efficient approach, employing the static 

symbolic encoding method to discretize the sequences of 

statistical properties extracted from the ECG waveform. 

Within this method, the node in transition networks is defined 

by sequential patterns formed by multiple consecutive 

symbols. This choice of symbolic encoding offers several 

advantages, including reduced sensitivity to noise and 
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enhanced interpretability, as the sequential patterns and their 

interrelationships closely align with the underlying 

characteristics of the ECG waveform. The proposed algorithm 

was trained on MIT-BIH-AR and tested on the St. Petersburg 

Institute of Cardiological Technics 12-lead arrhythmia 

database (INCART) and the wearable ECG database (WECG). 

In addition, cross-database experiments were performed to 

assess the algorithm's robustness against noise and its 

dependence on accurate R-wave peak detection. The main 

contribution of this study can be outlined as follows: 

(1) From the perspective of transition networks, an efficient 

feature extraction method was proposed that can extract 

novel good-interpretable features reflecting complex 

nonlinear dynamics from the ECG signals. 

(2) A novel network feature-based algorithm for PVC 

detection was proposed, leveraging dynamic properties 

for classification using an ensemble learner, validated on 

multiple databases with outstanding classification 

performance and generalizability. 

(3) The noise test and R-peak offset test were conducted, 

demonstrating good noise immunity and R-wave offset 

immunity.  

(4) The application of transition networks is expanded to the 

classification of beat-to-beat arrhythmias, beyond the 

classification of ECG data segments. 

The rest of this paper is organized as follows. Section II 

presents the description of the database used. The 

methodology of this study is presented in Section III. Detailed 

results of all the experiments are presented in Section IV. 

Finally, discussions and conclusions are drawn in Sections V 

and VI, respectively.  

II. MATERIAL 

A. MIT-BIH-AR Database 

The MIT-BIH-AR Database [19] comprises 48 half-hour 

records of ECG signals. These records were collected by the 

BIH Arrhythmia Laboratory between 1975 and 1979. Each 

record consists of two channels, specifically modified-lead II 

along with one of the following leads: V1, V2, V4, or V5. The 

database includes data obtained from a total of 47 subjects. All 

records were sampled at 360 Hz within 10 mV range. In this 

study, the modified-lead II ECG signals were resampled to 

400 Hz and used for analysis and model evaluation. Four 

records containing paced beats (102, 104, 107 and 217) had 

been excluded from the experiments according to the AAMI 

recommendation [20]. Training and testing ECG signals were 

taken from the remaining data. The beats used in the 

experiments were 81,249 beats, consisting of 74,360 normal 

beats (N) and 6,889 PVCs, which were summarized in Table I. 

B. INCART Database 

The St. Petersburg Institute of Cardiological Technics 12-

lead arrhythmia database (INCART) [19] is composed of 75 

half-hour annotated records obtained from 32 Holter records. 

The data was collected from a total of 17 men and 15 women, 

ranging from 18 to 80 years old. The signals were sampled at a 

frequency of 257 Hz. In this study, the lead II ECG signals 

were resampled to 400 Hz and used for testing, including 

168,004 beats (148,364 N and 19,640 PVCs). 

C. Wearable ECG Database 

The wearable ECG database (WECG) is a collection of 

ECG records obtained using the wearable 12-lead ECG 

SmartVest system [21]. It encompasses 5 three-hour records of 

lead-II ECG signals, collected from 5 volunteers between the 

ages of 26 and 65, all with a history of PVCs. The ECG 

signals were digitized at a sampling rate of 400 Hz. Within the 

WECG database, there were a total of 66,150 beats that were 

annotated and labeled by two independent cardiology experts. 

These annotations include the location of the R-peak (the 

highest point on the QRS complex) for each beat, as well as 

the type label indicating whether the beat is N or a PVC. In 

terms of the beat types, there are 58,326 N and 7,824 PVCs 

within the database. It is worth noting that all records in the 

WECG database were collected in daily life environments, 

ensuring high-quality dynamic data that could closely reflect 

the performance in practical applications. Similarly, in order 

to further assess the classification performance in daily 

applications, the ECG dataset during daily activities was 

collected from 10 participants, including 5 healthy adults and 

5 individuals with non-fatal frequent PVCs, during sitting, 

talking, walking (3 km/h) and jogging (5 km/h). Participants 

were requested to perform a single activity to ensure their 

consistent activity throughout the entire recording period. The 

ECG dataset during daily activities consisted of 49,668 beats 

(47,381 N and 2,287 PVCs), including 40 approximately 15-

min ECG records from each participant during four different 

daily activities. The patient experimental protocols (Reference 

code: 2020-SRFA-183) had been approved by the Ethics 

Committee of The First Affiliated Hospital of Nanjing 

Medical University. 

D. Noise Stress Test Database 

To explore the robustness against physiological ECG signal 

noise, three typical types of ambulatory ECG noise from MIT-

BIH Noise Stress Test Database (MIT-BIH-NST) [19] were 

added to wearable ECG database to construct the noise stress 

test samples for noise testing. Three half-hour records of noise 

in ambulatory ECG, namely baseline wander (bw), muscle 

artifact (ma) and electrode motion artifact (em), were 

resampled at 400 Hz and linearly combined to form the fourth

 

 
Fig. 1. Four types of noisy ECG signals generated by adding noise from 

MIT-BIH-NST (SNR = 6dB), with raw signal in grey for comparison. 
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noise type (all) in the noise stress test database, as shown in 

Fig. 1. Before adding noise to the ECG database, the existing 

physiological noise signals were removed as much as possible 

by a band-pass filter (0.1-45Hz) and isoline correction. Each 

noise signal was added to each ECG record in wearable ECG 

database without interruption by temporal periodic repetition 

at a specific signal-to-noise ratio (SNR). The SNR was chosen 

as 18dB, 9dB, 6dB and 3dB respectively. 

