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Summary

To this date, mobility ecosystems around the world operate on an uncoordinated, inefficient and

unsustainable basis. Yet, many technology-enabled solutions that have the potential to remedy

these societal negatives are already at our disposal or just around the corner. Innovations in

vehicle technology, IoT devices, mobile connectivity and AI-powered information systems are

expected to bring about a mobility system that is connected, autonomous, shared and electric

(CASE). In order to fully leverage the sustainability opportunities afforded by CASE, system-

level coordination and management approaches are needed.

This Thesis sets out an agenda for Information Systems research to shape the future of

CASE mobility through data, analytics and algorithms (Chapter 1). Drawing on causal infer-

ence, (spatial) machine learning, mathematical programming and reinforcement learning, three

concrete contributions toward this agenda are developed.

Chapter 2 demonstrates the potential of pervasive and inexpensive sensor technology for

policy analysis. Connected sensing devices have significantly reduced the cost and complexity

of acquiring high-resolution, high-frequency data in the physical world. This affords researchers

the opportunity to track temporal and spatial patterns of offline phenomena. Drawing on a

case from the bikesharing sector, we demonstrate how geo-tagged IoT data streams can be used

for tracing out highly localized causal effects of large-scale mobility policy interventions while

offering actionable insights for policy makers and practitioners.

Chapter 3 sets out a solution approach to a novel decision problem faced by operators of

shared mobility fleets: allocating vehicle inventory optimally across a network when competition

is present. The proposed three-stage model combines real-time data analytics, machine learning

and mixed integer non-linear programming into an integrated framework. It provides operational

decision support for fleet managers in contested shared mobility markets by generating optimal

vehicle re-positioning schedules in real time.

Chapter 4 proposes a method for leveraging data-driven digital twin (DT) frameworks for

large multi-stage stochastic design problems. Such problem classes are notoriously difficult to

solve with traditional stochastic optimization. Drawing on the case of Electric Vehicle Charging

Hubs (EVCHs), we show how high-fidelity, data-driven DT simulation environments fused with

reinforcement learning (DT-RL) can achieve (close-to) arbitrary scalability and high modeling

flexibility. In benchmark experiments we demonstrate that DT-RL-derived designs result in

superior cost and service-level performance under real-world operating conditions.
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Chapter 1

Introduction – Information Systems

Research for Smart Sustainable

Mobility: A Framework and Call for

Action1

1.1 Background and Motivation

Transportation is a backbone of modern societies and is changing fast. Rapid innovation in ve-

hicle technology (Ba et al., 2013), connectivity, mobile technology (Hafermalz et al., 2020) and

AI-powered information systems (Nishant et al., 2020), among others, heralds what is probably

the deepest and most comprehensive transformation the industry has seen since the release of

the first production car, Ford’s Model T, in 1908 (Sperling, 2018). To this date, however, most

mobility ecosystems around the world still operate on an uncoordinated, inefficient and unsus-

tainable basis (Bruun and Givoni, 2015). Most traditional forms of transportation contribute to

climate change, produce hazardous pollution (World Health Organization, 2005), cause bodily

harm (World Health Organization, 2018) and/or are a major source of inefficiency (Cramton

et al., 2018; Cheng et al., 2020). Yet, many technology-enabled solutions that can remedy these

societal issues are already at our disposal or are just around the corner.

Researchers agree that tomorrow’s mobility system2 will likely be based on a multi-modal

portfolio of connected, autonomous, shared and electric (CASE) mobility resources, i.e., vehicles

1Large portions of this Chapter have been published in the following peer-reviewed academic jour-
nal: Ketter, W., Schroer, K., & Valogianni, K. (2022). Information Systems Research for Smart Sus-
tainable Mobility: A Framework and Call for Action. Information Systems Research, (September).
https://doi.org/10.1287/isre.2022.1167 (rated A+ in the VHB-JOURQUAL 3 ranking).
A preprint of the accepted journal version has been published under the following reference: Ketter, W., Schroer,
K., & Valogianni, K., Smart Sustainable Mobility: A Framework and Call for Action. Forthcoming at Information
Systems Research, Available at SSRN: https://ssrn.com/abstract=4160719

2Throughout this Chapter and Thesis we use the term mobility interchangeably with transportation. Our
definition of mobility only refers to physical mobility (as defined in Lyytinen and Yoo (2002)) of goods and people.
Broader aspects such as social mobility or labor mobility are outside the scope of this article.
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(Burns, 2013; Sperling, 2018). These emerging vehicle technology themes could enable society

to achieve a more favourable trade-off between the societal costs and the individual benefits

of physical mobility (Bruun and Givoni, 2015). Most scholars argue that, if implemented in

an uncoordinated fashion, these CASE vehicle technologies may do more harm than good.

Sperling (2018) paints a dystopian “doom and gloom” scenario in which autonomous vehicles

lead to increased use of road-based transport versus transit options, worsening congestion and

urban sprawl. Technological innovations in mobility, like many other human inventions, seem

to be a double-edged sword; a wicked problem with multiple interdependencies and inherent

complexities requiring data-driven system-level solution approaches (Ketter et al., 2016a).

Indeed, the wider research community has recognized these challenges. Yet, we find that the

IS community, with some exceptions (Greenwood and Wattal, 2017a; Babar and Burtch, 2020;

Zhang et al., 2020), has been a relatively silent observer of the intensifying discourse on CASE

mobility. We base this conclusion on a comprehensive literature search of leading mobility

(Scimago Journal Rank (SJR) Transportation Q1 Basket), management and IS journals (FT

50 list, UT Dallas list, IS Basket of 8) over the past five years, the results of which we have

visualized in Figure 1.1. We find that the IS contribution is relatively small in absolute terms.

While this may be due to a difference in size of the respective research communities, a trend

analysis of research output growth reveals that our community’s premier journal basket (IS

Scholars’ Basket of 8) is the journal category with the lowest relative growth in annual research

output over the past five years.

2016 2017 2018 2019 2020
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200
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#
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Annual CASE mobility research output
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Figure 1.1: Smart mobility research output of domain- and management/IS-focused journal
baskets.

Note: SJR = Scimago Journal Rank (Transportation Q1); FT50 = 50 journals used in FT
Research Rank; UTD = UT Dallas’ Naveen Jindal School of Management 24 leading business
journals; IS8 = AIS Senior Scholar’s Basket of Eight

We attribute this apparent lack of involvement of our community to the highly interdisci-

plinary, nascent and complex nature of the field. Yet, it is precisely this complexity coupled

with the increasingly digitalized and data-driven nature of the mobility domain that holds great
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opportunity for IS and calls for a much stronger involvement of our discipline. With ubiquitous

information flows from sensors and mobile devices in spatio-temporal resolution, we have an

abundance of information at our disposal which remains to be leveraged. We propose a com-

prehensive research framework and agenda that will guide IS research endeavours in utilizing

this new breadth of information to the benefit of users, mobility providers and the environment.

IS researchers are uniquely positioned to address Smart Sustainable Mobility challenges for two

reasons. First, IS research can draw on a powerful methodology toolbox comprising advanced

technical methods including algorithmic and mechanism design (Bichler et al., 2010), machine

learning and econometrics (Abbasi et al., 2015; Adomavicius et al., 2013; Barfar and Padmanab-

han, 2017; Dlugosch et al., 2020; Greenwood and Wattal, 2017a). Second, IS researchers combine

technical skills with deep expertise in large-scale behavioral and experimental studies and ex-

perience in analysing social aspects of various phenomena (Babar and Burtch, 2020; Burtch

et al., 2018; Oestreicher-Singer and Zalmanson, 2013; Osterwalder et al., 2005). It is this unique

socio-technical lens (Sarker et al., 2019) that differentiates IS researchers from other fields (who

might have either technical or social expertise) and enables them to confront large-scale societal

challenges head on (Ketter et al., 2016b). For example, IS research already plays a highly active

role in driving sustainability in the domains of energy (Dedrick, 2010; Melville, 2010; Watson

et al., 2010; Seidel et al., 2013; Ketter et al., 2018) and emissions management (Corbett, 2013),

where expertise in social and technical aspects is required.

This Chapter is structured as follows: I start by synthesizing current thinking on the future

of mobility and illustrate how four core innovations in vehicle technology (CASE) may result

in both intended and unintended consequences for mobility and its adjacent sectors. We then

explain why a Smart Sustainable Mobility future is not an inevitable outcome of technological

innovation and why achieving it requires careful management and guidance. We proceed by

arguing that IS can provide exactly this. We support our argument with a research framework.

Building on the developed framework, we formulate and detail seven core research opportunities

for IS. We end with a conclusion and call to action for our community.
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1.2 Scoping Smart Sustainable Mobility: A Challenge of Soci-

etal Scale

For the purpose of this commentary, mobility is defined to comprise physical mobility (i.e.,

transportation) of goods and people. We consider a mobility system to be smart and sustainable

if it can leverage, learn from, and act upon data, information and technology in such a way

that a sustainable balance between user preferences, business needs and the environment is

struck. Although there are obvious interdependencies between smartness and sustainability,

we consider both concepts to be distinct. Smartness refers to the digital nature of a mobility

system which enables real-time information exchange, coordination and automation (as afforded

by CASE vehicle technology). Sustainability extends beyond important environmental aspects

(e.g., Watson et al., 2010; Seidel et al., 2018) to socio-economic sustainability (safety, resource

allocation efficiency, user satisfaction, scope for profitable business models, etc.). Sustainability

can only be achieved if the coordination and automation opportunities offered by a smart system

are leveraged. It then follows that a mobility system can be smart without being sustainable

(meaning the system is digital and automated but not geared toward sustainability) but not the

other way round (i.e., to be sustainable, the mobility system must necessarily be smart).

There is evidence to suggest that the current mobility system fails to deliver on both smart-

ness and sustainability objectives. As an illustration, consider the following three social negatives

of traditional physical mobility consumption. First, conventional combustion-driven mobility is

energy intensive and produces greenhouse gas. It thus contributes substantially to the global

greenhouse gas emission balance sheet, with an estimated 27-28% of EU3 and US4 greenhouse

gas emissions attributable to transportation. As such, the sector represents a key lever in the

fight against climate change. We will refer to this social negative as SN1 – Climate Impact.

Second, road traffic is a major health and safety hazard. Transport-related pollutant emissions

that arise from hydrocarbon combustion threaten the health and well-being of urban popula-

tions (World Health Organization, 2005). Roughly 1.3m people die in traffic accidents each year

across the globe (World Health Organization, 2018) (social negative SN2 – Health & Safety Im-

pact). Third, road transport is space intensive and inefficient. In Los Angeles, America’s most

congested metropolis, commuters spend 102 hours in peak traffic per year (INRIX Research,

2018). Congestion has become a significant social and economic cost (Cramton et al., 2018),

while road and parking infrastructure takes up a significant share of space in urban environments

(social negative SN3 – Economic Impact). Below, we provide summary for clarity:

SN1 – Climate Impact: climate impact of mobility related to energy intensity of a vehicle

and carbon emissions of the associated fuel (gas or electricity production)

3https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-

gases/transport-emissions-of-greenhouse-gases-11
4https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11
https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-11
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
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SN2 – Health & Safety Impact: health and safety hazards inherent to transportation usage

(i.e., health impact of pollutant emissions and road accidents)

SN3 – Economic Impact: economic inefficiencies of transportation (i.e., social impact and

economic cost of time lost due to congestion, search for parking spaces, etc. and/or poor

access to transportation)

New vehicle technologies, some of which have been developed to address exactly these chal-

lenges, promise to improve the sector’s sustainability footprint. The transportation community

has brought forward diverse visions on the future of mobility technology (e.g, Burns, 2013;

Sperling, 2018). Four common themes emerge from this research – mobility is likely to become

connected (C), autonomous (A), shared (S) and electric (E). We adopt the acronym CASE to

describe these four distinct technological developments (Sperling, 2018)5. The concept encapsu-

lates a comprehensive body of research related to economic, strategic, operational and system

aspects surrounding electrical vehicles (EVs) (e.g, Papadopoulos et al., 2013; Masoum et al.,

2015), autonomous vehicles (AVs) (e.g, Wadud et al., 2016; Maciejewski and Bischoff, 2017),

shared vehicles (e.g, Firnkorn and Müller, 2015; Shaheen and Cohen, 2007) or a combination

of the three (SAEVs) (e.g, Chen et al., 2016; Dlugosch et al., 2020). We also include a fourth

observed attribute – connected – which we find important to distinguish particularly given the

effect of connected vehicles on the availability of and access to information (Mahmassani, 2016).

