5,682 research outputs found

    Evolving Ensemble Fuzzy Classifier

    Full text link
    The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the literature, most of them are crafted under a static base classifier and revisits preceding samples in the sliding window for a retraining step. This feature causes computationally prohibitive complexity and is not flexible enough to cope with rapidly changing environments. Their complexities are often demanding because it involves a large collection of offline classifiers due to the absence of structural complexities reduction mechanisms and lack of an online feature selection mechanism. A novel evolving ensemble classifier, namely Parsimonious Ensemble pENsemble, is proposed in this paper. pENsemble differs from existing architectures in the fact that it is built upon an evolving classifier from data streams, termed Parsimonious Classifier pClass. pENsemble is equipped by an ensemble pruning mechanism, which estimates a localized generalization error of a base classifier. A dynamic online feature selection scenario is integrated into the pENsemble. This method allows for dynamic selection and deselection of input features on the fly. pENsemble adopts a dynamic ensemble structure to output a final classification decision where it features a novel drift detection scenario to grow the ensemble structure. The efficacy of the pENsemble has been numerically demonstrated through rigorous numerical studies with dynamic and evolving data streams where it delivers the most encouraging performance in attaining a tradeoff between accuracy and complexity.Comment: this paper has been published by IEEE Transactions on Fuzzy System

    Learning from non-stationary data using a growing network of prototypes

    Get PDF
    Proceeding of: 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun, 20-23 June 2013Learning from non-stationary data requires methods that are able to deal with a continuous stream of data instances, possibly of infinite size, where the class distributions are potentially drifting over time. For handling such datasets, we are proposing a new method that incrementally creates and adapts a network of prototypes for classifying complex data received in an online fashion. The algorithm includes both an accuracy-based and time-based forgetting mechanisms that ensure that the model size does not grow indefinitely with large datasets. We have performed tests on seven benchmarking datasets for comparing our proposal with several approaches found in the literature, including ensemble algorithms associated to two different base classifiers. Performances obtained show that our algorithm is comparable to the best of the ensemble classifiers in terms of accuracy/time trade-off. Moreover, our approach appears to have significant advantages for dealing with data that has a complex, non-linearly separable topology.Spanish Ministry of Science and Innovation under the project MOVES, grant reference TIN2011-28336, and NSERC-CanadaThis article has been funded by the Spanish Ministry of Science and Innovation under the project MOVES with grant reference TIN2011-28336, and NSERC-Canada.Publicad

    On utilizing weak estimators to achieve the online classification of data streams

    Get PDF
    Author's accepted version (post-print).Available from 03/09/2021.acceptedVersio

    An ensemble-based computational approach for incremental learning in non-stationary environments related to schema- and scaffolding-based human learning

    Get PDF
    The principal dilemma in a learning process, whether human or computer, is adapting to new information, especially in cases where this new information conflicts with what was previously learned. The design of computer models for incremental learning is an emerging topic for classification and prediction of large-scale data streams undergoing change in underlying class distributions (definitions) over time; yet currently, they often ignore significant foundational learning theory that has been developed in the domain of human learning. This shortfall leads to many deficiencies in the ability to organize existing knowledge and to retain relevant knowledge for long periods of time. In this work, we introduce a unique computer-learning algorithm for incremental knowledge acquisition using an ensemble of classifiers, Learn++.NSE (Non-Stationary Environments), specifically for the case where the nature of knowledge to be learned is evolving. Learn++.NSE is a novel approach to evaluating and organizing existing knowledge (classifiers) according to the most recent data environment. Under this architecture, we address the learning problem at both the learner and supervisor end, discussing and implementing three main approaches: knowledge weighting/organization, forgetting prior knowledge, and change/drift detection. The framework is evaluated on a variety of canonical and real-world data streams (weather prediction, electricity price prediction, and spam detection). This study reveals the catastrophic effect of forgetting prior knowledge, supporting the organization technique proposed by Learn++.NSE as the most consistent performer during various drift scenarios, while also addressing the sheer difficulty in designing a system that strikes a balance between maintaining all knowledge and making decisions based only on relevant knowledge, especially in severe, unpredictable environments which are often encountered in the real-world

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf
    corecore