III. METHOD 

In this paper, the proposed PVC recognition algorithm 

consists of four main steps (Fig. 2): (1) ECG preprocessing 

and segmentation, (2) mapping the ECG waveform to 

transition networks, (3) network-based effective feature 

extraction and (4) heartbeat classification with an ensemble 

classifier. 

A. Preprocessing and segmentation 

ECG signals are inherently weak electrophysiological 

signals that are susceptible to interference and noise due to the 

complexity of the human body. Therefore, preprocessing of 

ECG signals is necessary to reduce the impact of various 

artifacts such as baseline wander and muscle interference. To 

exclude baseline drift and high-frequency noise, a Butterworth 

band-pass (0.1-45 Hz) filter was applied. Then, Pan-

Tompkin’s algorithm [22] was employed for R-wave peak 

detection in each ECG record. Based on the detected R-wave 

peak locations, a window of 0.5 s duration was used to 

segment the heartbeat. This window spanned 0.1 s before and 

0.4 s after the R-wave peak, capturing the relevant waveform 

information for further analysis [23].  

B. Transition network construction 

1) Extraction of statistical properties for each heartbeat 

The ECG signal is characterized by quasi-periodic behavior, 

exhibiting similarities across different cardiac cycles. This 

property allows for the identification of dynamic changes 

within a single heartbeat, providing valuable information for 

classification. In order to capture the dynamic morphological 

changes within a heartbeat, each heartbeat waveform was 

divided into several segments. Then, several statistical features 

were calculated from each segment, including morphological 

positive/negative area, energy, mean value, average rectified 

value, and root mean square. By calculating these statistical 

features for different intra-beat segments, it becomes possible 

to observe the changing patterns of the feature sequences. 

These changing patterns contain dynamic information that can 

be effectively utilized for heartbeat classification.  

Morphological positive/negative area: Wave-area-based 

characteristics are acceptable for defining heartbeat 

morphology due to the relevance of waveform fluctuation 

during the cardiac cycle. The positive area is the region above 

baseline surrounded by ECG wave and baseline, whereas the 

negative area is the region below baseline. 
Energy: Signal energy measures ECG signal power. It 

shows ECG signal amplitude for each cardiac cycle segment. 

Signal energy sequences match cardiac cycle stages. Signal 

energy in a single segment is calculated as (1), using x(p) to 

represent the intra-beat segment with N points. 

 2
1 ( )N

pEn x p==   (1) 

Mean value: Mean value shows the intra-segment ECG 

signal’s central tendency or usual value. The mean value 

sequence is the down-sampled ECG signal with just the 

average amplitude in each intra-beat segment. Its computation 

method is, 

 1 ( ) /N
pAVG x p N==   (2) 

Average rectified value (ARV): ARV measures the average 

magnitude of the rectified waveform after eliminating signal 

polarity. It shows the average ECG signal strength, including 

positive and negative deflections. Its calculation formula is, 

 1 ( ) /N
pARV x p N==   (3) 

Root mean square (RMS): The signal’s root mean square 

indicates its power transmission capability. It is the square 

root of the average of the squared ECG signal values, 

calculated as follows, 

 2
1 ( ) /N

pRMS x p N==   (4) 

2) Symbolic encoding statistical properties as symbol 

sequences 

The nodes in a transition network are restricted discrete 

states. However, the initial statistical properties have too many 

possibilities in terms of numerical values, so they cannot be 

directly used for network construction. Therefore, proper 

discretization of the sequence and definition of nodes and 

edges in the network are crucial in the conversion to network 

representation. Symbolic encoding has been widely used to 

discretize the sequence with continuous distribution. Generally, 

there is considerable freedom in the definition of symbols for 

the time series. Static encoding, also called coarse-graining of 

phase space, discretizes the sequence based on the absolute 

amplitude of the data value via a set of pre- defined thresholds. 

Compared to dynamic encoding, which focuses more on the 

differences between data values, the choice of static encoding 

was made to preserve the wide and enlarged morphological 

characteristics of the PVC beat. Moreover, as a coarse-

graining process, symbol coding reduces the sensitivity of the 

algorithm to noise and enhances the robustness of the 

algorithm [24].  

Based on the threshold values {thr1, thr2, …, thrK-1}, static

TABLE I 

THE LIST OF THE DATABASES 

 
Database 

# Total 

beats 
# N beats # V beats 

Train MIT-BIH-AR 81,249 74,360 6,889 

Test 

INCART 168,004 148,364 19,640 

WECG 66,150 58,326 7,824 

MIT-BIH-NST 

bw 

66,150 58,326 7,824 
ma 

em 

all 

Daily life ECG dataset 49,668 47,381 2,287 

# means the number of the beats. 
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encoding converts the data series into K discrete symbols. 

Specifically, equation (5) demonstrates the conversion of the 

sequence of statistical property {fi}
N 

i=1  to the coarse-grained 

symbol sequence {si}
N 

i=1. A combination of the research theory 

and experimentation was used to determine the most optimum 

parameter K in static encoding. Previous studies [25] suggest a 

much smaller number of K < 5 for nonlinear time series 

analysis based on transition networks. Based on the 

experimental results, after balancing the classification 

performance and run time, K was finally set equal to 3. 

Therefore, threshold values {thr1, thr2} transformed feature 

sequences to 3 discrete symbol sequences.  

 

1

1 2

1

2

1

K i

i

i

i

N thr f

s
thr f thr

f thr

− 



= 
 

 

 (5) 

3) Mapping symbol sequences to transition networks 

The next critical step is the construction of transition 

networks. There are different types of definition for network 

nodes and edges. As for coarse-graining based transition 

networks, the simplest way to define a network node is that 

every suitable defined symbol is naturally regarded as a node, 

which is suitable for investigating the significance of single 

symbol. Another common definition of a node is the ordinal 

pattern, which is the rank order of observations in the time 

series according to their relative magnitudes. However, the 

ordinal pattern only captures the segment shapes without the 

magnitude. In order to obtain more structured information and 

better identify the patterns in the time series, the sequential 

patterns formed by multiple consecutive symbols are 

considered as network nodes, their temporal transitions 

determine the connections between the nodes. 

