432 research outputs found

    Investigation on electricity market designs enabling demand response and wind generation

    Get PDF
    Demand Response (DR) comprises some reactions taken by the end-use customers to decrease or shift the electricity consumption in response to a change in the price of electricity or a specified incentive payment over time. Wind energy is one of the renewable energies which has been increasingly used throughout the world. The intermittency and volatility of renewable energies, wind energy in particular, pose several challenges to Independent System Operators (ISOs), paving the way to an increasing interest on Demand Response Programs (DRPs) to cope with those challenges. Hence, this thesis addresses various electricity market designs enabling DR and Renewable Energy Systems (RESs) simultaneously. Various types of DRPs are developed in this thesis in a market environment, including Incentive-Based DR Programs (IBDRPs), Time-Based Rate DR Programs (TBRDRPs) and combinational DR programs on wind power integration. The uncertainties of wind power generation are considered through a two-stage Stochastic Programming (SP) model. DRPs are prioritized according to the ISO’s economic, technical, and environmental needs by means of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The impacts of DRPs on price elasticity and customer benefit function are addressed, including the sensitivities of both DR parameters and wind power scenarios. Finally, a two-stage stochastic model is applied to solve the problem in a mixed-integer linear programming (MILP) approach. The proposed model is applied to a modified IEEE test system to demonstrate the effect of DR in the reduction of operation cost.A Resposta Dinâmica dos Consumidores (DR) compreende algumas reações tomadas por estes para reduzir ou adiar o consumo de eletricidade, em resposta a uma mudança no preço da eletricidade, ou a um pagamento/incentivo específico. A energia eólica é uma das energias renováveis que tem sido cada vez mais utilizada em todo o mundo. A intermitência e a volatilidade das energias renováveis, em particular da energia eólica, acarretam vários desafios para os Operadores de Sistema (ISOs), abrindo caminho para um interesse crescente nos Programas de Resposta Dinâmica dos Consumidores (DRPs) para lidar com esses desafios. Assim, esta tese aborda os mercados de eletricidade com DR e sistemas de energia renovável (RES) simultaneamente. Vários tipos de DRPs são desenvolvidos nesta tese em ambiente de mercado, incluindo Programas de DR baseados em incentivos (IBDRPs), taxas baseadas no tempo (TBRDRPs) e programas combinados (TBRDRPs) na integração de energia eólica. As incertezas associadas à geração eólica são consideradas através de um modelo de programação estocástica (SP) de dois estágios. Os DRPs são priorizados de acordo com as necessidades económicas, técnicas e ambientais do ISO por meio da técnica para ordem de preferência por similaridade com a solução ideal (TOPSIS). Os impactes dos DRPs na elasticidade do preço e na função de benefício ao cliente são abordados, incluindo as sensibilidades dos parâmetros de DR e dos cenários de potência eólica. Finalmente, um modelo estocástico de dois estágios é aplicado para resolver o problema numa abordagem de programação linear inteira mista (MILP). O modelo proposto é testado num sistema IEEE modificado para demonstrar o efeito da DR na redução do custo de operação

    Smart Sustainable Mobility: Analytics and Algorithms for Next-Generation Mobility Systems

    Get PDF
    To this date, mobility ecosystems around the world operate on an uncoordinated, inefficient and unsustainable basis. Yet, many technology-enabled solutions that have the potential to remedy these societal negatives are already at our disposal or just around the corner. Innovations in vehicle technology, IoT devices, mobile connectivity and AI-powered information systems are expected to bring about a mobility system that is connected, autonomous, shared and electric (CASE). In order to fully leverage the sustainability opportunities afforded by CASE, system-level coordination and management approaches are needed. This Thesis sets out an agenda for Information Systems research to shape the future of CASE mobility through data, analytics and algorithms (Chapter 1). Drawing on causal inference, (spatial) machine learning, mathematical programming and reinforcement learning, three concrete contributions toward this agenda are developed. Chapter 2 demonstrates the potential of pervasive and inexpensive sensor technology for policy analysis. Connected sensing devices have significantly reduced the cost and complexity of acquiring high-resolution, high-frequency data in the physical world. This affords researchers the opportunity to track temporal and spatial patterns of offline phenomena. Drawing on a case from the bikesharing sector, we demonstrate how geo-tagged IoT data streams can be used for tracing out highly localized causal effects of large-scale mobility policy interventions while offering actionable insights for policy makers and practitioners. Chapter 3 sets out a solution approach to a novel decision problem faced by operators of shared mobility fleets: allocating vehicle inventory optimally across a network when competition is present. The proposed three-stage model combines real-time data analytics, machine learning and mixed integer non-linear programming into an integrated framework. It provides operational decision support for fleet managers in contested shared mobility markets by generating optimal vehicle re-positioning schedules in real time. Chapter 4 proposes a method for leveraging data-driven digital twin (DT) frameworks for large multi-stage stochastic design problems. Such problem classes are notoriously difficult to solve with traditional stochastic optimization. Drawing on the case of Electric Vehicle Charging Hubs (EVCHs), we show how high-fidelity, data-driven DT simulation environments fused with reinforcement learning (DT-RL) can achieve (close-to) arbitrary scalability and high modeling flexibility. In benchmark experiments we demonstrate that DT-RL-derived designs result in superior cost and service-level performance under real-world operating conditions

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book

    Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids

    Get PDF
    Energy management systems (EMSs) are nowadays considered one of the most relevant technical solutions for enhancing the efficiency, reliability, and economy of smart micro/nanogrids, both in terrestrial and vehicular applications. For this reason, the recent technical literature includes numerous technical contributions on EMSs for residential/commercial/vehicular micro/nanogrids that encompass renewable generators and battery storage systems (BSS) The volume “Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids”, was released as a Special Issue of the journal Energies, published by MDPI, with the aim of expanding the knowledge on EMSs for the optimal operation of electrical micro/nanogrids by presenting topical and high-quality research papers that address open issues in the identified technical field. The volume is a collection of seven research papers authored by research teams from several countries, where different hot topics are accurately explored. The reader will have the possibility to benefit from original scientific results concerning, in particular, the following key topics: distribution systems; smart home/building; battery energy storage; demand uncertainty; energy forecasting; model predictive control; real-time control, microgrid planning; and electrical vehicles

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Smart Grid Projects in Europe - Lessons Learned and Current Developments

    Get PDF
    The main goal of this study is to collect a wide inventory of Smart Grid projects in Europe and use project data to support analysis on trends and developments. The report looks into several aspects of the Smart Grids landscape to describe the state of the art of their implementation, the emerging hallmarks of the new electricity system and the foreseeable developments. A key focus of the Report is to describe how Smart Grid projects address and respond to the EU energy policy challenges and to point out the main benefits and beneficiaries. Particular attention is devoted to identifying the most important obstacles to investments and the possible solutions that could help to overcome them. e-book attached. S.N.JRC.F.3-Energy securit
    corecore