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ABSTRACT

Ryan A. Elwell
AN ENSEMBLE-BASED COMPUTATIONAL APPROACH FOR INCREMENTAL
LEARNING IN NON-STATIONARY ENVIRONMENTS RELATED TO SCHEMA-

AND SCAFFOLDING-BASED HUMAN LEARNING
2008/09

Robi Polikar, Ph.D.
Master of Science in Engineering

The principal dilemma in a learning process, whether human or computer, is adapting to

new information, especially in cases where this new information conflicts with what was

previously learned. The design of computer models for incremental learning is an

emerging topic for classification and prediction of large-scale data streams undergoing

change in underlying class distributions (definitions) over time; yet currently, they often

ignore significant foundational learning theory that has been developed in the domain of

human learning. This shortfall leads to many deficiencies in the ability to organize

existing knowledge and to retain relevant knowledge for long periods of time. In this

work, we introduce a unique computer-learning algorithm for incremental knowledge

acquisition using an ensemble of classifiers, Learn".NSE (Non-Stationary

Environments), specifically for the case where the nature of knowledge to be learned is

evolving. Learn++.NSE is a novel approach to evaluating and organizing existing

knowledge (classifiers) according to the most recent data environment. Under this

architecture, we address the learning problem at both the learner and supervisor end,

discussing and implementing three main approaches: knowledge weighting/organization,

forgetting prior knowledge, and change/drift detection. The framework is evaluated on a



variety of canonical and real-world data streams (weather prediction, electricity price

prediction, and spam detection). This study reveals the catastrophic effect of forgetting

prior knowledge, supporting the organization technique proposed by Learn++.NSE as the

most consistent performer during various drift scenarios, while also addressing the sheer

difficulty in designing a system that strikes a balance between maintaining all knowledge

and making decisions based only on relevant knowledge, especially in severe,

unpredictable environments which are often encountered in the real-world.



ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Dr. Robi Polikar for providing invaluable

technical and intellectual support and encouragement throughout my education and

research. Special thanks are also due to Michael Muhlbaier, who is responsible for the

conception of the Learn++.NSE algorithm, and to Matthew Karnick for his helpful

assistance in Matlab coding and understanding fundamentals of our research. To my

fellow graduate students in the Signal Processing & Pattern Recognition Laboratory and

virtual reality labs, I thank you for your friendship, assistance, and generally for keeping

me sane.

I thank my parents for their continued love and support in everything non-

technical. I am also grateful for the Rowan University ECE department faculty.

Specifically, the following deserve special thanks for showing their genuine care about

my engineering future: Dr. Peter Jansson, Dr. Ravi Ramachandran, Dr. Linda Head, and

Dr. Shreekanth Mandayam. I thank the Dean's Office staff and the College of

Engineering faculty for their regard for my well-being which has extended even beyond

my education, even to my personal needs.

Finally, I attribute all my accomplishments to my Father God in heaven, who has

blessed me not only with success, but also with all my abilities. He gives me comfort not

only in this life, but also thereafter because of His Son Jesus Christ, who has made the

way for my salvation and eternal life through His life, death, and resurrection.

Furthermore, by His Spirit, I have all the motivation to pursue research in engineering,

for "I can do all things through Him who strengthens me" (Philippians 4:13).



TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ................................................... 1

1.1 Incremental Learning............................................. .......... ........... 2

1.2 Motivation of Thesis: Non-Stationary Environments .................................. 3

1.3 Objective of Thesis: The Learn++.NSE Algorithm.......................... ... 3

1.4 Scope of Thesis: Data with Non-Stationary Environments..........................4

1.5 Organization of Thesis................................................5

CHAPTER 2: BACKGROUND .................................................... 6

2.1

2.2

2.2.1

2.2.2

2.3

CHAPTER

3.1

3.2

3.3

3.3.1

3.3.2

3.4

3.4.1

3.4.2

3.4.3

The Problem of Concept Drift ................................................ 6

Schema Theory for Knowledge Acquisition ..................................... 11

Schemata Construction ................... .. .. .... ....................... 13

Schem ata A ctivation..............................................................................15

Scaffolding Theory ................................... 16

3: LEARNING IN NON-STATIONARY ENVIRONMENTS .......... 18

Combining Human and Computational Intelligence Learning Models ...... 18

Online & Batch Learning.............................................24

Ensemble of Classifiers for Learning Concept Drift .................................. 25

Ensemble Organization & Evaluation (Weighting & Voting)...............27

Controlled Forgetting (Ensemble Pruning) ........................................ 30

Concept Drift Detection..............................................34

D rift D escriptors.................................................................. ............. 37

M easuring D rift .......................................................... ....................... 42

Problematizing (Windowing and Instance Selection).............................45



CHAPTER 4: LITERATURE REVIEW ............................................. 48

4.1 Ensemble-Based Methods .................................................... 48

4.1.1 FLORA......................................................................48

4.1.2 Streaming Ensemble Algorithm (SEA).....................................49

4.1.3 Classifier Ensemble Approach for Mining Concept-Drifting Data. Si....5

4.1.4 Conceptual Clustering & Prediction ...................................... 52

4.1.5 Dynamic Weighted Majority (DWM) ...................................... 53

4.1.6 Knowledge-Based Sampling (KBS) -Stream Algorithm...................55

4.1.7 Adaptive Classifiers-Ensemble (ACE)..................................... 57

4.2 Drift Detection Methods......................................................60

4.2.1 Early Drift Detection Method ............................................. 60

4.2.2 Computational Intelligence-C US UM (Cl-C US UM) ..................... 61

4.3 Methods Related to Our Work ............................................... 64

4.3.1 Adaboost .................................................................... 64

4.3.2 Learn +...................................................................... 66

CHAPTER 5: THE LEARN++.NSE ALGORITHM ................................. 69

5.1 Algorithm Description ........................................................ 70

5.2 Controlled Forgetting.........................................................77

5.2.1 Permanent Pruning......................................................... 77

5.2.2 Temporary Pruning.........................................................80

5.3 Drift Detection ................................................................ 82

5.3.1 Fading ...................................................................... 89

5.3.2 Dynamic Sigmoid Adjustment..............................................89

CHAPTER 6: EXPERIMENTATION AND RESULTS ........................... 94

6.1 Motivation & Organization ................................................... 94

6.2 Experimental Procedure & Performance Evaluation.......................96

6.3 Synthetic Data.................................................................97



6.3.1 Random Gaussian Drift ............................................... 97

6.3.2 Triangular Gaussian Drift ........................................ ....... 99

6.3.3 Random Gaussian Drift with Class Addition & Removal.....................100

6.3.4 Non-Gaussian Drift (Checkerboard Dataset) ...................................... 101

6.3.5 Concept Change (Streaming Ensemble Algorithm Dataset)........103

6.4 Real-World Data ........................................ 104

6.4.1 New South Wales Electricity Dataset ........................................ 106

6.4.2 Nebraska Weather Dataset.............................108

6.4.3 Spai Dataset........................................... ........... 111

6.5 General Performance and Base Classifier Analysis ................................. 112

6.6 Classifier Ensemble vs. Single Classifier ........................................... 120

6.7 Ensemble Weighting Comparison.........................................................121

6.8 Online vs. Batch Learning ........................................ 130

6.9 Controlled Forgetting (Permanent) ........................................ 135

6.10 Controlled Forgetting (Temporary) ........................................ 142

6.11 Drift Detection ................................................ .......... 147

6.11.1 Sigmoid Characterization for Appropriate Parameter Selection.......... 152

6.11.2 Scaffolding Techniques Using Drift Detection.....................................156

CHAPTER 7: CONCLUSIONS ....................................... ............... 164

7.1 Contributions of This Work..............................164

7.2 Summary of Experimental Findings................................167

7.3 Recommendations for Future Work ........................................................ 170

REFERENCES .................................................... .............. 172



APPENDICES ..................................................... .............. 179

Appendix A: Hellinger Distance for Synthetic Datasets........................................179

Appendix B: Weighting Method Comparison ........................................ 182

Appendix C: DWM Characterization and Comparison..............................184

Appendix D: Pruning Characterization ........................................ ......... 185

Appendix E: Drift Detection ........................................ 196

Appendix F: Sigmoid Characterization for Support Vector Machine (SVM).........200



LIST OF FIGURES

Figure 2.1: Breakdown of schema terminology ........................................ 13

Figure 3.1: Computer learning model paralleling human learning theory ....................... 20

Figure 3.2: Correlation between schema and computational learning ............................. 23

Figure 3.3: Virtual concept drift due to insufficient data ......................................... 36

Figure 3.4: False negative drift detection using P(x) ........................................... 42

Figure 4.1: Streaming Ensemble Algorithm (SEA) pseudocode ..................................... 50

Figure 4.2: Conceptual Clustering & Prediction (CCP) pseudocode ............................... 52

Figure 4.3: Pseudocode for Dynamic Weighted Majority (DWM) Ensemble Construction

................................................................................. 54

Figure 4.4: Knowledge-Based Sampling (KBS) Stream Algorithm Pseudocode.............57

Figure 4.5: Pseudocode for Adaptive Classifiers Ensemble (ACE) algorithm ................. 59

Figure 4.6: Data parameter log-likelihood CUSUM test for drift detection................. 62

Figure 4.7: Adaboost.M1 Algorithm ........................................ ............... 65

Figure 4.8: Learn++ Algorithm Pseudocode..............................67

Figure 5.1: Learn++.NSE Algorithm Pseudocode.............................. ......... 73

Figure 5.2: The effect of sigmoid error weight for a single classifier over time [78].......75

Figure 5.3: Time-based sigmoid error weighting ............................................................ 76

Figure 5.4: Permanent Controlled Forgetting ...................................... .......... 78

Figure 5.5: Temporary Controlled Forgetting.............................. ............ 81

Figure 5.6: Performance-based CUSUM drift detection using log-likelihood........ 85

Figure 5.7: Drift detection procedure ........................................ .............. 88

Figure 5.8: Learn++.NSE Fading pseudocode ....................................... ......... 89

Figure 5.9: Illustration of dynamic sigmoid cutoff parameter b......................................91

Figure 5.10: Dynamic sigmoid adjustment pseudocode .......................................... 92

Figure 6.1: Classification Learning Scenario............................95

Figure 6.2: Prediction Learning Scenario ....................................... ............96

Figure 6.3: Graphical representation of 4-class Gaussian drift................................98

Figure 6.4: Graphical representation of 3-class triangular drift (single rotation) .............99



Figure 6.5: Graphical representation of 4-class Gaussian drift with class addition/removal

............................................................................................ ... ......... ....... ............ 100

Figure 6.6: Rotating checkerboard dataset (single rotation, a = 0 to ir).......................102

Figure 6.7: Variable a parameter for rotating checkerboard dataset .............................. 103

Figure 6.8: SEA Concepts (labeled testing data) ..................................... ...... 104

Figure 6.9: Percent class ("up") instances per window .............................................. 107

Figure 6.10: Class-dependent Hellinger distance and drift rate with window size of 200

for electricity pricing data......................................................................................... 108

Figure 6.11: Class-independent Hellinger distance and drift rate with window size of 200

for electricity pricing data......................................................................................... 108

Figure 6.12: Seasonal observation of class balance (120 days per window) ............... 1...10

Figure 6.13: Class-dependent Hellinger distance and drift rate with window size of 120

for w eather data......................................................................................................... 110

Figure 6.14: Class-independent Hellinger distance and drift rate with window size of 120

for w eather data ........................................ 1................................................................... 10

Figure 6.15: Percent of positive ("spam") class instances per window .......................... 112

Figure 6.16: Base classifier comparison for random Gaussian drift data.......................114

Figure 6.17: Base classifier comparison for triangular Gaussian drift data .............. 114

Figure 6.18: Base classifier comparison for random Gaussian drift data with class

addition/rem oval..........................................................................................................114

Figure 6.19: Base classifier comparison for SEA concept data ..................................... 114

Figure 6.20: Base classifier comparison for checkerboard data (constant drift).............116

Figure 6.21: Base classifier comparison for checkerboard data (pulsing drift) ........... 116

Figure 6.22: Base classifier comparison for checkerboard data (exponential drift) ....... 116

Figure 6.23: Base classifier comparison for checkerboard data (sinusoidal drift).......... 116

Figure 6.24: Base classifier comparison for weather prediction data, m=30 ......... 118

Figure 6.25: Base classifier comparison for electricity pricing prediction data, m=24..118

Figure 6.26: Base classifier comparison for spam prediction data, m=20 ...................... 118

Figure 6.27: ANOVA comparison for base classifier analysis ...................................... 119

Figure 6.28: Weighting comparison for random Gaussian drift data ............................. 122

Figure 6.29: Weighting comparison for triangular Gaussian drift data........................122



Figure 6.30: Weighting comparison for random Gaussian drift data with class

addition/rem oval..........................................................................................................122

Figure 6.31: Weighting comparison for SEA concepts data.......................................122

Figure 6.32: Weighting comparison for checkerboard data (constant drift) ................ 123

Figure 6.33: Weighting comparison for checkerboard data (pulsing drift) ................... 123

Figure 6.34: Weighting comparison for checkerboard data (exponential drift)..............123

Figure 6.35: Weighting comparison for checkerboard data (sinusoidal drift) ............. 123

Figure 6.36: Weighting comparison for weather prediction data m=30 ......................... 124

Figure 6.37: Weighting comparison for electricity pricing prediction data, m=24.........124

Figure 6.38: Weighting comparison for spam prediction data, m=20............................124

Figure 6.39: ANOVA comparison for ensemble weighting methods (SVM) ............. 126

Figure 6.40: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for triangular Gaussian drift data ................................................ 128

Figure 6.41: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for checkerboard data (constant drift) ......................................... 129

Figure 6.42: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for checkerboard data (pulsing drift) ........................................... 129

Figure 6.43: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for checkerboard data (sinusoidal drift) .................................... 129

Figure 6.44: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for checkerboard data (exponential drift) ....................................... 129

Figure 6.45: Classifier weights for Learn+.NSE (left) and Adaboost (right) ensemble

weighting methods for SEA concepts data................................................................ 130

Figure 6.46: Classifier weights for Learn++.NSE (left) and Adaboost (right) ensemble

weighting methods for weather prediction data (training window: 2 weeks) ............... 130

Figure 6.47: DWM weight characterization, random Gaussian drift data......................131

Figure 6.48: DWM weight characterization, triangular Gaussian drift data...................131

Figure 6.49: DWM weight characterization, random Gaussian drift data with class

add/subtract ................................................................................................................. 131

Figure 6.50: DWM weight characterization, SEA concepts data .................................. 131

Figure 6.51: DWM weight characterization, checkerboard data (sinusoidal drift).........132



Figure 6.52: DWM weight characterization, Weather prediction data (m=30) .......... 132

Figure 6.53: DWM weight characterization, electricity pricing prediction data (m=24) 132

Figure 6.54: DWM weight characterization, spai prediction data (m=20)........132

Figure 6.55: ANOVA characterization for Dynamic Weighted Majority update period

(Naive Bayes)................................................134

Figure 6.56: Short-term memory (k=5) for random Gaussian drift data with class addition

subtraction ........................................................... 136

Figure 6.57: Medium-term memory (k=25) for random Gaussian drift data with class

addition subtraction............................................136

Figure 6.58: Long-term memory (k=100) for random Gaussian drift data with class

addition subtraction............................................136

Figure 6.59: ANOVA comparison for random Gaussian drift data (class

addition/removal) with varying ensemble size ........................................ 136

Figure 6.60: Short-term memory (k=5) for SEA concept data ...................................... 137

Figure 6.61: Medium-term memory (k=25) for SEA concept data................................137

Figure 6.62: Long-term memory (k=100) for SEA concept data...................................137

Figure 6.63: ANOVA comparison for SEA concept data with varying ensemble size ..137

Figure 6.64: Short term memory (k=5) for checkerboard data (constant drift) ............ 138

Figure 6.65: Medium term memory (k=25) for checkerboard data (constant drift) .......138

Figure 6.66: Long-term memory (k=100) for checkerboard data (constant drift)..........138

Figure 6.67: ANOVA comparison for checkerboard data (constant drift) with varying

ensemble size................................................138

Figure 6.68: Short term memory (k=5) for checkerboard data (pulsing drift) ......... 139

Figure 6.69: Medium term memory (k=25) for checkerboard data (pulsing drift).........139

Figure 6.70: Long-term memory (k=100) for checkerboard data (pulsing drift)............ 139

Figure 6.71: ANOVA comparison for checkerboard data (pulsing drift) with varying

ensemble size................................................139

Figure 6.72: Short term memory (k=5) for weather prediction data (m=30) ..........140

Figure 6.73: Medium term memory (k=25) for weather prediction data (m=30) ......... 140

Figure 6.74: Long-term memory (k=100) for weather prediction data (m'=30) .......... 140



Figure 6.75: ANOVA comparison for weather prediction data (m=30) with varying

ensem ble size .............................................................................................................. 140

Figure 6.76: Short term memory (k=5) for spam prediction data (m=20) ...................... 141

Figure 6.77: Medium term memory (k=25) for spam prediction data (m=20) .............. 141

Figure 6.78: Long-term memory (k=100) for spam prediction data (m=20)..................141

Figure 6.79: ANOVA comparison for spam prediction data (m=20) with varying

ensem ble size ........................................................ ................................................ 141

Figure 6.80: Temporary pruning comparison for random Gaussian drift data...............143

Figure 6.81: Temporary pruning comparison for triangular Gaussian drift data......... 143

Figure 6.82: Temporary pruning comparison for random Gaussian drift data with class

addition/rem oval...................................................... .............................................. 143

Figure 6.83: Temporary pruning comparison for SEA concepts data...........................143

Figure 6.84: Temporary pruning comparison for checkerboard data (constant drift).....144

Figure 6.85: Temporary pruning comparison for checkerboard data (pulsing drift) ...... 144

Figure 6.86: Temporary pruning comparison for checkerboard data (exponential drift) 144

Figure 6.87: Temporary pruning comparison for checkerboard data (sinusoidal drift) .. 144

Figure 6.88: Temporary pruning comparison for weather prediction data (m=30) ........ 145

Figure 6.89: Temporary pruning comparison for electricity pricing data prediction

(m =24) .................................................................................... .............................. 145

Figure 6.90: Temporary pruning comparison for spam data prediction (m=20) ......... 145

Figure 6.91: ANOVA comparison for temporary pruning comparison (SVM)..............147

Figure 6.92: Classifier performance (Plot A) and detection % per time step over 50 trials

(Plot B) for drift detection on SEA concepts data......................................................150

Figure 6.93: Classifier performance (Plot A) and detection % per time step over 50 trials

(Plot B) for drift detection on checkerboard data (constant drift) .................................. 150

Figure 6.94: Classifier performance ( Plot A) and detection % per time step over 50 trials

(Plot B) for drift detection on checkerboard data (pulsing drift) .................................. 151

Figure 6.95: Classifier performance (Plot A) and detection % per time step over 50 trials

(Plot B) for drift detection on checkerboard data (sinusoidal drift) ............................... 151

Figure 6.96: Time-weighting sigmoid characterization for random Gaussian drift data

(a = 0.5).....................................................................................................................153



Figure 6.97: Time-weighted sigmoid characterization for triangular Gaussian drift data

(a = 0.5) .............................................................. 153

Figure 6.98: Time-weighted sigmoid characterization for random Gaussian drift data with

class addition/removal (a = 0.5) ........................................ 153

Figure 6.99: Time-weighted sigmoid characterization for SEA concepts data (a = 0.5)

............................................................................. 153

Figure 6.100: Time-weighted sigmoid characterization for checkerboard data (constant

drift) (a = 0.5)...............................................154

Figure 6.101: Time-weighted sigmoid characterization for checkerboard data (pulsing

drift) (a = 0.5)...............................................154

Figure 6.102: Time-weighted sigmoid characterization for checkerboard data

(exponential drift) (a = 0.5)............................................. ........... 154

Figure 6.103: Time-weighted sigmoid characterization for checkerboard data (sinusoidal

drift) (a = 0.5)...............................................154

Figure 6.104: ANOVA comparison for time-weighted sigmoid characterization (b

parameter, a = 0.5) (Naive Bayes) ........................................ 155

Figure 6.105: Scaffolding comparison for random Gaussian drift data with class

addition/removal using Naive Bayes ........................................ 157

Figure 6.106: Scaffolding comparison for SEA Concepts data using Naive Bayes ....... 157

Figure 6.107: Scaffolding comparison for checkerboard data (constant drift) using Naive

Bayes.............................................................. 158

Figure 6.108: Scaffolding comparison for checkerboard data (pulsing drift) using Naive

Bayes.............................................................. 158

Figure 6.109: Scaffolding comparison for checkerboard data (sinusoidal drift) using

NaiveBayes.................................................158

Figure 6.110: Scaffolding comparison for electricity pricing data (m=15) using Naive

Bayes............................................................. 158

Figure 6.111: Scaffolding comparison for checkerboard data (constant drift) using SVM

............................................................................. 159

Figure 6.112: Scaffolding comparison for checkerboard data (sinusoidal drift) using SVM

............................................................................. 159



Figure 6.113: Scaffolding comparison for checkerboard data (pulsing drift) using SVM

......................................... 159

Figure 6.114: Scaffolding comparison for SEA concepts using SVM..........................159

Figure 6.115: ANOVA comparison for scaffolding techniques using Naive Bayes

classifier .......................................................................................... 160

Figure 6.116: ANOVA comparison for scaffolding techniques using SVM classifier ...162

Figure 7.1: Homology of supervised human learning and Learn"'.NSE computational

learning ...................................................... ................. 165



LIST OF TABLES

Table 6.1:Parametric equations for drifting Gaussian data......................................98

Table 6.2: Parametric equations for triangular Gaussian drift data..................................99

Table 6.3: Parametric equations for 4-class Gaussian drift with class addition/removal 101

Table 6.4: Learning scenarios for electricity pricing data.....................108

Table 6.5: Weather data measurements and event indicators ........................................ 109

Table 6.6: Learning scenarios for weather data ........................................ 111

Table 6.7: Dynamic sigmoid adjustment procedure...............................157



LIST OF NOMENCLATURE

General Nomenclature:

t: time index

xt: feature vector

cot: class label

c: number of classes

Pt (al Ix): probability distribution of class j

Zt: training dataset {xt, cot drawn from Pt(coj Ix)

Learn++.NSE Algorithm Nomenclature:

mt: number of instances in training dataset Zt

Dt : penalty distribution

et (k): error of classifier k on training data Zt (using penalty distribution)

at: time-weighted sigmoid (slope parameter a, cutoff parameter b)

(h (k): normalized error of classifier k on Zt

Pt (k): time-weighted error of classifier k on Zt

W (k): voting weight of classifier k at time t

Ensemble Pruning:

s: maximum ensemble size

At(k): accuracy of classifier k on Zt

At": lower confidence bound (100(1 - a)%) on classifier accuracy

Drift Detection:

CS: configuration size (number of batches) for drift detection

M: training size for drift detection classifier



P6 : hypothesis for drift detection log-likelihood test (null: 9°, alternative 6 .2.etc.)

R: Log-likelihood of null vs. alternative hypothesis

tdrift : time index for initialization of drift detection test

ri: minimum observed log-likelihood

g: difference between current log-likelihood R and minimum il

h: threshold for drift detection test

Dynamic Sigmoid Adjustment:

bo: optimality constant for sigmoid cutoff

bs: stability constant for sigmoid cutoff

bd: drift constant for sigmoid cutoff

9d: drift factor approaching optimality constant

(P: stability factor for approaching stability constant

y: stability threshold

tstable : number of time steps observed in testing phase before drift is detected



CHAPTER 1: INTRODUCTION

One of the primary and longstanding goals of computational intelligence has been to

closely approximate brain-like decision-making in handling large-scale data. In this

particular area, significant progress has been made over the last several years.

Supervised learning is a common computational-intelligence model which, in certain

aspects, resembles human-like intelligence, where a computer is trained with examples of

both the representation (features) of a specific concept, as well as the correct (class) label

for that concept. These features discriminate one class from another, and the classifier is

able to classify new unlabeled data instances based on what has been learned. In its most

primitive form, supervised learning is a one-time process in which the knowledge stored

in a classifier is not adapted or supplemented after the training. For instance, learning the

patterns of a typed character is an example of such a learning problem. Yet, in many

applications, one-time learning is impractical as data are acquired in consecutive batches.

Learning the same patterns for handwritten characters of different people or of different

alphabets can be an example of a scenario where data become available in batches in an

incremental fashion. Solving this problem by removing old knowledge and re-training on

only the latest information would be wasteful, if not detrimental - if previously acquired

knowledge is still relevant - whereas storing all prior data for re-training would be nearly

impossible due to the steady increase of required memory and classifier training time.

One possible solution to this dilemma is incremental learning, for which ensemble-based



learning systems offer a natural solution by extending a single classifier model to a

collection of models and enabling comprehension of complex and copious datasets.

1.1 INCREMENTAL LEARNING

In applications where data become available over a period of time, possibly in a

streaming fashion, it is desirable to supplement a single computational model with the

information acquired from newly-arriving data, thus creating a constructible knowledge

base; this is commonly known as incremental learning.

Incremental acquisition of data leads to two design considerations for storing

knowledge. The first consideration is related to the availability of prior data and is

associated with the aforementioned shortfalls of single-classifier models. Memory and

training limitations suggest that prior data should not be required to be used for future

training after it is used once; therefore, the knowledge carried by such data must be stored

in the knowledge base. The second concern pertains to the desire to maintain balance in

learning novel information and retaining existing knowledge. Whether by design or by

the sheer constraints of the classifier model, there is a tendency toward either (1)

maintaining old knowledge at the cost of slow learnability of new information, or (2)

focusing on learning the most recent information at the cost of forgetting old knowledge.

This tradeoff has been coined as the stability-plasticity dilemma [1], where "stability"

describes retaining existing knowledge, and "plasticity" refers to learning new

knowledge. Incremental learning is defined as learning new information from additional

data using an incrementally-updated model, where at any given time, the model has

access only to the currently available data and the parameters of the existing model.



In addition to the stability-plasticity dilemma, there is an underlying fundamental

assumption which renders basic incremental learning models short of true cognitive

functionality - this is the assumption that all incoming (new) data are drawn from an

environment where feature distributions (definitions for a particular class) are stationary.

More formally, in a stationary environment, the new data are ensured to come from an

unknown, but fixed distribution.