For the node, the coarse-grained sequence {si}
N 

i=1  is 

progressively partitioned to yield the series of sequential 

patterns {vi}
N-m+1 

i=1 , where vi = (si, si+1, ……, si+m-1) and m is the 

length of sequential pattern. There are Km different patterns in 

the series of sequential patterns {vi}
N-m+1 

i=1 , which also indicates 

Km different nodes in the network. In particular, when m = 2, a 

vector of two successive symbols is considered as a node γi = 

(si, si+1), thus the network should have K2 nodes. For the edge, 

the connections between network nodes should reflect the 

temporal behavior of sequential patterns, thereby depending 

on the temporal order of these patterns. In addition, the weight 

of the edge is proportional to the times of transitions between 

the two patterns. More specifically, the edges in the network 

depend on the series of sequential patterns {vi}
N-m+1 

i=1 , thus an 

edge between two nodes implies that their sequential patterns 

are adjacent. 

According to the aforementioned steps, a directed and 

 
Fig. 2. Flow chart of the proposed PVC classification algorithm, with a detailed schematic representation on the right corresponding to steps in the flow chart 

labeled the same marker. The number of the discrete symbol K was set to 3 and the length of the sequential sequence m was set to 2, thereby the resulting 

network with 32=9 different nodes. Note that only the nodes occurred have been drawn in the schematic representation and a simplified matrix has replaced the 

original 9×9 adjacency matrix. 
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weighted network G can be expressed mathematically in the 

form of a n×n adjacency matrix A=(aij) 1≤i, j≤n, with nonzero 

value or zero in position (i, j) according to whether node i 

connects to node j or not. For a weighted adjacency matrix, 

aij=wij when node i connects to node j with the weight wij, 

while for an unweighted network, there are only 1 and 0 in the 

matrix. By using the matrix representation of the network, the 

network properties can be calculated more easily by applying 

basic concepts from linear algebra. 

C. Network-based feature extraction 

Through the previous two steps, networks with adequate 

temporal information have the potential to capture effective 

features of dynamic properties. Transition networks formed by 

different heartbeat types have various topologies, indicating 

the different arrangement of nodes and edges in the network. 

Network properties, particularly topological properties, can 

help us to extract meaningful information revealing the 

relationship between the relevant sub-structures. Thus, s-

Metric, graph energy, eigenvector centrality, and weighted 

clustering coefficient were employed to measure network 

topology, among which the degree was widely used in 

computation of these topological properties. The degree of a 

network node is the number of edges that connect to a node, 

expressed as di for node i as shown in (6). 

 1
n
ki ikd a==   (6) 

The description of topological properties used in this study 

are as follows. 

s-Metric: To distinguish the network with same node set 

and similar degree distribution, s-Metric [26] is defined as the 

sum of products of nodal degrees across all edges as shown in 

(7), where i and j represent nodes connected by an edge, di 

represents the degree of node i, and dj represents the degree of 

node j. Higher s-Metric value indicates stronger degree 

correlation, characterized by high-degree nodes connecting to 

other high-degree nodes and low-degree nodes connecting to 

other low-degree nodes. Conversely, lower s-Metric values 

suggest a more random or less correlated degree distribution in 

the network. 

 
i js Metric d d− = 

     (7) 

GraphEnergy: The graph energy [27], denoted as E(G), is 

defined as the sum of the absolute values of the eigenvalues of 

the adjacency matrix, which represents node connections in 

the network. It can be represented as (8), where λi is the 

eigenvalue. The graph energy numerically quantifies the 

overall connectivity of the graph representation of the ECG 

feature sequences.  

 ( ) iE G =   (8) 

Eigenvector centrality: When measuring the centrality of 

one node, both the number and the centrality of the adjacent 

nodes need to be taken into account. Hence, the eigenvector 

centrality [28] is proposed as the positive multiple of the sum 

of adjacent centralities as shown in (9), which is proportional 

to the sum of the centrality scores of its adjacent nodes c(j), 

weighted by the strength of their connections aij and the max 

eigenvalue of the adjacent matrix λmax. For the same number of 

the adjacent nodes, the more important the adjacent nodes are, 

the higher the eigenvector centrality of that node. 

 
1

max( ) ( )ijc i a c j−=   (9) 

WeightedClustCoeff: Weighted clustering coefficient [29] 

is a measure that balances topological information with the 

weight distribution information in a network, which combines 

both the connectivity of nodes and the weights assigned to 

their connections. It can be expressed as (10), where di and d
w 

i  

represent the degree of node i in the network without weight 

and with weight respectively. Then the sum part of (10) 

considers all possible pairs of its neighbors and calculates a 

similarity or proximity measure that combines the weight of 

the edge with the connectivity of the node, where j, k are the 

possible pair in the network, wij, wik are the weight of the 

connecting edge, and aij, aik are the element in adjacent matrix. 

 1/ ( 1) ( ) / 2w w

i i i ij ik ij ik jkc d d w w a a a= − +  (10) 

D. Heartbeat classification 

Class imbalance affects classification learning outcomes 

since the ratio of N to PVC is about 11:1 in MIT-BIH-AR 

database. Lu et al. [30] employed numerous common 

strategies to balance the dataset, but Random Over Sampler 

(ROS) was the most successful method. In this study, ROS 

was adopted to tackle the imbalanced class distribution 

problem by increasing sample sizes of the minority class to 

equalize N and PVC in the training set [30]. 

For supervised classification in particular, the ensemble 

learner is a powerful combination of multiple weak learners. A 

primary advantage of the ensemble learner is that the defects 

of a single learner are likely to be compensated by the 

performance of the other learners, resulting in improved 

prediction accuracy. In this investigation, the ensemble learner 

Gentleboost was constructed using decision trees as weak 

learners. Gentleboost is a well-known ensemble method with 

the benefits of rapid convergence and output of real values 

[31]. For xi corresponding to training sample i with the label yi 

and weight wi, the principle of the Gentleboost algorithm is 

[32]: the weights of each training sample are initially 

equalized; a regression function is fitted for each iteration 

based on weighted least squares of yi to xi with weights wi; the 

weights wi are then updated using the equation wi=wi exp(-yi 

fm(xi)) and renormalized such that wi=1. The ultimate 

classifier is a linear combination of all regression functions. 