To varying extents, CASE technology can be applied to all kinds of mobility resources including

public transport (electric autonomous buses), micro-mobility (shared e-bikes and e-scooters) and

even aviation (e.g., autonomous and electric vertical take-off and landing pods). For clarity, we

explicitly define the dimensions of CASE below:

Connected (C): real-time digital signal exchange and communication capabilities of vehicle

resources in a ubiquitous computing sense. When connected, the vehicle can interface with

other actors and assets in the mobility system as part of a wider internet of things (IoT)

allowing for real-time vehicle- and system-level status monitoring and control/coordination

(Batty et al., 2012; Qi and Shen, 2018).

Autonomous (A): the ability of any type of vehicle to operate without external assistance,

which requires all intelligence to be contained within the vehicle. Six levels of automation

ranging from no automation (L0), assisted driving (L1), feet-off driving (L2), hands-off

driving (L3), eyes-off driving (L4) and full automation (brains-off) (L5) are typically dis-

tinguished (SAE, 2018). We consider L5 to be fully autonomous. Autonomy can be

enhanced by connectedness (C), i.e., via communication with other smart and connected

vehicles (vehicle-to-vehicle) or smart infrastructure (vehicle-to-infrastructure) (Mahmas-

sani, 2016).

5Other acronyms like ACES are also sometimes used



6 Smart Sustainable Mobility: A Framework and Call for Action

Shared (S): the simultaneous and/or sequential use of vehicle assets by a pool of users for

transportation purposes. Sharing can take many forms and can range from models similar

to renting (e.g., subscription car access like zipcar) to more archetypical sharing models

like BlaBlaCar (private ride sharing) (Sundararajan, 2016; Eckhardt et al., 2019).

Electric (E): vehicle propulsion via an electric motor. Two main pure electric vehicle propul-

sion technologies exist. These are (1) battery electric vehicle (BEV) technology, which

draws on a battery pack as the only source of energy supplying one or several on-board

electric motors, and (2) fuel cell electric vehicle (FCEV) technology, which uses a fuel cell

to convert chemical energy (typically from hydrogen) to electricity, which powers onboard

electric motor(s).

CASE mobility technology holds great promise in addressing the three social negatives (SN)

of mobility. Importantly, CASE technology, if adopted and utilized in a coordinated effort,

represents a core prerequisite and enabler of Smart Sustainable Mobility. Yet, research has also

revealed a range of potential adverse effects that may arise from uncoordinated adoption and

use of CASE. We synthesize these views in Table 1.1 where we show how each SN might either

be alleviated (↓) or aggravated (↑) by new CASE technology. It becomes apparent that the risk

of unintended consequences (i.e., a worsening of one or multiple SNs) may be substantial. Thus,

CASE technology may afford and result in a smart mobility system, but not necessarily one that

is also sustainable (i.e., a system in which unintended consequences are effectively managed and

avoided). Delivering on both smartness and sustainability objectives is complex and can only

be described as a ”wicked problem”.

However, CASE vehicle technology also provides the necessary tools to effectively address the

wickedness of Smart Sustainable Mobility. For example, ubiquitous data flows from connected

vehicles and mobile devices in spatio-temporal resolution provide real-time transparency on the

mobility ecosystem. Computational technologies exist that can store and process the resulting

data quantities in real time. Connected mobility allows for the broadcasting of instructions,

price signals or allocation decisions in real-time. Autonomous technology can ensure flexible and

rational execution of such instructions. Finally, shared and electric mobility, if coordinated well,

enable an overall more efficient and less resource intensive transport system. In the following

section, we describe the integral role that we foresee for IS as a discipline and for its scholars in

facilitating the journey toward Smart Sustainable Mobility.
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Table 1.1: Possible Societal Implications of CASE Vehicle Technology

Technology Intended Consequences Unintended Consequences

Connected
(C) – Lower energy consumption through co-

ordination, optimized routing and flow
(Wadud et al., 2016) (↓ SN1)

– Reduced congestion through real-time
coordination and routing (Batty et al.,
2012; Qi and Shen, 2018) (↓ SN3)

– Enhanced safety through early warning
and crash avoidance systems (Mahmas-
sani, 2016) (↓ SN2)

– Increased demand for road-based trans-
port for convenience and life-style rea-
sons (Mahmassani, 2016) (↑ SN1 &
SN3)

Autonomous
(A) – Lower energy consumption as a re-

sult of de-emphasized performance, eco-
driving, improved traffic flow and rout-
ing (Burns, 2013; Wadud et al., 2016)
(↓ SN1)

– Reduced congestion through real-time
coordination and routing (Mahmassani,
2016) (↓ SN3)

– Enhanced safety through heavily re-
duced scope for human error (Mahmas-
sani, 2016; Wadud et al., 2016) (↓ SN2)

– Reduced space utilization (e.g., for
inner-city parking) (Sperling, 2018) (↓
SN3)

– Increased demand for road-based
transport due to improved cost-
competitiveness against other options
(esp. when shared), therefore, higher
energy demand and congestion (Ax-
hausen, 2017) (↑ SN1 & SN3)

– Empty rides between pick-up and drop-
off resulting in further growth in energy
demand and congestion (Wadud et al.,
2016) (↑ SN1 & SN3)

– Longer commutes being accepted as
a result of higher convenience of au-
tonomous transport, therefore, urban
sprawl and further traffic and energy de-
mand increase (Sperling, 2018) (↑ SN1
& SN3)

Shared
(S) – Reduced specific energy consumption

through higher vehicle utilization
(higher trips per vehicle and passengers
per trip) (Firnkorn and Müller, 2015)
(↓ SN1)

– Reduced congestion and space utiliza-
tion due to fewer vehicles on the road
(Firnkorn and Müller, 2015) (↓ SN3)

– Higher demand for road-based trans-
port due to improved cost competitive-
ness of shared mobility over e.g. tran-
sit, therefore more traffic and higher en-
ergy intensity (Axhausen, 2017; Sper-
ling, 2018) (↑ SN1 & SN3)

Electric
(E) – Lower energy intensity due to higher

efficiency of electric propulsion versus
combustion engine technology (Pelletier
et al., 2016) (↓ SN1)

– Zero emissions possible if fueled en-
tirely with renewable electricity (Pel-
letier et al., 2016) (↓ SN1)

– Uncoordinated vehicle charging
may over-strain the electric grid
and/or require substantial infras-
tructure investment (Valogianni
et al., 2019) (↑SN1)

Note: ↓ = alleviates/improves; ↑ = aggravates/worsens; SN1 = Climate Impact; SN2 =
Health & Safety Impact; SN3 = Economic Impact
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1.3 The IS Perspective on Smart Sustainable Mobility: A Frame-

work

As highlighted by Yoo et al. (2010), the digitization of services, such as mobility, gives rise

to a layered modular architecture in which an information-based digital layer exists on top

of the traditional physical layer. This layered modular architecture (Yoo et al., 2010) is the

key assumption underlying our mental model of CASE-based future mobility as illustrated in

Figure 1.2. Here, the traditional physical layer (“network and device layer” as per Yoo et al.

Physical
Layer

Digital
Layer

Mobility Offers Mobility Tasks

Mobility Needs

offers

issues

fulfills

requires

enables/
constrains

Vehicle 
Resourc

es

Infrastructure 
Resources

imposes 
social cost

Vehicle 
Resources

informs defines constrains

Mobility 
Users

Vehicle/Fleet 
Providers

Infrastructure 
Providers

Regulators

Figure 1.2: Framework for an IS-enabled Smart Sustainable Mobility System.

(2010)) consists of mobility resources (i.e., vehicles), physical infrastructures (roads, parking

spots, charging points, the electricity grid, communication networks) and user mobility needs.

An information-based instance of this ecosystem resides in the digital layer. The digital layer

relies on real-time status information from its underlying physical layer as well as on information

exchange with it (“service and content layer” as per Yoo et al. (2010)). The latter is facilitated

via ubiquitous sensing and communication technology inherent to connected (C) mobility.

In Figure 1.2, we have also superimposed the stakeholders active in different areas of both

physical and digital layers. Mobility Regulators are responsible for establishing a Smart Sus-

tainable Mobility regulatory framework that facilitates and incentivizes system-beneficial and

sustainable consumption of mobility, while providing guidance on system architecture, privacy,

ethical questions and other aspects of societal relevance. A second stakeholder class is comprised

of vehicle/fleet operators or providers (taxi drivers, fleet operators, public transport companies,

logistics providers, etc.) who provide Mobility Offers to meet demand originating from a third

class of actors, the Mobility Users (private users, online retailers, etc.). In addition, Infras-

tructure Operators are responsible for supplying and maintaining the right amount of Smart
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Sustainable Mobility Infrastructure Resources (e.g., EV charging poles, smart parking lots, road

infrastructure, electricity grid capacity, etc.) such that physical Mobility Tasks can be executed

to effectively meet Mobility Needs. Finally, Mobility Users express their Mobility Needs in the

form of digital-layer Mobility Tasks that can be matched with corresponding Mobility Offers as

published digitally by Vehicle Operators.

Figure 1.2 emphasizes the reliance of Smart Sustainable Mobility on a digital and a physical

layer. Despite its similarities with digital or cyber-physical systems such as cloud computing and

IoT-based production or supply chain systems (e.g., gas pipelines), Smart Sustainable Mobility

has distinct characteristics that require unique IS-driven solution approaches. Differences in-

clude (1) the considerably higher Sustainable Development Goals (SDG) implications, expanding

beyond environmental to health and social/economic (traffic and electricity disruptions, acci-

dents, etc); (2) the much more diverse and combinatorial nature of (physical) resources that is

inherent to mobility and leads to (3) a much higher degree of coordination complexity. Digital

or cyber-physical systems do not have the same necessity for matching demand and supply in

real time. The storage capabilities in such cyber-physical systems (e.g., gas storage) differenti-

ate such systems from Smart Sustainable Mobility systems. In addition, while cyber-physical

systems such as gas pipelines, have equally severe mission critical implications (see for example

the Colonial Pipeline Cyberattack6), Smart Sustainable Mobility failures can result in major in-

terruptions of service level, delays in transportation of goods (including vital items) and health

hazards from increased risk of accidents. Finally, (4) the Smart Sustainable Mobility domain is

set apart by the larger and more diverse stakeholder landscape in mobility that requires high

decision autonomy due to complex preference structures and high dimensionality of the decision

spaces. Table 1.2 further details the unique differentiators of Smart Sustainable Mobility and

provides examples.

Our layered modular framework accounts for these key differentiators of Smart Sustainable

Mobility versus digital and cyber-physical systems. To illustrate this point it may be instructive

to consider a concrete example of the user experience in an IS-enabled and digitalized mobility

system. Imagine a user who wishes to travel from her current location in the suburbs to a

destination in the city center (Mobility Need). Since she does not own a vehicle she issues a

Mobility Task; e.g., via an app-based interface provided to her by the mobility platform operator

(“service and content layer”). She receives various Mobility Offers with varying characteristics

(mode, route, travel time, price, departure time, etc.) that all match her Mobility Task. The

app interface indicates that she could save a considerable portion of her trip cost if she opts

for an off-peak time slot or a high-occupancy vehicle option. Since she is not in a rush, she

opts for a shared bike located just around the corner (i.e., a Vehicle Resource) to cycle to

the nearest subway station where she boards a subway train headed toward the city center.

Upon her arrival, she selects an e-scooter at the subway exit that has been reserved for her and

6https://www.reuters.com/business/colonial-pipeline-ceo-tells-senate-cyber-defenses-were-

compromised-ahead-hack-2021-06-08/

https://www.reuters.com/business/colonial-pipeline-ceo-tells-senate-cyber-defenses-were-compromised-ahead-hack-2021-06-08/
https://www.reuters.com/business/colonial-pipeline-ceo-tells-senate-cyber-defenses-were-compromised-ahead-hack-2021-06-08/
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Table 1.2: Key differentiators of Smart Sustainable Mobility against other cyber-physical
systems

Cloud
Computing

Cyber-
physical
System

Smart Sus-
tainable
Mobility

Core SSM differentiators

Societal Importance

SDG impli-
cations

low high high Besides environmental (CO2 and pollution) and
health (accidents) implications, SSM has also so-
cial/economic (access, congestion cost, etc.) im-
plications.