1.2 MOTIVATION OF THESIS: NON-STATIONARY ENVIRONMENTS

The incremental learning problem can be extended to a case where the environment does

not remain stable through time. In other words, the definition of a particular class may

change at any point in time, rendering prior knowledge useless. Concept drift is the term

which describes a change over time in probability distribution from which the features of

a particular class are drawn. Such a change is characterized by a shift in the decision

boundary between classes. An environment with data which undergo concept drift is

called a non-stationary environment. Learning in a non-stationary environment adds

another level of complication to the stability and plasticity dilemma, and is the main

focus of this research.

1.3 OBJECTIVE OF THESIS: THE LEARN++.NSE ALGORITHM

To address the problem of learning in non-stationary environments, we create a model

based on the human learning theory (specifically schema theory and scaffolding theory)

and draw parallels between theory for human learning and supervised computer learning.

Schema theory describes a body of knowledge which is continually updated and modified

3



as information is acquired through new experiences, operating under the assumption that

current knowledge may conflict with what is to be learned from a new experience.

Scaffolding theory describes the role of the supervisor in improving the learning process

which involves monitoring both incoming data and learner performance in order to

improve the learning process. The human learning model can be applied to formulate a

set of guidelines for computational learning in non-stationary environments. This thesis

describes an architecture known as the Learn++.NSE algorithm, capable of (1) building a

knowledge base from previously-learned data, (2) adding new knowledge trained on

incoming labeled (classified) data, (3) identifying prior knowledge which is relevant in

the current learning environment, (4) and using such knowledge to make

predictions/interpretations of unlabelled data. Furthermore, the architecture can be

augmented with a supervisor to detect changes in the environment to enhance the

learning process.

1.4 SCOPE OF THESIS: DATA WITH NON-STATIONARY ENVIRONMENTS

The development of the Learn++.NSE algorithm extends the capabilities of an incremental

learner to handle large quantities streaming data, which are ever-prevalent and increasing

in the world. Just as the human brain must adapt its knowledge over long periods of time

as is encounters new or changing situations and experiences, so must a large-scale

computational learner expect to encounter environments which undergo change. The

adaptive knowledge architecture proposed in the Learn++.NSE algorithm is capable of

handling a variety of concept drifts or changes which are encountered in large scale data

streams. Learn+.NSE is unique in its ability to use prior knowledge in scenarios where

environments are recurring. Thus, it is designed specifically to make the best possible

4



prediction of unknown data within the newest environment. In this work, we present and

evaluate Learn++.NSE algorithm with respect to its ability to (1) incrementally build up a

knowledge base (ensemble of classifiers) with incoming data, (2) organize and utilize

prior knowledge according to its relevance in the current environment regardless of when

the knowledge was created, (3) forget prior knowledge to increase plasticity (at the cost

of stability); and (4) be adapted to actively detect changes in the environment to improve

the learning process and dynamically alter learning parameters when drift occurs. The

aforementioned behaviors are observed in both synthetic and real-world concept-drifting

datasets with varying complexity.

1.5 ORGANIZATION OF THESIS

Chapter 2 details the background of the engineering basis and philosophical model for

learning in non-stationary environments. Chapter 3 ties the human and computer

learning models together into a set of guidelines for learning and provides a survey of

computer learning approaches that meet such guidelines. Chapter 4 is a literature review

of algorithms designed for learning in non-stationary environments as well as ensemble-

based algorithms which lay the foundation for our incremental learning algorithm.

Chapter 5 describes an adaptation of the algorithm for non-stationary environments,

named Learn ".NSE, which is designed specifically to meet the requirements set forth by

the model from Chapter 3. Discussion of results based on both synthetic and real-world

experiments can be found in Chapter 6. Finally, a summary of conclusions and

suggestions for future work are laid out in Chapter 7.



CHAPTER 2: BACKGROUND

In this chapter, we introduce the fundamental problem of learning in a non-stationary

environment where the information to be learned is changing over time. The cause and

perception of this change is convoluted, and will be discussed in terms of both the human

and computer learning approaches. Traces of the relationship between human and

computer learning models can be seen in prior research; however, few parallels have been

drawn between any particular human cognitive model and a computer model designed for

changing environments. We seek to establish this connection with computational

learning as we discuss the principles wrought from the field of human learning

psychology. These elementary principles are then translated to form functional

guidelines for non-stationary learning, around which framework we can both interpret

and build upon novel computer models.

2.1 THE PROBLEM OF CONCEPT DRIFT

The fundamental problem with many incremental learning environments is change. This

is not simply additional or complementary knowledge used to build upon an

environment's description. Rather, the problem of a concept-drifting environment is one

in which previously-seen concepts or class definitions have innately changed so much in

their distribution that it results in conflict between current and prior definitions. Not only

may class-definitions be changing, but they may be evolving such that the true decision



boundary between them changes to accommodate the new definitions. Such an

environment is known as a non-stationary environment.

The following is a comprehensive description of concept drift terminologies.

Throughout this discussion, we will use the real-world example of rain classification ("is

it raining today?") based on a real-time weather measurements (features) such as

temperature, humidity, etc. Also, we consider these definitions in the context of a

particular time of the year (the environment). First, we pose a fundamental classification

question as follows: "Given that the temperature is 65°F and that humidity is 80%, what

is the probability that it is raining?" We define concept drift as a situation where the

likelihood of a class (like rain) for a specific feature set/definition (like temperature) is

increasing or decreasing over time.

The fundamental classification question can be formalized using the Bayes

probability theory P(woIx) = P(xlW)P(o) for the posterior probability of observing a class
p(x)

w given a feature x. The probability P(wlx) is dependent on P(xlo), the likelihood or

conditional probability of class w given an observation x; P(o), the prior probability of

any class being observed; and P(x), the feature-dependent probability (evidence).

Formally, concept drift is defined as any case where the posterior probability changes

over time, that is, P(olx),t+l P(o, x)t. A more in-depth look at this definition is key

to understanding the different aspects of the definition of concept drift. It also provides

important context to the task of concept drift detection.

The term P(x) describes the feature-based probabilities of the data and answers

the question, e.g., "What is the probability of observing a temperature of 650 ?"

Observing P(x) over time allows us to see general changes in the environment.



However, an observation of change in P(x) is an insufficient indicator of true concept

drift (shift in decision boundaries) because of its independence of the class labels. For

example the probability of observing 65° may not change, and yet we may find that the

class labels are changing depending on the time of year (e.g. in August, 65° may

corresponds to rain and in February it may correspond to no rain). This is not to say that

P(x) cannot be an indicator of concept drift, for a change in overall distribution of the

features often means that the true decision boundaries are shifting as well.

The term P(xlw) describes the conditional probability of observing a feature x

within a particular class o. Using our weather example, this would correspond to asking

the question: "provided that it is raining, what is the probability that the temperature is

650?" This likelihood measurement is a data-dependent probability and is governed by

the data instances which have been seen in the past; these are the same instances that are

used to train a classifier and hypothesize a decision boundary between classes. A shift in

likelihood would seem to indicate that the class labels are changing in some way. For

instance, provided that it is raining, the probability of observing a temperature of 65°

may be different in February than it is in August. We will later see that this is an

example of true concept drift, but before making a general assumption, we assert that it is

not until the distribution of one class shifts such that the true class boundaries are altered

that we can call it real concept drift. Class drift without overlapping of true class

boundaries is known as virtual concept drift [2], and merely shows that the learner is

being provided with additional data from the same environment. Virtual drift is the result

of an incomplete representation of the true distribution in the current data. The key

difference here is that real drift requires replacement learning (old knowledge is



irrelevant) whereas virtual drift requires supplemental learning (adding to the current

knowledge).

The final term, P(o), defines the class-based probabilities, that is, "what is the

probability that it will rain?" This term relates class balance to the overall distribution.

With regard to concept drift, we first note that since there is no relation to the features,

observing P(w) does not reveal information about the decision boundaries between

classes. Yet it does reveal another fundamental aspect of non-stationary environments

dealing with class imbalance. Real-world data streams are seldom balanced with regard

to class occurrences, and this balance may in fact change over time. For example, the

number of rain occurrences may change over the course of a year. Class imbalance is

known to negatively impact classification performance ([3-6]), and is an inherent

incremental learning problem that needs to be addressed.

We see that these individual probabilities (P(xlw), P(w), and P(x)) are, in

certain cases, insufficient in explaining true drift in the class definitions at the time in

which it is occurring. In conclusion, since we cannot truly know whether or not real drift

has occurred until after the fact (when the true distribution has been observed), we must

therefore consider each of these symptoms separately and use them as tentative indicators

of drift. Section 3.4 provides an in-depth look at the aspect of concept drift detection

techniques, in which we revisit terms such as virtual, real, and perceived drift.

Concept drift can be viewed in a more abstract sense as an obstacle caused by

insufficient features in a given dataset. This is often called a hidden context. That is to

say, there is a common thread within the data that provides a true and static description

over time for each class which is hidden from the learner's view. Using the weather



example, this could be exemplified as an additional feature (e.g. air pressure) which

provides a consistent discrimination between classes, but is unavailable to the learner at

the time of learning. Viewing the problem with the benefit of this (hidden) context would

mitigate non-stationarity. Yet, the learner must cope with what information is available,

and for this reason, the formalized definition of concept drift allows for a better

understanding of the perspective from which we are viewing the information to be

learned.

Having laid out the probabilistic framework of concept drift, we now discuss

additional complexities of how drift occurs within an environment. Minku [7] and

Kuncheva [8;9] also provide comprehensive summaries which organize the types of

concept drift that are encountered. In general, drift may be characterized with respect to

its speed, randomness, and cyclical nature.

Drift speed describes the displacement in the underlying class distributions

Pt(owlx) from one step in time to the distribution in the following time step Pt+1(owx).

Larger displacement denotes fast drift and results in high classifier error; gradual drift

appears with smaller displacement, and, although it may be difficult to detect, it will

result in low classification error.

Drift randomness is an important descriptor in discerning between non-stationary

data and noisy data, and can be best described as the variance of a distribution over a

short period time. Randomness can be viewed in terms of its frequency and magnitude.

High variance between two periods of time corresponds to a highly unstable environment

which, as this level increases, approaches a state where the environment cannot be

learned.



The cyclical nature of drift is a phenomenon which can be observed in many real-

world data patterns (weather measurements, electricity demand). In such cases, class

definitions change such that a previous environment recurs after some period of time.

This recurrence can be periodic or random.

We now shift our focus from the "probabilistic" machine learning model to a

"psychological" human learning model with a goal of making connections between the

two.

2.2 SCHEMA THEORY FOR KNOWLEDGE ACQUISITION

Knowledge acquisition is a fundamental aspect of human cognition and learning; it

follows that making a connection between computational intelligence and human learning

could be beneficial in providing suggestions and guidelines for constructing a

computational knowledge base. This connection is especially beneficial as we consider

concept drift, for the brain is often confronted with new environments containing

information which conflicts with its prior knowledge or experience. Consider the

following example involving an individual's experience with a bookstore. In the first

scenario, the individual visits a local bookstore and has an experience that is consistent

with their prior experiences, and his definition of a bookstore remains unchanged; this

experience could be said to occur within a stationary environment. In a second case, the

person visits a new bookstore which has coffee bar and video rental department. There is

a mild conflict between prior knowledge about bookstores and the individual's current

experience, so the he must adapt his bookstore definition to include the new experience.

The modification in definition can be equated with concept drift in computational



learning. In the third case, the individual encounters an internet-based bookstore. This

experience is so drastically different from his prior definition of a bookstore that he may

need to completely redefine the term "bookstore" in his mind. In terms of machine

learning, such an occurrence would be best described as a concept change. We see that

in both machine learning and human cognition, there is an intrinsic need to build up a

body of knowledge and interpret new experiences in consideration of prior knowledge.

Jean Piaget, a 20 th century Swiss psychologist, revolutionized thinking in the area

of human cognition as he developed a structure for human memory known as the

equilibration model. Equilibrium is a term which describes a balance of state, and

applies to many scientific processes in chemistry, biology, and physics. Piaget asserts

that this also applies to human cognition, describing the learning process as a constant

effort to maintain or achieve equilibrium between prior knowledge and new knowledge

[10;11]. The model is broken down to form a foundational theory for both child and

adult learning and has been extensively researched, specifically with regard to a

subcategory of Piaget's theory known as schema [12].

The term schemata applies to a body of knowledge or descriptors (schema) that is

built and adapted over time in the human brain. We also use the term "knowledge base."

Schema theory is a psychological model formulated to describe the process of human

knowledge acquisition and memory organization for future decision-making. This

section explains the key concepts of schema theory which allow us to make connections

to a computational intelligence model for learning in a non-stationary environment.

The properties of schema theory can be broken into two categories: construction

(building and categorizing the knowledge base) and activation (utilization of schema to



Figure 2.1: Breakdown of schema terminology

interpret unknown information) [13;14]. The subdivision of this terminology is

illustrated in the block diagram in Figure 2.1 and described in the following sections.

2.2.1 SCHEMATA CONSTRUCTION

Schemata construction describes the process of an adaptive knowledge base that can

change and grow with new information. The human brain has a unique capability not

only to collect new information, but also to identify important aspects of the information

such that it can be summarized and categorized appropriately. Yet, not all information is

accepted the same way; this is because not all new information is consistent with the

brain's prior knowledge. These conflicts are the building blocks of human (and

computer) learning. Piaget uses the terms assimilation and accommodation to describe

the natural process of human data acquisition; these can be broken into three more

descriptive terms: accretion, tuning, and restructuring.
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Accretion describes the situation where information is remembered or interpreted

in the context of existing schema. Accretion occurs when new information is agreeable

with the current body of knowledge. In the bookstore example, accretion is described in

the first scenario, where the individual enters a normal bookstore which is consistent with

his previous bookstore experiences. Differences between incoming information and

existing (prior) knowledge will often necessitate tuning of the schema. Here, the

schemata evolve in order to accommodate the new information or experience when there

is little conflict between the new and old, as described by the bookstore example when

the individual must add the experience of a coffee bar and film section to his knowledge

about bookstores. When new knowledge cannot be accommodated under the schema

structure because of severe conflict, the result is a restructuring process in which new

schemata are created to supplement or replace the prior knowledge base. Restructuring is

exemplified in the final bookstore scenario where the individual encounters an internet-

based bookstore which conflicts with all prior experiences.

Piaget stresses the importance of maintaining a balance among these modes of

acquisition. This balance is known as equilibration, where the learner must be able to

both focus on the current environment and give sufficient consideration to prior

knowledge. We note that this issue of balance has also been addressed in machine

learning under the name of the stability-plasticity dilemma [1].

The aforementioned schemata construction terminology defines an intensive

process of constant memory organization which allows the brain to be extremely efficient

in identifying, learning, and reinforcing important concepts. It is beyond our

understanding how the brain is able to adaptively arrange information in such a concise



and meaningful way, especially given the astronomical amount of data (sensory, auditory,

visual, etc.) that is available at any given time. What is important to realize is that in

order for such a level of categorization to take place, the brain must constantly be

activating and evaluating its current knowledge base throughout the learning process.

2.2.2 SCHEMATA ACTIVATION

Schemata activation occurs for two purposes. First, schemata are activated during the

data acquisition process in order to determine which type of schemata construction

(tuning, accretion, restructuring) should take place. Here, the current knowledge base

must be compared to new knowledge in order to make connections and determine its

adequacy to handle or understand the new information. Memory-searching enables

constant memory evaluation to determine which knowledge is relevant within the current

learning context [15]. It is difficult to know the extent to which memory is searched at

any given time in the human brain, since we only seem to be conscious of the relevant

memory.

Secondly, schemata are activated for the purpose of prediction and extrapolation.

This type of activation enables the brain to interpret unknown data and predict situations;

naturally, this extrapolation is based on current schemas which are relevant to a particular

situation. Not only can the brain interpret novel information, but it can also hypothesize

about missing material within its own knowledge base making the brain to be robust in

the presence of structural damage which leads to memory loss.



2.3 SCAFFOLDING THEORY

Scaffolding is a tutoring theory developed to enhance human learning of complex data,

and is primarily based on a theory developed by Russian psychologist Lev Vygotsky

[16]. Scaffolding is essentially a supervised learning approach to building schemata in

the most effective way possible by breaking up information such that it is learned in

chunks (not learning everything at once), and by periodically intervening in order to

evaluate performance within the scope of the most recent information. Considering the

complexity of changes which the brain must accommodate in learning, the addition of a

teacher/tutor in the learning process is especially beneficial. In expounding on some of

the fundamental goals in scaffolding, we will see a close relation between scaffolding and

schema theories. At the same time, we draw parallels to supervised computational

learning in complex, non-stationary environments. Unless otherwise prompted, the

supervisor simply provides the classifier(s) with feature-label training combinations as

data become available, giving no insight as to the data examples that are being presented.

Using scaffolding theory, we seek to enhance the teaching end of supervised learning.

The goal of scaffolding is to provide a learner with both feedback and guidance.

The supervisor acts as a filter between the learner and the information to be learned.

Vygotsky theorizes an ideal learning environment known as the zone of proximal

development and asserts that providing a learner with tasks slightly harder than what it

has already learned is optimal for accumulating knowledge [16]. This approach requires

a balance in the flow of information in which new data is neither too difficult to learn nor

redundant or time-wasting. Balance is achieved by complexity reduction, problematizing,

and fading.



Complexity reduction is an important aspect of supervision, and requires the

tutor to control the flow of information such that it is broken up into learnable pieces.

This applies especially to complex concepts. One aspect of complexity reduction is to

discern between important information and irrelevant (noisy) information. An additional

role of the supervisor is to foster schema activation and construction by (1) making

connections to prior knowledge, (2) drawing out conflicts between new information and

the learner's knowledge, and (3) forcing the learner to make decisions and extrapolations,

especially in areas where there are conflicts. The emphasis of conflicting information for

training is known as problematizing [17], and, as was stated earlier, is the key to

incremental learning and schema development.

The final aspect of effective scaffolding-based supervision is known as fading

[17-19]. Not only is the supervisor responsible for filtering out irrelevant data, but it

should also filter out superfluous data. At some point, the learner will acquire sufficient

knowledge about some concept; it is then that the supervisor shall cease the teaching

process. The amount of fading is proportional to or contingent upon the learner's

competence. This presupposes that the supervisor is involved in periodic performance

evaluation so that progress can be monitored.



CHAPTER 3: LEARNING IN NON-STATIONARY ENVIRONMENTS

Having properly defined the problem of concept drift, which traverses both human and

computational learning, we now discuss general approaches for incrementally learning in

a non-stationary environment. We begin with establishing specific goals and constraints

based on the schema and scaffolding theories for human data acquisition as discussed in

the previous chapter. We then provide a series of guidelines which translate the human

learning model from theory to computer-based learning in terms of classification in non-

stationary environments. The chapter concludes with a survey of specific computational

approaches to learning with concept drift which stem from the proposed guidelines.

3.1 COMBINING HUMAN AND COMPUTATIONAL INTELLIGENCE LEARNING MODELS

Piaget's and Vygotsky's philosophical advancements apply generally to human learning

(regardless of age) and have been pointedly applied to childhood cognitive development.

Now, we seek to draw parallels between the model for human cognition and a model for

computer cognition and knowledge acquisition.

The schema and scaffolding theories described in Chapter 2 provide us with

guidelines for setting up a computer-based model for classification in a changing

environment. Formally, we describe data acquisition in terms of samples being obtained

from a general data distribution or environment Z with class probabilities described by

P(o Ix) with j classes described by representative feature vectors (instances) x. A



stream of such instances of size m is made available to the learner at time t which is a

sample or perception of the true distribution for the training data set, Dt.

Using schema and scaffolding theory as well as some suggested rules provided by

Kuncheva in [8] for incremental computational learning, we propose the following

constraints and guidelines for learning in non-stationary environments:

* An instance of data xt(i) can only be seen once for the purpose of training, and

therefore knowledge from each data instance must be generalized/summarized or

stored in some way in the model parameters for future use.

* Knowledge should be categorized with respect to relevance to the current

environment; knowledge should be dynamically updated when new training data

is presented, since the most recent dataset is a representation of the current

environment.

* The learner should be capable of identifying unlearned data within a training data

set Zt at time t.

* Knowledge should be incrementally and periodically stored so that it can be

activated to produce the best possible hypothesis for an unknown piece of

information at any particular time in the learning process.

* It is appropriate to have an exterior "supervisor" to assist the learner by

monitoring both the incoming data and the learner's performance for the purpose

of complexity reduction, problematizing, and/or fading.

The computer and cognitive models can be molded together, forming a practical model

for computer learning that is guided by the aforementioned learning principles. Figure

3.1 illustrates our proposed combined model using both computational incremental



learning and schema terminology. At each time j. we obtain training samples Zt from an

unknown distribution Pr which can appear as either training (labeled with class w ) or

testing (unlabelled) data. Training data is used to construct the knowledge base (or

schemata). and testing data is used for evaluation (activation) of the knowledge base.

The same data can serve both purposes, where new data is first used to test the learner's

performance, and then used to train the learner.
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The knowledge base, or schemata, consists of representations of the data that have

been seen during training. Knowledge is stored in the form of one or more classifiers,

specifically the (adjustable) parameters of the classifiers which, in accordance with

schema theory, provide a generalization of the input data by storing discriminatory

information for separate classes.

In machine learning, various computer classifier models have been introduced for

the purpose of representing/generalizing data. Classifier models are divided into two

categories: generative or descriptive. Generative classification models seek to use the

training examples to approximate the parameters of an assumed distribution. The most

common example is the Naive Bayes classifier, which uses the mean and variance of

each class in the training data to characterize a Gaussian distribution from which

probabilities are created. The weakness of generative models lies in the assumption of

the distribution from which the data are drawn. Descriptive models, however, operate

under no assumptions about the distribution P(colx). Instead, they create a decision

boundary using a set of rules organized as a decision tree (CART, C45), map input

features to output classes using back propagation algorithms (Multi-Layer Perceptron),

creating a decision boundary that maximizes the margin between classes (Support Vector

Machine), or some other classification algorithm. All of these methods are based solely

on the data itself, and, although they require some tuning parameters, they are universal

classifiers independent of the data distribution.

The computer learning model in Figure 3.1 depicts two ways in which the

knowledge base (classifier) is activated. First, knowledge is activated in the context of



schema construction. In order to determine which knowledge is relevant to the current

context or environment, current classifiers are tested on incoming training data. The

hypothesis Ht (x) produced by the current knowledge is compared to the true class labels

co in order to identify information which has not been previously learned. If knowledge

is stored in multiple classifiers, individual hypotheses can be used to identify which

classifiers are most competent on the current environment. The second form of activation

takes place with testing data, where labels are truly unknown at the time.

As we consider how to apply the proposed computer learning model in practical

computer learning applications, we segment the discussion into the following topics: (1)

methods of constructing the knowledge base in the form of one or more classifiers, (2)

knowledge activation and organization, and (3) change detection techniques. The

connection between the previously described learning theory and specific computer

learning approaches to be discussed are overviewed in Figure 3.2.

Construction of the knowledge base is partially dependent on how data examples

are obtained, either in an instance-by-instance (online) basis or batch-based approach.

The flow of arriving data may be constrained by the source of data or may be controlled

by a supervisor if scaffolding techniques such as dynamic windowing or instance

selection are applied.

Organization of the knowledge base is often accomplished through a technique

known as ensemble weighting, where classifiers are categorized according to their

relevance at the current time. The basis for this approach is the realization that not all

knowledge may be relevant at a given time. An alternative or complementary approach

to organizing knowledge with weighting is known as ensemble pruning or controlled



forgetting, where irrelevant knowledge is either permanently removed (forgotten) or

temporarily ignored. Most organization techniques are related to classifier performance,

and therefore necessitate knowledge activation.

Change detection methods are a means of determining the occurrence(s) of concept

drift in the perceived class distributions. Scaffolding techniques such as fading are made

possible through drift detection. Change may be monitored in various ways; the two
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most common "drift trackers" are data parameters and learner performance. Note that

evaluation of learner performance requires activation.

3.2 ONLINE & BATCH LEARNING

Streaming data are typically learned either on an instance-by-instance (online) basis or in

batches of instances. Online learning requires a classifier model that can be updated as

new instances are presented one at a time. Examples of such models include the Na've

Bayes classifier, which can update the estimated distribution for each instance, or

decision tree classifiers which update by adding nodes and levels to the tree structure.

The common cost of instance-by-instance learning is an increase in computational

complexity, especially with large quantities of data. The purpose of batch learners (such

as the MLP or SVM) is to approximate the decision boundary between classes based on a

set of multiple data instances. By nature, such classifiers benefit from the availability of

increased amounts of data, and can be ineffective when the batch size is so small that

they do not properly represent the overall distribution or when data from multiple

environments is present in the same batch (we discuss windowing in a later section).

These structures can only be created once for a given dataset and cannot be updated with

new data unless retrained with the original instances; such retraining would not satisfy

the incremental learning guidelines presented in Section 3.1 (p. 18). Note that while

batch classifiers cannot be used for online learning, an online classifier can be adapted to

accommodate batches of data. Whereas batch learning is dependent on the size of the

incoming batch of data, online learning allows for some variability as to the frequency at

which learning occurs; it may not be best to learn each and every incoming instance (e.g.



in the presence of noise). By its very nature, online learning is conceptually more readily

suitable for incremental learning from a plasticity perspective, but they usually suffer

from the stability perspective. Batch learners, typically have the opposite property.

3.3 ENSEMBLE OF CLASSIFIERS FOR LEARNING CONCEPT DRIFT

While originally developed to improve the performance of a classifier, classifier

ensemble systems can also be used - in fact, they are naturally suited - for learning

concept drift. The notion of using an ensemble of classifiers was introduced by Desarthy

& Sheela in [20] and further discussed by Hansen & Salamon in [21]. In its original

development, the use of ensemble systems stems from a realization that, instead of

attempting to store a large amount of knowledge within a single classifier model, it is

often advantageous to partition the data into compartments, each learned on a different

model. Instead of knowledge being stored in a single classifier, multiple classifiers are

strategically trained on different portions of the data and then appropriately combined.

Although each classifier may only be knowledgeable on a small portion of the data, the

effectiveness of combining their respective knowledge has been shown to surpass the

ability of storing all knowledge in a single classifier.