E. Evaluation methods 

Sensitivity (Se), positive predictivity (P+), F1-score (F1) 

and area under the curve (AUC) were used to evaluate 

classifier performance. AUC is defined as the area under the 

curve ROC, which indicates the ability to distinguish between 

the positive and negative beats. TP, FP, TN, and FN denote 

true positives, false positives, true negatives, and false 

negatives, respectively. Statistic parameters are defined below. 

 
TP

Se
TP FN

=
+

  (11) 
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P
TP FP

+ =
+

 (12) 

 
2

1
2

TP
F

TP FP FN
=

+ +
 (13) 

All experiments were carried out using MATLAB (R2022a) 

on a PC with 11th Gen Intel® CoreTM i5-11300H 3.11 GHz 

CPU and 16.0 GB RAM. 

IV. EXPERIMENT AND RESULTS 

A. Parameter Selection 

Equal division was used for intra-beat segmentation. Each 

segment had 4-16 sample points, and the length of the feature 

sequence within one heartbeat ranged from 45-11. Since the 

feature sequence was restricted, the length of sequential 

pattern m was set to 2 to ensure the number of edges was 

substantially bigger than the number of nodes in the network. 

The symbolic encoding threshold value was dynamically 

determined according to individual changes in ECG signal 

shape, such as amplitude. The peak value of the statistical 

property sequences in each pulse in the ECG record was set as 

{P}, and the minimum value was set as thr1. The numerical 

distribution range in the set {P} was evenly divided into four 

sections, and the values at the three split points were the 

choices of thr2, as shown by (14). 

 1 min{ }thr P=  (14) 

 2

max{ } min{ }
min{ } , 1,2,3

4

P P
thr P  

−
= +  =  (15) 

The optimal number of learning cycles, or the number of 

individual classifiers that comprised the ensemble classifier, 

was determined by five-fold cross-validation when the number 

of intra-beat segments was provisionally set to 30 with the α 

parameter set to 1. Fig. 3 (A) depicts the change in five-fold 

cross-validated F1 for PVC as a function of the number of 

learning cycles. According to these data, 150 learning cycles 

with a higher average F1 were chosen for subsequent 

investigations. 

Fig. 3 (B) shows the classification performance on MIT-

BIH-AR using ROS and a five-fold cross-validation technique 

with 45 to 11 intra-beat segments and varied thresholds thr2 

(Parameter α range from 1 to 3). The average AUC and F1 

were optimal when the number of intra-beat segments was 30, 

each with 6 sample points, and α was 1. Thus, these 

parameters were selected for following trials. 

B. Transition networks mapping from ECG waveform 

The features characterize the temporal dynamic information 

of the ECG signals by fully capturing the transition patterns 

attributed to the morphological changes, so that they are 

distinct for various types of heartbeats and have excellent 

interpretability. As depicted in Fig. 4, there is an intuitive 

tendency to distinguish the feature sequences and topologies 

of corresponding networks between the two categories. 

Moreover, the sequential patterns are closely associated with 

typical waveform segments, and through their interrelationship 

the dynamics of ECG waveform are reconstructed. 

For the PVC type, the QRS complex acquires an anomalous 

morphology, such as enlarged and abnormal waveform. Due 

to higher amplitude, the rise and fall of the QRS complex 

change more rapidly, therefore corresponding to nodes '1-3' 

and '3-1' (Line D in Fig. 4). Whereas, the same part in normal 

beats changes gently compared to PVCs, more mapped to 

node '1-2' and '2-3'  (Line B in Fig. 4). Consequently, node ‘1-

3’ or ‘3-1’ suggest a major shift in ECG signal shape, and 

node ‘1-1’ is related to the baseline and small waves. 

Meanwhile, the wide QRS complex in PVCs results in a wider 

spectrum of corresponding fluctuations in the feature 

sequences, including positive area, energy, average, ARV, and 

RMS. After symbolic encoding, the continuous symbol ‘3’ 

appears more frequently in coarse-grained sequences, causing 

the sequential pattern ‘3-3’ to appear more frequently, thereby 

increasing the degree of node ‘3-3’ in the network. In most 

cases, PVC results in aberrant repolarization, manifesting as 

ST-segment and T-wave abnormalities. In record 119 of the 

MIT-BIH-AR, for instance, the occurrence of T-wave 

inversion resulted in an additional peak in the corresponding 

portion of each sequence, thereby forming a network with a 

more complex topology, as shown in Line E in Fig. 4. The 

appearance of more sequential patterns increases the 

connectivity of the network and changes the weight 

distribution. Occasionally, an irregularly descending QRS 

branch caused by PVC can also influence the feature 

sequences, particularly the negative area and its corresponding  

 
Fig. 3. Parameter selection for mapping ECG signals to transition networks. (A) Five-fold cross-validated F1 score for PVC plotted against the number of 

learning cycles in the ensemble classifier when the number of intra-beat segments was provisionally set to 30 and the α parameter was set to 1. (B) Five-fold 
cross-validated average AUC and (C) Five-fold cross-validated average F1 plotted against the number of intra-beat segments and different thresholds. 
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network topology. 

The nodes in the network fully reveal the valuable 

information of the waveform. The higher nodal degree, the 

more frequent the sequential pattern appears, indicating the 

repeated occurrence of the corresponding waveform. 

Especially, the number of self-loop also reflects the duration 

in one pattern. Forbidden sequential patterns (sequential 

patterns cannot exist) have attracted attention from time series 

researchers [33], giving an area for future investigation. 