System criti-
cality

mild severe severe Physical implications are severe (physical harm,
etc.)

Nature of Resources

Number of
Resource
Types

single single diverse Resources are much more diverse, including road
space, vehicles, vehicle space, grid capacity, etc.

Divisibility almost
continuous

almost
continuous

discrete
divisibility

Resources have discrete divisibility (such as jour-
ney increments, vehicle space, etc.), as opposed
to almost continuous divisibility of cloud jobs or
gas and other natural resources.

Combinatorics individual individual combinatorial Mobility resources are combinatorial with
critical paths between different connecting
modes/road segments, etc.

Storability large-scale large-scale small-scale Lack of large-scale storage opportunities (e.g.,
of mobility demand, electricity) in SSM requires
real-time matching of demand/supply

Complexity of Coordination

Dimensionality temporal spatio-
tenporal

spatio-
tenporal

Decision on when and where to provide mobility
service.

Time Hori-
zon

close to
real-time

close to
real-time

continuous/
real-time

Requirement for online coordination of mobility
requests due to lack of storage.

Constraints few few many Multiple physical resource constraints (e.g., ve-
hicle/road capacity, etc.) and individual pref-
erence constraints (time of departure/arrival,
mode choice, price, CO2 emissions, etc.), as op-
posed to mainly capacity constraints.

Stakeholder Interface

User Pref-
erence
Structure

relatively
homoge-
neous

relatively
homoge-
neous

highly het-
erogeneous

Highly diverse mix of use cases (commuting, de-
livery, leisure trips, etc.) and segments (goods
mobility, personal mobility) with heterogeneous
preference sets.

Preference
Learning

explicit explicit largely
implicit

High dimensionality of decision space (mode,
route, departure, etc.) may require extrapola-
tion and implicit elicitation.

Decision Au-
tonomy

low medium high High automation of real-time choices required
due to complexity (e.g., dynamic re-routing, au-
tomated pre-booking of connecting modes, etc.).



1.3 The IS Perspective on Smart Sustainable Mobility: A Framework 11

completes the last leg of her journey (“network and device layer”). On her return journey, she

opts for a more convenient and slightly faster travel mode by selecting a pooled electric vehicle,

which picks her up from her city location and drops her off at home (having picked up and

dropped off other passengers along the way). Her experience is seamless, uninterrupted and

highly predictable. She experiences only minimal wait time and no congestion. Note that this is

just one illustration of Smart Sustainable Mobility. Our framework generalizes beyond the area

of urban road transport and comprises all forms of mobility resources including, for example,

air travel or shipping. This is also a direct result of the CASE technology themes transcending

into these sub-domains.

Facilitation of such a seamless Smart Sustainable Mobility experience is the purpose of the

digital layer. Such facilitation requires the management of a large portfolio of heterogeneous

CASE Vehicle Resources (such as shared bikes, demand-responsive transit or ride hailing vehi-

cles to name a few), owned and operated by different platform participants as well as demand

for these resources from heterogeneous sectors (e.g., personal mobility or goods mobility). It

also requires the management of Infrastructure Resource constraints such as road space, electric

grid capacity or available parking spots. The digital layer enables this management, allowing

for real-time preference elicitation, predictive analytics, and automated planning and control in

time and space. The heterogeneity of actors in our proposed framework is another characteristic

of layered modular architectures (Yoo et al., 2010). Indeed, one can already observe in practice

the first platforms that exhibit certain aspects of such a layered modular ecosystem. Examples

include Uber and BlaBlaCar (Sundararajan, 2016), which provide platforms for peer-to-peer

ride hailing and ride sharing respectively. Our proposed framework exceeds the somewhat nar-

row scope of these existing mobility platforms. We define a Smart Sustainable Mobility System

as an ecosystem that consolidates and manages many different types of Vehicle Resources, In-

frastructure Resources and system participants from diverse sectors, coordinating them against

system-level objectives, and drawing on the layered modular architecture attributes (Yoo et al.,

2010). In the following section, we further detail the individual components of this IS-enabled

Smart Sustainable Mobility System.

1.3.1 Physical Layer

The dimensions of the physical layer are presented in the bottom half of Figure 1.2. We dis-

tinguish two types of resources: (1) distributed Vehicle Resources, which can be any vehicle

type that affords mobility services to the user population and (2) distributed Infrastructure Re-

sources, which comprises the physical environment in which vehicles operate. These resources

are consumed when fulfilling distributed Mobility Needs, such as personal travel, goods mobility

or even energy services via the battery storage of an electric vehicle. We use the attribute dis-

tributed to indicate variability across both a temporal as well as a spatial dimension. Specifically,

Vehicle Resources are any connected, autonomous, shared and electrical (CASE) mobility mode
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that can provide a mobility or transportation service to users. Our framework allows for the

fact that some Vehicle Resources may exhibit only a selection of the four CASE attributes. For

instance, micro-mobility options such as shared bikes or e-scooters might not have autonomous

capabilities. We do, however, find that some form of connectedness and real-time information

exchange between physical Vehicle Resources and the digital layer must be guaranteed. Our

framework allows for ownership of Vehicle Resources by different stakeholders, including pri-

vate owners or large-scale professional fleet operators. Infrastructure Resources are any type of

infrastructure required to fulfill Mobility Needs via Vehicle Resources. Examples include road

segments, parking spots, charging stations or electricity grid capacity. We explicitly also con-

sider the environment as a type of infrastructure resource that is being consumed as part of a

mobility service (e.g., by emitting CO2 emissions). Ownership of Infrastructure Resources may

be diverse. For example, non-professional private owners of single charging points or parking

spots may coexist with large scale network and infrastructure operators.

1.3.2 Digital Layer

An information-based representation of Vehicle Resources, Infrastructure Resources and Mobil-

ity Needs resides in the digital layer of the smart mobility framework. Supply is represented

as Mobility Offers that are enabled or constrained by the availability of physical Vehicle Re-

sources (e.g. available units, remaining state of charge, etc.) as well as Infrastructure Resources

(e.g. free-flow road capacity, number of charging spots, electricity grid capacity, emission limits,

CO2 targets), both of which must be considered when formulating Mobility Offers. Conversely,

Mobility Offers can be used to plan, organize or reallocate Physical Resources. For example, a

substantial presence of EV car-sharing providers in a region might require enhancements of the

local charging infrastructure (downward arrow in Figure 1.2).

Mobility Tasks are defined by physical Mobility Needs (i.e., preferences). A user may request

personal mobility, energy flexibility, logistics or other services in an on-demand fashion. These

needs and preferences are encoded in Mobility Tasks in the digital layer. Operators and owners

of mobility resources will be able to access these encoded requests and make (tailored) offers.

Similarly, Mobility Tasks can incorporate information on the availability of resources and may

have to be adapted to a scarcity in supply of these resources. This will necessarily involve some

form of demand response on the user side such as (1) time shifting, (2) route shifting, (3) mode

shifting or (4) foregoing the intended mobility request (e.g., by substituting with IS-enabled

remote options such as online shopping or telework technologies). A matching of both sides is

conducted in the digital layer. In addition, Mobility Tasks can affect and shape Mobility Needs.

For example, while a user might have an intrinsic preference for a self-driving taxi, such a need

and its associated Mobility Task might not (yet) be available (e.g., as a result of technology

immaturity). Future technological innovation in Mobility Resources, Offers and Tasks that
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include self-driving taxis will allow for such a need to be satisfied; hence, the Mobility Task

constrains the Mobility Needs that can be fulfilled.

It is easy to see the requirement for data-driven information systems in this exchange both in

terms of preference elicitation and modeling on the supply and demand side as well as in terms

of real-time matching of preferences at the interface of offers and tasks. As such, the digital

layer serves as a coordination layer that enables matching between various mobility options and

mobility demand under the given system capacity constraints such as fleet size, and battery-,

road-, and electricity grid-capacity.
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1.4 IS Research Opportunities (ROs) Toward Smart Sustainable

Mobility

We have argued that Information Systems Research can be an instrumental facilitator of smart

sustainable mobility. We now specify this role by formulating seven concrete IS research opportu-

nities (ROs) for the IS community in this domain. These opportunities build on the capabilities

of CASE technology and can be mapped onto the dimensions of our framework (see Figure

1.3). Each research opportunity, as well as our proposed framework, is applicable to all four

CASE technology themes or combinations thereof, e.g., connected and electric without auton-

omy features. Naturally, the presence of all four CASE technological themes might increase the

complexity of the required solutions.

Physical
Layer

Digital
Layer

Mobility Offers Mobility Tasks

Mobility Needs
Vehicle 
Resourc

es

Infrastructure 
Resources

RO1

RO3

RO7

RO5RO6

Vehicle 
Resources

RO4 RO2

Figure 1.3: IS Research Opportunities (ROs) toward Smart Sustainable Mobility

Note: RO1: Designing Real-time Coordination Mechanisms for Smart Sustainable Mobility
Environments; RO2: Learning and Automating Heterogeneous Smart Sustainable Mobility
User Choice Structures; RO3: Developing Incentive Designs and Nudging Strategies for Smart
Sustainable Mobility Demand Response; RO4: Designing & Evaluating AI-Powered Real-Time
Decision Support for CASE Mobility Resource Planning and Operations; RO5: Developing
and Evaluating Digitally-Enabled Smart Sustainable Mobility Business Models; RO6: Human-
AI collaboration in Smart Sustainable Mobility Systems; RO7: Investigating Intended and
Unintended Consequences of Smart Sustainable Mobility Interventions

Addressing the ROs will enable IS to directly contribute to making future mobility both

smart and sustainable, thus resolving the three social negatives (negative climate, safety and

economic impacts) of incumbent transportation systems. For example, RO1 (Designing Real-

time Coordination Mechanisms for Smart Sustainable Mobility Environments) could alleviate

environmental (SN1) and economic (SN3) negatives, while RO7 can evaluate the impact of new

technologies and policies on all three social negatives, and so on.
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1.4.1 RO1: Designing Real-time Coordination Mechanisms for Smart Sus-

tainable Mobility Environments

At the heart of the Smart Sustainable Mobility challenge lies a resource allocation problem.

Mobility users overutilize capacity-constrained resources such as road space, emission limits or

parking contributing to the three social negatives of mobility (Cramton et al., 2018). Therefore,

an important element in the digital layer of the smart mobility ecosystem is the efficient matching

of resources with demand toward a certain objective. While traditional coordination literature

typically optimizes for a narrow definition of social welfare that neglects many externalities,

coordination in a Smart Sustainable Mobility system must go beyond individual social welfare

objectives and focus on alleviating the social negatives SN1, SN2, leveraging the presence of one

or more CASE technology themes.

Real-time matching of Mobility Tasks and Offers that also successfully serves to alleviate

these social negatives is complex because of the high-dimensionality of the decision spaces (time

horizons, modes of mobility, budget constraints, sustainability constraints, etc.). Additionally,

the matching entity (e.g., platform) has to solve combinatorial allocations with dynamically

evolving preferences and spaces. Traditional optimization approaches that exhibit the usual

NP-hardness characteristics quickly become intractable in these high-dimensional combinatorial

spaces. Therefore, heuristic AI-powered algorithms (such as Deep Learning) that derive near-

optimal allocation decisions might prove powerful to address such challenges (Karaenke et al.,

2019). In contrast to traditional real-time matching problems, system criticality is an additional

factor to consider in Smart Sustainable Mobility domains. For example, in a Smart Sustainable

Mobility system the social, environmental and financial costs of failures are immense. Because of

the special nature of the Smart Sustainable Mobility system (see Table 1.2), the allocation and

matching must happen in almost real-time so that customers have uninterrupted service (e.g.,

matching a request to a mobility or electricity service); therefore, solutions with low compu-

tational complexity are required. Challenges related to aligning dimensionality, combinatorics,

and computational performance to achieve a practical coordination design can open new paths

for future work.