Using multiple experts or opinions is logically, theoretically, and empirically

supported over a single classifier in many classification scenarios [22;23]. The inherent

problem with single classifiers is obtaining the balance between overfitting training data

(good performance on training data, but poor generalized performance on testing data)

and over-generalizing. Single classifiers are especially outmatched in the following

cases: 1) In the case of small datasets, where the available data may not be representative



of the true class distributions, partitioning data into multiple classifiers can increase

generalization, whereas a single model runs the severe risk of overfitting. 2) When data

provided is extremely difficult (e.g. high dimensionality and/or overlapping), a single

classifier may suffer because of the inability to best represent the decision boundary. An

ensemble system trained on subsets of the data may effectively be able to break the

complex problem into a set of simpler problems in a divide-and-conquer fashion. 3)

Another case in which a single classifier is insufficient is when data arrive from a number

of different heterogeneous sources (i.e. data fusion). Most importantly, as we consider

the goals of incremental learning (especially in harsh environments) an ensemble systems

approach presents itself as a viable option for constructing a knowledge base.

The chief goal in building an ensemble of classifiers is to reduce overall error; this

can be attained by increasing diversity amongst the experts such their individual errors

can be averaged out through a combination process. Diversity can be achieved by

modifying the classifier architecture or parameters, varying the classifier type itself, or

training each classifier with unique sub-samples of the data. These considerations apply

to a problem which is incremental in nature, but only in a sense that the learner is

incrementally learning more and more about a single, stationary environment.

In considering the acquisition of streaming incremental data under the guidelines

proposed in Section 3.1, it follows that diversity in classifiers will be naturally obtained

due to the novelty of the incoming data over time in a non-stationary environment. It

follows that using new data as the basis for ensemble diversity will allow the knowledge

base to be built such that it encompasses all the information represented in the training

data.



3.3.1 ENSEMBLE ORGANIZATION & EVALUATION (WEIGHTING & VOTING)

Since the conception of ensemble-based classification systems, much research has been

conducted in order to determine the best way to combine the decisions of multiple

classifiers for the best possible hypothesis. Comprehensive surveys of classifier

combination rules can be found in [24] and [25] for general ensemble methods. Certain

combination rules are dependent upon the classifier being used. For instance, the

product, sum, and median rules can be used only for classifiers with soft class labels (the

classifier provide continuous supports for classes) instead of a hard (absolute) decision.

In such cases, we can take either the sum, product, or median of classifier supports for

each class. For classifiers which return hard class labels (e.g. SVM), we are limited to a

majority vote, where the hypothesized class is the one that receives the most classifier

votes.

As we consider the problem of concept drift and the fact that classifiers are

created using data from a changing distribution, we realize that a simple majority is not

practical. Clearly, some classifiers will be more relevant to the current environment, and

based on the schema-based model, it is necessary to measure this relevance and give

certain classifiers a more powerful vote. The weighted majority voting technique was

developed in order to accommodate variable competence of knowledge, as in certain

ensemble systems such as Adaboost [26;27]. Instead of simply summing all votes for a

particular class, each classifier's vote is multiplied with a weight factor. This factor is

based on some evaluation of a classifier's performance on the newest training data, and

can be calculated in many ways.



Many weighting methods are heuristic in nature. The first weighting method

developed by Littlestone simply assigns a weight of I to a classifier when it was created

decrements that w\eight by ' for each future misclassification [27]. A slight variation of

this method is used in [28] and [29], which create variable parameters for the weight

initialization (not always 1) or the weight decrement factor / (not always '/2). Wang

introduces a more standard weighting measure derived from mean square error of

classifier i (MSE,) on the training data x [30]:

!SEr AI SE,

w, P(c)(t P(c))2  , ()) (3.1)

Here, the mean square error of the ith classifier is calculated across all classes for training

set ft. and subtracted from MSEr. the mean square error of a random classifier (based on

class-dependent probability P(c)), to calculate the weight of a classifier. MSE, is also

useful for determining which classifiers perform worse than random guess, given a

particular training set.

Fruend & Shapire introduce another dynamic weighting method in Adaboost,

where weights are inversely proportional to classifier error E on training data [31].

Weights are not recalculated with each incoming training set: rather. they are updated

with the value c = ' when the hypotheses hc(xt) on data xt are correct, and fP3 = 1
I-Ft

otherwise (at time i). Within the Adaboost algorithm (see Chapter 4 on p.48). this value

is bounded within the [32] interval, and is higher for classifiers with greater error.



Weights are determined by taking log(1//3t), which maps the weights in the {0, oo}

range.

Instead of generalizing error across an entire training dataset, Tsymbal relates

classifier weight to performance as well as a proximity factor, giving higher weight to a

classifier if its training data was in the same region as the testing example [2;33].

Comparisons are made among simple combination rules for incremental learning

problems with minor concept drift in [34], as classes are added over the course of time;

this represents a change in the priors P(w), and is an example of real concept drift

because the decision boundaries change to accommodate new classes. The comparison

shows little difference in performance among sum, product, weighted, and unweighted

ensemble combination rules. However, this comparison does not apply to other types of

real and virtual drift (e.g. P(xlco)) which clearly indicate the necessity to dynamically

evaluate and weight the ensemble or knowledge base.

Intuition tells us that it is best to weight classifiers, and to do so according to their

knowledge on the current environment (not overall knowledge). This is also indicative of

the research over the past decade. However, Gao points out an inherent problem with

weighting according to current error in [5]. In streaming problems, one cannot always

assume that the distributions of most recent training data and the incoming testing data

are alike. This assertion leads them to the conclusion that a uniform ensemble should be

used. However, this does not make practical sense with an ever-growing ensemble;

therefore, it leads to the need for better weighting or organization techniques.



Ensemble weighting is not the only way to categorize knowledge. Next, we

discuss a complementary method, which instead of assigning voting weights, completely

removes classifiers from the ensemble. This approach is known as pruning.

3.3.2 CONTROLLED FORGETTING (ENSEMBLE PRUNING)

Having discussed that not all knowledge is equally relevant at a given time, and

suggested various ways to measure a classifier's relevance, we now discuss the topic of

controlled forgetting. Pruning is a process whereby knowledge is ignored or removed

from the knowledge base, and it is used in a majority of ensemble-based learning

algorithms, appearing in two forms: temporary pruning and permanent pruning. Within

the following discussion, we address the following: (1) the motivation/purpose behind

pruning, (2) the way that pruning is accomplished (approach) (3) the criterion for

choosing what should be pruned, and (4) a comparison between permanent and

temporary pruning.

Pruning Motivation. Fundamental to incremental learning is the fact that a knowledge

base will grow over time as new classifiers are created and stored. Also, it is well-known

that weighted majority voting is an effective technique to give relevant classifiers more

voting power. However, this may not always negate the influence of irrelevant

classifiers. Depending on the weighting method, it is quite possible that a large number

of irrelevant classifiers with low weights will combine to offset the decision made by a

small number of relevant classifiers. This phenomenon is the result of classifier baggage,

and becomes more volatile as the knowledge base increases in size. The purpose of

pruning is two-fold: to assure that only the most relevant knowledge is maintained and



used for decisions (mitigate baggage) and, in the case of permanent forgetting, to

conserve memory.

Pruning Approach. Pruning is carried out in one of two ways by instituting a threshold

on either (1) classifier performance or (2) the size of the ensemble; in some cases, this

threshold can be created to be dependent on the data (e.g. using a confidence interval to

identify classifiers below a certain standard deviation from the top performer [35]).

Other thresholds are chosen more arbitrarily, based on either the current or cumulative

error score of a classifier.

The use of a performance threshold is empirically shown to be effective in

reducing the size of the classifier ensemble in non-stationary environments [29]. This

approach requires some performance metric to be calculated for all classifiers. This

metric is based on current performance in the latest data environment or upon cumulative

performance over the life of a classifier in previous environments. When a classifier's

performance dips below the threshold, the classifier is pruned. The amount of ensemble-

size reduction is not fixed, and is highly dependent on the threshold.

Setting a threshold on the ensemble size itself is a sure way of limiting memory

usage. Here, the approach is very simple. When the size of the ensemble reaches a

certain threshold, classifiers are removed to accommodate newly trained classifiers. The

threshold can be imposed as either a fixed number or a percentage of classifiers to be

pruned.

Pruning Criterion. We have already discussed the criterion for removing classifiers

with a performance-based threshold. When using an ensemble-size threshold for

pruning, three relevance measures can be used for the purpose of determining which



knowledge is least competent at the current time: classifier age, current classifier error,

overall classifier error [28;35]. Age-based pruning (a.k.a. replace-the-oldest, oldest first)

makes the simple assumption that the oldest classifier carries the least knowledge about

the current environment, and should therefore be ignored or deleted. Error-based pruning

can be referred to as either replace-the-weakest, replace-the-loser, or weakest-first

pruning. This type of pruning assumes that current classifier error focuses on tracking

the current environment only, and removes/ignores the weakest classifier. Here, a

classifier's strength is based on some measure of performance on the current training

data, which is calculated using any of the weighting methods described in the previous

section. Pruning based on overall error considers a classifier's performance over its

entire lifespan. This approach may not always remove the classifier that is weakest at the

current time, but it will maintain the best-performing ensemble. A heuristic performance

threshold is a common way for evaluating overall performance [29;35], although a

moving performance average could also be appropriate.

Permanent vs. Temporary Pruning. The aforementioned pruning criteria (age, current

error, and overall error) can be used either for pruning on a temporary or permanent

basis. The difference is that permanent pruning irrecoverably removes classifiers that lie

outside a given threshold, whereas temporary pruning maintains classifiers so that they

may be used in the future. Temporary pruning, in a sense, can be considered as a crisper

version of ensemble weighting, where certain classifiers deemed to be irrelevant are

simply ignored (given zero weight), and only classifiers deemed as experts are considered

for classification [30;35]. Nonetheless, both weighting and temporary pruning can be

used simultaneously, where the latter ensures that the effect of baggage is eliminated.



Because the purpose of temporary pruning is to pinpoint the experts in the ensemble, they

commonly employ a performance threshold, as opposed to an ensemble-size threshold or

age-based approach.

As we consider how pruning applies to the schema model, we see some apparent

discrepancies which are inconsistent with human learning. The greatest of these is in the

concept of permanent ensemble pruning. Permanent pruning is the severest approach to

categorizing knowledge (schemata construction) according to the current environment.

When implemented with a small ensemble size (limited knowledge base), permanent

pruning is especially problematic because it practically cripples the ability of the

knowledge base to learn or recognize environments which are similar to those which

were previously seen. This concept of long-term recollection of previous concepts is a

key ability of human cognition, however, and is desirable for computational cognition

since cyclical and recurring environments are common in natural processes.

Considering this shortfall (known as catastrophic forgetting), long-term forgetting

is perhaps is most appropriate and consistent with human cognition. It is reasonable to

say that the human brain does not have unlimited memory and that some level of

forgetting does occur; however, this is a long-term occurrence. The criterion for human

forgetting is widely unknown, but could certainly be related to how often a knowledge

base is used or reinforced. Thus, it is intuitive that knowledge that is sufficiently

inconsistent with new environments may indeed be forgotten. Maintaining a large

ensemble would provide some level of memory savings and baggage reduction while also

increasing the possibility for knowledge from recurring environments to be maintained.

In other words, increasing the ensemble size increases the stability of the knowledge



base. Long-term forgetting has not been explicitly implemented or discussed in current

literature, and is therefore investigated in this research.

3.4 CONCEPT DRIFT DETECTION

We now discuss the teaching aspect of the supervised incremental learning problem,

specifically with regard to the scaffolding theory. Recall that the main goal of the

supervisor is to provide guidance and feedback for the learner by problematizing data

(drawing out conflicts between incoming data and the current knowledge base),

simplifying complex data, and fading (ceasing the learning process when an environment

has been learned) when an environment has been learned. Each of these tasks requires

some level of feedback about the incoming data and/or the learner's performance at a

given time. This feedback is used to discern how the new information differs from

previous data, and determine the learner's capability to grasp current concepts. In

computer learning, this is known as drift detection and is used for the purpose of

tracking changes (steady or gradual) in some representation of the data in order to

determine whether or not concept drift is occurring.

In reviewing several approaches of drift detection, we first make the distinction

between active and passive methods. In passive drift detection, the learner assumes that

the environment may change at any time or is continuously changing, and therefore is

continually learning from the environment by constructing and organizing the knowledge

base. A passive approach includes aspects of scaffolding in that it may still draw out

conflicts between prior knowledge and new data (problematizing). However, passive

drift detection ignores the greater part of scaffolding theory that has been discussed,



including complexity reduction and fading; both of these require some knowledge about

how and when the environment is changing. Although a passive approach does not seek

to benefit from these aspects of scaffolding theory, it is still a viable solution. Passive

drift detection is a consistent (yet not guaranteed) way to attain plasticity, as all new

information is stored in the knowledge base. Ultimately, plasticity is dependent on the

ability to categorize (weight) knowledge. The potential risk of storing all new data is that

that the new information may be irrelevant to some degree, containing noise or having

already been learned. Continuing to learn such new information may be unnecessary at

best, and detrimental at worst. Active drift detection methods, on the other hand, seek to

pinpoint the time and severity of drift, and allow the supervisor to integrate the various

scaffolding techniques to improve the learning process, thus fine-tuning the learner's

plasticity. The downside of heavy reliance on drift detection is the risk of an imperfect

detection mechanism which may yield false reports.

Concept drift can be detected by tracking changes in classifier performance,

classifier structure, or data characteristics. First, let us recall the definition of real

concept drift, that is, a change in distribution behind a particular class co, that is, P(olx).

This distribution is not explicit, as we are only presented with a sampling of the

distribution for training. Thus, in many cases we can merely estimate whether true

change has occurred, with no distinction between real and virtual drift.

Consider the following example which shows that an estimate of the true

probability distribution is actually insufficient to consistently denote real concept drift.

Figure 3.3 describes a case in which a 3-class decision boundary is created based on a set

of initial training data provided. A subsequent snapshot of the data reveals class-specific



data points that are much different than those seen before, so much so that they are

inconsistent with the initial or perceived decision boundary that would be generated by a

classifier. Although drift is perceived based on the conflict between new and prior

knowledge, we eventually realize that these snapshots are consistent with the true

decision boundaries (in red), and that we simply have not seen enough data to realize the

full coverage of each class in the environment. Such an occurrence can best be described

as perceived drift (also known as covariant shift in [6]). We reserve the terms virtual and

real to classify the type of drift in retrospect since, in reality, concept drift may or may

not have occurred and thus cannot truly be known at the time. Note in the case of virtual

drift that although the true class definitions have not undergone change, this new data

should still be learned, and not ignored. It is also important to recognize that real concept

drift often renders prior classifiers to be irrelevant, but this is not the case for perceived or
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Figure 3.3: Virtual concept drift due to insufficient data



virtual concept drift. Here, it merely indicates that previous classifiers are incomplete in

knowledge.

3.4.1 DRIFT DESCRIPTORS

In designing a mechanism for detecting concept drift, there are four main goals:

* Consistently detect real drift

* Provide feedback about the type and severity of drift

* Low dependence on outside parameters

* Low computational complexity

The three common types of active concept drift detection (classifier performance,

classifier structure, and data characteristics) will be compared with respect to their ability

to meet these goals.

Classifier structure. Here, the purpose is to extract useful information from a classifier

as it is being updated with incoming data. Examples of structural information could

include weight values for MLP node connections, number of branches and levels for a

decision tree, distribution parameters for a Na'ive Bayes classifier, or the margin

location/width of an SVM classifier. Monitoring changes in classifier structure is seldom

used, however, because it is difficult to draw out useful (i.e. drift-related) descriptors

from a classifier structure for comparison over time. In fact, only the SVM has been used

for this purpose, as in [36], by tracking changes in the weight vector w, which defines the

direction of the hyperplane separating one class from another. Change in the weight

vector can give a good approximation of drift because the margin between classes

represents the optimal decision boundary by looking for maximum class separation.



Changes in the margin are directly related to the conditional probability P(xlco) which

may indicate true concept drift, as well as the balance of classes P( o). However, the

complication of tracking changes in the decision boundary increases with multiclass data.

Just as the SVM must be modified for multi-class problems, so must a detection

mechanism be modified to track the decision boundaries between classes, possibly using

a one-against-one [37] or one-against-all [38] method.

Classifier performance. This is used in the vast majority of active drift detection

methods [29;35;39-43], and operates on one of two intuitive assumptions: (1) after

training from data Zt, the error of a classifier on subsequent data Zt+, will remain

relatively constant if the new distribution is the same, or (2) that the error of an ensemble

of classifiers learning an environment will increase (and certainly not decrease) when the

environment is stationary. When either assumption is violated, the inference is that the

incoming data are changing in some way, which the learner is incapable of classifying,

and therefore the knowledge base must be updated.

In a sense, performance-based change detection is simply a comparison between

the perceived decision boundary and the decision boundary reflected by the conditional

probability P(wolx), since error reflects a learner's ability to correctly approximate the

true decision boundary. Recalling that conditional probability P(olx) may or may not

correspond to the true decision boundary, the learner may only perceive whether the true

distributions are changing. Hence, the terms real drift (the distributions are changing)

and virtual drift (the distributions are not changing) apply to this distinction. We see that

although significant change in performance is an intuitive and accurate measure of the

learner's ability, performance alone offers very little descriptive information regarding



the various appearances of virtual drift and will tend to have a high false-positive rate in

that respect. Classifier performance is sensitive to the balance of classes (which may

vary greatly in consecutive training batches), feature relevance at a particular time, as

well as random noise. In terms of the drift detection mechanism, the source of change in

performance cannot be discriminated. Nevertheless, we realize that monitoring

performance is consistent with the learning model and is an important asset to

incremental learning.

Data parameterization is perhaps the most complex of drift detection methods. Here,

we seek to represent the data itself (or a representation thereof) as an element of change.

Data is most often represented as a distribution. However, since the true distribution is

an unknown aspect of the environment, we are left to make an approximation of the

distribution, make an assumption about the distribution, or find some other way to

represent the data. Distribution approximation (density estimation) is a computationally

intensive process that involves replicating/updating the perceived probability distribution

function from the available data. Approximation can be as simple as a histogram-like

binning of data, or more complex Parzen windowing. However, the computational cost

of building such a model grows exponentially as the number of dimensions increases. A

more common approach is to assume a distribution.

It is most often assumed that the data follow a Gaussian distribution; this is based

on both its frequent occurrence in natural processes and measurements, as well as its

simplicity, where the distribution can be represented by statistical moments such as mean,

variance, kurtosis, skewness, etc. However, the assumption of normally distributed data is



considered by many to be too strong [44;45]; thus there is a desire to represent data in

some other way.

The Central Limit Theorem provides an alternative approach to distribution

estimation. It states that if a population is sampled with sufficiently large batch sizes, the

distribution of those sample averages will tend to be Gaussian. In other words, although

a population or environment may not be Gaussian by nature, an increased number of

averages taken from that population will tend to be Gaussian as the sample size increases.

In [44], Alippi empirically shows that the distribution set forth by the Central Limit

Theorem will not remain the same if the environment is non-stationary, and may

therefore be used to detect drift regardless of the true distribution of the data. In addition,

it must be realized that mean and variance is not sufficient to describe a non-normal

distribution, and so further work in [46;47] suggests additional features by which data can

be represented. For example, the Mann-Kendall [32] test statistics were developed

specifically for representation of non-parametric data, that is, data with an unknown

distribution. Trends developing between subsequent samples (xi and x1+1) are tracked as

follows:

n-1 n

SMK(t) =C sign(x - Xk) (3.2)
k=lj=k+l

Summing across all available instances n at time t will yields a statistic which indicates

the overall similarity of examples. A large sum represents a steady dissimilarity between

instances, and vice versa. The trend developing over time for the sum SMK (t) indicates

how the data is changing between batches. Other similar measurements are noted in the

following section.



In concluding this discussion on ways to quantify the statistical change in the

data, we must recognize the importance of taking a correct probabilistic approach in

consideration of the definition of concept drift. This is important because there are two

feature-related probabilities that can be measured, or tracked. The simplest to estimate is

the overall data distribution P(x), that is, the distribution of all features independent of

class. Tracking P(x) allows for drift detection to occur not only on the training data

(which requires class labels), but also on new unlabelled testing data, thus transcending

the possible discrepancies between testing and training distributions. The downside is

that tracking P(x) only allows detection of overall shifts in the data (not changes in the

class boundaries), and is therefore a very naive approach that is highly subject to both

false-negative and false-positive mistakes.

Two example environments are shown in Figure 3.4 to exemplify the potential

false-positive detections while tracking changes in P(x). In both examples, the overall

distribution of the data remains stationary while the classes continually change. Example

(A) shows three classes rotatating about a central point. The decision boundary between

classes undergoes change, but the overall distribution of the data (independent of class)

remains the same. Example (B) illustrates a similar situation, where a uniformly

distributed class data are separated by a linear or planar boundary. A shift in this

boundary would be a significant change in the concepts, yet it would not be detected

using only P(x).

It follows that a class-specific data parameterization is most appropriate for

tracking concept drift. Waiting for class labels in streaming data allows for the

probability P(w x) to be tracked, providing a more accurate representation of concept
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Figure 3.4: False negative drift detection using P(x)

drift. This approach is not without its downsides. First, the detection process is delayed

since class labels are required before drift can be detected; yet this is not unique from

most of the previously described methods. Second, the computational complexity is

multiplied by the number of classes present. Finally data parameters are dependent on

large data sets; many real-world examples suffer from class-imbalance. Unavailability of

a particular class will significantly weaken the ability to correctly detect drift.

3.4.2 MEASURING DRIFT

The discussion on the defining possible descriptors for detecting concept drift leads to

two important questions: How do we detect or track changes in the data descriptors

(parameters or classifier performance)? And how much change in the descriptors is

enough to denote drift? Here we discuss various approaches to change detection that

have been borrowed from the field of quality control or designed specifically for the



purpose of quantifying and detecting significant changes in drift descriptors (classifier

structure, classifier performance, or data parameters).

Quality Control (QC) charts were developed prior to computer learning for the

purpose of detecting changes in system processes; QC charts have yielded many popular

methods which are now used for detecting concept drift. The purpose of QC charts is to

indicate when a change in a process has occurred based on some control limit, which is

either previously defined or dynamically updated according to the data [48]. In machine

learning, dynamic updating is preferred (1) because of the dynamic nature of

classification environments, and (2) to achieve the goal of reducing user-defined

parameters.

The Shewhart p-chart is the original and perhaps the most common detection

method [49], especially for tracking changes in performance. Using the central limit

theorem, a comparison is created based on the binomial distribution (using mean and

variance) to detect whether or not incoming data conforms to the current distribution.

Control limits are defined as follows, where i is the mean of previously acquired sample

averages, and n is the number of sample averages:

p= ±3 i (3.3)

Statistic p represents the confidence interval encompassing three standard deviations on

either side of the mean. A subsequent sample average ( t) lying outside interval p

denotes a process change, or drift. The test is self-configured in that it is based on the

mean and standard deviation of the data, however, the requirement for a change greater



than three (constant) standard deviations diminishes the ability to track small or gradual

shifts.

The Exponentially Weighted Moving Average (EWMA) Control Chart was

developed by Roberts in 1959 [50], and is used specifically for concept drift detection in

[42]. Similar to the p-chart, the goal is to track changes in a process mean. Instead of

directly using the mean p which only represents the current data, a separate EWMA

statistic is introduced to weigh the data-under-test over time.

EWMAt = Apt + (1 - A)EWMAt_ 1  (3.4)

The term , defines the consideration given to historical data (EWMAt_1 ), where a lower

X corresponds to more prior data consideration and =l corresponds to only the current

data (Pt) being considered. EWMAt=o is the mean of prior data at the start of the test,

and represents the target value. The configuration of control limits is identical to that of

the p-chart, except that the number of standard deviations (set to 3 in the p-chart) is a

user-defined parameter to allow for varied sensitivity.

Cumulative Sum (CUSUM) was introduced by Page in [51] and further developed

by Lucas in [52-54], and is a well-researched and commonly-used method that is proven

to be more accurate than the p-chart in many applications [44;55-60]. The greatest

advantage of the CUSUM test is sensitivity to small and sustained shifts which cannot be

accommodated by a constant 3-sigma control limit. Similar to EWMA, the observed

quantity is the cumulative sum of the observations of the mean of a process.

t

St = (i - fo) (3.5)
i=1



Here, i is an observed value, and fo is the expected target value to which observations

can be compared; fo is often configured using prior data. Thus, the goal is not to detect

changes in the mean, but to detect changes in the deviation from the expected mean.

Barnard [61] (1959) introduced a visual approach to detecting change in CUSUM known

as a V-mask, which is impractical for our purposes. A more common approach for non-

stationary environments is described in Chapter 4.

A key advantage of the CUSUM test is that it requires no assumption about the

distribution of the data. Many other distribution-free techniques have also been

developed for comparing and quantifying differences between consecutive distributions.

These include, Mann-Whitney U [62], a two-sample t-test for determining whether

observations lie in one population (null hypothesis) or another (alternative hypothesis)

based on a ranking statistic; Kruskal Wallis [63] , a one-way analysis of variance to

determine whether or not two independent sample sets come from the same distribution;

and Friedman [64] tests, which is a performance-based comparison to observe statistical

changes in performance across a large number of bootstrapped sample sets. However, a

study on many of these methods appears to indicate that no single change detection test is

sufficient to accurately and consistently detect concept change [65].

3.4.3 PROBLEMATIZING (WINDOWING AND INSTANCE SELECTION)

In addition to observing changes in the concepts, the supervisor is responsible for

controlling information flow by breaking data into learnable chunks or discerning among

data with varying importance. The primary goal is to provide the learner with



information which is most relevant to the current environment; this is often accomplished

in tandem with a drift detection mechanism.

Data windowing is among the earliest methods for providing the learner with data

that is deemed relevant to the current environment [41;66-68]. Incremental data can be

visualized as a stream of instances which are broken into consecutive batches or windows

through time. Windowing methods make the valid assumption that most current window

or chunk of data is representative of the current environment (and only of the current

environment) and use drift detection to determine an appropriate window size; this is

known as dynamic window adjustment [67]. As new data are made available, old

instances are deemed no longer relevant and are removed from the window. The

weakness of many current implementations of windowing is that classifiers are trained

using only the data in the current window, and often no prior knowledge is retained, thus

crippling the learner's ability to recognize recurring environments. Additionally,

dynamic window adjustment is only as good as the detection method used, and must be

carefully chosen to minimize false drift reports.