C. Results on the Three Independent Databases 

Table II shows the classification performance of the 

proposed method on three databases. The five-fold cross- 

validation performance on MIT-BIH-AR was 0.9975 AUC, 

0.9721 Se, 0.9848 P+, and 0.9784 F1, which was comparable 

to the sophisticated algorithms with outstanding classification 

performance [34-36]. The generalizability and classification 

performance were comprehensively assessed by testing on the 

INCART and WECG database with MIT-BIH-AR database as 

training dataset. The results on INCART database were 0.9887 

AUC, 0.9611Se, 0.9656 P+ and 0.9633 F1, and on WECG 

database were 0.9755 AUC, 0.9517 Se, 0.9417 P+, and 0.9467 

F1. 

D. The sensitivity of R-wave peak 

R-wave peak accuracy impacts heartbeat feature extraction, 

especially for dynamic ECG data. Thus, a randomly 

distributed offset in a specified range was applied to the 

precise R-wave peak site to mimic R-wave detection errors. 

Training set was the MIT-BIH-AR and testing set was the 

WECG database with offsets from 0 ms to 150 ms with 50-ms 

increment. 

Fig. 5 (A) shows that as R-wave peak offset increased, PVC 

AUC, Se, P+, and F1 dropped. When there was an R-wave 

peak offset within 50-ms, PVC Se was only reduced by 0.0054, 

whereas P+ decreased by 0.0815, lowering F1 and AUC to 

0.9012 and 0.9719, respectively. When offset surpassed 50-ms, 

PVC P+ was considerably influenced. When offset increased 

from 50 ms to 100 ms, P+ decreased to 0.6256 and F1 dropped 

to 0.7521. When the offset range was 150-ms, Se decreased to 

0.8781 with P+ reduced to 0.5998, making it more likely to 

misidentify the N type as PVC. The study [37] suggested that 

an offset within a 50-ms range around the R-wave peak was 

considered acceptable. In this condition, the experimental 

results demonstrated that the proposed algorithm exhibited a 

certain level of robustness to R-wave peak offsets. 

 
Fig. 4. The relationship between the heartbeat waveforms, feature sequences and corresponding transient networks. Line A: The waveforms of two heartbeat 

types (Taking record 119 in MIT-BIH-AR as an example). Line B: The six statistical property sequences corresponding to the N type heartbeat (left Y-axis) and 
the symbol sequences after symbolic encoding (right Y-axis). Line C: The transient networks mapped from the statistical property sequences of the N type 

heartbeat. The size and color of the nodes are set according to the order of the degrees. The larger the nodal degree, the larger the size and the darker the color. 

Line D: The six statistical property sequences corresponding to the PVC type heartbeat (left Y-axis) and the symbol sequences after symbolic encoding (right Y-

axis). Line E: The transient networks mapped from the statistical property sequences of the PVC type heartbeat. 



9 

> < 

 

 

E. The robustness against noise 

The ECG records from MIT-BIH-NST were directly 

processed for heartbeat segmentation and feature extraction 

without filtering to assess the noise resistance of the proposed 

algorithm. Figure 5 (B) presents the categorization findings. 

The left side of each subplot displays the result of raw signal 

data to facilitate visual comparisons. It was observed that the 

classification performance was significantly affected by the 

SNR, particularly for the positive category (P+). When the 

SNR was 18 dB, indicating a relatively clean signal, the 

classification scores were found to be satisfactory. The AUC 

was above 0.9722, and the F1-score exceeded 0.941. Even at 

an SNR of 6 dB, where the noise power constituted 25% of the 

signal power, the algorithm still achieved acceptable results, 

with AUC and F1 above 0.9331 and 0.8289, respectively. 

These findings demonstrate that the algorithm is capable of 

maintaining reasonable classification performance even under 

low SNR conditions. In a worst-case scenario (results under 

noise ‘em’), the performance of the algorithm was negatively 

impacted. Specifically, the P+ for PVC dropped to 0.6449, and 

the Se decreased to 0.8483, resulting in an F1 reduction to 

0.7327. However, despite this decline, the algorithm 

maintained high classification performance and exhibited 

resilience to noise, with AUC values consistently above 0.90 

across four different noise levels. Among the various types of 

noise investigated, electrode motion artifact was identified as 

the most influential. As the signal quality deteriorated due to 

this artifact, the classification performance notably worsened. 

This was evident from the decrease of 0.0154 and 0.0307 in 

AUC and F1, respectively, which were poorer compared to the 

best results obtained in the other three noise categories at an 

SNR of 3 dB. 

Fig. 5 (C) depicts the classification outcomes for identifying 

PVCs on the ECG dataset during four different daily activities. 

With the increasing intensity of activity, the decreasing SNR 

led to a decline in classification results. There was little 

difference in the classification performance between sitting 

state and talking state, while the higher noise level during 

walking and jogging resulted in a reduction in F1 by 0.0117 

and 0.0212, as well as a decrease of 0.0228 and 0.0289 in P+, 

respectively. Especially during jogging, Se dropped to 0.9287, 

indicating a weakened capability for PVC identification. 

Despite the influence of noise on classification performance, 

the most affected performance evaluation metric, P+, 

experienced only a modest reduction of 0.0289, highlighting 

the algorithm's high robustness. Therefore, the test 

demonstrates that the algorithm efficiently meets classification 

requirements during daily activities. 

V. DISCUSSION 

This paper presented a transition network-based noise-

resistant PVC detection algorithm. The dynamic properties of 

a heartbeat were appropriately mapped into the network, 

therefore the topological metrics of the network representing 

ECG morphological dynamics were useful and necessary 

elements for categorization. This algorithm developed a 

unique way for capturing the dynamic properties of ECG 

signals with strong classification capacity for PVC 

identification in dynamic ECG data. The key findings in this 

paper are: (1) Good-interpretable features representing ECG 

temporal dynamics were identified and used in classification

TABLE II 

THE RESULTS ON THE THREE DATABASES 

Database AUC  Se  P+  F1  

*MIT-BIH-AR 
0.9975 

±1.41e-4 

0.9721 

±0.0016 

0.9848 

±0.0012 

0.9784 

±3.32e-4 

INCART 0.9887 0.9611 0.9656 0.9633 

WECG 0.9755 0.9517 0.9417 0.9467 

* The results on this database are expressed as the mean ± standard 
deviation after five-fold cross-validation. 