Summarizing, we see tremendous research opportunities around designing real-time coor-

dination mechanisms for Smart Sustainable Mobility environments that arise from the

above-described challenges. Specific research questions that can guide IS research efforts here

include: What possible coordination approaches capable of fulfilling design guidelines (scalable,

real-time, practical, alleviating SNs) exist and how do they compare? ; Are there trade-offs be-

tween design guidelines, and if so how can they be managed? ; How can the designed approaches

be tested ex ante for robustness under close-to-real-world conditions? ; How does mechanism

design impact human/algorithmic behavior?

The IS field has developed a rich portfolio of contributions in this regard that provide an ex-

cellent starting point. Auctions and other smart market-based coordination approaches (Bichler
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et al., 2010) have been investigated in depth both from a mathematical and a behavioral point

of view in application domains such as server capacity allocation (Bapna et al., 2008a), grid

computing (Bhargava and Sundaresan, 2004), combinatorial auctions (Scheffel et al., 2011), and

labor markets (Hong et al., 2016), as well as auctions specialized in electric mobility (Kahlen

et al., 2018; Valogianni et al., 2019), shared mobility (Lam, 2016) or road pricing (Cramton

et al., 2018). However, when designing comprehensive smart market mechanisms for a mobility

ecosystem, where vehicles are connected, autonomous, shared and electric, one can appreciate

that complexity increases. Each of the framework dimensions represent constraints and in-

fluence stakeholder objectives differently, making their management in a smart ecosystem far

from trivial. As discussed, due to the complexities of the required coordination in a system

with many agents (large-scale, combinatorial), alternatives to traditional analytical solutions

may be needed. Testing and benchmarking of different design concepts in large-scale (agent-

based) simulations may be fruitful to achieve a consensus on the preferred mechanism design.

The Multi-Agent Transport Simulation (MATsim) (Horni et al., 2016) is an example of such

a framework - one that could be leveraged for competitive benchmarking of design approaches

(Ketter et al., 2016a). In addition, accounting for behavioral characteristics in such mechanisms

is of paramount importance for the success of a mechanism. The latter is a unique competency

of IS research, which has not only studied the mechanisms themselves but also behavioral at-

tributes that affect behaviors within a mechanism’s incentive framework (Cason et al., 2011;

Kannan et al., 2019; Lu et al., 2019a,b, 2016b). Note that this established an important link

to RO2 (see below), which deals with preference learning and automation in high-dimensional

transportation domains. Building on this body of knowledge, IS researchers are uniquely posi-

tioned to drive forward, in an iterative fashion, the design of efficient matching instruments and

mechanisms. The IS community has expertise both in terms of tools required to address this

challenge effectively, and in terms of understanding the complexity posed by interdependencies

between physical and digital layers in dynamic environments.

1.4.2 RO2: Learning and Automating Heterogeneous Smart Sustainable Mo-

bility User Choice Structures

Bounded rationality (Simon, 1979), excessive transaction costs (Balduzzi and Lynch, 1999),

and cognitive overload (Schwartz, 2016) can result in suboptimal individual decision making

and subsequent welfare loss. In high-frequency, high-dimensional Smart Sustainable Mobility

environments these issues are particularly relevant. Thus, to achieve the desired real-time coor-

dination as envisioned in RO1, human preferences must be better understood and their decisions

supported through IS/IT. Only then can the full potential for alleviating the SNs of mobility be

leveraged. Practically speaking, understanding user preferences is key in the translation of phys-

ical Mobility Needs to digital Mobility Tasks (upward relationship in Figure 1.3). For example,

learning customer preferences about autonomous ride-sharing in the center of a metropolitan
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area helps the ride-sharing platform operator allocate the required resources and offer a seamless

and uninterrupted service to customers (mitigating SN1, SN2 and possibly SN3). Preference

learning is also crucial for identifying the impact of CASE technologies or Mobility Tasks on

consumer behavior, i.e. for understanding how Mobility Tasks shape Mobility Needs (downward

relationship in Figure 1.3).

Dynamic customer modeling and choice automation can provide these insights and tools.

As such, RO2 is targeted at learning and automating heterogeneous Smart Sustain-

able Mobility user choice structures in a high-velocity, high-dimensional Smart Sustain-

able Mobility system. Specific questions to direct IS research in this area include: How can

multi-dimensional and high-frequency data be used to elicit implicit user preferences in high-

dimensional Smart Sustainable Mobility environments? ; How can consumer choice models be

designed to be adaptive to dynamically evolving Smart Sustainable Mobility environments? ; How

should (semi- and/or adjustably-) automated IT artefacts be designed to act upon learned pref-

erences on a user’s behalf?

IS research has longstanding experience in customer modeling and preference elicitation in

domains such as B2B auctions (Bapna et al., 2008b; Lu et al., 2016b) online environments (McK-

inney et al., 2002; Yang et al., 2019), purchasing behavior (Bemmaor and Glady, 2012), online

security (Yang and Padmanabhan, 2010), or electricty systems (Peters et al., 2018), among

others. Research has looked at causal modeling of current and emerging consumer preference

trends and predictive modeling and forecasting of future consumer preferences. Both are nec-

essary for downstream decision support tools that help users navigate the complexities of the

above-mentioned domains. Smart Sustainable Mobility environments, however, come with a few

notable differences (see also Table 1.2): First, users can exhibit highly heterogeneous and dy-

namic preference sets depending, for example, on specific travel use cases and other (local) state

variables (e.g., local vehicle supply, outside options, weather, etc.). Second, the choice space in

mobility is exceedingly large in scale. Users can choose between different departure times, travel

modes and routes. Finally, this large set of high-dimensional decisions continues to dynami-

cally evolve as CASE technologies reach maturity and new vehicle types emerge. These novelty

characteristics make new preference learning and choice automation approaches necessary.

Therefore, while previous choice modeling research experience may provide a strong basis,

significant adaptations to Smart Sustainable Mobility are required. For example, large spatio-

temporal datasets that can be used to analyze user patterns in a rapidly changing mobility and

energy domain are increasingly abundant and include sensor data, electricity consumption data,

mobile GPS traces and geo-tagged transaction data that provide a novel level of granularity of

human offline behavioral patterns in the city and its transportation system (Zhang et al., 2020).

Explanatory preference modeling powered by these large-scale datasets can uncover drivers of

user preferences in unprecedented detail; however, as opposed to previous work, it now requires

a combination of data mining and geo-spatial analytics techniques combined with econometric
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and statistical analysis. As CASE technology proliferates dynamically, understanding the root

cause of evolving consumer needs will be a fruitful avenue for IS research and can provide a

basis for formulating utility functions required for choice automation. Second, scalable predictive

models (Peters et al., 2018) that can dynamically and cost-effectively (Zheng and Padmanabhan,

2006) forecast mobility needs in the different CASE application fields are needed. For example,

segmenting user clusters using unsupervised learning techniques and predicting user behaviour

such as willingness to pay (Bapna et al., 2008c) and price elasticity (Cohen et al., 2016) is an

important step in leveraging big mobility data. Predicting mobility needs or combined electricity

and mobility needs, however, requires consideration of both temporal and geographic dimensions;

this aspect generates significantly more complexity compared to other environments, such as e-

commerce. For example, Schroer et al. (2022a) and Willing et al. (2017) draw on location

analytics techniques to develop statistical mobility demand forecasting models that predict car

sharing demand in time and space. Such dynamic spatio-temporal forecasting methods remain

highly relevant as contextual contingencies of the mobility ecosystem evolve and play to our

IS researchers’ strengths in predictive analytics and (spatial) decision support systems (Keenan

and Jankowski, 2019).

Accurate customer models are also required when assisting customers in making more ef-

ficient decisions by broadening the customer decision spectrum, minimizing information asym-

metry barriers and managing bounded rationality issues. In a real-time data-driven world in

which a large volume of operational decisions must be made, decision support tools such as

recommender agents become necessary enablers of demand response (Adomavicius et al., 2009).

IS researchers can capitalize on expertise in choice automation support using advanced machine

learning, such as the algorithms implemented in recommender systems (Qiu and Benbasat, 2009;

Adomavicius et al., 2013; Collins et al., 2009), marketing applications (Chica and Rand, 2017),

smart business networks (Collins et al., 2010), etc.

While not deeply researched in mobility, demand automation is a common notion in the

domain of electronic market-based systems such as electricity systems, where it has received

some attention from IS research (Watson et al., 2010; Gottwalt et al., 2011; Peters et al., 2013).

For example, Valogianni and Ketter (2016) propose a decision support system for consumers

combined with a central demand response module that develops effective pricing strategies for

different user groups. For applications in Smart Sustainable Mobility, which are subject to a

variety of novel challenges and complications (see Table 1.2), new choice automation frameworks

must be developed accordingly.

1.4.3 RO3: Developing Incentive Designs and Nudging Strategies for Smart

Sustainable Mobility Demand Response

Apart from understanding high-dimensional, heterogeneous customer preferences (RO2) and

matching them with available supply in an optimal manner (RO1), there may be a need to
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more actively shape consumer demand by encouraging certain desired demand response in the

user population. For example, in the event of increased demand for autonomous vehicles in the

center of a metropolitan area, prices of alternative modes such as shared bikes could be dynam-

ically discounted thus shifting demand to such outside options while mitigating SN1 and SN3.

In general, demand response can take place in terms of (1) time-shifting7, (2) route-shifting,

(3) mode-shifting or (4) curtailing (Vickrey, 1969). Previous research has shown that strategic

incentive design (Guda and Subramanian, 2019; Cohen et al., 2016) and non-financial contex-

tual design choices (e.g., Tiefenbeck et al., 2018) can be effective in evoking desired behavioral

patterns. The latter approach has commonly become known as nudging and subsumes diverse

techniques such as reminders, personalized defaults, rankings, gamification, etc. (Thaler et al.,

2013).

We argue that there is a large but under-researched potential for putting such techniques to

use in the domain of mobility. Therefore, this research opportunity is directed at developing

effective incentive designs and nudging strategies for Smart Sustainable Mobility

demand response. Research questions that can guide efforts in this area include: How should

effective mobility demand response interventions be designed to steer user behavior in a system-

beneficial manner (e.g., via time-,route- or mode-shifting)? ; Are financial incentive schemes

effective in eliciting user demand response in time and space, and if so, what are the boundary

conditions? ; Can traditional nudging techniques influence user behavior toward desired outcomes

in high-dimensional spatio-temporal choice spaces like Smart Sustainable Mobility? ; Which de-

sign criteria constitute successful nudging interventions in Smart Sustainable Mobility?

In terms of examining financial incentive schemes, IS can draw on a wide body of research on

revenue maximization and incentive design (Guda and Subramanian, 2019; Cohen et al., 2016).

Some early empirical implementations (e.g. Uber surge pricing), although solely profit focused,

are also available for empirical investigation. Research on data-driven dynamic tariff designs, by

which an agent issues tariffs and observes the market response, are a novel and promising route

as well. Near-optimal tariff designs are found by continuously updating tariffs while balancing

the cost of exploration with the benefits from exploiting profitable tariffs, for example by using a

reinforcement learning approach (Peters et al., 2013). Importantly, empirical investigation and

demonstrations of these mechanisms are needed.

We also see research opportunities in non-financial demand response strategies that lever-

age behavioral nudges. While not yet well-researched in mobility (likely as the result of the

above-mentioned challenges), experiences from the energy domain hint at the potential of such

approaches. For example, Tiefenbeck et al. (2018) demonstrate that users can be nudged to-

wards more energy conservation simply by removing salience bias through real-time feedback

on their consumption behavior, while Costa and Kahn (2013) show that energy conservation

nudge-effectiveness is heterogeneous and depends strongly on individual ideology. In a similar

7time-shifting can refer to both mobility and electric charging actions
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vein, Adena and Huck (2020) explore the potential negative long-term effects of excessive nudg-

ing, e.g., by means of too-frequent reminders and asks. Nudging is also a promising research

field in mobility and may further augment price-based strategies. Other non-financial incentives

comprise the provision of viable alternatives to mobility. Examples include “telework” incentives

or “global teams initiatives” that aim to reduce travel. All these require a deep understanding

of IT capabilities and human mobility behavior in order to yield the desired outcomes without

compromising goals such as productivity or well-being, to name a few.