The age of data is not the only way to determine what the learner should add to its

knowledge. Windowing can be considered as a simple version of instance selection,

where particular instances from the current data are selected. The purpose of instance

selection is to ignore irrelevant (noisy or redundant) data. Boosting is an instance

selection scheme developed and used originally for stationary incremental learning

problems using an ensemble of classifiers [31;69;70]. By taking previous classifier

performance into account, subsequent classifiers are more likely to be trained on data

which were previously misclassified. Similarly, instance weighting gives preference to



previously misclassified points. Both instance weighting and instance selection are a

means to emphasize what has not been previously learned, and both methods have been

adapted to the problem of handling concept drift [7;71;72].



CHAPTER 4: LITERATURE REVIEW

In this section, we highlight some particular approaches and algorithms which are

foundational to research in non-stationary environments, specifically with respect to our

work. These will be organized and evaluated with regard to the following criteria:

" Knowledge acquisition (batch vs. online)

" Drift detection (active vs. passive)

" Knowledge construction & organization

" Ability to handle recurring contexts

" Overall adherence to the proposed human-based computational learning model.

4.1 ENSEMBLE-BASED METHODS

4.1.1 FLORA.

The FLORA family of algorithms (Widmer & Kubat, 2004) [67] is among the first to

address the problem of non-stationary environments. The original FLORA is an online

algorithm which stores and organizes descriptors (classifiers) based a window of

incoming data instances. Descriptors are placed in one of three categories: (1) positive

descriptors are most accurate according to the current data window, and are used for

classification of unknown data. (2) Negative descriptors are least accurate in the current

window, and are used to prevent over-generalization. (3) Potential descriptors include

descriptors which were formerly positive or negative, but now have little relevance to the
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current data window. Each descriptor maintains a counter based on the number of data

examples that they are able to correctly represent, and descriptors are pruned based on

their relevance in the current data window. Several variations developed to

accommodate particular challenges in non-stationary environments including drift speed,

recurring contexts, and noise. These individual problems are handled using a window

adjustment technique based on active drift detection (FLORA2), saving contexts

descriptions for later use (FLORA3), and introducing a context interval around

classification accuracy to decrease drift-detection sensitivity. The FLORA framework is

consistent with the goals set forth for the computational learning model (Section 3.1,

p. 18) insofar as it is able to categorize knowledge pertaining to the current environment.

However, FLORA is clearly unable to store old knowledge for future use because any

descriptors that are irrelevant to the current data window will be removed permanently.

4.1.2 STREAMING ENSEMBLE ALGORITHM (SEA)

Streaming Ensemble Algorithm (SEA) [73] is among the first of batch-based ensemble of

classifiers approaches to handling streaming data. The pseudocode in Figure 4.1 provides a

formal description of the quality-update rule. In Step 1, a new classifier is trained on each

new batch of data. As classifiers are trained on consecutive batches, a constant ensemble size

is maintained (k experts), and experts are permanently pruned using a quality score (Step 7).

Quality is defined as a classifier's ability to correctly classify data relative to the error of the

ensemble. This ranking method, albeit heuristic, is a novel and accurate way to evaluate

and update each classifier's competence in the current training environment for the

purpose of pruning.



Algorithm SEA (Streaming Ensemble Algorithm)
Input:

* Base classifier
* Training dataset Zt of size N, t = 1,...,T
* Maximum ensemble size k (default k = 25)

Do for t = 1,2, ...,T
1. Create new base classifier
Ift > k

2. Evaluate ensemble on Zt for composite hypothesis H(n) using sim
majority vote, n = 1, ..., N

3. Train new classifier on data Zt and obtain individual classifier hypothe
hj (n), j = 1, ..., k and n= 1,..., N

For n = 1,2, ..., N, Compute:
PC*: classification percentage of true class c*(n) for instance n
PCc: classification percentage of all classes c for instance n
P1: top classification percentage among classifiers for instance n
P2: second highest classification percentage among classifiers for instance n
Forj = 1,2, ... , k

If hi (n) = c*(n)
IfH(n) = c*(n)

4. Reward: Qj = Qj + 1- IP1- P21
Else

5. Reward: QJ = Qi + 1 - IP1 - PC*I
Endif

Else

6. Penalty: Q, = Q- (1 - PC* - PCh1 (n)

Endif
Endfor

If Qk-1 > Qj forj = 1,..., k - 2
7. Prune classifier j

Endif
Endif

8. Compute composite hypothesis using simple majority
End

pie

sis:

Figure 4.1: Streaming Ensemble Algorithm (SEA) pseudocode

Correct classifiers are given a reward proportional to the margin between the supports for

the two highest-voted classes, P1 and P2; a high reward is indicative of contention in the

ensemble decision (from Step 2) for a given example, and less reward is given when there

is more unity among ensemble members (as in Step 4 or 5). Thus, the experts that



perform well when the ensemble does not agree are especially rewarded. If a classifier

is wrong, it is penalized proportional to margin between the ensemble's support for the

true class PC* and the support that the faulty classifier gives to its class of choice,

PCh(n ) (Step 6). SEA is shown to react to concept change and learn data from new

environments in a concept-changing dataset. The blatant weakness of this and other

permanent pruning methods is the inability to store long-term information about recurring

environments. Also, we note that although weighted and unweighted ensemble voting

techniques are empirically shown to be statistically similar in performance in [73], it

seems that a weighted ensemble would be favorable for a larger knowledge base

(classifier ensemble) for quick reaction to concept change.

4.1.3 CLASSIFIER ENSEMBLE APPROACH FOR MINING CONCEPT-DRIFTING DATA

Wang [30] uses an ensemble classification approach with the expressed goal of

accommodating large-scale drifting data streams. Wang contributes theoretical and

empirical support for the use of a weighted ensemble of classifiers as opposed to single

classifier approach. Weights are determined using the predictive accuracy of each

classifier on the training data and is calculated using the mean square error method

described in section 3.3.1, Equation (3.1). These weights are also the criterion for

permanent ensemble pruning (similar to SEA). To some degree, it seems reasonable to

incur some amount of knowledge forgetting for the sake of limiting computer memory;

however, this is surprising considering that recurring environments cannot be realized

over long periods of time.



4.1.4 CONCEPTUAL CLUSTERING & PREDICTION

The Conceptual Clustering & Prediction (CCP) framework [74;75] provides an

alternative to ensemble weighting that uses data clustering to associate classifiers to a

particular environment. Clustering can be considered a type of drift detection, where data

(or a representation thereof) is grouped into a predetermined number of batches

(contained in G). Figure 4.2 contains the pseudocode for data clustering and building the

ensemble of classifiers H. Incoming labeled training samples XL(J) in batches of size b

are first mapped using a mapping function M("). The mapping and clustering phase

Algorithm CCP (Conceptual Clustering & Prediction)
Input:

* Data stream Dof instances {xi,oi}, i = 1,..., N
0 Batch size b
" Mapping function M(")
* Incremental Clustering Algorithm R ()

For n = 1,..., N
Initialize ensemble H = 0, cluster G = 0, s = 1, j = 1
1. Add new classifier: H = H U {hs1
For i = 1,..., N

2. Get prediction on new unlabelled data: pi = h5 (x1 (i))
If i mod b = 0, then II batch full/I

3. Get batch of labeled data BL (j) = {Xj (i - b), ..., XL (i)}
4. Map batch B using function M Z = M(BL(j))
5. Set cluster s = R. cluster(Zi)
If 39s E G then /match with existing cluster!!

6. Update: classifier h5 with batch BL (j)
cluster Z = R. update(Zj)

else
7. Set new cluster gs = Zi
8. Update G = G U fgj , H = H U {h3}
9. Update classifier hs with batch BL (.)

endlf

endAll

Figure 4.2: Conceptual Clustering & Prediction (CCP) pseudocode



determines if data belongs to an existing cluster or a new cluster and assumes each cluster

is normally distributed, described mean and variance. Data are categorized into either an

existing cluster or a new cluster based on a distance measurement (using existing cluster

means and variances). Each instance is used to update (Step 6) or train a new classifier

(Step 7) for the ensemble, where each classifier hs is representative of the knowledge

from a particular cluster (environment) gs. New, unlabelled data instances are classified

online in Step 1; the classifier associated with the cluster to which the unlabeled data

belongs is used for classification. CCP offers a practical alternative to ensemble

weighting; however, clustering algorithms are often limited in that they require the

number of clusters (environments) to be determined before testing.

4.1.5 DYNAMIC WEIGHTED MAJORITY (DWM)

Dynamic Weighted Majority (DWM) is an online approach to building a weighted

ensemble of classifiers (a.k.a. experts). Weights are determined heuristically using an

update factor (similar to the original Weighted Majority by Littlestone in [26]) which

decrements a classifier's weight with each misclassification. Weighted majority vote is

used to evaluate the testing data at any time, and retraining occurs for each new instance

as soon as the class label is available. Figure 4.3 shows the pseudocode for the ensemble

construction and organization. For each new instance xn, each expert e is evaluated

(Step 1), and weights w, for a classifier j which misclassify the current data are

decremented using the update factor fl (Step 2), and then all weights are normalized (Step

3). The knowledge base is reconstructed at a user-defined period p, at which time the

algorithm removes classifiers with weights below the pruning threshold 0 (Step 4), and



Algorithm DWM (Dynamic Weighted Majority)
Input:

* Dataset D = {xn, on}, n = 1,..., N
* Update period p (default p = 1)
* Weighting factor /f (default fP = 0.5)
* Pruning weight threshold 0 (default 0 = 0.01)

Initialize ensemble size k=1
For n = 1,...,N

If n = 1, Train new ensemble expert ek, Initialize weight wk = 1
1. Evaluate all experts on example xn hj : xn -4 o
2. Update weights:

w fIw if hypothesis h(xn) = nfor =
w= w otherwise .

Endif
If mod(n, p) = 0

3. Normalize weights w = wj / Ij wj for j = 1, ..., k
4. If w. < 0, Remove expert ej, decrement k = k - 1 for j = 1, ... , k
5. Obtain weighted ensemble hypothesis:

H(xn) = arg max wl
j:h (xn)=y

If H(xn) * O
Increment k = k + 1,
Train new ensemble expert ek
Initialize weight wk = 1

Endif
6. Re-train ensemble on sample {xn, can)

EndAll

Figure 4.3: Pseudocode for Dynamic Weighted Majority (DWM) Ensemble Construction

adds a new classifier if the ensemble has misclassified the current data instance (from

Step 5).

DWM is shown to perform well in the presence of concept drift on both synthetic

and real-world datasets involving harsh concept drift and concept change. DWM is able

to store relevant information a relatively low amount of online classifiers and achieve

high plasticity, since the pruning criterion effectively limits the size of the ensemble.



Because the ensemble size is not capped and the pruning weight measurement is

cumulative, DWM can be capable of maintaining knowledge for future environments.

However, this is improbable because of the threshold parameter. Decreasing the weight

threshold (allowing more classifiers) will increase the number of classifiers to be

maintained, but it could also potentially increase baggage from irrelevant classifiers.

Also, the weights cannot be increased at a later time, and so a long period of irrelevance

will render that knowledge virtually useless at a later time.

4.1.6 KNOWLEDGE-BASED SAMPLING (KBS)-STREAM ALGORITHM

The Knowledge-Based Sampling (KBS)-Stream algorithm is a batch based ensemble of

classifiers approach to actively adjusting to concept drift (algorithm pseudocode in Figure

4.4). KBS-Stream is active in that uses competing classifier ensembles (current ensemble

M and prior ensemble M*) to determine whether the environment has changed (Step 1-4).

The alternative ensemble is simply a clone of the current ensemble minus the most recent

classifier (as seen in Step 9). Thus, the comparison of the two ensembles reveals whether

or not the addition of a new classifier increases performance in the current environment.

In addition to dynamically adjusting the structure of the ensemble, KBS-Stream

employs both a windowing and instance weighting method for evaluating classifiers.

Windowing is closely associated with the ensemble comparison for drift detection,

operating under the assumption that an increased performance of new ensemble M over

old ensemble M* indicates that the environment has changed, since the new classifier has

added relevant knowledge. In such a case, the alternative ensemble is discarded, as well

as the training data associated with it. Instance weighting is accomplished by constant



evaluation the classifier ensemble on the most recent training data to identifies instances

which are unknown; the ability of an individual classifier to correctly classify instances in

a batch of data represented by the LIFT of an instance x in training set 2:

LIFTh ( )* - ) P,[h(x) = o, o = co']

Px,,, [h(x) = W*] P, [o = '] (4.1)

The LIFT quotient measures the correlation between the predicted class label o* from

classifier hypothesis h(x) and true class label co', where a positive correlation is

represented by LIFT greater than 1. The distribution D, yielded by the LIFT of each

instance in D, is iteratively updated for each classifier (Step 5). The purpose of this

distribution is two-fold: first in training a new classifier model (Step 6), where previously

misclassified instances are boosted (given a higher probability to be sampled for

training); second, the LIFT distribution is used to evaluate classifiers on unlabeled data,

acting as a weight for each classifier. To this end, the vote of each classifier is weighted

by the product of LIFT values for that classifier to obtain composite value # for instance

x (Equation 4-2); this value is used to compute the final probability estimate for an

unknown point x belonging to class co (Equation 4-3).

T +
P(o = +1) I LIFTD(hi(x) o = +1) 4.2)
P(o = -1) LIFT, (hi(x) - = -1)

t=1

1- (4(x)

The KBS-Stream algorithm is shown to be effective in adapting to slow drift

situations, and operates similar to other boosting algorithms such as Adaboost (see

description Section 4.3.1). One particular downfall of the KBS-Stream algorithm is the

loss of prior knowledge when drift is detected. Along with discarding old training data,



Algorithm Knowledge-Based Sampling Stream (KBS-Stream)
Input:

" Data batches Zt of instances (xt, wt) of size m, t = 1,... ,T
Initialize current ensemble M = [ i, previous ensemble M* = []
For t = 1,...,T

1. Evaluate new data using ensemble: HM =
If ensemble M* exists

2. Evaluate data Dt with M and M*, get error £M, £M.

if M <EM*

3. Discard M*, V* = Zt_
endif

4. Initialize distribution D1 uniformly over Zt
5. For i= 1,...,M

- Obtain hypothesis hi (Zt) for classifier i

- Recompute LIFTD.l(Z (w* - w')

- Update LIFTs of hi( Z) in M:

Di+1(xjrwj) Di(xj.wj) (LT~t(' (hSx.) - wj ,l = ... ,m
endFor
6. Train classifier model hMI+l on Zt with DIMI+1

7. Compute LIFTlml+i(Zt) (* -m)

8. Add model hIMI+1 and LIFTs to ensemble M
9. Ift = 1, V = Jt

Else
Extend previous batch V = V U t
M* = clone(M)
Discard last base model of M*
Repeat Steps (4-8) using Z* and M*

endlf

Figure 4.4: Knowledge-Based Sampling (KBS) Stream Algorithm Pseudocode

old knowledge is also pruned, rendering the ensemble unable to recognize recurring

environments.

4.1.7 ADAPTIVE CLASSIFIERS-ENSEMBLE (ACE)

The Adaptive Classifiers-Ensemble (ACE),introduced by Nishida in [35;76], is a hybrid

method for detecting and responding to non-stationary environments. The term "hybrid"



alludes to the many approaches that are combined to handle concept drift. Pseudocode

for the ACE algorithm is provided in Figure 4.5. ACE uses an online and batch-based

learning strategy to maintain both plasticity and stability. An online learner (classifier jo)

is employed for learning the most recent data, and the output of a drift detector is used to

train a batch classifier (j1 , ...,]) on the window of data (Bl) that represents the most recent

environment. The recent environment is represented by the data instances spanning from

No to t(Step 6), and a batch classifier is created with these instances only when drift is

detected or when the current data window exceeds some chunk size threshold Sc. Once

the classifier is trained, the online classifier hypothesis Ho, data window B1 for batch

learning, and time pointer No are re-initialized. Weighted majority vote is used to

combine classifier predictions (used in Step 1, computed in Step 2). Log-based weights,

v, (as in Adaboost, see Section 3.3.1) are calculated based on classifier performance (A t

for classifier j at time t) on the most recent training datapoints (size Sa). Temporary

pruning is employed (Step 2) in addition to weighting in order to ignore irrelevant

classifiers at a given time by giving a non-zero weight only to classifiers with

performance that lies within a given confidence interval (upper bound Af t and lower

bound A!,t based on confidence level 100(1 - a)%). Permanent pruning decreases

memory usage by removing classifiers which have performed poorly over an extended

period of time (error-based pruning). The criterion for permanent pruning is a separate



Algorithm ACE (Adaptive Classifiers Ensemble)
Input:

" Dataset Z = txt, cot ), t = 1 .
" Short term memory size Sa, chunk size S~, (> S,,)
" Maximum ensemble size 0
" Drift detection confidence level 100(1 - a%
" Ensemble weighting confidence level 100(1- /)

Initialize j = 0,B, = {}, No = 0
For each (x,, tot)
1. Output final hypothesis Hf (xt) = arg max3, -jo vJ, [119 (xt) = coj
2. For each j =0, ..., j

CR1,t = [[H1(xt) = t
A1, (=maxt-Sa+1No+1] CRJ~s/min[t -No + 1,Sa] if]j 0

At= S~t-Sa+1 CRi,s/Sa , otherwise
Compute 100(1 - a)% confidence intervals for proportions [A ,A A)t]
Compute classifier voting weight:

= lg I AA , if Ajt> maxAkR
0, otherwise

Compute classifier pruning weight:
Imax = argmax =o. JA~

J+ 1 if j = Imax and iw, 0
wJ = 0 if j=j axandw< 0j]= 1,.,

w- 1, otherwise
endFor

3. Call Online Learner (xt wot); Update hypothesis H0: X -* 1
Add (xt, wt) to B1, Set AcqFlag = false, Set]' = arg maxj.. . j StSa+1 Aj1s

4. Ift{Aj,t <A ,t~S or AJ , > t-Au _} and t -No -Sa and t -NJ , 2Sa
Set AcqFlag = true

endif
5. if t -No Sc, Set AcqFlag = true endlf

if AcqFlag = true,
6. Call BatchLearn (B1); Get hypothesis HJ+1:X - 12 with error:

Z-(xl,,6O)EBII[HJ+1(Xi) * i
E+= 1B311

If E1+1 > 1/112, Discard H 11
Else for each m =(t -Sa +1), ... , t

7. Set CRi+i,m = CRo,m
8. Set Aj+i,m =Ao,m,Aj+i,m = A,m, Aj+i,m =Ao,m

endFor
9. Set N 1~ =t, j =j+ 1

endif
10. Initialize H0; Set B1 = { }, No t
endlf

11. If ensembleSize > 9, Remove classifier kwhere k = argmiry~... j wj endif
endFor

Figure 4.5: Pseudocode for Adaptive Classifiers Ensemble (ACE) algorithm



weight (wj) which increments or decrements based on classifier performance Aj,t

(updated in Step 2). Pruning occurs when the size of the ensemble exceeds a threshold 0

(Step 11). ACE uses active drift detection by tracking performance of the batch classifier

decision. In Step 4, drift is triggered when ensemble performance exceeds a confidence

interval configured on an initial sequence (size Sa) of classification performances. The

output of the drift detector indicates when a new batch classifier should be trained on the

most recent window of data that represents the current environment (Step 6).

ACE appears to be a very robust algorithm in that it utilizes nearly every available

approach to handling concept drift that has been discussed in the previous chapter,

although it is not tested extensively on datasets involving various types of drift. Possible

downsides of this approach are a high number of user-defined parameters that may need

to be fine-tuned for any given experiment. ACE boasts the ability to handle recurring

environments using a batch-learning approach; however, permanent pruning removes all

guarantee that knowledge (classifiers) will be maintained until an environment re-occurs.

4.2 DRIFT DETECTION METHODS

4.2.1 EARLY DRIFT DETECTION METHOD

The Early Drift Detection Method (EDDM) [39] is a performance-based drift detection

mechanism which uses a heuristic for sensing significant change in ensemble

performance. Instead of directly using the binomial distribution on percentage of error

(as in [43]), which is reasoned to be effective only with concept change, EDDM

configures the drift detection test using the average distance between error (Pn) and

standard deviation (s) for each sample n within an initial period of 30 ensemble errors.



The maximum average distance between errors in the initial (configuration) period is

represented by max(pn + 2sn), and marks the point where the ensemble performed best.

Drift is detected using two threshold levels: warning and drift.

Pn + 2sa
Warning level: , , > a (4.4)

pmax + 2smax

Pn + 2snDrift level: , > 2s (4.5)
pmaz + 2smax

Drift is perceived when the warning level is reached, but there is no reaction until the

drift level is passed. It is here that the test is reconfigured by recalculating the parameters

within a new period of 30 ensemble errors, and a new classifier is trained on the data that

was seen after the warning level; data following a warning is assumed to represent the

new environment. EDDM appears to be an effective way to track gradual drift, and is

partially self-configuring, requiring only two bounded parameters (warning and drift

thresholds) to be manually configured.

4.2.2 COMPUTATIONAL INTELLIGENCE-CUSUM (CI-CUSUM)

Alippi describes a parameter-based drift detection mechanism in [44;46;47;60] which

combines distribution-free CUSUM change detection with a log-likelihood measurement

based primarily on the central limit theorem. Computational Intelligence CUSUM (CI-

CUSUM) first builds a feature vector from consecutive batches of incoming data, as seen

in the pseudocode in Figure 4.6. In Step 1, each concurrent batch of data t is

represented by a feature vector cp(t) containing the mean, variance, skewness, kurtosis,

Mann-Kendall features, and CUSUM features as described in [47].



A large feature base decreases any dependence on a particular distribution;

however, it also increases computational complexity, especially as each feature set is

calculated for each dimension. For this reason, principal component analysis (PCA) is

used (Step 2) to find the feature combinations that carry the most information. The

Inputs:
" Configuration size CS
" Training size M
" Data Zt, t =1, ... , T

For t =1, ... , T
Initialize tdrift = 0

1. Compute feature vector tp(t) from dataset Dt
2. Apply Principal Component Analysis to obtain (0pcA (t)
Elseif t - tdrift = CS

3. Compute mean Abi0 and covariance matrix CO for null hypothesis

ftO_ 1 tdrift~c VW'S 1
0CS2 .t tdrift qCO) CS [((P(t) - ftOMP(t) - RY

HO: e0 = {A 0, co}
4. Compute confidence interval Mi,max P M1,minR Cl,max P Ci,min

Select alternative hypothesis 61 = {Ml, C11
5. Configuration Parameters

- Log-likelihood

R()1Pei(tp(i)), fora~ = tdrift ... t
iLtdrift Po(qi)

- Minimum: m(r) = mini R(T), for T = tdrift .. t
- CUSUM parameter: g(r) = R(Tr) - m(T), for T = tdrift .. t
- Threshold: h(T) = max, g(Tr), for r = tdrift " t

Else (t - tdrift > CS)
6.R t) XPtdf p 1 (q(t))

6. Rt) itdrft nPe0Wqt))

7. Compute m(t), g(t)
If g(t) > h(t)

drift(t) = 1
tdrift = t

Else dri ft(t) = 0 Endif
Endif

End

Figure 4.6: Data parameter log-likelihood CUSUM test for drift detection



detection method uses a configuration sequence (size CS), beginning at time tdrift, to

configure the parameters of the test, making it robust in the presence of various types of

drift.

The metric for change is the result of a CUSUM log-likelihood function R(t),

which compares a feature's probability of belonging to either the null (0 °) or alternative

(01) distributions computed in Step 4. The null distribution is defined by assuming the

central limit theorem over an initial sequence of feature vectors (configuration sequence)

of size CS, and the alternate distributions are defined as the upper and lower bounds of

the confidence interval around 90.

Drift is detected using a threshold defined completely by the data; this threshold is

calculated using the configuration parameters in Step 5. Following the log-likelihood

calculation, the minimum of the sequence m(t) = mint=l:t R(T) is computed as the base

value for the CUSUM test. The difference between the current likelihood and the

minimum, that is g(t) = R(t) - m(t), can be considered as the true metric for the

original CUSUM test, where R (t) is the current sample measurement, and m(t) is the

desired value from which measurements will deviate. The threshold is the maximum

deviation from the minimum that is observed within the configuration sequence: h(t) =

maxt=,:k g(t). After configuration, these parameters are calculated for each incoming

batch (Step 6-7), and compared to the threshold h; when this threshold is surpassed, drift

is detected, and the test is reconfigured beginning at the updated time tdrift .

There are two main weaknesses with this approach. The primary weakness is in

the application of the method (not the method itself), as it is only used to detect change in

probability P(x) and therefore reveals no information about class drift. The second



weakness is that the knowledge construction aspect is quite primitive using a KNN

classifier that learns incrementally from the point at which drift is detected.

4.3 METHODS RELATED TO OUR WORK

As we begin to describe the specific contributions of our work, let us first introduce two

important algorithms which lay the foundation. Algorithm Adaboost, although not

designed for incremental learning, introduces the groundwork for the classifier-ensemble

model and weighting scheme. Algorithm Learn ++ extends Adaboost to accommodate

incremental learning, yet not specifically to learn from non-stationary environments.

4.3.1 ADABOOST

Adaboost (Adaptive Boosting) [31] is a learning algorithm that builds a strong classifier

(generalized knowledge base) by creating an ensemble of weak classifiers, that is,

classifiers with performance slightly better than random guess. Fruend & Shapire give

theoretical and empirical evidence that such an ensemble will exceed in performance over

a single classifier trained on the same data. Weak classifiers are created using an instance

selection process known as boosting [23], which ensures ensemble diversity by seeking

to train new weak classifiers on previously misclassified data. Classifiers are combined

using weighted majority voting, as described in section 3.3.1.

The pseudocode for the Adaboost.M1 algorithm is provided in Figure 4.7. For a

maximum of T iterations, subsamples of data are selected for training a new classifier;

samples are selected according to an instance-weighting probability distribution Dt. The



Algorithm Adaboost.M1
Input: For a dataset D= xi E X; co E = 1,...,cl}, i = 1 , N

" Error distribution D over all N instances
" Weak learning algorithm BaseClassifier
" Integer T, specifying the number of classifiers to generate

Do for t = 1,2,...,T
If t = 1, initialize weight vector w (i) = D(i) for i = 1, ..., N
1. Set Dt = wt/ ZXT 1 wt(i) so that Dt is a distribution (4.1)
2. Randomly choose training TRt and testing TEt subsets from Dt
3. Call WeakLearn with training data TRt
4. Receive hypothesis ht X -4 fl, and calculate error of ht:

Et= I Dt(i) (4.2)
i:ht (i)*wi

If t > 1, set T = t - 1, and abort loop.