 

 
Fig. 5. The results of robustness tests. (A) The effect of R-wave location offset on classification results of the proposed method. (B) The effect of additional 

noise on classification results of the proposed method. (C) The test results on ECG dataset during four different daily activities. 
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using nonlinear analysis of transition networks. (2) A noise-

immune, R-wave peak offset-insensitive PVC detection 

technique was provided. (3) Multiple datasets proved this 

algorithm’s classification and generalization abilities. (4) 

Applying transition networks to the classification of beat-to-

beat arrhythmias. The method has high performance, minimal 

complexity, and quick processing, making it suitable for 

wearable device applications. 

A. Comparison with Existing Algorithms 

The exhaustive evaluation of the results on MIT-BIH-AR 

attained a level comparable to other current algorithms with 

high precision. Petryshak et al. [34] developed a PVC 

detection model, cooperating an inception U-Net network for 

R-wave peak detection and a CardioIncNet network for PVC 

recognition, which attained a cross-validation result of 0.964 

F1. J. Yang et al. [35] proposed a novel deep learning model 

(ECGDet) for the detection of PVCs or supraventricular 

premature beats. For PVC detection, model achieved five-fold 

cross-validation classification results of 0.926 F1, 0.958 Se, 

and 0.920 P+. M. Hammad et al. [38] proposed a deep 

learning model (ResNet-LSTM network) that integrated with 

k-NN and genetic algorithm (GA) optimization for 5 types of 

arrhythmias classification, with a performance of 0.997 Se, 

0.958 P+, and 0.897 F1. Despite the algorithm's capability to 

identify multiple arrhythmias, its PVC recognition accuracy 

was slightly lower compared to the method in this study 

(Se=0.957 and P+=0.917). Sarshar et al. [36] utilized a CNN-

based deep learning network for PVC detection with 3 

morphological features and 7 statistical features, 

outperforming the results of proposed method with 0.989 F1, 

0.992 Se, and 0.986 P+. Although deep learning models are 

more likely to accomplish high-precision classification results, 

it is important to consider the algorithm’s complexity and its 

compatibility to dynamic applications. Arrais Junior et al. [39] 

devised a real-time optimized PVC recognition algorithm 

based on redundant discrete wavelet transform (RDWT). This 

algorithm obtained substantial classification performance on 

the MIT-BIH-AR database, with 0.9918 Se and 0.9915 P+, 

with its low computational complexity. However, the 

frequency band distribution of RDWT in this algorithm was 

only performed at a sampling rate of 350Hz, and the 

classification performance of ECG signals with various 

sampling rates was not discussed or validated. In contrast, the 

proposed algorithm utilized a coarse-graining procedure based 

on symbolic dynamics, in which the sampling rate had 

negligible impact on the features and outcomes.  

Meanwhile, the classification performance was verified on 

the INCART database to assess the generalizability of the 

proposed method, comparable with existing approaches. The 

PVC recognition algorithm proposed by Allami et al. [14] 

were also tested on the INCART database, with slightly lower 

results than the proposed method. Sokolova proposed a rule-

based method [11] with a higher P+ and a lower Se compared 

with the proposed method. However, based on its performance 

on MIT-BIH-AR database, its results indicated that the rule-

based method was sensitive to the individual differences in 

ECG signals. Malik et al. [40] introduced a novel approach to 

detect ventricular ectopy beat via the distance to the median 

beat in the record, while their performance was susceptible to 

ECG signal quality and was a bit low in Se to PVCs. Oster et 

al. [41] introduced a switching Kalman filter approach to track 

several morphologies for manual annotation by a cardiologist, 

incorporating unknown (X-factor) to improve the performance, 

with F1 reaching 0.994. However, this method relies heavily 

on the accuracy of R-wave peak localization, limiting his 

application. 

B. Interpretability Analysis 

In the handcrafted feature-based methods, various fiducial 

features relevant to QRS complex and ECG morphology, such 

as onset and offset of P, QRS, and T waves, were generally 

utilized for identifying PVC beats [10-12, 14, 36]. These kinds 

of features visualize the morphology of the ECG waveform 

and are highly interpretable. However, they are obviously 

affected by the accuracy and standards for the detection of 

fiducial point location, which are suspectable to noise. 

Moreover, the limited set of features overlooks the valuable 

information pertaining to waveform dynamics and trends, such 

as the rate of change in QRS complex and T-wave. Although 

some studies [42] used the mathematic geometric concepts 

such as slopes and angles to supplement the details of the 

waveform changes, this method increases the number and 

complexity of the features and only captures the information 

for specified parts. In the proposed method, the sequences of 

statistical properties within each intra-beat segment, obtained 

through equal division of a single heartbeat, reflect the 

dynamic changes in the waveform without requirement of 

high accurate fiducial point detector. Transition networks are 

mapped from them, where sequential patterns make it easier to 

identify specific shapes in the waveform, such as node ‘1-3’ 

corresponding to rapid rise in the waveform, node ‘1-2’ and 

‘2-3’ corresponding to a slow rise. Therefore, the proposed 

method has a good interpretability. In the form of pattern 

transition information, the waveform dynamics within one 

cardiac cycle are fully preserved in the network topology, 

thereby capturing sufficient dynamic characteristics. 

Some of studies [40, 43] introduced morphology features 

based on the distance or correlation coefficients between the 

tested heartbeat and the median beat or template beat. 

However, these interpretable features are easily influenced by 

inappropriate templates. Compared with the above ruled-based 

studies, the features extracted in this study are also consistent 

with expert rules. As one of the most obvious characteristics 

of PVCs, the duration of the QRS complex is significantly 

larger than that in a normal beat (>120 ms) [10]. This 

corresponds to a decrease in the degree (reduced importance) 

of node ‘1-1’ in transition networks mapping from PVCs and 

an increase in the number of non ‘1-1’ nodes and their degrees. 