A particular challenge of research on incentive schemes and nudging in smart mobility sys-

tems, as opposed to prior work, is the sheer size of the option space, which is a result of the

non-binary nature of mobility choices (see Table 1.2). Users have flexibility both in space (route,

mode) and time (departure, arrival). Any incentive or nudging structure should play to both

dimensions to achieve the desired outcome of reducing SNs of mobility. For example, to avoid

congestion, any pricing schemes should be differentiated both across regions and time periods to

accurately reflect supply and demand (Cramton et al., 2018), while on-demand workers in ride

hailing networks can also be incentivized via prices to relocate to certain high-demand regions

at certain points in time (Guda and Subramanian, 2019; Bimpikis et al., 2019). In addition,

highly heterogeneous and dynamic user utilities might make user-specific tailoring of incentives

and nudges necessary. For example, travel during rush hour might be avoidable for some users

but not for others. Theoretical and empirical research on such spatio-temporal financial and

non-financial incentive schemes is highly promising and strongly aligned with IS research meth-

ods and tools. Note that (quasi-)experimental research designs must be carefully crafted to

isolate the causal effect of certain incentives in these high-dimensional choice spaces. IS research

expertise in experimental design and causal inference places our community at the center of

addressing the challenges presented here.

1.4.4 RO4: Designing & Evaluating AI-Powered Real-Time Decision Support

for CASE Mobility Resource Planning and Operations

As mobility systems become smarter, transportation information flows (supply and demand data,

traffic flow data, price data, etc.) are increasingly abundant (see for example open mobility data

standards such as the Mobility Data Specification (MDS)8). While this creates unprecedented

transparency on the status of fleets, traffic flows, etc. it also results in the need to leverage these

data streams for better strategic and operational decision making.

In short, as argued previously, digitalization of mobility affords better and real-time co-

ordination and can help remedy the SNs of mobility. Yet, this comes at the cost of higher

operational and strategic intricacies for managers of mobility service systems (Abbasi et al.,

2016; Beverungen et al., 2019). Therefore, a clear research opportunity for IS research lies in

designing and evaluating AI-powered real-time decision support for CASE mobility

8https://github.com/openmobilityfoundation/mobility-data-specification

https://github.com/openmobilityfoundation/mobility-data-specification
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resource planning and operations. The following exemplary research questions might guide

IS research efforts in shaping the agenda here: Which strategic and operational complexities

arise for supply-side actors in Smart Sustainable Mobility environments? ; How can IS support

and automate these decision challenges? ; What is the value of incorporating ever more abundant

(real-time) data-feeds in the strategic and operational decision making process?

On the strategic level, mobility asset investment decisions are conditioned on expectations of

future technology adoption scenarios, changing consumer behavior, and the state of the system

(supply, demand, prices) among other factors and are therefore subject to uncertainty. Decisions

on how many vehicles to purchase, the level of vehicle autonomy and other capabilities, how

many parking spots to create or how many charging points of which capacity to place where

within a given region are dependent on expectations of future adoption rates, of the nature and

dynamics of consumer behavior (which can often be endogenous to the investment decisions)

and on assumptions of how these fleets and infrastructure resources will be managed. Standard

optimization approaches quickly become intractable in such volatile, high-dimensional environ-

ments, with many interdependencies originating in the sheer size of the optimization problem

(see Table 1.2). Large-scale data-driven simulation that uses heuristics to achieve near-optimal

results has been shown to be highly successful in these cases (Valogianni et al., 2020). The

unprecedented granularity and availability of data afforded by CASE technology enables a new,

data-driven and simulation-based approach to vehicle and infrastructure provisioning to which

IS can make significant contributions. Such simulation studies, especially agent-based simula-

tion frameworks, also allow for joint evaluation against multiple objectives. This is important

as Smart Sustainable Mobility involves trade-offs between firm-level objectives such as sustain-

ability (i.e., the SNs of mobility) and profitability.

At the operational decision level, newly available data streams offer new scope for ma-

chine learning and optimization. The vast volumes of data being generated by all entities

participating in the CASE-based Smart Sustainable Mobility ecosystem (customers, vehicles,

smart infrastructure equipment such as traffic lights, vehicle charging points, etc.) enable ad-

vanced spatio-temporal predictions of near-term demand and supply of CASE resources such

as vehicles, electricity required to charge the vehicles, price levels of different inputs, etc. IS

researchers can address this research opportunity by capitalizing on deep expertise in predic-

tive analytics (Shmueli and Koppius, 2011) in domains such as healthcare (Bardhan et al.,

2015; Singh et al., 2018), cybersecurity (Abbasi et al., 2015), presidential elections (Barfar and

Padmanabhan, 2017), detecting financial fraud (Abbasi et al., 2012), and forecasting economic

regimes (Ketter et al., 2009), among others. Yet, the peculiarities of the Smart Sustainable Mo-

bility sphere (see Table 1.2) lead to a number of specific challenges. Effective decision support

systems will usually have a wider scope as they involve multiple uncertainties (e.g., demand

and supply in time and space) for which prediction or stochastic algorithms must be devised.

Exploring the influence of prediction errors and their interactions (in case of multiple prediction
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models) is crucial. Additionally, operational decisions must be made at high frequency and/or

with very different time horizons (e.g., weeks-ahead vs. real-time) which can create challenges.

1.4.5 RO5: Developing and Evaluating Digitally-Enabled Smart Sustainable

Mobility Business Models

A Smart Sustainable Mobility transition will be successful or, indeed, possible if profitable busi-

ness models can be conceived that spur private sector adoption and engagement while ensuring

societal benefits related to alleviating the SNs of mobility. In this vein, a crucial research op-

portunity pertains to the creation of such digitally-enabled Smart Sustainable Mobility

business models that build on the capabilities of CASE technology to create societal value

(Osterwalder et al., 2005). Indeed, CASE technology may open up completely new application

fields for vehicle resources and mobility, where the social negatives SN1, SN2, SN3 can be alle-

viated. For example, Vehicle Resources can now be used not only to transport people but also

for goods delivery, electricity services and a myriad of further use-cases, many of which are yet

to be discovered (in-vehicle commerce and services to name just one example).

Smart Sustainable Mobility business models are enabled through information systems that

help manage the complexities associated with the real-time management of these (possibly)

multi-purpose vehicle resources (Table 1.2). Specific research questions that may be useful in

developing and evaluating different business model options include: What are viable IS-enabled

business models that build on the affordances of CASE mobility technology? ; How can Smart

Sustainable Mobility business models strike an effective balance between efficiency (utilization

and profitability), sustainability and customer satisfaction? ; How resilient and robust are such

business models under different Smart Sustainable Mobility scenarios?

IS research can, in close collaboration with practitioners, contribute to identifying, testing

and evaluating these new business model options. Existing business model archetypes may have

to be substantially adapted and/or combined to fit the Smart Sustainable Mobility paradigm due

to several unique characteristics of this operating environment. First, the previously discussed

multi-use characteristics of mobility assets that require ongoing trade-off analyses between the

possible markets in which the asset can create value (personal mobility, goods mobility, etc.) may

require operating multiple business models in parallel. Yet, if these trade-offs can be managed

effectively, new levels of asset utilization, profitability and sustainability may be achieved. For

example, a CASE vehicle may transport people during rush hour, perform last-mile parcel

delivery in low-demand periods and provide energy services to the grid when connected to a

charging station (Kahlen et al., 2018). Second, providing Smart Sustainable Mobility services

will require heterogeneous inputs (electricity, parking space, road usage) many of which do

and/or increasingly will exhibit high-frequency supply changes in time and space. Managing

these inputs such that cost and sustainability targets are achieved is a major operational decision

challenge for mobility providers. Finally, business objectives are increasingly multi-dimensional
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and extend beyond profitability. This involves continuously trading-off potentially conflicting

goals.

Taking an IS Design Science (Hevner and Gregor, 2013), empirical (Oestreicher-Singer and

Zalmanson, 2013) or mixed methods approach (Fürstenau et al., 2019), and drawing on the

extant literature in the fields of digital platforms and smart service systems (Beverungen et al.,

2019), IS can enable the operations of increasingly more complex business models. Methodolog-

ically, such work may combine big data analytics, large-scale simulation and/or field tests. In

many cases the prototyping of IS decision support tools that are needed for the operation of such

data-driven and highly complex business models may be needed (see RO4). Some interesting

early work has emerged along these lines. For example, Brandt and Dlugosch (2020) develop

a two-stage data-driven framework for ex-ante assessment of operational policies of shared mo-

bility providers. Finally, early examples that build on the capabilities of CASE and combine

different business models are emerging. Specifically, Kahlen et al. (2018) present an EV fleet

management concept that explicitly considers the trade-off between providing mobility and elec-

tricity services in a profit-maximizing manner. While promising, a lot of opportunity for future

work exists that further develops existing business models and explores new business model

instantiations in a continuously evolving Smart Sustainable Mobility ecosystem.

1.4.6 RO6: Human-AI collaboration in Smart Sustainable Mobility Systems

Smart sustainable mobility systems are operating and evolving with the help of the latest AI

methods such as location-based analytics, object recognition using deep learning, dynamic price

adjustments, intelligent agents for preference elicitation and decision support, to name a few.

Thus, a major question arises: how to facilitate a successful collaboration between human users

or decision makers and AI? This question is relevant for all digital-physical intersections, which

is why we position RO6 as an overarching RO within our framework (see Figure 1.3)

Trust in AI-based systems in a Smart Sustainable Mobility environment is crucial, as a lack

of or partial trust is not expected to enable the ecosystem to reach its full potential and satisfy

objectives such alleviating the social negatives SN1, SN2, SN3. At the same time, AI-based

systems adoption is challenging, since the domain is nascent, and many of the utilized AI-based

applications might be seen as intrusive (e.g., the controversial issue of recording user location

by Uber’s algorithms9) or flawed (e.g., accidents caused by autonomous cars10). Literature has

shown that when algorithms make mistakes, humans trust them less as opposed to humans

who have made similar mistakes (Dietvorst et al., 2015). Especially with regard to autonomy,

an active dialogue has been developed in the academic community about minimizing the flaws

9https://www.npr.org/sections/thetwo-way/2017/08/29/547113818/uber-ends-its-controversial-

post-ride-tracking-of-users-location?t=1586959206306
10https://www.theguardian.com/commentisfree/2018/jul/15/crucial-flaw-of-self-driving-cars-

always-need-human-involvement

https://www.npr.org/sections/thetwo-way/2017/08/29/547113818/uber-ends-its-controversial-post-ride-tracking-of-users-location?t=1586959206306
https://www.npr.org/sections/thetwo-way/2017/08/29/547113818/uber-ends-its-controversial-post-ride-tracking-of-users-location?t=1586959206306
https://www.theguardian.com/commentisfree/2018/jul/15/crucial-flaw-of-self-driving-cars-always-need-human-involvement
https://www.theguardian.com/commentisfree/2018/jul/15/crucial-flaw-of-self-driving-cars-always-need-human-involvement
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of autonomous vehicles and the responsible entities in case of an accident11. In addition, users

might be hesitant to adopt AI-based apps that record their preferences in order to offer optimized

routing or electric-vehicle charging recommendations. Concerns such as intrusiveness, reliability,

bias, or simply resistance to change might arise and require the expertise of IS researchers – who

combine social sciences paradigms and technical expertise (Sarker et al., 2019) – to be addressed.

Specifically, Research Opportunity 6, which lies at the intersection of the physical and digital

layer of the Smart Sustainable Mobility framework, is concerned with investigating Human-

AI collaboration in Smart Sustainable Mobility systems. Examples of research questions

are: What design attributes increase human trust toward AI-based applications in Smart Sus-

tainable Mobility systems?; How should privacy-preserving AI-based systems be designed so that

they are not perceived as intrusive in Smart Sustainable Mobility platforms?

IS researchers have already taken some important steps toward exploring human-AI interac-

tion (Berente et al., 2019) and collaboration (Fügener et al., 2021; Breuker et al., 2016; Fügener

et al., Forthcoming) in other domains; hence such expertise can be capitalized in Smart Sustain-

able Mobility environments. IS researchers have also developed expertise in developing AI-based

systems (Zhu et al., 2021; Pfeiffer et al., 2020; Wang et al., 2018; Meyer et al., 2014; Sahoo et al.,

2012), as well as managing such complex intelligent systems (Ahsen et al., 2019; Du et al., 2014;

Chen et al., 2011). However, as opposed to other cyber-physical systems, Smart Sustainable

Mobility environments exhibit unique characteristics that require new research contributions

(see Table 1.2). Most importantly, the mission criticality of such systems necessitates human-AI

collaboration robustness and trust that exceeds levels seen in other domains. Therefore, AI

acceptance and human-AI collaboration need to be studied carefully in a Smart Sustainable

Mobility context. Tools to achieve the thorough study of human-AI collaboration can be field

experiments (similar to the one presented by Cherchi (2017)) or interventions using AI-based

artifacts (e.g., Koroleva et al. (2014)).