5. Otherwise, compute normalized error f5t = Et/(1 - Et) (4.3)
6. Set the new weight vector

Wti =wt(i)xt 't1, otherwise(.
Call weighted majority to combine hypothesis Htand output the final hypothesis

Hfinai = arg max _ log () (4.5)
k=1 t:Ht(x)=

Figure 4.7: Adaboost.MI Algorithm

distribution, being related to classification error, gives higher probability to instances (to

be selected for the next classifier training data) which were previously misclassified.

Once trained, the tth classifier (hypothesis) ht is evaluated over all training data

Zt, and its error Et is computed by summing the distribution Dt over all misclassified

instances. Classifier weights are assigned in Equation 4.4. The entire process is repeated

until T classifiers are created or the error Et over misclassified instances exceeds '/2.



4.3.2 LEARN++

Learn" [70;77] is an incremental learning algorithm is inspired by Adaboost.M1 and is

designed specifically for learning from a stationary system from which data are

incrementally acquired in batches. Learn ++ was designed essentially to handle data with

virtual drift; that is, where information about a single distribution is not readily available

and appears to be changing when, in fact, it is not. This can include small changes in

class balance and even a perceived drift in the class-conditional probabilities when, in

fact, the true distribution is unchanging.

Different from the Adaboost framework which learns from a single frame of data,

Learn++ receives consecutive windows of training data Zk, as seen in the pseudocode in

Figure 4.8. From each of these datasets, an ensemble of Tk classifiers is trained as in

Adaboost.M1 (Steps 1-6). As in Adaboost, Learn++ utilizes a distribution over the data

instances to increase the likelihood of selecting previously misclassified instances for

training the next classifier. The Learn ++ approach differs from Adaboost in that the

distribution is updated based on the entire ensemble decision, rather than the decision of

the most recent classifier. Learn++ uses the ensemble decision to maximize learning of

previously unknown data; this instance selection approach is especially applicable when

new classes are presented. When a new dataset arrives, the distribution is re-initialized

by evaluating the entire ensemble and initializing the distribution (Steps 5-6), and the

boosting process repeats. Weighted majority combines classifiers from each sub-

ensemble to provide a final hypothesis (Equation 4.13).

Considering the definition of true concept drift, we realize that this architecture is

inappropriate in some ways. First, Learn++ demands a sufficiently large window so that k



classifiers can be constructed on different data within that window. Assuming a large

training window size (e.g. 200) increases the propensity for training to occur on data from

multiple environments. A small window decreases the boosting effect of the ensemble,

as either the number of classifiers k or the size of training set TRt must be limited.

Algorithm Learn++
Input: For each dataset Zk k = 1,2 ... K

" Trainingdata {4 EX;aw El 1 = (1,... ,cI}},i = 1,...mt.
" Weak learning algorithm BaseClassifier
" Integer Tk, specifying the number training iterations

Do for k = 1,2,..., K
If k # 1, Set t = 0 and Go to Step 5 to adjust the weights
Do for t = 1,2, ...,Tk
1. Set Dt = wt/ Em 1= wt (i) so that Dt is a distribution (4.6)
2. Randomly choose training TRt and testing TEt subsets from Dt
3. Call WeakLearn with training data TRt
4. Receive hypothesis ht:X -. £, and calculate error of ht:

Et = Z Dt(i) (4.7)
i:ht(xi)wd

If Et > z, set t = t - 1, discard ht and return to Step 2.

Otherwise, compute normalized error flt = et/(1 - et) (4.8)
5. Call weighted majority to obtain composite hypothesis

Ht = argmax log (1) (4.9)a Ef (
t:ht(x)=o

And compute composite error

Et= I Dt(i) (4.10)
i:Ht(xi)#a

If Et > , set t = t - 1, discard Ht and go to step 2.

6. Set Bt = - - Et to normalize error; update instance weights (4.11)

't+ = wt(i) x fBt, if Ht(xi) =wi (.2
( 1, otherwise (4.12)

Call weighted majority to combine hypothesis Ht and output the final hypothesis

Hfinai = arg max __log (i (4.13)
k=1 t:Ht(x

Figure 4.8: Learn++ Algorithm Pseudocode



Second, the classifier voting weights Bt are assigned once (when the classifier is

trained) and never updated. Static weighting is problematic in concept drifting data

because classifiers probably will not have the same relevance in new environments as

when they were first trained. Thus, for non-stationary environments, it is desirable to

periodically update classifier weights.

In summarizing much of the prior research that has been accomplished in the area

of learning in non-stationary environments, there are a number of weaknesses that arise:

first, a majority of learning methods trades the ability to use prior knowledge (stability) in

recurring contexts for a smaller ensemble (plasticity). Second, the idea of long-term

forgetting (tradeoff between limiting memory and handling recurring environments) is

not discussed. Finally, the foremost ensemble approaches seldom use active drift

detection techniques; those which do actively detect drift tend to be implemented using a

weak classification method.



CHAPTER 5: THE LEARN++.NSE ALGORITHM

Here we present Learn+.NSE (Non-Stationary Environment), an ensemble-based

classification algorithm, as a new framework for building a knowledge base in a changing

environment. The algorithm was created in order to handle some of the key issues in

non-stationary environments that its predecessor Learn+" and many other current methods

do not consider, especially regarding knowledge categorization and retention for handling

recurring environments.

We also compare this new framework to the approaches that have been proposed

in the literature and introduce new methods which are either original or adaptations of

prior work. We do so not only for comparison purposes, but also to improve the

algorithm while conforming to goals set forth by the learning model (see Section 3.1).

The general framework for Learn".NSE is as follows (see Figure 5.1 for

algorithm pseudocode): the knowledge base is initialized by creating a classifier on the

first available batch of data. Once prior knowledge (an existing ensemble) is created, this

knowledge base is evaluated on newly arriving training data (Step 1). Step 2 effectively

problematizes (Section 2.3) the data by identifying examples which are not recognized by

the current knowledge. Step 3 adds to the current knowledge base by training a new

classifier on the current training data. Step 4 is the first step in categorizing knowledge

with respect to the current environment. Each classifier in the knowledge base (the

existing ensemble) is evaluated on the current training data. Because previously

unknown data have been identified in step 2, the penalty for misclassifying such instances
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is reduced in the error calculation. In other words, more credit is given to a classifier that

is capable of classifying previously unknown instances while classifiers which

misclassify data (especially previously known data) are penalized. In Step 5, classifier

error is weighted with respect to time so that recent competence (error rate) is considered

more heavily for categorizing knowledge. Step 6 computes the voting weights using only

a classifier's classification error (relevance), regardless of the classifier's age. Ignoring

classifier age in computing classifier voting weights can be considered an advantage for

the computer model over human learning in that human recollection can be hindered by

memory age-related forgetfulness. Step 7 completes the model, showing that the

knowledge base (classifier ensemble) can be tested at any point to provide the best

possible decision. These steps are described in more detail in the following section.

5.1 ALGORITHM DESCRIPTION

As the current training data )t become available, Learn++.NSE is presented with training

data xt consisting of m instances with corresponding class labels wot (note: unless

specified otherwise, the subscript refers to the primary time index, and the secondary

index is indicated by parenthesis as in E,(k), Dt(i) etc.). As in the original Learn++, we

begin with initializing the first classifier weight and a penalty distribution over all mt

instances during the first time step such that all instances have equal penalty.

Dl(i) = 1/mi (5.1)

We use the term penalty distribution because it differs from distribution created in the

predecessor Learn++. Here, the distribution is used to assign error (in Step 4) and not for

subset sampling (all data )t is used for training). Based on the assumption that the



environment may change at any time and that the data are received in small chunks, the

algorithm begins by training a classifier using the entire training dataset Zt in Step 3.

Once the knowledge base has been constructed (at least one classifier has been

created) at time t > 1, subsequent iterations will re-initialize the penalty distribution Dt

over all instances based on ensemble predictions on the most recent training data xt(i).

Ensemble error Et is obtained by summing across all misclassified instances (where the

composite hypotheses of the ensemble Ht-1 on training data xt do not match the correct

class labels ot), and divided by the total number of instances mt.

Et = " Ht-1xt (i)) (i)] (5.2)
i=1 mt

In Step 2, we introduce an instance weighting method, where correctly classified

instances are given lower weight (proportional to ensemble error) and misclassified

instances receive a maximum weight of 1/me.

1 Et Ht - 1( x t ( i) = o t ( i ) )

wt(i) -. = ", = ,,m (5.3)mt {1, otherwise

The penalty distribution Dt is represented by a normalization of these weights (dividing

each weight by the sum of weights) such that the area under the distribution will equal 1:

wt
Dt = zw t (i) (5.4)

Instances which were previously misclassified are always given a higher penalty weight

than the penalty for instances that were correctly classified by the ensemble. This

ensures that in Step 4, classifiers will be judged most severely on what the ensemble does

not already know, and instances which the ensemble does recognize will receive less

consideration. The relativity of penalties is based on the overall error of the ensemble.

When the ensemble does well, misclassified points get higher relative penalty weight, and
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when the ensemble performs poorly on the new data, misclassified data receives a penalty

weight more similar to that of the correctly classified examples. For instance, a high

ensemble error of Et = 0.75 corresponds to a weight of wt(i) = t 0.075 for ame

misclassified instance (batch size mt = 10), and all correctly classified instances receive

a weight of wt(i)= - = 0.1. If ensemble error is low (e.g. Et = 0.1), correctly
mt

classified instances still receive a weight of wt(i) = 0.1, but misclassified instances

receive a weight ofwt(i) = 0.01. The penalty weight of misclassified instances with

high ensemble error (wt(i) = 0.75) is more similar to the weight of correctly classified

instances (wt(i) = 0.1) than the penalty weight of misclassified instances with low

ensemble error (wt (i) = 0.01).

In Step 4, the error e, of each classifier is evaluated on the training data from the

current environment, Zt:

(k) = m Dt(i) - [hk(xt(i)) wt(i)], k = 1,...,t (5.5)

Instead of assigning the same error to each misclassified instance, the penalty weight

distribution Dt is used; for each misclassified instance i (hypothesis hk(xt(i) ) does not

match true class label ot (i)) , the associated penalty weight is summed to obtain the error

of the classifier on the training data at time t. Using the penalty weight distribution

effectively gives a classifier more credit for correctly classifying data that the ensemble

did not know; in other words, classifiers which perform well on novel data are deemed

more relevant than others.



Input: For each dataset Zt t = 1,2,..
- Training data t (i) E X; cot(i) E it = {1, ... , c)), i = 1, ,,mt.
- Supervised learning algorithm BaseClassifier
- Ensemble size s
- Sigmoid Parameters a, b

Do for t = 1,2,..
If t = 1, Initialize D1 (i) = w()= 1/m1 , Vi, Go to step 3. Endif (5.1)

1. Compute error of the existing ensemble on new data

2.Update and normalize instance weights

wt () = 1 J Et, Ht..1 ( (0)=W i = 1) i..,mt (5.3)
mt (1, otherwise '

Set Dt =-
mt tL Dt is a penalty distribution (5.4)

3.Call BaseClassifier with Dt obtain ht: X -* R

4.Evaluate all existing classifiers on new data Zt

Et()= uDt (i) -Ihk (xt (i)) # W t(i)], k = 1,.,t (5.5)

If Et (k = 1) > 1/2, generate a new ht.
If Et (k > t) > 1/2, set -t (k) = 1/2,

Pt(k = (k) k=1.,t (5.6)

5.Compute the time-weighted average of all normalized errors
for kth classifier hk For sigmoid parameters a, b E R

Qt(k) = 1/(1 +e-a(t-k-b)), at (k) = ct(k)/2._o at _j (k) (5.7)
t k

#I (k) _ I Oat-.(k)3t i (k), k = 1, ..., t (5.8)

6.Calculate classiTtfier voting weights

Wt(k lg()t'k=1,.. 59

7.Obtain the final hypothesis

Ht (xt) = arg max YWt(k)' - hk (xt) = A (5.10)

Figure 5.1: Learn++.NSE Algorithm Pseudocode

If the newest classifier is unable to perform better than '/, it is discarded since it is not

likely to have a positive contribution to the ensemble, and a new classifier is trained in its

place. Any other classifier error greater than 2 is saturated at 2 so that all normalized



error ft in (Equation 5.6) will be mapped from 0 to 1, where 0 represents perfect

classification, and 1 represents worst-case (%) classification, where classifier with

especially high error will be given zero weight (yet only at that time step). Note that in a

two-class problem, an error of /2 corresponds to 50% classification (random guess). With

additional classes, the classification percentage of random guess decreases (e.g. 25% for

four-class), making the goal of 50% more difficult to attain for any classifier. The effect

of truncating error is illustrated in Figure 5.2. The purpose in setting the threshold at 2 is

that it prevents negative weights from being calculated later in Step 6.

Et(k)
t (k) (k) k = 1,..., t (5.6)

(1 - Et(k))

Step 5 introduces an error-weighting sigmoid function for computing the time-based

weighted error /. As discussed earlier, it is imprudent to determine classifier weights

based on all error over time because classifiers should be organized/weighted according

to their relevance at the current time. For this reason, using a sigmoid function over a

classifier's error through time considers competence only in recent time step(s).

1 t- k

t(k) = (1 t - k - b ))  (k) = (k)/ at (k) (5.7)(1+ e-a(t-k-b)) i =0

Parameter a defines the slope of the sigmoid cutoff, and b refers to the number of prior

errors to be considered before the cutoff. The effect of the sigmoid on classifier error can

be seen in the following two figures. Figure 5.2 illustrates the effect of the sigmoid on

the error Et,k over time for a single classifier k in the ensemble. The sigmoid parameters

(a and b) are also depicted, showing how a classifiers prior error is given less

consideration than current error when multiplied by the sigmoid. From this picture, we

can also infer the effect of changing the sigmoid parameters (cutoff and slope) to give



more or less weight to a classifiers prior error. Figure 5.3 shows how the same sigmoid

parameters are applied across the error matrix Et,k of all k classifiers in the ensemble at

time step t. Note that the sigmoid cutoff lies the same distance from the most recent

error, regardless of the age of the classifier. If a classifier is created recently (t > b), the

error will not even be cut off because all error is considered relevant in computing

weights for recent classifiers.

et~ F
k

1

N B

1/2 D
L )

o... t i i 6

w A , "

k t-4 t-3 t-2 t-1 t

- - Error of k,' classifier Time, t
Truncated Error
Sigmoidal error-weighting function

A Classifier h, has low error when first created

B Truncated Error when actual error exceeds

C Error of kth classifier on past environments (weighted less heavily)

D Current Error of the k"' classifier (weighted most heavily)

Sigmoid Parameters - E :slope a, F :Cutoff h

Figure 5.2: The effect of sigmoid error weight for a single classifier over time [78]



A new classifier is created at
each time step
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E: error
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Figure 5.3: Time-based sigmoid error weighting

matrix of
k at time t

t,k

I

While many other algorithms use only a classifier's current error, here a sigmoid-based

weight is applied across all error, for it is desirable to consider a classifier's error in

recent time steps as there may be knowledge pertinent to the current environment. The

sigmoid is applied individually to each classifier's error over time so that some (not all)

prior error is considered in calculating classifier weights. Under this strategy, any

classifier containing relevant knowledge, regardless of the classifier's age, can receive a

significant voting weight. Classifier age itself has no direct effect on voting weight.

Once weighted appropriately with the sigmoid function wt(k), the classifier error

is then normalized as a weighted sum, with weights obtained from the sigmoid function

as shown in Equation 5.8.

(5.8)
ll (k)= aj(l j tor- a () k ,... t



The last phase of knowledge categorization occurs in Step 6, where the age-adjusted

classifier weights are assigned. Log-based weighting [31] is assigned using the age-

weighted error for each classifier in the ensemble (Equation 5-9).

Wt (k) = log , k = 1, ..., t (5.9)

Step 7 shows the formulation of the final ensembles weighted decision/hypothesis

on unlabelled data, where the classifier weights are summed with respect to their

respective class selection (Equation 5.10); the predicate [-J will yield a 1 for

classification of class y from classifier k. Classifiers with the high voting power will

yield the most support for the class they choose. Testing can be performed any time

following the learning phase and will provide the best possible decision on the current

environment.

H (x t ) = arg maxl W(k) -[hk(xt) = l (5.10)

5.2 CONTROLLED FORGETTING

5.2.1 PERMANENT PRUNING

The learning model described in Section 5.1 can be adjusted to accommodate any

controlled forgetting mechanism. Here, we introduce three possible permanent pruning

methods, all of which use the ensemble size threshold approach to limiting the ensemble

size. The first option is to remove the oldest classifier in the ensemble to make room for

knowledge carried by a new classifier. The second uses a classifier's most recent error

flk as the basis for removing knowledge. The third approach, using averaged error of a

classifier over time, is a strategy which is original to our work. A possible reason for



neglect in the literature is the small ensemble size that is commonly used. Small

ensembles are used explicitly for achieving plasticity, and therefore a classifier's prior

performance (from previous environments) is irrelevant. The criterion for removing

classifiers is the error on the most recent data, and to consider averaged error from

previous time steps would be misleading. Also note that some methods which use a

small ensemble size do not use a weighting method to categorize or organize classifiers.

Rather, they assume that the ensemble contains knowledge which is completely and

equally pertinent to the current environment.

Within the Learn++.NSE algorithm, the task of (permanent) pruning (pseudocode

in Figure 5.4) - if used - occurs immediately following the calculation of the voting

weights. Steps 7-8 in the pruning pseudocode below are intended as replacement for Step

7 in the original Learn++.NSE pseudocode in Figure 5.1.

< Refer to Learn++.NSE pseudocode for Steps 1-6 >

7. Permanent Ensemble Pruning:

Ift>s

A. Age-based: Remove ht_, from the ensemble
B. Current error-based: Remove hk. where

Iht(k*) = maxlh, (k), k = 1 ...t (5.11)

C. Average error-based: Remove hk. where

flt(k*) = max (average(pt(k))), fork = 1... t (5.12)

Endif

8. Obtain the final hypothesis

Ht(xi) = arg max CWt(s) Ihs(xi) = cl (5.13)

Figure 5.4: Permanent Controlled Forgetting



In scenario A (age-based pruning), the oldest classifier in the ensemble (created

t - s time steps ago) is removed. In scenario B (current error-based pruning), the index

flk> of the classifier with highest error (flkover k classifiers) is found using the max[d,)

function, and the corresponding classifier is removed:

f. = maxfk , k = 1...t (5.11)

In scenario C (average error-based pruning), the average error over time for each

classifier is calculated, and is then used for the pruning criterion as in scenario B:

fl. = max (average(fl,)), for k = 1...t (5.12)

The final hypothesis calculated in Step 8 (Equation 5.13) is identical to that of the

original Learn".NSE.

In using averaged error-based pruning, we reason that a larger ensemble size can

and should be used, as it more closely represents the vast knowledge base in human

memory. Increasing the ensemble size adds a minor complication, since it also increases

the chance of harboring irrelevant knowledge (baggage); thus, it is necessary to employ a

weighting method such as the one in the Learn".NSE algorithm. The overall purpose of

average-error pruning with a large ensemble size is not to keep only relevant knowledge,

for this task is delegated to the weighting method. Instead, average error-based pruning

removes knowledge that is generally less useful over the course of time. It is intended

that pruning with average error will also have implications with regard to recurring

environments as it should retain useful classifiers.



5.2.2 TEMPORARY PRUNING

Temporary pruning (expert selection) is primarily employed for baggage reduction;

baggage takes the form of old classifiers which are no longer relevant to the current

environment. Although the Learn++.NSE framework combats the influence of irrelevant

classifiers by its dynamic weighting technique, baggage is practically inevitable when the

knowledge base is constantly expanding. Two methods are proposed (Figure 5.5) which

can be substituted directly into Step 6 in the original Learn++.NSE framework. The first

method, derived from the Adaptive Classifiers Ensemble (ACE) algorithm [35], selects

only the classifiers which lie within a confidence interval around the highest performing

classifier on the current training data. The confidence interval is based on classification

error Ak,t of all k classifiers on the most recent training data at time t. Classification error

is calculated using Laplace's rule of succession, which [35] suggests is more accurate for

small sample sizes (mt).

At(k) = (Xm [hk(xi) # oi) + 1 (5.14)
s+2

The lower bound At'a (k) for classifier performance is computed using the score

confidence interval [79] with confidence of 100(1 - a)%.

Ata(k) = m + (1 - Et(k)) + 2 (5.15)
mt+ Za/2 2mtm 4m

Once the confidence boundary has been attained, the expert selection process is simple.

For any classifier k, a weight is assigned only if the classifier's performance At(k)

surpasses the lower (1) confidence bound A t ,.



Wt(k)= flogQ(k)) if At (k)> mkax Ata(k) (5.16)

0, otherwise

The confidence interval criterion produces a variable percentage of classifiers selected at

any given time-step, with sensitivity related to the confidence interval parameter a.

The second temporary pruning method ensures a minimum sub-ensemble size by

selecting a constant n percent of the top performing classifiers according to the classifier

< Refer to Learn++.NSE pseudocode for Steps 1-5 >

6. Temporary Ensemble Pruning:

Ift>s

1. Confidence Interval Criterion:

Calculate performance of classifier k:

At(k) = Ilh(X) # Wi) + 1 (5.14)
mt+2

Compute lower confidence 100(1 - a)% over k performances:

iamt r t )1Efk) z

t a/2. mt 4mt2

Compute classifier weights:

Wt (k) = log Q (k)) if At (k) > kixA k (5.16)
0, otherwise

2. Top Percentage Criterion:

Compute classifier weights

Wt(k) = log y ( k)) fork = 1,... ,t (5.17)

Wsort = sort(Wt(k)), Wn% = Wsort, round (n*t) (5.18)

WtkW k if Wt (k) >W%(.9
W~(k) t(Wko0, otherwise (5.19)

Endif

< Refer to Learn++.NSE pseudocode for Step 7 >

Figure 5.5: Temporary Controlled Forgetting



weight Wt(k). The process begins by computing the weights Wt (k) from time-weighted

error as in the original algorithm (Equation 5.17). Weights are then sorted from highest

to lowest (Wsort), and the weight of classifier in the nth percentile, W% is attained.

Wsort = sort(Wt(k)), Wn% = Wsort, round (n*t) (5.18)

The final step is to zero out all weights corresponding to classifiers which fall below the

Wo% threshold.

5.3 DRIFT DETECTION

We now discuss the role of the supervisor in the learning process Recall that he

supervisor-based approach is known as scaffolding (see Section 2.3) and provides us

important guidelines for improving the learning process including:

* Problematizing - emphasizing conflicts between new data and the learners current

knowledge

* Monitoring both the flow of incoming data (to be learned) and the learner's

performance for change

* Controlling the flow of incoming data such that it is broken into learnable chunks

* Fading - ceasing the training process when an environment is unchanging to

mitigate redundant knowledge

The task of problematizing is inherent within the Learn++.NSE algorithm, and is the

explicit goal of using the penalty weight distribution Dt for evaluating classifier error.

The aspect of monitoring data and ensemble performance is less explicit, as the

Learn ++.NSE algorithm is passive by nature. That is, we assume that all new data comes

from a new environment that may (or may not) be changing continuously. Therefore,



Learn++.NSE constantly augments and organizes the knowledge base according to that

environment. This approach appears to be consistent with the human-based learning

system. Yet, we also seek to improve upon the learning model by experimenting with

some aspects of active drift detection; this will allow us to investigate the aspect of

scaffolding known as fading.

The survey of literature regarding active drift detection methods leads to a number

of considerations with regard to complexity and sensitivity. An algorithm should add

complexity only to the degree that it (1) will provide accurate results, and (2) will yield

relevant information that can be acted upon. For this reason, we seek to reduce

complexity, desiring to know only if significant change (in data distribution) has

occurred, and not needing to know what type of change has occurred (this is irrelevant

because it would not affect our approach).

A performance metric appears to be sufficient for measuring the source of

changes in the data (i.e. which probability is changing). Although it does not explicitly

reveal the type of drift that is occurring, performance-based drift detection is a clear

indication of change in a learner's ability (or lack thereof) to track the new environment.

The primary assumption behind the approach is that a learner's ability to correctly

classify data in a stationary environment will fall within some probability distribution,

and performance will shift from that performance distribution when drift occurs. This

assumption translates to a likelihood approach, where the learner's performance will tend

toward a null distribution (no drift), or some alternative distribution (drift).

Note that a performance-based approach is insensitive to the virtual drift problem;

that is, an apparent change in class-conditional probability P(xico), posterior probability



P(x), or priors P(o) in the training data may alter performance although there is no

change in the true data distribution. However, from a learning aspect, data that is

virtually drifting should be learned as well, since it is relevant (and unknown) knowledge

about the environment.

The advantage of a likelihood approach in performance-based drift detection is

that a normal distribution can be assumed. Therefore, we propose a detection method

similar to that described in [44] for CUSUM-based drift detection of the data distribution.

What appears to be a rather complex method can be significantly simplified when

tracking performance since (1) only one dimension (classification accuracy) is

considered, and (2) mean and variance are sufficient descriptors of the (Gaussian)

distribution.