Generally, the amplitude of QRS complex in PVCs is much 

smaller or higher than that in the normal beats [14]. This is 

reflected in the network topology by the increased importance 

of node ‘3-3’ for taller PVCs and the presence of nodes with 

higher coding value in the network corresponding to their 



11 

> < 

 

negative area sequences for smaller PVCs. The correlation 

between the extracted features and expert rules is crucial to 

ensure credibility in clinical applications. The interpretable 

features in this study maintain consistency with decision-

making processes in the clinical environment, thereby 

enhancing the potential in practical applications. 

C. Execution Efficiency 

The analysis of algorithm efficiency plays a key role, which 

evaluates the performance and practicality of the algorithm 

across diverse platforms. Aimed to access the performance in 

real-world scenarios, the comparison with the existing real-

time algorithms was carried out as illustrated in Table IV. 

Table IV lists the run time as well as the platforms on which 

the algorithms were run, accompanied by the average run time 

per 1-s segment for a convenient comparison. Compared to the 

Hajeb-Mohammadalipour’s algorithm [44], which also runs on 

the PC and uses machine learning for classification, the 

algorithm in this study has an advantage in terms of 

computational speed. Meanwhile, some of the algorithms 

proposed in the research [14, 45] show excellent performance 

on mobile/wearable devices. Although the proposed algorithm 

has shorter run time on PC platform compared to the 

aforementioned algorithms, it is important to recognize the 

unique challenges posed by resource-constrained 

environments (e.g., mobile and wearable devices). Therefore, 

there is a need to analyze and optimize the algorithm for its 

computational complexity and efficiency. 

Employing different lengths of ECG segments as inputs, the 

computational efficiency of the algorithm was analyzed, 

which depicted its temporal performance across various data 

sizes. As the run time shown in Table IV, it is found that the 

run time in the network construction and feature extraction 

stage exhibited generally linear growth with the amount of 

input data, indicating a linear temporal complexity. As the 

amount of input data increased, a proportional rise in the run 

time in feature extraction stage was observed, thereby 

favorable to estimate the time consumption. Because the 

preprocessing stage includes multiple phases, especially the 

iterative processes involved in the R-wave peak detection, 

may introduce non-linear aspect to the run time as the results 

shown. Fortunately, this part accounts for a small percentage 

of the run time. With the increase of input data length, an 

overall increase in the proportion of the total run time for 

feature extraction stage was observed. This finding highlights 

the need to optimize the efficiency of network construction 

and feature extraction in the future, to better fit the real-time 

requirements of practical applications. 

D. Robustness Analysis 

In practical PVC detection, signal preprocessing and R-

wave peak detection have a significant effect on the extraction 

of features. Even if the appropriate method is used, noise and 

inaccurate R-wave peak localization still inevitably influence 

feature extraction. In certain situations, nonlinear analysis 

methods offer greater robustness and noise resistance 

 

 
TABLE III 

COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER ADVANCED METHODS 

Study Method Class Database F1 Se P+ AUC 

Petryshak et al. [34] inception U-Net CardioIncNet 
2 

(N, PVC) 

M
IT

-B
IH

-A
R

 

0.964 - 0.966 - 

J. Yang et al. [35] ECGDet 
2 

(non-PVC, PVC) 
0.926 0.958 0.920 - 

M. Hammad et al. [38] 
ResNet-LSTM network,  

k-NN, GA 

5 

(N, S, V, F, Q) 
0.897 0.997 0.958 - 

*Sarshar et al. [36] CNN 
2 

(non-PVC, PVC) 
0.989 0.992 0.986 - 

*Allami et al. [14] Pan-Tompkin's algorithm, CFNN 
2 

(non-PVC, PVC) 
0.982 0.987 0.978 - 

Arrais Junior et al. [39] RDWT 
2 

(non-PVC, PVC) 
- 0.9918 0.9915 - 

Alickovic et al. [46] DTW, MSPCA, Random Forest 
4 

(N, APC, PVC, RBBB) 

0.848 

0.995D 
- - 

0.960 

0.994D 

*Sokolova et al. [11] Rules 
2 

(non-PVC, PVC) 
- 0.827 0.8297 - 

Proposed method 
Pan-Tompkin's algorithm,  

Transition network, Gentleboost 

2 

(N, PVC) 
0.9784 0.9721 0.9848 0.9975 

*Sokolova et al. [11] Rules 
2 

(non-PVC, PVC) 

IN
C

A
R

T
 

- 0.9287 0.9703 - 

*Allami et al. [14] Pan-Tompkin's algorithm, CFNN 
2 

(non-PVC, PVC) 
- 0.939 0.956 - 

* Malik et al. [40] AdaBoost 
2 

(non-PVC, PVC) 
0.9206 0.8893 0.9542 - 

Oster et al. [41] 
Switching Kalman filter  

with X-factor 
2 

(non-PVC, PVC) 
0.994 0.991 0.9996 - 

Proposed method 
Pan-Tompkin's algorithm, 

Transition network, Gentleboost 

2 

(N, PVC) 
0.9633 0.9611 0.9656 0.9887 

* marks the method using ECG morphological features.  
D marks the results after using multiscale principal component analysis for denoising. 
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than linear analysis methods. Some studies [24] have 

demonstrated that sequential partition is computationally 

simple and noise-resistant, which has led to its widespread use 

in the classification of time series. 