1.4.7 RO7: Investigating Intended and Unintended Consequences of Smart

Sustainable Mobility Interventions

Mobility is a public good and subject to regulation. We realize that the comprehensive trans-

formation of a sector toward smart sustainability, such as is anticipated for the mobility sector,

requires a strong foundation in public policy and underlying management approaches. The IS

community has made deep contributions in the domains of energy and sustainability (Watson

et al., 2010; Melville, 2010; Ketter et al., 2016a; Corbett and Mellouli, 2017), health (Bardhan

et al., 2015; Singh et al., 2018) and other areas of high societal relevance. We believe that IS

research can be a key facilitator of the Smart Sustainable Mobility transition, not only by devel-

oping required decision support tools or coordination mechanisms (as argued in RO 1 through

6), but also by informing policy discussions with hard, causal evidence obtained from rigorous

11https://www.moralmachine.net

https://www.moralmachine.net
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empirical investigation. Therefore, we propose an additional RO that is concerned with in-

vestigating intended and unintended consequences of Smart Sustainable Mobility

interventions (as described in Table 1). Concrete research questions underlying this oppor-

tunity might include: What are the system- and user-level impacts of new mobility technology,

policy or IS artefact introduction? ; Does a new technology/policy innovation alleviate or aggra-

vate SNs of mobility and under which conditions? ; What are the temporal and spatial dynamics

of macro-level effects? ; and; What are the implications of these ex-post empirical findings for

shaping the ongoing Smart Sustainable Mobility transition with future technologies, policies and

managerial approaches?

Research on the societal impact of technology is deeply rooted in IS (Greenwood and Wattal,

2017a; Burtch et al., 2018; Babar and Burtch, 2020). Furthermore, the IS discipline’s prowess in

big data analytics for causal inference (Abbasi et al., 2016) – particularly within the economics

of IS community – means that our discipline has all the necessary tools at its disposal to engage

with this research opportunity. In the evaluation of the social cost of new mobility technolo-

gies, IS can contribute extensively by informing policy decisions that are targeted at mitigating

unintended consequences of CASE technology (see Table 1.1), while actively promoting the de-

sired effects. For example, Greenwood and Wattal (2017a) investigate the impact of ride hailing

platforms on alcohol-related traffic deaths and demonstrate that a significant reduction in drunk

driving-related fatalities was achieved. In a similar vein, Babar and Burtch (2020) investigate the

heterogeneous effects of ride hailing platforms on public transport. They show that the degree

of substitution or complementarity depends on a set of contextual factors and they formulate

concrete policy recommendations showing how public transport authorities can benefit from ride

hailing platform introduction. Pelechrinis et al. (2016a) find that the introduction of bike shar-

ing platforms replaces some car traffic and thus alleviates traffic and parking pressure. While the

above cited studies use highly aggregated data (e.g., monthly or quarterly), increasingly ubiq-

uitous real-time geo-tagged datasets will enable ever more fine-grained empirical investigation.

This will allow IS scholars to investigate societal implications of CASE technology (beyond the

current IS focus on instantiations of the sharing economy such as ride hailing and ride sharing)

in unprecedented detail and to provide considerably more targeted policy and managerial recom-

mendations. There are several challenges endemic to the domain of Smart Sustainable Mobility

that make causal analyses difficult. Real-world experimentation is difficult and possibly un-

ethical in Smart Sustainable Mobility environments. Therefore, researchers will rely mostly on

observational data sources. With highly granular spatio-temporal mobility data feeds, the detail

at which causal inference can be credibly achieved is far superior to what is observed in tradi-

tional natural experiment-based causal inference literature. This insight provides opportunity

for truly actionable managerial and policy advice beyond the macro-level insights. Yet, when

modeling at such granular levels new challenges arise. For example, user utility (and choice) in

mobility will heavily depend on local state conditions (e.g., supply of vehicles, weather) and trip
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purpose (Table 1.2), which must be taken into account and controlled for. Additionally, effects

such as spatial spillovers can make causal analysis challenging when working at low levels of

aggregation.
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1.5 Enabling IS Smart Sustainable Mobility Research

We now look at where the current state of IS research in Smart Sustainable Mobility research

stands with regards to the previously developed Research Opportunities. We have argued that

IS has been a relatively silent observer of the recent uptake in Smart Sustainable Mobility

research. Here, we explore in more detail why this might be the case, focusing on possible

barriers to entry that have thus far prevented wide-spread IS engagement with the field. For

this purpose we performed an in-depth review of the IS Basket of 8 papers identified in the

initial key-word-based cross-disciplinary survey of the literature (see Figure 1.1).

Several insights are to be highlighted. First and foremost, extant IS research in Smart

Sustainable Mobility is limited. Out of the 65 initial papers, only 22 (34%) deal with Smart

Sustainable Mobility topics at their core. Second, out of these remaining Smart Sustainable

Mobility-related IS papers, most focus on just two out of the seven research objectives (ROs) we

propose in this work: RO5 – Developing and Evaluating Digitally-Enabled Smart Sustainable

Mobility Business Models and RO7 – Investigating Intended and Unintended Consequences of

Smart Sustainable Mobility Interventions. The remainder (eight papers) are distributed more

or less equally among the other five ROs. Third, there is a large methodological emphasis

on empirical methods (specifically econometrics and interview-based qualitative case studies).

Decision support systems for Smart Sustainable Mobility applications are rarely proposed, al-

though we have identified such work as crucial in driving the mobility transition. Finally, the

naturally data-intensive empirical research pieces included in our sample are primarily reliant

on proprietary data sources with only 6 papers using public or synthetic data.

In sum, the review of current IS research confirms many of previously mentioned suspi-

cions regarding the root causes underlying the IS discipline’s relative lack of engagement in the

Smart Sustainable Mobility field. These are nascency, complexity, interdisciplinary nature and

resource/data intensity.

Nascency implies a lack of domain knowledge in the IS community, creating educational

barriers to entry. Indeed, the (limited) extant IS research tends to focus on just two out of the

seven ROs we put forward, indicating a lack of awareness of other research opportunities. This

commentary is targeted at removing exactly this barrier.

Complexity and interdisciplinary nature suggests a need for methodological prowess in tack-

ling Smart Sustainable Mobility research opportunities. We have argued extensively through-

out this article that IS has all the prerequisites to thrive in these environments, as has been

demonstrated in other complex domains such as healthcare and cyber-security. Yet, we also

observe that extant Smart Sustainable Mobility work is mostly empirical in nature, meaning

it is about understanding phenomena rather than providing data-driven and analytics-focused

solution frameworks. There clearly is a lack of research on decision support systems that help

practitioners navigate complexity in mobility. Again, we attribute this to the nascency and

complexity of the field, as well as a possible lack of familiarity with design science and machine-
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learning-driven methodologies. In this research commentary, we provide actionable ROs that

can guide IS researchers with limited prior domain knowledge to leverage their extensive ana-

lytical skillset for meaningful contributions to Smart Sustainable Mobility. In addition, we find

that extant Smart Sustainable Mobility research can be resource-intensive – particularly with

regard to requiring access to large-scale real-world datasets. Indeed, as we point out above,

most of the empirically-focused papers we have reviewed draw from proprietary data sources.

In cases where public data is used, the data is not typically geo-tagged and relatively coarse,

preventing micro-level analyses envisioned in this commentary. This creates a third adoption

barrier for IS researchers. We believe, however, that granular mobility data is increasingly

available. Four observations support this argument: (1) First, open standards that facilitate

easier mobility data sharing at scale are becoming the norm. Examples of some of the most

common standards include: General Bikeshare Feed Specification (GBFS12), General Transit

Feed Specification (GTFS13) or the Mobility Data Specification (MDS14). Such standards are

already used by many operators (often in combination with open APIs) and their use can even

be mandated by local transport authorities as part of open mobility data initiatives (see e.g.,

LA). (2) Second, empirical evidence also confirms that there already are a number of mobility

platform operators that readily share real-time mobility data streams through openly accessi-

ble APIs15. These sources are available to researchers even today. (3) Third, there are also

third-party market research companies16 that provide real-time data streams including history

of most major shared mobility platforms - even those for which open APIs cannot be readily

found/queried. While these datasets are not publicly available (yet), they nonetheless provide

a viable source of data. (4) Finally, in case real-world data cannot be obtained, large-scale

open-source simulation platforms are available that provide realistic synthetic transportation

environments and are widely used in the transportation literature (e.g., Horni et al., 2016).

12https://github.com/NABSA/gbfs
13https://developers.google.com/transit/gtfs/reference/
14https://github.com/openmobilityfoundation/mobility-data-specification
15As an illustrative example, the following GitHub repository provides a (non-exhaustive) list of (openly

accessible) mobility sharing platform APIs including instructions on how to query them https://github.com/

ubahnverleih/WoBike
16e.g., fluctuo (https://fluctuo.com) or remix (https://www.remix.com/solutions/shared-mobility)

https://github.com/NABSA/gbfs
https://developers.google.com/transit/gtfs/reference/
https://github.com/openmobilityfoundation/mobility-data-specification
https://github.com/ubahnverleih/WoBike
https://github.com/ubahnverleih/WoBike
https://fluctuo.com
https://www.remix.com/solutions/shared-mobility
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1.6 Navigating this Thesis

Throughout this introductory Chapter, I (and my co-authors) have made the case for IS re-

search to actively shape the future of mobility toward an information-driven Smart Sustainable

Mobility ecosystem. I have based this argument on advances in vehicle technology (connected,

autonomous, shared and electric (CASE) mobility), which not only provide access to an un-

precedented breadth of digital information but also enable real-time analysis and management

of the mobility system. I argue that an active management of physical vehicle resources, in-

frastructure resources and mobility needs is required to promote the positive climate, health &

safety and economic effects of CASE mobility, while mitigating unintended consequences of this

technology (see Table 1.1). Given the unique characteristics of the envisioned next generation

transportation system that clearly set it apart from other cyber-physical systems, a new research

agenda is needed to which the IS community can make significant contributions. By laying out

a vision for an IS-enabled smart mobility system, I have proposed a framework which can help

structure this agenda (see Figures 1.2 and 1.3). I have also proposed seven concrete IS Research

Opportunities along this framework for which I discussed promising IS research questions, ap-

proaches and methodologies. Despite a previously limited involvement in Smart Sustainable

Mobility research, the IS community has all the necessary tools at its disposal to play a pivotal

role in the knowledge creation necessary to address the presented research opportunities and

pave the way for a successful transition toward a smart and sustainable transportation sector.

It is my hope that this work may spur interest to contribute to this exciting agenda and to

seize a unique opportunity to positively impact our environment, our economy and our societal

welfare at large.

This Doctoral Thesis attempts to contribute to this research journey. In each of the following

Chapters, I focus on one or two out of the seven distinct Research Opportunities laid out in

this Introductory Chapter. Each Chapter defines and develops an independent research project

around important Smart Sustainable Mobility issues associated with the respective Research

Opportunity. A mapping of individual Chapters to Research Opportunities is provided in Table

1.3. At a broader level, this Thesis contributes to Smart Sustainable Mobility both in terms

of (1) sense-making and (2) decision-making support. Chapter 2 seeks to infer and quantify

causal effects of new mobility technologies and policies (i.e., a sense making effort). Chapters 3

and 4 develop mathematical decision algorithms for planning and operating Smart Sustainable

Mobility systems against environmental, cost, service level, and other objectives (i.e., a decision

support/enablement effort). A brief summary per each remaining Chapter is provided below.