The drift detection method (pseudocode in Figure 5.6, pictured in Figure 5.7) is a

batch-based approach where data arrives in consecutive frames or windows (as in

Learn++.NSE). The drift detection test begins with a training phase. In Step 1, a drift-

detection classifier (with corresponding hypothesis hdd) is trained with an initial subset

of training data of size M (this subset may include instances from consecutive data

batches). The drift-detection classifier is a separate compartment of the knowledge base

and is not included in the decision ensemble. Using a separate single classifier isolates

the performance metric from the effects of ensemble learning, which is often

characterized by an increase in performance as knowledge is acquired. For instance, in a

stationary environment, performance is expected to increase as knowledge (classifiers) is

added to the ensemble, whereas a single classifier will have a more consistent level of

performance. Conversely, in a changing environment, an ensemble may be able to adapt



Input:
" Configuration size CS for drift detection
" Training size M for drift detection classifier
" Training data tx E X; W E1 f= {1, ... , c}}, i =1'.'t

Initialize tdrift = 0
For t = 1,2..
If t - tdit< CS

1. Train drift detection classifier hDD on M examples
2. Configuration accuracy aDD(t - tdrift) = Em° 11- (mL) 1hDD(Xi) * i (5.20)

Elseif t - tdrift = CS
3. Null hypothesis from mean & variance over aDD1 : o a
4. Upper and lower bounds: it = yo ± yza/2V /o (5.21)
5. Configuration Parameters

- Log-likelihood

R(T) = InPel (aDD())
L~dtt Peo (aDD (t))', for T = tdrift .. t (5.22)

- Minimum: qj(T) = mini R(r), for T = tdrift .. t (5.23)
- CUSUM parameter: g(Tr) = R(T) - ij(T), forT = tdrift .. t (5.24)
- Threshold: A = maxi g(T), for T = tdrift ... t (5.25)

Else (t - tdit> CS)

6. Compute accuracy aDD (t) = XZ' 1 - (2t). II[hDD (Xi) * co]

7. ~)=~~dJ nPol(aDD i) (5.26)
. R~t _ ~tdrft 1PBo(aDD (i))

8. Compute q~(t), g(t) using Eq. 5.23-5.24
If g(t) > A

drift(t) = 1
tdrift = t

Else drift(t) = 0 Endif
Endif

Figure 5.6: Performance-based CUSUM drift detection using log-likelihood

to a gradual change in the data because of its diverse/generalized knowledge. Therefore,

the ensemble may be slow to degrade in performance due to the change in the

environment. The performance of a single classifier will more quickly begin to degrade

if the new environment differs from that on which the classifier was trained.



The next phase of the drift detection test is referred to as configuration. The

configuration period is defined as number of time steps (or batches) controlled by

configuration size parameter CS. Once the drift detection classifier is trained, it is then

evaluated on a sequence of all CS training batches, yielding configuration accuracy aDD

in Step 2:

aDD (t - tdrift) = 1 - ( IhoD (xi) * ]]  (5.20)
i=1

Accuracy aDD is simply one minus the error, which is calculated as the sum of all

instances where hypothesis hDD on instance xi does not match the true class label wi.

Parameter configuration occurs once the classification accuracy has been attained over

the configuration period (while t - tdrift < CS), where t is the current time step, and

tdrift represents the beginning of the test (where the last drift was detected). Once

t - tdrift = CS is true, the null distribution 0° is formulated over the classifier's

performance by calculating mean and variance of performance aDD within the

configuration period (Step 3). In Step 4, upper and lower bounds on mean and variance

of null hypothesis 60 are used to create competing alternative hypotheses 91, 02 , etc. An

alternative hypothesis essentially represents a new environment for performance. The

threshold for sufficient deviation in performance from the null hypothesis into an

alternate/competing hypothesis is determined in Step 5. Here, the CUSUM parameters

are calculated, beginning with the log-likelihood R (Equation 5.22). If the probability of

performance lying within the null hypothesis Poo (aDD (i)) is greater than the probability

of lying within the alternative hypothesis Po (aDD (i)), the value for that particular

performance will be negative. If the instance is more likely to lie within the alternative



hypothesis, the value will be positive. Since the values are summed from the beginning

of the experiment to time t, the trend of R is expected to be downward when accuracy

aDD is most likely in the null hypothesis, and vice versa.

R() =td Pl(aoo(i)) for T= trift t (5.22)
(T) = =tdri ft 1 P~o(aDD(i))' f drift .

Next, the minimum of log-likelihood is calculated. The minimum value of the log-

likelihood is the point at which there is greatest cumulative likelihood that the null

hypothesis includes aDD, and can be considered as the expected value or goal of the

CUSUM test.

i(r) = min R(r), for T = tdrift ... t (5.23)

The CUSUM drift equation computes the difference between the current log-likelihood

and the minimum:

g(r) = R(r) - r(zr), for T = tdrift ... t (5.24)

The deviation of log-likelihood R(r) from r((r) indicates a trend toward an alternative

hypothesis (i.e. drift). Thus, the test is configured by setting a threshold A is which

represents the maximum observed deviation from the expected value 7r within the

configuration sequence.

A = max, g(r), for T = tdrift ... t (5.25)

The drift detection phase (Step 6-7) is similar to configuration in that the accuracy

is continually calculated on incoming data batches, and the CUSUM parameters are

recomputed at each time step. If the deviation g(t) of likelihood R(t) from the

minimum r/(t) surpasses the maximum deviation observed within the configuration



sequence (threshold A), drift is detected by setting a flag for parameter drift at time t.

The drift time tdrift is set to the current time, and the drift test is reinitialized.

Such an approach is highly advantageous by nature of the CUSUM test's ability

to track gradual drift. One tradeoff that can be expected is between over-generalization

of the configuration distribution and subjectivity to noise. However, such is the case with

most any threshold-based change detection system. The advantage in this case is the self-

configuration of the threshold.
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Figure 5.7: Drift detection procedure
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5.3.1 FADING

Fading is the process whereby the learner is prompted to add to its knowledge base (i.e.

train a additional classifier) only when a change or drift in the data is detected. The

process works in tandem with the active drift detection mechanism and can be integrated

into the framework of the Learn++.NSE model with ease. Using the drift time indicator

tdrift as the cue for learning, the knowledge base is augmented during the configuration

phase of the drift detection method, in which the null performance hypothesis 0° is

calculated. Provided that the configuration phase (CS batches) is long enough to acquire

an accurate representation of the probability distribution over the classifier's performance

(in drift detection), it is reasonable to assume that the same data contained in the interval

{tdrift, tdrift + CS} will also representative of the new environment that should be

learned by the ensemble. Figure 5.8 shows the simple alteration in Step 3 of the

Learn++.NSE algorithm to employ fading. While the drift detection mechanism is being

configured, new classifiers are trained and added to the knowledge base.

< Refer to Learn*+.NSE pseudocode for Steps 1-2 >
3. Fading

If t-tdrift < CS

Call BaseClassifier with Dt, obtain ht: X - £1
Endif

< Refer to Learn++.NSE pseudocode for Steps 4-7>

Figure 5.8: Learn++.NSE Fading pseudocode

5.3.2 DYNAMIC SIGMOID ADJUSTMENT

The time-weighted sigmoid is designed to mitigate ensemble baggage by allowing only

recent error to be considered when calculating classifier weights. Both intuition and



characterization of these sigmoid parameters indicate that they can be adjusted,

depending on the type of drift that is occurring, in order to attain optimal classifier

weights. Specifically, three drift scenarios can be considered: no drift, concept change,

and steady drift. These scenarios can be easily detected using the drift detection

mechanism. Once the testing phase begins, a counter (tstable) is instantiated, and will

increment for every time step when no drift is detected. The duration of stability allows

us to quantify how frequent drift is occurring, and categorize the following drift

scenarios:

1) No drift: defined by an extended period during which drift is not detected (stable

time tstable exceeds stability threshold y). When calculating weights, more prior

error can be considered since the environment has remained unchanged. The

sigmoid cutoff can be slowly increased until some saturation point (bs) which is

suitable for a stationary environment. This increase toward the saturation point is

depicted in Figure 5.9.

2) Concept change: defined for our purposes as a drift detected after a period of

stability. In this case, weights should be determined by classifiers most recent

performance, and the cutoff parameter should be drastically reduced (bd) to

accommodate the new environment. After this period, the cutoff can be

incrementally increased by a factor 9d in the direction of the optimal parameter

for steady drift as seen in Figure 5.9.

3) Steady drift: drift is continuously being detected, and the sigmoid cutoff should

incrementally increase by a factor Is after a period of concept change and should

converge to some optimal condition bo.
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Figure 5.9: Illustration of dynamic sigmoid cutoff parameter b

The heuristic approach in Figure 5.10 relates the regularity of drift detections to the

parameter b which controls the amount of error to be included when computing classifier

weights. The justification for this approach is seen in a characterization of the cutoff

parameter b (see results in section 6.11.1). Alternate parameters can be inserted directly

into the sigmoid calculation. Note that only the cutoff parameter b is considered for

adjustment; characterization of the slope parameter a (see Appendix F) reveals that it has

little or no relation to the drift scenario.

When drift is detected (that is, when current time t equals time of drift tdrift ), we

check for stability (if tstable exceeds threshold y) and assign the either the drift factor bd

if the environment was previously stable, or assign optimality constant bo when the

environment was previously drifting.



b = bbd
tstable > Y
otherwise (5.27)

If drift is not detected at time t, we check for three situations by comparing stability time

tstable with threshold y.

(b + Od, tstable < y and b < bo
Os " tstable > y and b < b

bo0 otherwise
(5.28)

First, if concept change has recently been detected, b must be incremented by drift factor

Od until it reaches the optimality parameter b0. Second if the environment is stable, b is

< Reerto Learn++.NSE pseudocode for Steps 1-4 >
Input:
4

4

4

4

Optimality, stability, and drift constants bo, bs, bd
" Drift and stability factors Od' Os

Stability threshold, y
" Time of most recent drift tdrift
5. Dynamic Sigmoid Adjustment for computing the time-weighted average

of all normalized errors for the kth classifier hk
If t = tdrift

b= bd, tstable > Y (5.
bb, otherwise(

tstable = 0
Else

b + qd, 1
b= b+(Ps,

1b0, 0

tstable = tstable + 1
Endif

stable < y and b < bo
tstable > y and b < bs
therwise

For a E R
1 t kt

= (1 + e-a(t-k-b))' k t-k
Rj =t ro

_ - t-k
t_ t l a tt- , k ak k = 1, ... , t

i =O
< Refer to Learn+.NSE pseudocode for Steps 6-7>

27)

(5.28)

(5.29)

(5.30)

Figure 5.10: Dynamic sigmoid adjustment pseudocode



incremented by the stability factor q/' until it reaches the stability parameter bs.

Otherwise, b is given the optimality parameter b0 for steady drift. Parameter b is used in

the same way to calculate a classifier's time-weighted error as in the original method in

Learn++.NSE (Equations 5.29-5.30). The pseudocode in Figure 5.10 may be directly

substituted in Step 5 of the Learn++.NSE algorithm.



CHAPTER 6: EXPERIMENTATION AND RESULTS

6.1 MOTIVATION & ORGANIZATION

In this chapter, we provide an empirical analysis of Learn"+.NSE, along with its

variations, improvements, and comparisons to its competitors. In doing so, we seek to

answer the following questions:

* Is the proposed framework able to learn from a variety of non-stationary

environments?

* Is an ensemble of classifiers better than a single classifier? (confirm Wang's

assertion in [30])

* Is the Learn++.NSE weighting method better than an alternative weighting

technique or an unweighted ensemble? (contradicting Gao in [5])

* Which is preferable, online learning (e.g. DWM [29]) or the Learn +.NSE batch-

based approach?

* Is any type of controlled forgetting appropriate for any ensemble size?

o Compare age vs. error-based vs. average error-based vs. Streaming

Ensemble Algorithm (SEA), and temporary forgetting

* Is active drift detection worthwhile?

o Should the ensemble always be learning?



o Can the alteration of the Learn .NSE in various drift situations

successfully maximize the knowledge base?

Each of these topics is discussed based on learning from a variety of datasets

derived synthetically or from real-world phenomenon. Because of the high

dimensionality of most real-world datasets, it is difficult to visualize or quantify the driftll

that is occurring in any of the features. Statistical analysis can merely suggest whether

real concept drift is occurring within the data. and consequently it is difficult to surmise

when the environment actually changes. Thus, we introduce a number of synthetic

datasets which have been infused with specific drift scenarios.

Two training/testing scenarios can be simulated in our experiments for training and

testing on batches of the available data t,. as depicted in Figure 6.1 - Figure 6.2. A

batch of data can be imagined as a window which slides to include new data at each

concurrent time step. Classification describes the case where training (XTR) and testing

(xTs) data (size in and n. respectively) are selected randomly from the same environment

or window. The percentage h determines how many examples of data Dt are selected for

training.

m
V X XIR XIR 

.AIR

b% b% b% ib%

t t=1 t=2 t=3 t=T jt r r-, r --

n
Figure 6.1: Classification Learning Scenario
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Figure 62: Prediction Learning Scenario
Figure 6.2: Prediction Learning Scenario

Prediction is a more difficult (and realistic) task, where testing data XTR comes from a

window directly following the training data XTS. At each time step t, the windows shift

such that the training window begins where the previous training data ended in the

previous time step. All new data is first used as unlabelled testing data at time I and

made available as training data at time t + 1.

6.2 EXPERIMENTAL PROCEDURE & PERFORMANCE EVAI UATION

As we seek to evaluate and compare multiple learning algorithms to determine which (if

any) is superior, we will consider two approaches. We first calculate and compare the

average performance measures over time for each method, along with statistical analysis

to determine whether or not there is sufficient improvement of one method over another.

Multiple comparison of means using one-way ANOVA (Analysis Of Variance) over

repeated experiments determines significant difference among overall performances. The

Tukey-Kramer method test statistic with 95% confidence is used to make the comparison.

The second and most important performance measure is the time-based plot of

classification accuracy of hypothesis Hr on testing data (xi, yi):



At = 1 - - [Ht(x) yjJ (6.1)

Observing performance (correctly classified instances divided by total instances mt) over

time enables analysis of the knowledge base throughout the learning process, specifically

under various types of drift introduced throughout the course of an experiment. Each

performance point represents the average accuracy across all testing examples at that time

step (for the sake of visualization, further averaging may be necessary to create a smooth

plot). Each performance curve is accompanied by a moving confidence interval based on

at least 50 independent trials.

6.3 SYNTHETIC DATA

The use of synthetic datasets is necessary to provide accurate insight into the

aforementioned algorithm comparisons. First, it allows the isolation and simulation of

particular drift situations for observing an algorithm's behavior and performance. Since

the type, time, and rate of drift is defined beforehand, we can observe the learning

process before, during, and after drift with increased precision. Also, synthetic data can

often be more easily visualized by reducing feature dimensionality to two or three.

Finally, a Gaussian distribution is used for certain datasets, allowing us to calculate the

Bayes classification error and measure an algorithm's performance based on that

standard.

6.3.1 RANDOM GAUSSIAN DRIFT

Changing class distributions can be easily modeled as a set of Gaussian distributions with

changing parameters (mean and/or variance) over time. A two-dimensional



representation of the first dataset, a four-class drifting environment, can be seen in Figure

6.3; these distributions are governed by the parametric equations in Table 6.1. The rate

of drift for a particular class is dependent on the difference in mean and variance at the

beginning (t = 0) and end (t = 1) of a normalized time interval. This experiment

consists of 200 time steps between t = 0 and t = 1, and each training window is a

snapshot of 20 total points with equal prior probability. The knowledge base is tested at

each time step using a uniformly spaced grid of 1,024 (32 by 32) points.

t < 1/3 :I!l 1/3 < t < 2/3

Table 6.1 :Parametric equations fobr drifting Gaussian data
0<t< /3 1/3<t<2/3

I (T I 6_ U_ I U. I 6_ I 6_
C _ 2 5 1 1 6t 2 5 1 3

C, 8 5 1 1 8-9(t-13) 5 1
C, 5 2 3-6t 1 5+9(t- /3) 2 1 1
C 5 8 3-6t I 5+9(t- 1/3 8 I I

2/3<t<

C 2-6(t-2,3) 5-9(t-2/3 I 3-6(t-2/3 )
C, 5-3(t-2/3) 5-9(-2/3) I 1
C8 2 1 1
C,8 8 I



6.3.2 TRIANGIII.AR GAUSSIAN DRIIFT

A second model using a Gaussian distribution introduces the presence of cyclical drift.

The two dimensional representation in Figure 6.4 illustrates a single rotation of three

classes which are drifting in a triangular fashion according to the parametric table in

Table 6.2. The experiment consists of two rotations at a constant drift rate, and the

environment drifts between periods of high and low class separability. The duration of

the experiment is 200 time steps, and data arrives in batches of size 20.

t<1/12 1/12<t<1/6 1/6<t<3/12

U 2

3/12'

U 2

Figure

10 1 10

0 0

<t<1/3 1/3<t<512 5/12<t<1/2 +
10 10 10

0 0
5 8 10 0 2 5 8 10 0 2 5 8 10

6.4: Graphical representation of 3-class triangular drift (single rotation)

Table 6.2: Parametric equations lbr triangular Gaussian drift data
0<t<1/6 I/2<t<2/3 1/6<t<2/6 2/3<t<5/6

CC 5+18t 8-36t 2 2 8-36t 2 2 2
2C 18t 2-36t 2 2 5 i 18t 8-36t 2 2
8-36t 2 2 2 2+18t 2+36t 2 2

2/6<t<1/2 5/6<t<1

C I  2 18t 2-36t 2 2
C, 8-36t 2 2 2
C 5+18t 8-36t 2 2



6.3.3 RANDOM GAt SSIAN DRIF WI"I'H CLASS ADUI ION & REMOVAI.

This experiment contains four classes governed by a changing Gaussian distribution

(mean & variance). In addition to shifting joint probabilities tr each class, we also

introduce severe change in class balance. where classes are permanently added or

subtracted. Figure 6.5 graphically represents constant shift in distribution, where each

class is governed by the respective parametric equations in Table 6.3. This experiment

uses the same training/testing scenario as the other Gaussian data sets, and lasts 300 time

steps.

t<1/5

z D a 2 5 8

'( 3/5 < t < 4/5

- 8

I

4/5<t<1 t=1

2 r 2 r _ 1.

2 5 8 2 5 8 2 5 8

Figure 6.5: Graphical representation of 4-class Gaussian drift with class addition/removal



Table 6.3: Parametric equations for 4-class Gaussian drift with class addition/removal
0 < <1/5 1/5 < t<2/5

a a .
C1 2 5 1 2+5t 2 5 1+5t 3-5t
C2 5-5t 8 3-10t 1 4+20t 8 1 1
C3 5-5t 2 3-10t 1 4+20t 2 1 1
C4 N/A N/A N/A N/A N/A N/A N/A N/A

2/5 < t< 3/5 3/5 < < 4/5
C1 2 5-15t 2-5t 2-5t N/A N/A N/A N/A
C2 8 8-20t 1 1+5t 8 4+20t 1+2.5t 2-2.5t
C3 8-10t 2 l+10t 1 6-20t 2+30t 3-7.5t 1+2.5t
C4 5 5+15t 1 1 5+15t 8-30t 1+2.5t 1+2.5t

Cl1 N/A N/A N/A N/A
C2 8 8-30t 1.5 1.5
C3 2+30t 2 1.5 1.5
C4 8-30t 2 1.5 1.5

6.3.4 NON-GAUSSIAN DRIFT (CHECKERBOARD DATASET)

A non-Gaussian data set is derived from the canonical XOR problem, which resembles a

rotating checkerboard. As shown in Figure 6.6, the rotation makes this deceptively

simple-looking problem particularly challenging, as the angle and location of the decision

boundaries change rather drastically at each time step. The images show half of an entire

rotation (a =0 to a), indexed to the parameter a, where the axis of rotation is the lower

left corner of the sampling window. Note that after half a rotation, data are drawn from a

recurring environment, as the [7[ 27t] interval will create an identical distribution drift to

that of the [0 n] interval. In order to prevent training on identical snapshots of data and

increase complexity, random noise (10%) is introduced. Each training dataset is kept

particularly small, consisting of a mere 25 samples (total from both classes) drawn from

the sampling window. Providing the learner with minimal training data is an additional

challenge in this and other datasets.



(t=0 (1=7/8 (1=7r/4

=n/2 a= 7 7/8 (,=7

I igure 0.0: Rotating checkerboard dataset (single rotation. cr = to rt

All testing data is composed of 1,024 data points which are presented to the learner at

each time step. This resolution (32 by 32) is sufficient to evaluate the learner's ability to

approximate the sharp angles of the true decision boundary.

We introduce four variations of this dataset to observe the learner's resilience in

the presence of harsher environments with varying drift rate, that is, where the rate of

change in the distribution is not constant. This is accomplished by applying positive or

negative acceleration to the a parameter as it increases from 0 to 27r. A constant drift rate

is tested along with an exponentially increasing, pulsing, or sinusoidally fluctuating drift

rate. These varying drift rates are depicted in Figure 6.7.
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Figure 6.7: Variable a parameter for rotating checkerboard dataset

6.3.5 CONCLPI' CANGE (STREAMING ENSEMBLL ALwORIlM DAI'ASEL)

The SEA Concepts are a benchmark dataset developed by Street in [73], which has been

adopted by many algorithms as a standard test for concept change. The dataset is

characterized by an environment which undergoes extended periods without drift as well

as occasional sharp changes in the class boundary (concept change) rather than concept

drii. The environment consists of two classes of three features, although only two of the

features are considered relevant, and the third feature is simply noise. Class labels are

assigned based on the sum of the relevant features of the data, and are differentiated by

comparing this sum to a threshold which effectively separates classes by a two-

dimensional hyper-plane. For any data instance n. the sum of features (fi + f2) which

fall below the threshold 0 are assigned to class i, and the remaining data points belong to

class 2.

-i if fi +fn,2 <0 (6.2)
2 otherwise

103



At regular intervals of time, the threshold is changed, creating an abrupt shift in the class

boundary. Data is uniformly distributed between 0 and 10. and the threshold 6r is

changed three times throughout the experiment with increasing severity.

t=1/4 t=2/4

10 "d ," -
- 10 -

-N 5.+

Z4

00 '' K 10
n.5 5 5

10 0 Yx 100 8, 8 0 <t 50.25
t=314 e=/ _ J9, 0.25 < t 0.5

10 0 . 7, 0.5 < t 0.75*-H: ~ i 9.5, 0.75< t _1

If. (6.3)
0 ,.<. 10

5 I 5 5 ., 5

u10 0 y 10 0 y

Figure 6.8: SEA Concepts (labeled testing data)

[igure 6.8 depicts actual snapshots of all the testing data from each environment.

Training procedures are also followed from [73], where a total of 50,000 total points are

introduced as training data (25,000 points per class), and 250 points are introduced at

each time step. corresponding to a total of 200 time steps in the experiment from t=O to

I=1. In addition, 100% noise is added to training data as in [73]. A separate set of 50,000

total data points (no noise) are used for testing.

6.4 RiEAL-WORILD DATA

Real-world data, although ambiguous with respect to the presence concept drift, is a vital

standard for ensemble comparison. Performance with large-scale drifting data will not



only show whether or not an algorithm is consistent with a cognitive model, but will also

reveal an algorithm's practicality in real data environments.

Here, we introduce a series of datasets from a variety of sources, measuring

natural phenomena and large scale data trends. To some degree, it can only be assumed

that concept drift is occurring; however, we can also obtain some more certain knowledge

concerning class drift by using statistical analysis in an attempt to monitor trends in the

data.

For observing changes in either the class-conditional probability P(xlco) or prior

probability P(x), the Hellinger distance can be useful to compute the difference in

distribution between consecutive batches or windows of data in order to ascertain

whether or not the distributions are in fact changing. Note that this comparison requires

no assumption of the distribution of the data. The two distributions under comparison are

represented by data windows G and Q of a pre-determined size. Data is discretized into B

evenly spaced bins in a histogram-like fashion to approximate a distribution, forming an

approximation of the distributions, G and Q for the data windows G and Q. As in

equation (6.4) for computing Hellinger distance, each bin (denoted by j) is normalized

across all instances, and the summed square root of the distance between normalized bins

is averaged across all features F (denoted by i) for the final measurement.

1 .F 7B Q 2tj z  (6.4)
H2 (G, Q)= i=1 j=1 Ij Gi j Qi/

The advantage of this method over density estimators is that it simplifies the observation

by considering all features. Yet, simplification comes at a potential cost of over-

generalization. Appendix A provides a characterization of Hellinger distance for the



synthetic data sets in order to show that it is a viable tool for measuring relative changes

in an environment. Each example figure also provides a plot of the measured drift rate,

which is simply the derivative of Hellinger Distanced over time. Examples such as the

checkerboard datasets show the relative changes in Hellinger distance, as well as changes

in the drift rate among the four drift scenarios (constant, pulsing, exponential, and

sinusoidal). Yet, the implementation of Hellinger distance supports the reasoning in

Section 3.4.2 (p.42) that data distribution tracking is unreliable for drift detection. In

order to see meaningful results, the amount of data per window was increased

significantly for the synthetic datasets; otherwise, the output for Hellinger distance would

appear mostly as noise. Thus large amounts of data are required to properly approximate

and compare distributions.

We also provide a description of class balance for each real-world dataset. For

monitoring class balance, we use a simple approach which counts the number of class

occurrences in consecutive windows of data, and calculates the percentage of each class

within that window. Two window sizes are used in the plots used; larger window size

gives a more general description, and a smaller window size is an example of the actual

size used in a given experiment.

6.4.1 NEW SOUTH WALES ELECTRICITY DATASET

The electricity pricing domain is a sequence of data relating various aspects of time and

power transfer to fluctuations in the price of electricity in New South Wales, Australia.

This dataset is becoming one of many benchmark non-stationary problems in the field

[29;80]. The data consists of features acquired twice per hour, and covers a span from



May 7, 1996 to December 5. 1998. where class labels correspond to either an increase or

decrease in the price of electricity. A total of six features are used to represent the time

(time of day, and day of week). electricity demand (New South Wales and neighboring

Victorian state). and the scheduled transfer of electricity between the two states. Classes

are balanced relatively evenly (58% "up". 42% "down") among the 27,549 instances, and

there is a consistent presence of both classes over the course of time, as seen in the

graphical representation (Figure 6.9) of class balance over time, where percentages are

based on the population of the "up" class within consecutive windows of the data.
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Figure 6.9: Percent class ("up") instances per window

Two plots are provided for Ilellinger distance. The class-dependent lellinger distance

(Figure 6.10) estimates change and drift rate of each class over time, whereas class-

dependent Hellinger distance (Figure 6.11) represents general changes in the data.

regardless of class. The plots indicate some gradual drift in the class-dependent

distribution as well as some more severe levels of drift in the class-independent

distribution (t = 0.2, t = 0.35, t = 0.6).
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Table 6.4: Learning scenarios for electricity pricing data

Scenario Classification Prediction
Experiment A B D E
Trainin days 24 48 15 24
Testin da s 24 48 15 24

Two learning scenarios (prediction and classification) are based on a small window size

spanning either a half or a whole day's worth of readings (24 and 48, respectively) as

shown in Table 6.4. Recall that in classification, both training and testing data are drawn

randomly from a single batch, and in prediction, testing data comes from a batch after the

training batch.