Considering the interference of noise from the environment 

and the problem of inaccurate R-wave peak detection in 

practical application, the noise test and R-peak offset test were 

conducted. These evaluations revealed an admissible R-wave 

peak location error and permissible noise interference. As for 

the robustness against R-wave peak location error, the 

classification capability remained acceptable despite a 0.0036 

decrease in AUC and a 0.0455 decrease in F1 when the R-

wave peak offset was within the commonly permissible range 

of 50 ms [37]. As for noise immunity, the performance was 

almost unaffected by slight noise interference (18 dB), slightly 

degraded by noise (9 dB), still acceptable when the noise 

power was a quarter of the signal power (6 dB), and severely 

impaired when the noise power reached half of the signal 

power (3 dB). The classification results of proposed method 

were comparable to those of Alickovic et al. [46] using the 

popular DWT feature extraction method with multiscale 

principal component analysis denoising on the MIT-BIH-AR 

database, while outperforming their AUC of 0.9480 without 

denoising. 

In the test results of ECG dataset during daily activities, the 

minimal difference between sitting state and talking state 

suggest that the algorithm exhibits good robustness to slight 

baseline wander and muscle artifact. As for walking and 

jogging, they are more likely to introduce noticeable baseline 

wander, muscle artifact, and electrode motion artifact due to 

body movement, as well as changes in breathing rate and 

depth. Relative to marked and low-frequency baseline wander, 

the greater challenge lies in handling the effect of intermediate 

or high-frequency noise, which overlaps with the frequency of 

the ECG signals. Addressing such noise, the coarse-graining 

process mitigates the impact of low-amplitude noise, resulting 

in a slightly improved performance in the classification of 

dynamic ECG signals. While the obvious fluctuation and local 

spikes introduced by noise, that may locally distort or 

overwhelm the ECG waveform, are the primary factors 

contributing to slightly degraded classification performance 

during exercise. 

Although all three kinds of noise affect ECG morphology 

and degrade classification results, the baseline wander and 

muscle artifact may be more robust. As shown in the 

normalized curves of the three noise types in Fig. 6, baseline 

wander is gentle and less likely to cause large abrupt shifts in 

the morphology within one heartbeat. Muscle artifact 

manifests as small fluctuations at a high frequency, while the 

sensitivity to small amplitude changes is reduced after 

symbolic encoding. However, electrode motion artifact, which 

arises from unstable electrode-skin contact, generally in the 

form of a low-frequency signal, fluctuating more obviously in 

amplitude. Hence, it has a greater impact on the performance, 

making the algorithm more sensitive to it. 

E. Limitations 

Although the proposed method obtains high classification 

accuracy, fast computational speed, strong robustness, and 

excellent generalization ability in detecting PVCs, there are

 

 
Fig. 6. Comparison of waveforms for the four types of noise signals after 

power normalization.  

 

TABLE IV 

COMPARISON BETWEEN THE PROPOSED METHOD AND OTHER REAL-TIME METHODS 

Study Platform Run Time 
Average Time 

per 1-s segment 

Hajeb-Mohammadalipour et al. [44] 
Dell Precision T3600 computer with an Intel Xeon E5-2667 2.9 

GHz processor using MATLAB R2017a 
~1.124 s per 8-s segment 140.5 ms 

Arrais Junior et al. [39] - using MATLAB R2014a 61.2 s per 30-min record 34 ms 

Allami et al. [14] 
Samsung Galaxy J1 motherboard with a quad-core Cortex-A7 

1.2 GHz CPU using Java software 
2.1 s per 20-s segment 105 ms 

Ran et al. [45] 
Xilinx Zynq XC-7Z020 FPGA chip with two ARM Cortex-A9 

processors and an Artix-7 FPGA 
2.895 s per 10-s segment 289.5 ms 

Proposed method 
PC with 11th Gen Intel CoreTM i5-11300H processor at 3.11 

GHz with 16.0 GB RAM using MATLAB R2022a 

0.276 s per 10-s segment  

(tpre=0.08 s, tfea=0.112 s) 

14 ms 

0.77 s per 1-min segment 

(tpre=0.088 s, tfea=0.603 s) 

9.63 s per 10-min segment 

(tpre=3.76 s, tfea=5.8 s) 

26.38 s per 30-min record 

(tpre=6.89 s, tfea=17.56 s) 

tpre represents the run time in the preprocessing stage, tfea represents the run time in the network construction and feature extraction stage. 
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still a number of potential limitations that need to be addressed. 

One limitation of this approach is the sensitivity to electrode 

motion artifact. As it is irregular in time and frequency, 

probably similar to the part of the spectrum of the ECG signals, 

so simple preprocessing does not completely remove its 

effects. Based on previous studies [47], independent 

component analysis combined with the proposed algorithm 

may be a good solution, which is able to extract the ECG from 

noisy signal. Furthermore, classification for PVCs in dilated 

cardiomyopathy was challenging when assessing patients with 

various health conditions. This difficulty stems from the 

enlargement of the QRS complex caused by dilated 

cardiomyopathy, resulting in a morphological similarity 

between PVCs and normal beats. In response to this limitation, 

incorporating non-morphological features can provide 

alternative characteristics of PVCs, enhancing the 

classification performance. It also leads to another constraint 

of this method, which is that only morphological features 

within one heartbeat were extracted, but the characteristics 

between beats were not utilized. Because the important rhythm 

information was ignored, the algorithm is more likely to be 

applied to arrhythmias with significant differences in 

morphology, e.g., premature atrial beats cannot be classified. 

In the future, the algorithm using hybrid features including 

network-based features and rhythm features will be developed 

for recognizing PVCs and more types of arrhythmias. 

VI. CONCLUSION 

The study introduces a novel method for feature extraction 

and PVC detection based on the transition network approach. 

The proposed method was evaluated using three ECG 

databases, namely MIT-BIH-AR, INCART, and WECG. By 

employing this approach, interpretable characteristics that 

capture the comprehensive morphological dynamics of ECG 

signals were extracted. In addition, to further assess the 

classification performance in daily applications, our method 

was also tested under daily life conditions (sitting, talking, 

walking, and jogging). The experimental results demonstrate 

that the proposed method exhibits high computational 

efficiency, high PVC recognition accuracy and robustness and 

resilience to noise. These results highlight the potential of the 

proposed approach for practical applications, particularly for 

wearable mobile devices. 
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