Chapter 2 demonstrates how geo-tagged Internet of Things (IoT) data can be used for trac-

ing out both macro-level and localized causal effects of large-scale policy interventions in

the physical world. Drawing on a case from the bikesharing sector, I study the effect

that the market entry of electric kick scooters (e-scooter) platforms, a less effortful and
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Table 1.3: Chapter Overview and Interface with proposed Framework for an IS-enabled Smart
Sustainable Mobility System

Chapter Title Research Opportunity (RO)
#1 #2 #3 #4 #5 #6 #7

Chapter 1 Information Systems Research for
Smart Sustainable Mobility: A Frame-
work and Call for Action

✓ ✓ ✓ ✓ ✓ ✓ ✓

Chapter 2 Identifying Localized Causal Effects
from Large-Scale IoT Data Streams:
The Case of e-Scooter Introduction
and Micromobility

✓

Chapter 3 Data-Driven Competitor-Aware Posi-
tioning in On-Demand Vehicle Rental
Networks

✓

Chapter 4 Solving Large-Scale Service System
Design Problems with Digital Twins:
An Application to Electric Vehicle
Charging Hubs

✓ ✓

Note: RO1: Designing Real-time Coordination Mechanisms for Smart Sustainable Mobility
Environments; RO2: Learning and Automating Heterogeneous Smart Sustainable Mobility
User Choice Structures; RO3: Developing Incentive Designs and Nudging Strategies for Smart
Sustainable Mobility Demand Response; RO4: Designing & Evaluating AI-Powered Real-Time
Decision Support for CASE Mobility Resource Planning and Operations; RO5: Developing
and Evaluating Digitally-Enabled Smart Sustainable Mobility Business Models; RO6: Human-
AI collaboration in Smart Sustainable Mobility Systems; RO7: Investigating Intended and
Unintended Consequences of Smart Sustainable Mobility Interventions

convenience-focused genre of micromobility, has had on the sector. Underlying the anal-

yses is a unique dataset gathered from real-time sensor data streams of shared bicycles.

Using state-of-the-art difference-in-differences estimators, I estimate a drop in bicycle trip

demand of 22.4% following e-scooter introduction. This breaks down to an annual societal

impact of 307M less calories burned by micromobility users, additional emissions of up to

385t of CO2-equivalent and roughly EUR 1.44M lost revenue across the cities in scope.

Policy makers can leverage these results for ex-ante impact assessment of e-scooter entry.

I also run a set of localized causal analyses that explore temporal and spatial patterns of

substitution, thus fully exploiting the richness of the sensor data. I show that substitu-

tion occurs primarily during rush hours in central locations that are in close proximity to

transport infrastructure. Substitution is also limited to short point-to-point trips. Plat-

form managers can tailor highly targeted marketing and operational strategies based on
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these insights. In sum, by leveraging big urban data for the empirical analysis of transport

interventions, this Chapter contributes to Research Opportunity #7.

Chapter 3 studies a novel operational problem that considers vehicle positioning in free-

floating on-demand rental networks such as carsharing in the wider context of a competi-

tive market in which users select vehicles based on access. The proposed competitor-aware

model combines online machine learning to predict market-level demand and supply with

dynamic mixed integer non-linear programming (MINLP) that periodically determine op-

timal repositioning schedules with the objective of maximizing fleet profit. In extensive

simulation experiments based on real-world data from Car2Go and DriveNow the model

outperforms conventional models that consider the fleet in isolation by a factor of 2 in

terms of profit improvements. The research, thus, addresses Research Opportunity #4 by

proposing AI-powered decision support form CASE mobility providers. Specifically, oper-

ators of on-demand rental networks can use the developed approach to build a profitable

competitive advantage by optimizing access for consumers (i.e., service level) without the

need for fleet expansion.

Chapter 4 explores how data-driven Digital Twins (DTs) can be used in multi-stage stochastic

design problems. Traditional operations management (OM) decision frameworks such as

mathematical optimization rely on analytical solutions and are subject to computational

challenges (e.g., NP-hardness). As a result, such frameworks require size reduction and

simplification to achieve tractability. DTs, in combination with high-performance search or

learning methods, can circumvent these shortcomings. DTs use high-resolution sensor data

to achieve realistic and granular digital representations of a system’s physical components

and processes. The concept is increasingly used for decision problems at an operational

level. We propose a general three-stage framework that provides guidance on the use

of DTs in earlier stages of a system’s life cycle: the design phase. For evaluation pur-

poses we select the application domain of Electric Vehicle (EV) Charging Hubs (EVCHs).

We use sensor-derived data including parking, charging, electricity consumption and solar

generation data along with microscopic simulations of operational policies to build a re-

alistic representation of the EVCH. Next, using efficient reinforcement learning methods

(deep Q-learning), we learn optimal EVCH configurations against a minimum cost objec-

tive with service level constraints. In extensive benchmark and sensitivity experiments

we demonstrate four core benefits of DT-based service system design versus traditional

optimization-based methods: (1) superior planning outcomes due to data-driven approach

that captures stochasticity and detail, (2) close-to arbitrary computational scalability, (3)

flexibility in system operational scope, and (4) ability to seamlessly carry over the DT

into subsequent life cycle phases. Chapter 4 covers aspects of preference learning and

AI-powered decision support, thus contributing to Research Opportunities #2 and #4.
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1.7 Declaration of Contributions

I (the author) am grateful to a number of co-authors and collaborators who have contributed

to varying degrees to the individual research projects (Chapters) presented in this cumulative

Doctoral Dissertation (the Thesis). I briefly lay out my own contributions across these research

projects and provide details on how my co-authors have contributed to their success.

Chapter 1: The author of this Thesis is the main author of this Chapter and has completed

the majority of the work. This includes the conceptualization of the Smart Sustainable

Mobility research framework, the development and definition of the Research Objectives

and the storylining and write-up of the final manuscript, which is forthcoming at Infor-

mation Systems Research17. Throughout the writing process, the author has benefited

significantly from frequent feedback and contributions from two academic advisors: Prof.

Konstantina Valogianni and Prof. Wolfgang Ketter. The Chapter in its current form would

not have been possible without their contribution, which is gratefully acknowledged.

Chapter 2 The author of this Thesis is the sole author of this Chapter18. Prof. Wolfgang

Ketter acted as academic advisor and kindly provided feedback and guidance throughout

the writing and revision process.

Chapter 3: The author of this Thesis is the main author of this Chapter and has completed

the majority of the work. This includes all tasks related to conceptualization, algorithmic

modeling, analysis, positioning and write-up of the final paper. He is also the first author

of the published journal version of this Chapter19. The work has benefited from feedback

by Prof. Alok Gupta, Prof. Thomas Y. Lee and Prof. Wolfgang Ketter throughout the

writing and revision process. The author would also like to express gratitude for the

contribution by Dr. Micha Kahlen who provided the carsharing dataset along with helpful

advice during the writing and revision process.

17Here you will find a shortened and slightly adapted rendition of this forthcoming journal publication. Apart
from several editorial adaptations, an additional Section (1.6) was added to explicitly link the Chapters presented
in this cumulative Dissertation and demonstrate their fit with the presented framework of IS Research for Smart
Sustainable Mobility.

18A precursor study using a similar dataset co-authored with M. Pohl and W. Ketter (Schroer, K., Pohl, M., &
Ketter, W. (2020). To Substitute or to Supplement? - Investigating the Heterogeneous Effects of Electric Scooter
Platform Introduction on Micromobility. In ICIS 2020 Proceedings. 9) provided inspiration. The author was also
the first and main author in this project. The presented Chapter is a completely new paper with a considerably
extended experimental sample, fully revamped econometric methodology, novel positioning and new findings and
contributions.

19This Chapter has been published in its entirety in the following peer-reviewed academic journal:
Schroer, K., Ketter, W., Lee, T. Y., Gupta, A., & Kahlen, M. (2022). Data-Driven Competitor-
Aware Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 56(1), 182–200.
https://doi.org/10.1287/trsc.2021.1097
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Chapter 4: This Chapter was co-authored with Ramin Ahadi. Both co-authors contributed

equally in terms of conceptualization, algorithmic/simulation modeling, analysis, position-

ing and write-up. The work also benefited from frequent feedback kindly provided by Prof.

Thomas Y. Lee and Prof. Wolfgang Ketter who both acted as academic advisors on this

project.





Chapter 2

Identifying Localized Causal Effects

from Large-Scale IoT Data: The

Case of e-Scooter Introduction and

Micromobility1

2.1 Introduction

High-resolution digital trace data such as purchase histories, click stream data, social media

connections, online community interactions, and other data types have become widely available.

This is particularly true for online settings, where behavioral big data (Shmueli, 2017) has in-

spired scholars to investigate causal effects of digital interventions both in controlled settings

(via experiments) and under quasi-experimental conditions (Abbasi et al., 2016). While large-

scale experimentation in the offline world often remains impractical, unethical or prohibitively

expensive, measuring human offline behavior at high frequency and granularity is increasingly

possible (Zhang et al., 2020). With the emergence of ubiquitous and connected sensing technolo-

gies (often referred to as IoT2 devices), such as smart phones and other connected sensors (e.g.,

cameras), high-resolution spatio-temporal data streams on human behavior in the offline world

are now available to managers and policy makers alike. These data streams offer an opportu-

1This Chapter is currently under review at a leading peer-reviewed academic journal.
A precursor study provided inspiration for this work. This precursor study has appeared in the following (non-
copyrighted) peer-reviewed academic conferences:
Schroer, K., Pohl, M., & Ketter, W. (2020). To Substitute or to Supplement? – Investigating the Heterogeneous
Effects of Electric Scooter Platform Introduction on Micromobility (Full Paper). In ICIS 2020 Proceedings.
Schroer, K. & Ketter, W. (2020). An Empirical Analysis Of The Heterogenous Effects Of Electric Scooter Platform
Introduction On Micromobility (Abstract). Informs Annual Meeting 2020
The presented Chapter is a completely new and improved paper with a considerably extended experimental sample,
fully revamped econometric methodology, new analyses, novel positioning and new findings and contributions.

2Internet of Things
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nity for much more fine-grained causal investigations of offline phenomena than is currently the

norm. Yet, extant empirical studies of offline interventions in Information Systems, (e.g., Babar

and Burtch, 2020; Greenwood and Wattal, 2017b; Burtch et al., 2018), economics (e.g., Cengiz

et al., 2019) and other disciplines often leverage highly aggregated datasets (at monthly or even

yearly resolution) limiting the level of achievable insight.

In this work, we explore how large-scale geo-tagged sensor-generated data streams can be

fully exploited for both aggregate and localized causal analysis of large-scale natural (i.e., non-

experimental) interventions in the physical world. To do so, we draw on a recent natural

experiment from the transportation domain that has received significant attention in the popular

discourse: the swift entry of electric kick scooter (e-scooter) platforms into traditionally bike-

based micromobility markets. Micromobility, short-distance and low-speed transportation by

means of bikes, electric bikes, e-scooters and similar technologies has been widely hailed as a

key component of modern urban transport systems (Shaheen, 2019; Sperling, 2018). Owing

in large part to the emergence of digital sharing business models, app-enabled micromobility

platforms have become popular. Traditionally, the shared micromobility sector has relied heavily

on bicycle sharing schemes. Indeed, bikesharing is often considered a highly successful sharing

economy intervention from a social welfare standpoint. It is regarded as a healthy (Xu, 2019; Dill,

2009) and environmentally-friendly (Fishman et al., 2014) transport alternative and is commonly

encouraged and subsidized by local municipalities (Pelechrinis et al., 2016b). Starting in late

2018, however, the bike-based micromobility markets experienced a fundamental disruption

following the introduction of e-scooter platforms such as Lime and Bird. Originally a US-

phenomenon, scooter sharing was introduced in key European cities in mid-2019. E-scooters

have sparked extensive policy debate with some observers hailing their positive impacts on

traffic, while others cite safety, environmental, public nuisance or health concerns (Shaheen,

2019). With bikes and e-scooters catering to largely similar transportation use cases in terms of

speed and range there is a real concern that demand for incumbent bikesharing platforms may

have been cannibalized by the introduction of the socially less desirable e-scooter option. To this

date, there is a lack of sound empirical analysis to support or refute these claims. Apart from the

clear societal implications that arise from this intervention, there are also important managerial

and operational aspects to be explored. For example, the question arises of how e-scooter entry

affects user rental behavior on the incumbent bike-based platform and how bikesharing operators

best respond to the potential competitive threat posed by e-scooters? With Lime, the world’s

leading e-scooter operator, recently announcing its 100 millionth completed ride3, e-scooters have

become a relevant part of urban transport systems that warrant in-depth empirical investigation.