6.4.2 NEBRASKA WEATHER DATASFI

The National Oceanic and Atmospheric Administration (NOAA), part of the United

States Department of Commerce (LSDC). has compiled a database of weather

measurements from over 7,000 weather stations worldwide. Records date back to the

mid-1900's providing a wide scope of weather trends. Daily measurements (Table 6.5)



include a variety of features (temperature, pressure, wind speed, etc.) as well as a series

of indicators for precipitation and other weather-related events. The Offutt Air Force

Base in Bellevue, Nebraska was selected for experimentation based on its extensive range

of over 50 years (1949-1999) as well as its full feature set. Also, the geographic location

is known to undergo diverse weather patterns, making it a viable classification or

prediction problem where the measurements represent the features for a given weather-

related event (rain, fog, snow, etc.).

Table 6.5: Weather data measurements and event indicators

DAILY MEASUREMENTS

Temperature Dew Point

Sea Level Pressure Station Pressure*

Visibility Average Wind Speed

Max. Sustained Wind Speed Maximum Wind Gust*

Maximum Temperature Minimum Temperature

INDICATORS ("yes" or "no")

Fog Rain

Snow Hail

Thunder Tornado
*removed because number of missing features>20%

Eight features are select from the list above, based on their availability; a missing feature

rate above 15% was deemed insufficient for use. For the selected feature set, missing

values were synthetically generated beforehand using an average of the instances before

and after the missing one. Class labels are determined based on the binary indicator(s)

provided for each daily reading. Using rain as the class label yields the most balanced

dataset consisting of 18,159 daily readings, 5,698 (31%) of which are positive ("rain")

while the remaining 12,461 (69%) are negative ("no rain") as depicted in Figure 6.12.
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Figure 6.12: Seasonal observation ofclass balance (120 days per window)

With respect to drift, the Hellinger distance particularly indicates periodic drift and drift

rate in both the class-conditional (Figure 6.13) and class-independent (Figure 6.14)

measurements, which would be expected on a year-round basis as weather patterns

change in a cyclical fashion. T he presence of periodic drift is also supported in the

empirical results presented later, revealing a clear cyclical drift in the class descriptions

over the course of each year.
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Both classification and prediction are simulated as learning scenarios using this

dataset. Training/testing combinations are grouped by weeks, months, or entire seasons

(Table 6.6). These variations will indicate whether it is best to learn an environment

(season) altogether or in smaller consecutive segments. The particular risk of small a

small batch size is class imbalance.

Table 6.6: Learning scenarios for weather data

Scenario Classification Prediction
Experiment A B D E
Training (days) 15 30 14 30

Testin (days) 15 30 14 30

6.4.3 SPAM DATASET

The Spam Data set is a text mining problem introduced in [75]. Each instance represents

an email transaction, described by a 499-bit binary stream, where each bit represents

whether or not a particular word occurs in the text. The dataset includes a total of 9,500

messages, each of which are labeled as "spam" or "legitimate." The balance of classes

favors "legitimate" emails (73%) over spam emails (27%) as shown in Figure 6.15, while

also showing periods of severe imbalance (t = 0.5, t = 0.3, t = 0.9) where only one

class is available in the data. Two learning scenarios are used (classification and

prediction), each consisting of a window size of 20. Because the features are binary

representations of words, the Hellinger distance does not yield a useful description of this

environment.
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6.5 GNI RAI P[ RIORMANCF AND BASF CI ASSIFIR ANAL YSIS

A key advantage of the Learn .NSE algorithm is its functionality across all types of

generative and descriptive base classifier models. In our experiments, the Nai've Bayes

(NB) classifier is use as a representative generative model, characterized by its

assumption of a normal Gaussian distribution with class-conditionally independent

features. Nai've Bayes associates each class as a Gaussian distribution (mean and

variance) to represent class-conditional likelihood P(xlw) for data xv in class w.

Classification on unlabelled testing data is accomplished by choosing the class with the

highest probability according to Bayes rule. The Na'fve Bayes classifier is expected to

perform rather well in cases where the data is indeed of a normal distribution, and to

suffer to some degree when this is not the case. The Multi-Laer Prc~pron (MLP)

neural network is a descriptive model which maps the appropriate output classes to input

training examples using a network of nodes with weighted connections. Connection



weights are adjusted in the training process using a back-propagation algorithm in order

to provide an appropriate fit to the training data. Because the algorithm is designed to

approach optimality, it may yield unique (though similar) solutions when trained on

identical datasets. The greatest disadvantage of the MLP networks in comparison with

other methods in this study is time required for training and testing, especially as data

features increase. The Support Vector Machine (SVM) is an optimization approach to

finding a margin between classes that maximizes distance while also accounting for noise

and overlap in the data. A key advantage of the SVM is that it will yield an optimal

result; additionally, the SVM boasts a significant improvement in training and evaluation

time over the MLP.

Before discussing the comparison of base classifiers, let first us discuss some

notable characteristics of the learner on each dataset. These characteristics are displayed

in two ways: a comparative performance plot over time, and an ANOVA comparison plot

for averaged performance. Each individual performance curve is color-coded and en-

closed with similarly colored background shading, denoting the 95% confidence interval

over at least 50 independent trials. The axis includes both the normalized time 0 < t < 1

as well as the number of time steps. The legend includes the name of the corresponding

method or algorithm, averaged performance over time, and the 95% confidence interval

across all trials. Note that some performance plots are smoothed using an average of

previous performance points, allowing for better visual comparison. Smoothing also

accounts for the initial performance of 0% in some plots in which there is an insufficient

number of points available to compute the average.



The first performance plot shown is the random Gaussian drift dataset (Figure

6.16); this dataset is a relatively separable problem that undergoes steady gradual drift,

and is therefore learned rather easily by the ensemble.
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The triangular Gaussian drift dataset (Figure 6.17) is slightly more difficult

because of the significant amount of class overlap as classes drift from one point of the

triangle to another. This change in the separability of the data accounts for the

periodicity of the performance curves.

In the class addition/removal dataset (Figure 6.18), we make three observations:

(1) the drop in performance following the addition of a fourth class (t = 0.4), (2) the

increase in performance when class 1 is removed (t = 0.6), and (3) the significant

changes in performance from t = 0.6 to t = 1 as a result of low and high class

separability.

The notable characteristics of the SEA dataset (Figure 6.19) are the convergence

of performance during periods of no drift, and the ability of the learner to react to concept

change that is introduced at quarterly intervals between t = 0 and t = 1. This

experiment is a good test for both the stability and plasticity of an algorithm.

The prominent attributes of performance curves on the checkerboard data (Figure

6.20-Figure 6.23) are the four periods during the experiment at which the data appears in

perfect right angles (a in multiples of r /2); this is the most easily learned data

environment and is manifested in the spikes in performance (especially the MLP and

SVM). Performance increases over the latter half (a = r to 2r) are indicative of the

learner's ability to recall the environments which were learned in the former half

(a = 0 to rT).

Performance curves on the weather prediction data (Figure 6.24) appear to also

indicate some level of annual periodicity, relative to the cyclical seasonal change in the

data.
The electricity data (Figure 6.25) appears to undergo little or no cyclical change,

by nature of the randomness of performance.



Finally, with regard to the spam data (Figure 6.26), we note the periods from

t = 0 to t = 0.1, t = 0.3 to t = 0.4 and t = 0.8 to t = 1 yield high performance results

because only one class is present.
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The comparison of average performance using ANOVA is provided at the

conclusion of this section in Figure 6.27 for all results that were previously discussed, as

well as some additional learning scenarios ("pred" for prediction, and "clas" for

classification) for real-world datasets. This plot serves as an additional support to the

general observations to be made in the plots of performance averages over time. Each

ANOVA plot displays the average performance of a particular method, accompanied by a

confidence interval. Any overlap among intervals denotes a lack of statistical

significance between any two methods over the entire experiment.

For the Na'ive Bayes classifier, results in the synthetic experiments support the

reasoning that the classifier will learn and accurately predict data from a Gaussian

distribution (Figure 6.16-Figure 6.17), even surpassing generative models in some case.

However, performance is significantly diminished when data is non-Gaussian, as seen in

the checkerboard dataset (Figure 6.20-Figure 6.23) and spam dataset (Figure 6.26). Poor

performance on the spam dataset may also be related to the binary nature of the input

data, although this is mostly speculation.

The MLP and SVM architectures, consisting of a small number of free

parameters, can be set to accommodate the provided data sets with little or no tuning

across experiments. MLP neural networks are trained with an error goal of 0.01 and 25

hidden layer nodes. The SVM classifier is structured with a polynomial kernel of order 6

for synthetic data and a more generalized order of 2 for real-world data. The purpose of

this work is not the optimization of these parameters; rather, it is the comparison of

methods and algorithms under identical parameters - it is quite possible that the provided

MLP and SVM parameters can be tuned for an even better performance in a given



experiment. The most important consideration in parameter selection is the prevention of

overfitting to ensure that the classifiers are learning a general distribution, and not

"memorizing" snapshots of training data.
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In general. all memory characteristics are consistent across each base classifier models.

including the following:

Data-related performance peaks - some environments are simpler to learn than others.

One example can be seen in the triangular drift data (Figure 6.17), where performance

increases during periods when distributions are most separate, lying on the three points of

the triangle. Another example can be seen in the checkerboard dataset (Figure 6.20).

where the environment at every multiple of a = ir is simple to learn, this is least

noticeable in the NaYve Bayes performance curve because of the classifier's difficulty in

representing the complex, non-Gaussian dataset.



Memory recall is apparent in all experiments infused with recurring environments, such

as the triangular Gaussian drift (Figure 6.17) and checkerboard datasets (Figure 6.20-

Figure 6.23). Learn++.NSE is clearly able to utilize prior knowledge in order to boost

performance, regardless of the base classifier.

Reaction to different types of drift - specifically, this refers to the trends during various

drift rates (degraded performance when drift increases, and vice versa) depicted the

checkerboard data (Figure 6.20-Figure 6.23) as well as concept change (sharp drop in

performance followed by recovery period) in the SEA Concepts (Figure 6.19) and class

addition/removal (decrease in performance when classes are added, and vice versa) in

Figure 6.18.

6.6 CLASSIFIER ENSEMBLE VS. SINGLE CLASSIFIER

A key outcome observed throughout all experiments is between the performance of the

ensemble of base classifiers and that of the single most recent classifier. This observation

reveals, first and foremost, whether or not it is even worthwhile to maintain old

knowledge. We observe in nearly every experiment the overall superiority of the

ensemble over a single classifier. Momentary dips in the Learn++.NSE ensemble are most

often explained by periods of sharp drift (SEA Concepts, checkerboard with pulsing drift

rate, electricity,), during which prior knowledge serves little or no purpose and therefore

has a negative (baggage) effect on the ensemble decision. These are but momentary

lapses before the ensemble learner is able to catch up. The superiority of the

Learn"+.NSE ensemble is not a trivial benchmark, for it proves that prior

knowledge/classifiers do indeed carry significant information relevant to the current



environment. If this were not the case, then the entire effort to learn and store classifiers

would be in vain.

6.7 ENSEMBLE WEIGHTING COMPARISON

This section discusses computational intelligence approaches to knowledge base

organization techniques using ensemble weighting. What makes the Learn++.NSE

weighting method unique compared to others is the use of the penalty distribution for

computing error, as well as the sigmoidal, time-based error weighting for computing the

classifier voting weight. Here we show three comparisons which display the specific

effects of taking these measures. First we observe a comparison with an un-weighted

ensemble, where all classifiers receive equal voting power. Second is the Adaboost

weighting equation from which Learn++.NSE weighting is derived. It is important to note

that henceforth, we refer to Adaboost as an implementation of its weighting method, and

not an implementation of the Adaboost algorithm. Adaboost weighting differs from

Learn++.NSE weighting in that (1) error is represented by the percent misclassification,

and (2) weights are calculated based on a classifier's current error only. The final

comparison is the weighting method proposed in [35] for the ACE classifier, which

combines Adaboost-type weighting with a temporary pruning method.

Learn++.NSE appears to be the most consistent performer throughout all

experiments, boasting its ability to best organize/weight classifiers, especially when

environments are recurring (triangular drift and especially the checkerboard

experiments). Learn++.NSE strikes a good balance between stability and plasticity with

its superior ability (1) to react quickly to periods of severe drift (Figure 6.33-Figure 6.34),



concept change in the SEA dataset (Figure 6.3 1), as well as class addition in the Gaussian

drift experiment (Figure 6.30); and (2) its ability to converge when there is little or no

drift, as in checkerboard (Figure 6.33, Figure 6.35) and SEA (Figure 6.31) datasets.
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The performance of the unweighted ensemble throughout the synthetic

experiments (Figure 6.28-Figure 6.35) clearly shows that it is not a viable scheme for

evaluating the knowledge base. Performance in real-world scenarios is improved, yet

exceeds that of a single classifier only in certain electricity and weather datasets (all
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shown in ANOVA plots in Figure 6.39), and not in the spamn dataset (Figure 6.38). Good

performance on the weather data can be partially explained by the fact that mnost

know~ledge is relevant at any given point in time because of the recurrence of

environments on a yearly basis.
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In general, such a passive approach to knowledge categorization is simply not

prudent, even for the prediction problems in the real-world experiments. This seriously

conflicts with some key assertions made by Gao in [5] which favor an unweighted

ensemble. They key problem with supporting an unweighted ensemble is the

unwillingness to assume that data from consecutive batches of data (from training to

testing) will come from similar environments. However, Gao's notion appears to ignore

the equally important learning effect known as baggage. Without some level of classifier

categorization, irrelevant classifiers are bound to degrade classification performance.

Adaboost weighting appears to be most useful in drifting environments where

class distributions are slow-drifting and simple in nature (i.e. Gaussian datasets in Figure

6.28-Figure 6.30). However, datasets with added complexity (checkerboard data), drift

rate, or concept drift (SEA data) reveal many inconsistencies in performance. At some

point in each of these examples, performance drops at best to the same level as a single

classifier and sometimes lower. Performance curves on checkerboard data with pulsing

drift rate (Figure 6.32), checkerboard data with sinusoidal drift (Figure 6.35), and SEA

concepts data (Figure 6.31) specifically indicate an inability to react quickly to severe

drift cases. The possible cause for these shortfalls is discussed further on.

ACE attempts to mitigate the problem of baggage by only using the best-

performing classifiers. Here, the underlying problem with ACE appears to be an

undersampling of the knowledge base, where classifiers which may contain relevant

information are ignored because they do not fall within the confidence interval for

classifier selection. This method causes a tradeoff between baggage reduction and

effective use of knowledge, which is closely related to the confidence interval used for



selecting experts. Learn*-.NSE appears to better mitigate this problem using both the

penalty distribution and timne-hased error weighting
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Figure 6.39: ANOVA comparison for ensemble weighting methods (SVM)
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Although there is seldom a case where any weighting method significantly out-

performs another, the Learn++.NSE ensemble appears to be the most consistent performer

throughout all experiments, and makes the most effective use of prior knowledge

especially in the presence of recurring data (Figure 6.32-Figure 6.35). General trends can

especially be seen in the ANOVA comparison in Figure 6.39. Other methods show

moderate improvement during recurring environments, yet none are as significant as

Learn++.NSE.

The effectiveness of using prior data can be further illustrated using a 3-

dimensional plot, showing the weight assignment for each classifier through the course of

the entire experiment, averaged over 50 trials (Figure 6.40-Figure 6.46). Specifically, a

comparison is made between the Learn++.NSE and Adaboost weighting techniques (ACE

weights are simply a pruned version of Adaboost weights). Log-based plotting is used to

accentuate the differences in weight over time. In each plot, the diagonal from the upper

left to the lower right is the weight granted to the most recent classifier. The shaded area

below the diagonal represents weights of previous classifiers at a given time. Zero

weight is indicated by a lack of color.

It is interesting to note the effectiveness of using prior knowledge; this is

especially noticeable in experiments involving recurring environments which are shown.

The triangular Gaussian drifting data, checkerboard data, and even the weather data all

show periodic recall of prior knowledge created 100 time steps, 200 time steps, and 365

days (or 1 year) ago, respectively. The periodicity in the weather data is especially

interesting and gives further evidence that the classes are indeed drifting in a periodic

nature. Additional dataset comparisons can be seen in the Appendix B.



Overall, there is an outright difference in what could be called the presupposition

about old classifiers' effectiveness. Learn .NSE gives significant preference to more

recent classifiers and tentatively weights prior classifiers. whereas Adaboost seems to

have a more polarized approach, giving either a very high or a very low weight to

classifiers regardless of age. This difference can only be attributed to Learn' .NSEs

penalty distribution, which credits classifiers specifically for performing well on

unknown examples. Such a weighting method tends strongly toward the most recent

classifiers, and appears to be appropriate and clearly advantageous over the sensitivity of

Adaboost. (NOTE: the term Adaboost refers to its weighting technique. not the Adaboost

algorithm)
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Figure 6.40: Classifier weights for Learn'*.NSE (left) and Adaboost (right) ensemble
weighting methods for triangular Gaussian drift data
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Figure 6.41: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for checkerboard data (constant drift)
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Figure 6.42: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for checkerboard data (pulsing drift)
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Figure 6.43: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for checkerboard data (sinusoidal drift)
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Figure 6.44: Classifier weights for Learn '.NSE (left) and Adaboost (right) ensemble
weighting methods for checkerboard data (exponential drift)
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Figure 6.45: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for SEA concepts data
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Figure 6.46: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for weather prediction data (training window: 2 weeks)

6.8 ONI INI vs. BA IIII LARNINI

The Dynamic Weighted Majority (DWM) algorithm [29] is perhaps the foremost

benchmark for online learning in non-stationary environments. It follows that an

implementation of DWM would be the best selection for comparison between an

instance-by-instance learning model versus the Learn .NSE batch-learning model.

DWM maintains an ensemble of online classifiers which are re-weighted at the arrival of

a new data instance. The ensemble is supplemented periodically according to an update

parameter p. The ensemble may also be pruned if classifier weights decrease below a

given threshold. A more detailed description of the algorithm, along with pseudocode is

-~- -I



available back in Section 4.1.5 (p.53). Accompanying this comparison of DWM and

Learn' .NSE is a characterization of DWM according to the update period p, at which

classifiers are removed or added according to the error threshold 0 (a value of 0 = 0.5 is

used as in [29]).
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Figure 6.47: DWM weight
characterization, random Gaussian drift
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Such a characterization indicates the practicality of adding and removing knowledge on

an online basis and reveal how~ often an ensemble should be updated (supplemented or

pruned).
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There are noticeable differences in performance in the characterization of DWM

with respect to the update period. Although difficult to generalize, we see that a frequent

update period increases sensitivity to noise (SEA dataset in Figure 6.50), and infrequent

updating also has the potential to significantly degrade performance, especially in periods

of gradual change as in the Gaussian drift experiments (Figure 6.47-Figure 6.49) and the

gradual drift period during the checkerboard dataset with sinusoidal drift rate (Figure

6.51). An update period between 5 and 25 typically has the highest overall performance;

this is most clearly shown in the ANOVA comparison in Figure 6.55.

DWM features a higher recovery rate than Learn++.NSE in the presence of

concept change because of its quick, instance-by-instance re-weighting, as seen in the

SEA dataset (Figure 6.50). Conversely, we also see the tradeoff of low convergence in

stationary environment that follows the concept change.

Performance curves on the checkerboard dataset show that DWM is ineffective in

learning complex, non-Gaussian distributions (Figure 6.51 and Appendix C). These

results, along with the triangular drift problem (Figure 6.48) and weather data experiment

(Figure 6.52), also reveal DWM's inability to retain and effectively re-use prior

knowledge in the presence of recurring environments. No performance increase can be

seen on those datasets which feature previously seen distributions. Although the

ensemble size is not strictly limited and could theoretically maintain old knowledge, the

combination of ensemble weighting and expert removal are simply too severe to make

that knowledge effective at a future point in time.
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Figure 6.55: ANOVA characterization for Dynamic Weighted Majority update period
(Naive Bayes)

A key advantage of Learn -.NSE lies in the independence of base classifier. Whereas in

some cases DWM may match or outperform Learn '.NSE using the Naive Bayes

classifier (e.g. the electricity dataset in Figure 6.53 and spain dataset in Figure 6.54). the

batch based ensemble can be further enhanced by selecting an MLP neural network or



SVM as seen in the ANOVA tests in Figure 6.55, where performances of Learn++.NSE

using alternative base classifiers are displayed.

Once again, Learn++.NSE achieves consistent performance across synthetic and

real-world datasets which is unmatched by the online-learning competitor DWM.

Finally, we note that although Learn++.NSE is batch-based, most of these experiments use

a minimal training data size, allowing for increased sensitivity to gradual changes and

sufficient (yet improvable) sensitivity to abrupt change.

6.9 CONTROLLED FORGETTING (PERMANENT)

In this section, we compare the aforementioned controlled forgetting/pruning methods

which establish a threshold or limit on the size of the knowledge base. The ensemble size

is maintained by removing irrelevant classifiers to make way for the addition of new

classifiers. Methods for determining which classifier is least relevant include age-based

pruning, current error-based pruning, average error-based pruning, and Streaming

Ensemble Algorithm (SEA). Each approach is evaluated for a given experiment under

three select ensemble size thresholds for short-term memory (k=5), medium-term

memory (k=25), and long-term memory (k=100). Results are accompanied by

performance plots of a single classifier and the Learn++.NSE without pruning. Select

experiments are illustrated along with ANOVA comparison plots, and additional results

are located in Appendix D.
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In general, appears to be no significant difference between discarding classifiers based on

classifier performance (current or averaged) or classifier age, the ensemble size

notwithstanding.
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Figure 6.62: Long-term memory (k=100)
for SEA concept data

Figure 6.63: ANOVA comparison for SEA
concept data with varying ensemble size

This similarity in performance is due to the fact that, most of the time, it is the oldest

classifier that is least relevant. Time-related forgetting is in many ways implicative and

consistent with human cognition.

The SEA algorithm is effective, yet only for a short-term knowledge base. Here,

the pruning criterion is not the only consideration. Although SEA uses an error-based
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checkerboard data (constant drift) for checkerboard data (constant drift)
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rule for discarding classifiers, it evaluates the ensemble using simple majority vote. In

[73], Street claims no difference between a weighted and unweighted combination rule.

This assessment is accurate for a medium sized ensemble of 25 or less with certain

datasets; however, this claim does not apply across all datasets in this study, nor does it

apply to larger ensemble sizes. The larger the knowledge base, the greater the propensity
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for irrelevant knowledge to be present. Since SEA uses a simple majority vote, the

baggage from old classifiers increases over time and severely affects performance.
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Figure 6.69: Medium term memory (k=25)
for checkerboard data (pulsing drift)
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In periods of sharp drift (SEA concepts and checkerboard with pulsing drift), the large

weighted ensemble also suffers slightly from baggage, as virtually all prior knowledge

becomes irrelevant. In this case, the reaction time is significantly reduced (i.e. improved)

with forgetting. inversely proportional to the size of the knowledge base.
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for spamn prediction data (m= 20)

Figure 6.79: ANOVA comparison for spain
prediction data (in=20) with varying

ensemble size

Performance curves from the checkerboard data (Figure 6.64-Figure 6.71) show that

limiting memory using pruning is crippling to the knowledge base, even in long-term

memory w ith a large ensemble size of 1 00. The detriment is often independent of

recurring environments and applies to real-world data as well. as we see a characteristic

increase toward the performance of Learn".NSE as the ensemble size grows. Inability to



retain knowledge from previous environments is the most convincing evidence that

pruning should be avoided.

A characterization of individual algorithms over ensemble size is provided in the

Appendix D for all remaining experiments. The results of these experiments also support

the notion that as the ensemble size is increased, performance will approach to that of the

unpruned (i.e. unlimited) knowledge base. The exception is periods of severe drift or

concept change during which the weight allocation method is unable to negate irrelevant

knowledge.

6.10 CONTROLLED FORGETTING (TEMPORARY)

Temporary pruning (or expert selection) provides benefits that are unique from

permanent pruning, since classifiers which are ignored at a given time may in fact be

used at a later time because no memory is permanently lost. Temporary pruning avoids

the catastrophic nature of the previous forgetting methods. Conversely, temporary

pruning does not benefit from the computational complexity and memory reduction that

accompanies a limited knowledge base. Experts are selected based on performance; thus,

the entire knowledge base must still be evaluated and categorized at each time step even

though not all knowledge will be used.

Experiments show that expert selection methods are most useful during periods of

severe drift or concept change. The significant outperformance over Learn++.NSE in the

checkerboard data with pulsing drift (Figure 6.85) and SEA dataset (Figure 6.83)

indicates the presence of some baggage in the Learn++.NSE ensemble that can be

eliminated with temporary pruning.
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Real-world data provides a variety of inferences, as seen (generally) in the ANOVA plots in

Figure 6.91. Because the weather dataset is periodic in nature over the course of the entire

experiment, the learner benefits from using all available knowledge as seen in Figure 6.88,

since Learn".NSE significantly outperforms other methods. Drift in the electricity dataset

appears to be more sporadic in nature; thus, the possibility of classifier baggage is increased,

143
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0



and the expert selection methods may provide an improvement over the unpruned ensemble

(Figure 6.89). The same reasoning applies to the spain dataset as well, where the pruned

ensembles perform no worse than unpruned Learn".NSE (Figure 6.90).
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A confidence interval approach for selecting experts has some inconsistencies in these

experiments, and is mostly limited by in the way it is implemented under the

Learn' .NSE architecture. The weight analysis in Section 6.7 shows that the most recent

classifier at any given time commonly gets a very large weight compared to older



classifiers. Confidence interval-based pruning uses the best performer as the basis for

creating the confidence interval. In a practical sense, it is difficult a confidence interval

sufficiently large confidence interval to include other classifiers. Consequently, the

expert ensemble that is selected often excludes classifiers with relevant knowledge,

resulting in decreased performance as seen in synthetic experiments undergoing levels of

steady drift (Figure 6.84, Figure 6.86-Figure 6.87).

The constant percentage selection method uses the final classifier weight as the

basis for ignoring irrelevant classifiers; this appears to be a more consistent and effective

basis for selecting classifiers. Percentage-based temporary pruning is seldom out-

performed by the unpruned Learn++.NSE ensemble and is able to provide a significant

improvement when baggage is a threat, that is, times of severe drift or an occurrence of

drift after a stationary period as seen in the checkerboard (Figure 6.85-Figure 6.87) and

SEA datasets (Figure 6.83). In nearly all experiments, percentage-based selection

performs at least as good as the entire ensemble, and often significantly outperforms,

especially (1) when the knowledge base grows (increased baggage), and (2) when drift is

severe (few relevant classifiers).

Considering the issue of stability and plasticity in non-stationary environments,

we realize that the amount of knowledge that should be used at a given time may vary

depending on the drift situation. It is quite possible that consistent improvements can be

attained across a variety of drift rates by selecting (or ignoring) and appropriate

percentage of the knowledge base. This, however, would necessitate a variable

percentage to be employed.
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6.11 DRIFT D ETECTION

Earlier, we discussed the role of the supervisor or teacher in the learning process as it

pertains to both human and computational learning. Scaffolding theory provides some

general guidelines which include monitoring changes in either the incoming data itself or
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the learner's ability to accommodate new data. The purpose of actively detecting

changes is two-fold: (1) to allow the learner to make adjustments that best suit the current

environment, and (2) to control the flow of data used for training.

We have introduced a drift-detection mechanism described in Section 5.3, which

is a performance-based approach to tracking changes from batch to batch as data are

presented to the learner. The approach occurs in three phases: training, configuration,

and testing. The training phase prepares a drift-detection classifier hDD on the current

environment using M examples from the training data presented to the learner. The

mechanism is configured by calculating performance on a configuration sequence (size

CS ) of data batches; the distribution (mean and variance) of this sequence of

performances is used as the null hypothesis 90 to which future performances will be

compared. Alternative hypotheses are introduced using the confidence intervals about

the null hypothesis. The log-likelihood of belonging to either distribution is calculated

within the configuration sequence and is then used to obtain the threshold for the test. In

the testing phase, likelihood is computed on performance values for each incoming batch

of data. Drift is detected when the configuration threshold is exceeded.

Before putting the performance-based drift detection mechanism to use, it is first

important to understand the effect of the parameters involved with configuring the

detection test. These include the training size M of the drift detection classifier hDD, the

configuration size CS over which to form the null and alternative distributions (Poo and

Pol, respectively), and the proportion of the confidence interval for computing the

alternative distributions. The training size M should be sampled as the minimum yet

ample amount of data from the current environment in order to create a stable



performance curve for configuring the test. The configuration size CS should be larger

than the number of batches used to train the configuration classifier, and should be

sufficient sample size from which to create a distribution according to the Central Limit

Theorem. Finally, the alternative distributions, initially defined by a 95% confidence

interval, can be heuristically constrained with the goal of preventing a confidence interval

that is too wide or too narrow for considering changes in performance, ultimately

resulting in false detections. For example, if there is high variance within the

configuration window, the alternative distributions could be drastically different from the

null distribution (perhaps beyond 50% away), thus increasing the propensity for false

negative detection. False negative detection occurs when the drift detector is not

triggered, even though drift is in fact occurring. Because performance is limited between

0% and 100%, we reason that a cap can be put on the distance between a null and

alternative hypothesis, which represents the maximum distance that an alternative

hypothesis may lie on the performance chart. Similarly, in the rare event that training

data is so invariant as to produce a miniscule difference between the null and alternate

hypotheses, we impose a limit on the minimum confidence interval to prevent false-

positive detection. False positive detection occurs when the drift detector is triggered,

even though drift has not actually occurred.

A configuration size of CT = 20 is selected for the experiments described below

(Figure 6.92-Figure 6.95). This value was selected among alternative configurations (see

Appendix E) as it provides a good balance between noise-sensitivity (low CT) and

overgeneralization/slow reaction (high CT).



The following illustrations show both the performance over a single run of the

drift detection mechanism as well as the generalized performance over multiple

experiments. In each figure. plot A (upper) shows the performance of the drift-detection

classifier over time, showing the configuration phase (black), confidence interval derived

from the configuration (green). the testing phase (blue). and each instance where drift is

detected (red). Below each drift detection instance is a number indicating which

alternative hypothesis triggered the detection. The number °1" refers to the lower

confidence interval (m- in the legend), and *2" refers to the upper confidence interval

t t
(A) ? 0 03 05 08 140 (A) p0 03 05 08 10

0.8F 2 .08-
2 2 2

~'6 ~s 6t I

2 1 2 1 1
0.2- 0.2

0 50 100 150 200 0 100 200 300 400
(B) 30 (B) 30

1201 CONCEPT - 20
i- I CHANGE

0.10 0- a o 10

50 100 150 200 0 100 200 300 400
Time Step Time Step

Figure 6.92: Classifier performance (Plot Figure 6.93: Classifier performance (Plot
A) and detection % per time step over 50 A) and detection 0 per time step over 50
trials (Plot B) for drift detection on SEA trials (Plot B) for drift detection on

concepts data checkerboard data (constant drift)

Configuration
* Testing

Drift Detected
----- Confidence Interval

1: m-
2: m+



(m- in the legend). Plot B (lower) shows the percentage of drift detection over 50 trials

in order to indicate consistency of the drift detector.

The detection mechanism is effective in tracking all types of changes in the data.

Experiments such as the SEA (Figure 6.92) and checkerboard (Figure 6.93-Figure 6.95)

datasets are especially useful in evaluating accuracy in a variety of drift situations. For

environments which are changing steadily such as the constant drift checkerboard data

(Figure 6.93), we see a steady decrease in classifier performance from the time of

training, often within the configuration period as well, clearly showing that drift detection
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classifier is becoming less and less competent as the data changes. Intervals of gradual or

no drift are characterized by low variance within the configuration period.

The mechanism is not perfect, however. From these examples we see some level

of inconsistency, mostly in the form of false-positives caused by over-sensitivity. For

instance, the periods of stationarity in the SEA data are prone to yield false positives, in

part because of noise within the training data (Figure 6.92). Also, within the

checkerboard data with varying drift rates (Figure 6.94-Figure 6.95) there is some

inconsistency with detecting the stationary periods, resulting in some false positive

detection. The repercussions of these inconsistencies are discussed within the following

sections as the drift detection is applied to different scaffolding techniques.

6.11.1 SIGMOID CHARACTERIZATION FOR APPROPRIATE PARAMETER SELECTION

A primary goal of using drift detection is to provide the learner with information

necessary to alter its architecture to best accommodate the current environment. In this

section, we investigate a particular aspect of the Learn".NSE ensemble architecture

which could possibly be adjusted dynamically in accordance with the information

provided by a drift detector.

The time-weighted sigmoid is an important feature of the Learn++.NSE algorithm

used in the process of calculating classifier weights. The purpose of the sigmoid is to

give more consideration to recent error and less consideration to prior error for a given

classifier when determining its voting weight. Two parameters, a and b, define the

sharpness of the cutoff and the location of the cutoff (how much prior error to consider),

respectively. The purpose in characterizing these parameters is to determine whether or



not they may be optimized or heuristically adjusted to accommodate various drift

situations.
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Characterization across synthetic datasets reveals that the slope parameter has little or no

effect on performance in different drift situations (see Appendix F), whereas the cutoff

parameter h does. In characterizing this parameter under different base classifiers (Naive
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Bayes, SVM, MLP), we discover that the Naive Bayes classifier yields most descriptive

characterization in different drift situations (Figure 6.104), whereas the other base

classifier models are less descriptive (as seen in the Appendix F).
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In some cases, there is little difference in performance for environments with gradual

drift and relatively simple decision boundaries (Figure 6.96). Yet, for some more complex

steady drift cases (triangular Gaussian drift in Figure 6.97 and checkerboard data in Figure

6.100), there appears to be a near-optimal setting for the cutoff parameter (b = 10); this is

indicated by the ANOVA plots as well (Figure 6.104). This value is used as a default in the

base Learn++.NSE model. However, in periods with little or no drift (Figure 6.101, Figure

6.103), a higher cutoff is preferred, so as to allow more previous error to be considered in

calculating weights. In periods of sharp drift, especially following periods of stationarity

(Figure 6.98-Figure 6.99, Figure 6.101), a low cutoff is desired to allow knowledge to be

categorized only on the new environment that has suddenly appeared. These trends are the

rationale behind choosing sigmoid values in accordance with the drift detection mechanism.

There are two primary concerns that arise from this analysis. The first is the lack of

consistency across base classifiers, and second is the lack of consistency in the crossover to

real-world datasets, as seen in the ANOVA plots (Figure 6.104).

6.11.2 SCAFFOLDING TECHNIQUES USING DRIFT DETECTION

Two scaffolding techniques have been introduced under the architecture of the Learn++.NSE

algorithm to work in conjunction with the drift detection method. The fading technique is

introduced to prevent unnecessary growth of the knowledge base with redundant knowledge;

this is accomplished by halting the learning process during a perceived stationary

environment. Both methods are tested across all base classifiers on all experiments; for

steady drift cases, both methods should perform the same as the base Learn++.NSE model,

since default sigmoid parameters are used and all incoming data are relevant. However, as

periods of slow and fast drift appear, we begin to see characteristics arise from the methods

under consideration.



Table 6.7: Dynamic sigmoid adjustment procedure

Drift Scenario Response for sigmoid cutoff
parameter b

Stationary Period (no drift detected after Increment by 0s = until it reaches
y = 15 time steps during testing phase) stationary parameter b,.

Set to the drift constant bd and
incremented by drift factor 'Pd until

Drift detected during stationary period inghe nt by for
reaching the optimal constant bo for
steady drift

Steady drift (drift detected before 15 time
Set to optimal constant bo for steady driftsteps during testing phase)

Dynamic sigmoid adjustment (DynSig is a heuristic approach to attaining

appropriate classifier voting weights for the current drift situation. The approach

evaluates the drift situation, and alters the sigmoid cutoff parameter h, as seen in the

proposed pseudocode in Section 5.3.2, Figure 5.10. The basic protocol, along with exact

parameter values used in all experiments, can also be seen in Table 6.7.
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Overall, the dynamic sigmoid ensemble performs no worse than the Learn'.NSE

ensemble. In cases involving slow drift (checkerboard datasets in Figure 6.108-Figure

6.109), dynamic sigmoid adjustment is a statistically significant improvement over

Learn T.NSE as it is able to assign appropriate sigmoid parameters for computing
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classifier voting weights. These trends, however, only appear to apply convincingly with

the Nafve Bayes classifier; the sigmoid parameter does not have as strong effect on other

base classifiers, such as the SVM (Figure 6.111 -Figure 6.114).
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Fading, which only learns for a short time after drift is detected, offers good recovery

during periods of sharp drift (checkerboard with pulsing drift in Figure 6.108) or concept
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dilemma, where the fading ensemble suffers less from the effect of old irrelevant

knowledge. However, recovery in sharp drift is merely one side of the tradeoff, for

fading has an overall negative effect on the ability to acquire knowledge compared to

Learn++.NSE. The effect is most noticeable in the Na've Bayes experiments and is less

significant when using SVM as the base classifier. SVM and other descriptive models

are able to better represent complex data compared to Naive Bayes; thus, SVM is able to

perform better with limited knowledge. In general, the under-performance of fading,

regardless of base classifier, leads us to conclude that there is little redundant knowledge

acquired during the training of the Learn++.NSE ensemble. As a final note, fading boasts

one important feature that can be claimed by no other ensemble-limiting algorithm (e.g.

pruning): that is, the ability to store and recall old knowledge. This is especially seen the

checkerboard experiments using SVM (Figure 6.111-Figure 6.113). For this reason,

fading offers an excellent alternative to permanent pruning techniques in the effort to

reduce the size of memory.

Both dynamic sigmoid adjustment and fading techniques are highly dependent on

the drift detection mechanism being used. Although the inconsistencies (described in

Section 6.11) in the drift detection mechanism appear to have a minimal effect on

performance, let us note some examples that reflect the importance of accurate drift

detection. False negatives (drift not detected when it has actually occurred) are

particularly detrimental, often the result of high configuration variance and a

corresponding large confidence interval. In such a case, the fading model ceases to learn

even though a new environment has been encountered - this is evident in the second SEA



concept shift in Figure 6.106 (Naive Bayes) and Figure 6.114 (SVM), as the ensemble

converges to a low
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performance value on the third concept because it has not learned it. In the dynamic

sigmoid model, a false negative detection results in an increase of the cutoff parameter

and causes less-than-optimal weighting for the ensemble, and is indicated by a slight lag

in recovering to the third SEA concept.



CHAPTER 7: CONCLUSIONS

The primary goal of this work was to find the best approach to constructing and

organizing knowledge for classification using a computer framework that incorporates an

ensemble of classifiers as the knowledge base. The rationale, guidelines, and constraints

of our computational approach are guided significantly by the rudimentary principles in

human cognition and learning theory, developed primarily by Piaget and Vygotsky.

We have developed an algorithm which takes a batch-based approach to

incremental learning that can operate independent of the base classifier selected.

Classifiers are evaluated and categorized in a unique way according to their relevance in

the current learning environment using a penalty weight such that the basis of evaluation

is specifically those points which were previously unlearned. Furthermore, a time-

weighted sigmoid is imposed on each classifier's error, so that each classifier will be

weighted only on its most recent error (pertaining to the current environment).

7.1 CONTRIBUTIONS OF THIS WORK

The Learn++.NSE algorithm is designed to accommodate the guidelines which have been

suggested from the theories of computational and human learning. Specifically, we

address how human cognition principles correlate to the Learn+.NSE computational

model. The homology of human learning terminologies and specific features of the

Learn++.NSE algorithm are diagramed in Figure 7.1.
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In addition to evaluating the algorithm itself our work has introduced several

variations to the model for the purpose of proving or improving the algorithm's

effectiveness. These variations include the following:

1. Alternate weighting methods - Adaboost weighting is a similar form of the

proposed method in Learn++.NSE, yet it includes neither the penalty weight for

calculating classifier error nor the time-weighted sigmoid over classifier error for

calculating voting weights. The weighting scheme proposed in the Adaptive

Classifiers Ensemble (ACE) algorithm extends Adaboost weighting with an

expert selection method. Finally, the use of simple majority allows us to

determine whether or not weighting is desirable in the first place.

2. Permanent ensemble pruning - the algorithm is augmented with three separate

controlled forgetting scenarios to impose a limit on the size of the knowledge

base. Classifiers are discarded with respect to their age, current error, or

average error.

3. Temporary ensemble pruning (expert selection) - the number of classifiers used

for a final ensemble vote is limited by imposing a performance cutoff (using a

confidence interval about the best performer) or by ignoring all members with

weights that do not lie in a top percent range. Classifiers are selected with

replacement and may be used at any future time step.

4. Drift Detection - a performance-based detection mechanism is derived from the

CUSUM quality control test. The test requires few parameters and is self-

configuring, making it adaptable to a variety of drift scenarios without tweaking.

Performance of a single batch classifier is monitored over time for significant



changes in the log-likelihood between a null hypothesis and two alternative

hypotheses (upper and lower confidence interval bound).

5. Dynamic Sigmoid Adjustment - this heuristic approach alters parameters in the

time-weighted sigmoid which can be optimized for peak performance in certain

drift situations.

6. Fading - derived from scaffolding theory, this approach operates on the basis that

the learner should acquire knowledge only when a new environment is seen.

Thus, it works in tandem with the drift detection mechanism to only create

classifiers in periods after drift is detected.

Each of these variations, along with comparisons with other incremental learning

algorithms, are tested using a wide scope of synthetic and real-world experiments which

incorporate an extensive range of drift situations.

7.2 SUMMARY OF EXPERIMENTAL FINDINGS

The Learn"+.NSE algorithm boasts the following advantages over alternatives. With

regard to weighting, Learn++.NSE maintains a consistent high performance compared to

approaches taken by Adaboost, Adaptive Classifiers Ensemble (ACE), and an

unweighted ensemble. Additionally, Learn++.NSE consistently and significantly

outperforms a single classifier in nearly all experiments, providing convincing evidence

in support of using an ensemble-based learning system.

There is an evident tradeoff between decreasing the knowledge base (using

controlled forgetting/ensemble pruning), and maintaining a maximum level of

performance, especially in the ability to recognize recurring environments. Another



apparent tradeoff lies between attaining high convergence in a stationary environment

and reacting quickly in the midst of severe drift or concept change. These are especially

supported by the results seen in the controlled forgetting and fading experiments. These

results clearly support the notion that decreasing the size of the knowledge base

(classifier ensemble) will often result in some performance degradation, with the

exception of severe drift and concept change.

The Streaming Ensemble Algorithm (SEA) is implemented as an additional

comparison. In a number of synthetic experiments, SEA yields exceptional performance,

exceeding all other algorithms; yet, this only occurs when the ensemble size is very

small. SEA yields inferior classification results (even below single classifier

performance) when the ensemble size is increased; this poor performance can be

attributed to the use of simple majority vote. The requirement for a small ensemble size

is extremely limiting to the SEA algorithm, as it is unable to store prior knowledge for

potentially recurring environments.

An online learning comparison is introduced using an implementation of the

Dynamic Weighted Majority (DWM) algorithm. DWM is seemingly effective for

keeping up-to-date with the current environment (good plasticity) as the ensemble

pruning rule consistently maintains a small ensemble size. The downfall of the algorithm

is that the update rule for adding and removing knowledge effectively nullifies the ability

to handle recurring data (poor stability). Another limitation is the base model for

classification; DWM is limited to online learners such as Na'ive Bayes or decision trees,

which tend to be inferior in classifying complex, non-Gaussian datasets.



The parameter-based drift detection mechanism offers a good alternative to

detecting drift using either data distribution estimation (often complex and/or

inconsistent) or classifier architecture (too ambiguous). Being consistent with the

guidelines of scaffolding theory, the drift detector is able to, with good consistency, track

changes in an environment using the performance of a single classifier. One weakness

that arises is the inability to differentiate between moderate drift and severe drift.

Scaffolding approaches (dynamic sigmoid adjustment and fading) proved to be

useful developments, although neither provided a striking improvement over the basic

Learn++.NSE model. Dynamic sigmoid adjustment provides significant improvements

with the ability to heuristically improve classifier categorization; however, its

effectiveness appears to be limited to the Naive Bayes classifier. Parameter

characterization with other base classifier models shows insufficient differentiability

across the scope of drift situations. Fading improves the learning model by increasing

performance during severe drift and concept change (good plasticity), yet overall there is

a decrease in performance (inferior stability), although not always statistically significant,

especially when descriptive models are used. On one hand, we see that, in general,

continual learning is preferable. However, in considering how to best reduce the size of

the knowledge base, ensemble fading is superior to all other methods in that it is the only

approach that allows retention of prior knowledge. The inability to do so is inherent in

the other approaches that were tested (Learn++.NSE with pruning, Streaming Ensemble

Algorithm, and Dynamic Weighted Majority).

In conclusion, Learn +.NSE strikes a good balance in the stability-plasticity

dilemma, evident by its consistent behavior across all experiments, and the ability to



recall old knowledge effectively. In cases of severe drift or concept change, we see that it

leans slightly to the side of stability; however, the scaffolding (drift detection) and/or

pruning techniques are effective in mitigating these effects.

7.3 RECOMMENDATIONS FOR FUTURE WORK

Throughout this study, we investigate a combination of many heuristic approaches.

Finding the optimal algorithm which will handle all drift scenarios appears to be an

unreasonable goal. This is best known as the "no free lunch" theorem. However, there

are some measures that can be taken to bring ensemble systems, specifically

Learn++.NSE, closer to the ideal functionality.

While heuristics are often effective and even necessary, it would be desirable to

take a new look at the Learn++.NSE algorithm from an optimality standpoint. The study

reveals specific scenarios where characteristics (such as pruning, or the sigmoid

parameters) perform better at one time, and worse at another. It is simple to observe

these trends, but it is much more difficult to apply these characteristics on-the-fly by

relating them to drift in some way. This requires more than a drift-detection mechanism

that provides a binary response ("drift" or "no drift"). Rather, the quantity and rate of

drift are desired in order to properly adjust the learner's architecture.

It is always difficult to know how much experimentation is enough, as there is an

infinite number of scenarios that can be tested, both synthetic and in the real-world. The

ensemble of datasets presented in this work are quite comprehensive; yet, they could

benefit from additional scenarios, namely 1) multi-class real-world datasets, especially

those with class addition and removal, 2) synthetic datasets involving other non-Gaussian



distributions, 3) combining concept change with recurring environments, and 4) an

learning in the presence of unbalanced data.

Other analyses which were not explicitly covered in this work, such as

noise/random drift tolerance, window size sensitivity, and the use of decision tree models

for classification would be beneficial for the sake of completeness.
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APPENDICES

APPE NDIX A: HLL INGE R DiITANCE F OR SYNTTI C DATASET S

Window Size. 300, batch size. 15

x 0L -
0 02, 04 06 .

01 5j

0 0.2 04 0.6 0.8 1

0 15t

Glass 1 -. - Class 2 - -- Class 3 ".Class 4'

A.l : Class-based Hellinger distance for
random Gjaussian drift data with class

add it ion/removal

01 .5
111

Window Size: 300, batch size: 15

01

= 0 0.2 0.4 0.6 0.8 1

0

0 0.2 0.4 0.6 0.8 1

I Class -1 - - Class 2 - - Class 3 "" Class 4i
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distance for random Gaussian drift data
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distance for random Gaussian drift data



Window Size. 300. batch size: 15

10

00 02 04 0.6 0!8 1

-01 ~

0 0.2 0.4 0.6 0.8 1

Glass 1 -"- Class 2 - -- Class 3

Figure A.5: Class-dependent H-ellinger
distance for triangular Gaussian drift data

Window Size: 100, batch size: 10

I0

0 0.2 0.4 0.6 0.8 1

0.04

0021

_00'

0.3-

0 1

00

0.04:

a 0.02 ,

S 0'

-002-

-0.04'
0

Window Size 300, batch size. 15

0.2 0.4 0.6 0.8 1

0.2 04 0 e 0 8 1

Figure A.6: Class-independent H-ellinger
distance for triangular Gaussian drift data

0 0.2 0.4 0.6 0.8 1

Class 1 -"- Class 21

Figure A.7: Class-dependent H-ellinger
distance for SEA data



Window Size. 300, batch size. 15

S041-

- Oil-Z02

01

0 0.2 0.4 0.6 0.8 1

C" 0

° 0.05.x "-

0 1
0 0.2 0.4 0.6 0.8

Class 1 -. - Class 2'

Figure AX8 Class-dependent Hellinger
distance for checkerboard data (pulsing

drift)

Window Size. 300, batch size -.15
m 04

0.3
o

502-'*

0
0

w0.05

Window Size: 300, batch size: 15

s0.4

-0 1

=0'
0 0.2 0.4 0.6 0.8 1

S0.05 -1

X 05

0 1'-
0 0.2 0.4 06 0.8

Clas 1-- Class2

Figure A.9: Class-dependent Hellinger
distance for checkerboard data (sinusoidal

drift)

Window Size: 300, batch size: 15

I.. v 04-

.2 0. 0. 0.8 1 0 0. 4 0. .

- ~~~005 "~' .

0.4 0.6 0.8 1 02 0t4 0.6 08 10 ' _ _ 02

Class 1 -- Class 2

Figure A.] 10: Class-dependent Hellinger
distance for checkerboard data (exponential

drift)

Class 1 -"- Class 2

Figure A. II: Class-dependent Hellinger
distance for checkerboard data (constant

drift)
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Figure B. 1: Classifier weights for Learn '.NSE (left) and Adaboost (right) ensemble
weighting methods for random Gaussian drift data
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Figure B.3: Classifier weights for Learn .NSE (left) and Adaboost (right) ensemble
weighting methods for electricity prediction data (training window size: 24)
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APPENDIX C: DWM CI IARAC[FR/A [ION AND COMPARISON
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Figure D. i: ANOVA comparison for pruning with short-term memory (SVM)
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Figure D.2: ANOVA comparison for pruning with medium-term memory (SVM)
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Figure D.3: ANOVA comparison for pruning with long-term memory (SVM)
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Figure D.10: Long-term memory (k=100)
for triangular Gaussian drift data
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Figure D.12: Short-term memory (k=5) for
checkerboard data (exponential drift)
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Figure D.13: Medium-term memory (k=25)
for checkerboard data (exponential drift)
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Figure D.14: Long-term memory (k=100)
for checkerboard data (exponential drift)
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Figure D. 17: Medium-term memory (k=25)
for checkerboard data (sinusoidal drift)
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Figure D.24: ANOVA Comparison for age-based pruning characterization
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Figure D.25: ANOVA Comparison for error-based pruning characterization
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Figure D.26: ANOVA comparison for average error-based pruning characterization
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Figure D.27: ANOVA comparison for Streaming Ensemble Algorithm (SEA) pruning
characterization
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APPENDIx E: DRIFT DETECTION
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Figure E. I : Classifier performance (upper)
and detection 00 per time step over 50 trials

(lower) for drift detection on random
Gaussian drift data
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Figure E. 2: Class ifier performance (upper)
and detection % per time step over 50 trials

(lower) for drift detection on triangular
Gaussian drift data
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Figure E.3:Classifier performance (upper)
and detection 0 per time step over 50 trials

(lower) for drift detection on random
Gaussian drift data with class

addition/removal
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Figure E.4: Classifier performance (upper)
and detection 0 per time step over 50 trials
(lower) for drift detection on checkerboard

data (exponential drift)
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Figure F .5:Classifier performance (upper)
and detection 0 per time step over 50 trials

(lower) for drift detection on weather
prediction data
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Figure E.6:Classifier pertbrmance (upper)
and detection 0 per time step over 50 trials

(lower) for drift detection on electricity
pricing data
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APPENDIX F: SIGMOID CI IARAC I FRIZA IION FOR SU PPORT Vi CTOR MACHINE (SVM)
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Figure F. 1: Sigmoid characterization for
random Gaussian drift data

Time Step

80 120

0 0.2 0.4 0.6 0.8 1
Time Step

ing; -: 6UL 
: 9

b=10 63.9 - 0.6
- b=25: 634 - .680

0: :-. 1- - 3 ,

Figure F.2: Sigmoid characterization for
triangular Gaussian drift data
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Figure F.4: Sigmoid characterization for
checkerboard data (constant drift)
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Figure F.5: Sigmoid characterization for
checkerboard data (pulsing drift)
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Figure F.6: Sigmoid characterization for
checkerboard data (exponential drift)
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Figure F.7: Sigmoid characterization for
checkerboard data (sinusoidal drift)

Figure F.8: Sigmoid characterization for
SEA concept data
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