Our work holds several contributions. First, we contribute to the stream of societal impact

of IS (e.g., Greenwood and Wattal, 2017b; Babar and Burtch, 2020; Burtch et al., 2018; Chan

and Ghose, 2014) by evaluating and quantifying the (heterogeneous) impact of the introduction

3https://www.li.me/second-street/lime-100-million-rides

https://www.li.me/second-street/lime-100-million-rides
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of an IS-enabled platform-based technology in the physical world. Second, we demonstrate the

value of fine grained sensor data in achieving a much deeper understanding of the impact of

offline interventions beyond aggregate effect estimates. Using high-frequency bicycle position

data retrieved from an operator’s API4 over a period of approx. one year we identify both

macro-level societal effects (health impacts, climate impact, economic impact), and achieve

credible causal estimates of micro-level effects on user behavior shifts, including demand impact

by location, time and trip type. Such analyses can reveal crucial effect nuances that hold

actionable managerial implications. For example, our analyses pinpoint exactly which trip types

are most affected by e-scooter introduction and by how much. This allows managers to tailor

highly targeted marketing and operational strategies. Lastly, we offer several important insights

that are of relevance to the transportation community. To the best of our knowledge this study

is the first and only study of its kind to leverage a multi-city dataset to explore the impact of

e-scooter introduction into micromobility systems.

The remainder of this work is structured as follows: We first provide a brief overview of

related work. We then proceed with a specification of our difference-in-differences (DiD) identi-

fication strategy including a discussion of recent methodological innovations in this sphere. We

then present and validate our results. Finally, we offer a brief conclusion and an outlook on

future work.

4Application Programming Interface
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2.2 Related Work

We draw on three core literatures to inform this research: (1) big data-driven policy evaluation,

(2) societal impact of information systems (IS), especially digital platforms, and (3) consumer

choice in (micro-) mobility. Here, we provide a short overview of these three streams.

2.2.1 IoT Trajectory Data for Policy Evaluation

Newly available IoT data streams, particularly geo-tagged position data that allow inference on

movement trajectories have inspired empirical research in recent years. A major focus has been

on the use of such large-scale data streams for the prediction of human behavior in time and

space. Examples primarily stem from the computer science and transportation communities and

include examples such as forecasting spatio-temporal demand of free-floating carsharing (e.g.,

Schroer et al., 2022b) or predicting the flow of bikes in a bikesharing system (e.g., Chai et al.,

2018), among others.

But trajectory data is increasingly used beyond prediction (Athey, 2017b). In their seminal

work González et al. (2008) use mobile phone data to trace out patterns in human mobility,

showing that it follows much more regular characteristics than predicted by e.g., traditional

random walk models. Zhang et al. (2020) use taxi trajectory data to fit analytical models

that explain individual preferences and decision making processes of taxi drivers. Similarly,

the transportation community has embraced trajectory data for discrete choice modeling in an

effort to understand factors that influence mode choice behavior (e.g., Reck et al., 2022). Other

authors have studied the value of trajectory data in improving ad targeting by developing and

evaluating recommender systems that utilize IoT data in their decision making (e.g., Ghose

et al., 2019a,b).

Recently, researchers have increasingly called for the use of IoT data in the causal evaluation

of large-scale offline policy interventions (e.g., Athey, 2017b). The core argument being that IoT

data streams provide transparency on offline phenomena that were not previously measurable

(as opposed to online-only settings where data availability is generally high). For example,

Persson et al. (2021) use mobile phone trajectory data to understand the impact of different

social distancing policy measures implemented by governments to combat the spread of the

COVID-19 pandemic.

In this work we use high-frequency vehicle position data to identify the causal impact of a

large-scale natural experiment in the physical world, i.e., the introduction of e-scooters in several

major cities. However, as opposed to previous work, we do not only focus on uncovering macro-

level societal effects of the intervention (health impacts, climate impact, economic impact). We

can also trace out and reliably quantify micro-level effects on the behavioral patterns of users.

Such analyses can hold very important implications that extend beyond the policy focus to the

operational level.



2.2 Related Work 39

2.2.2 Societal Impact of IS

We also draw on another key body of literature: research on the societal impact of information

systems, a thread deeply rooted in the IS research. It is primarily concerned with the investiga-

tion and evaluation of phenomena related to the adoption and impact of new digitally-enabled

technologies and platforms. Shared mobility systems are an instantiation of such digital plat-

forms (Tiwana et al., 2010; de Reuver et al., 2018). Previous related studies have explored the

societal effects that single- and multi-sided platforms and matching markets have had on a myr-

iad of domains, including the hotel industry (Zervas et al., 2017), housing market (Pelechrinis

et al., 2017), durable goods purchases (Gong et al., 2017), sexually transmitted diseases (Chan

and Ghose, 2014) and even female homicide rates (Cunningham et al., 2017). A shared view

within this emergent discourse is that of a platform either replacing or supplementing incumbent

markets, technologies or services (Babar and Burtch, 2020). This, in turn, may result in either

positive or negative societal outcomes, depending on situation and domain. We adopt this shared

assumption and analyze micromobility platforms through a “substitute vs. complement”-lens.

The transportation sector in particular has provided ample scope for empirical studies. For

example, Pelechrinis et al. (2017) find that the introduction of bikesharing platforms replaces

some car traffic and thus alleviates traffic and parking pressure. Greenwood and Wattal (2017b)

show that ride hailing platforms reduce drunk driving fatalities, while Babar and Burtch (2020)

investigate the heterogeneous factors that determine whether ride hailing platforms substitute or

supplement certain modes of public transport. Burtch et al. (2018) show that Uber entry has a

negative impact on entrepreneurial activity, as potential entrepreneurs take up gig employment

as Uber drivers instead. Our study ties in with this important body of research on the intended

and unintended consequences of IS-enabled platform business models (Tiwana et al., 2010). To

the best of our knowledge there is only a small number of empirical studies that deal with the

corresponding societal impact of e-scooter introduction. Within this limited academic discourse,

a core focus has been on the impact on the environment (Bakker, 2019) and on traffic accident

statistics (Badeau et al., 2019). Any societal effects resulting from a replacement of incumbent

platforms such as bikesharing have so far been neglected. Indeed, the case of e-scooter platform

introduction is unique in the sense that a competing bike-based platform offering objectively

similar services is already present. This allows us to investigate how platforms compete with

each other and whether new and convenience-focused platform offerings are always desirable.

2.2.3 Consumer Choice in (Micro-)mobility

Previous research has identified a range of important determinants in the choice process that

users undergo when selecting between different mobility options. Within the domain of micro-

mobility, a majority of consumer choice research is based on traditional bikesharing systems.

Various studies observe a switch from many other incumbent transportation modes to bikeshar-

ing following its introduction (Fishman et al., 2014). For example, Campbell and Brakewood
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(2017) consider the impact of bikesharing on bus transit and identify a significant decrease in

bus ridership. Fishman et al. (2014) and Pelechrinis et al. (2017) uncover a significant reduction

in car usage as a result of bikesharing introduction. The research community’s understanding of

the impact of e-scooter introduction on urban transport systems is considerably less developed

and conclusive. Caspi et al. (2020) find that scooters are mostly used in inner city locations and

not primarily for commuting, while Bai and Jiao (2020) find usage peaks in the afternoons and

on weekends in some cities and stable usage throughout the week in others. A limited number of

studies have looked at differences in usage patterns between shared bikes and e-scooters. McKen-

zie (2019) finds that bikes and e-scooters are not necessarily used in the same way, with bike

usage reflecting utilitarian commuting behaviour and scooter use less so. Barnes (2019) on the

other hand compare substitution patterns of shared bikes and e-scooters on other modes in San

Francisco and find similar patterns for both modes suggesting a likely cannibalization effect of

e-scooters on bikes. In support of this, a recent survey among users in Portland concluded that

bike usage declined by 5% following e-scooter introduction (Shaheen, 2019). Similarly, Yang

et al. (2021) estimate an overall reduction of 10% in demand for shared bike trips following

e-scooter introduction in Chicago5.

Generally, adoption of and choice between (micro-)mobility services depends on a three types

of contextual factors (Babar and Burtch, 2020): system-, population- and environment-specific

factors. System-specific contextual factors comprise key characteristics related to the scope and

quality of a mobility system. Younes et al. (2020) find that free-floating schemes, in which

users can commence and complete one-way trips anywhere within a geo-fenced service area,

typically enjoy a higher adoption rate compared to station-based sharing schemes. Another key

determinant of the quality of service of a mobility system is the notion of coverage and access

(Braverman et al., 2019; Benjaafar and Hu, 2020b). In a shared mobility context, access is

primarily influenced by the number of vehicles and stations available within a region as well as

by how well individual vehicles and stations are distributed geographically (Braverman et al.,

2019; Schroer et al., 2022b). Population-specific contextual factors capture important informa-

tion on the underlying user population in a given market. Indeed, socio-economic characteristics

such as population size, income, age or unemployment are often incorporated into empirical de-

mand models in transportation (Greenwood and Wattal, 2017b). Finally, environment-specific

contextual factors, have been found to be important for the consumer’s choice process. Most

commonly, these comprise weather-related factors. Previous research has established that in-

clement weather such as extreme cold or precipitation can result in rescheduling and cancelling

of trips (An et al., 2019). This is especially true for travel modes that are heavily exposed to

the elements such as bikes and e-scooters.

5Due to the fact that their dataset stems from a single city only (Chicago), the authors had to rely on matching
regions inside and outside the e-scooter platform’s service area to construct counterfactuals. This raises serious
concerns related to selection bias and spatial spillover effects between treated and untreated regions, among others.
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As e-scooter platforms continue to expand, further research is needed to deepen our under-

standing of the technology’s impact on urban transportation systems and to clear up inconclusive

findings on consumer choice in micromobility (McKenzie, 2019).
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2.3 Methodology

2.3.1 Empirical Setting

Our identification strategy exploits the natural experiment of staggered e-scooter introduction

into selected (European) markets following the legalization of e-scooters on public roads in mid-

2019. While the first e-scooter platforms started to appear in some US cities by mid-2018,

scootersharing remained illegal in many Western European markets for another year. Following

regulatory approval in mid-2019, e-scooter sharing companies began entering cities throughout

Europe. Certain local municipalities, however, upheld a city-wide bans on e-scooters. This

constitutes a large-scale natural experiment, in which experimental units (i.e., city-period pairs)

have been naturally pre-allocated to a treatment group (e-scooters) and a control group (no

e-scooters). This setting is well-suited for the causal estimation of treatment effects via a DiD

approach.

As proxy for the traditionally bike-focused micromobility sector, we select Nextbike, Europe’s

largest operator of bikesharing platforms (Nextbike, 2022). The company is active globally but

has a clear focus on Central Europe, in particular Germany, Austria and Switzerland (DACH

region), which makes it an ideal candidate for our study. We limit our experimental sample to

cities in the DACH region where Nextbike was active over the whole observation period and

that have a significantly sized traditional micromobility sector as indicated by a large Nextbike

presence. An overview of the resulting experimental sample of 35 cities (18 eventually treated

and 17 never treated cities) is presented in Table 2.1.

2.3.2 Data & Sample Construction

To operationalize the DiD specification, we construct a unique dataset combining transaction-

level bikesharing data with socio-economic and environmental controls at the city-period or

city-period-subgroup level (our units of analyses).

We collect geo-tagged transaction data via Nextbike’s public API6 over close to a full year

from January 21, 2019 until January 12, 2020. This provides ample pre- and post-treatment

observational panel data and captures daily, weekly and yearly seasonality in transportation de-

mand. We queried the API in 1-minute intervals. Each API query returns the exact coordinates

of all currently available vehicles per each city. Individual vehicles are identifiable via a static

unique ID. Tracking individual bike IDs appearing and reappearing in our queries allows us to

infer the current size of the fleet, individual trips, their start and end positions as well as their

duration7. In line with Fishman et al. (2014) we only include trips of reasonable length in our

analysis, that is, trips which have a duration of at least 2 minutes8. We also limit our sample

to trips with total duration of below 24 hours, which is the maximum allowable rental time on

6https://api.nextbike.net/maps/nextbike-live.json
7We provide further detail on the imputation of trip level data from position queries in Appendix.
8Shorter rentals are usually attributable to technical errors such as lock malfunctions

https://api.nextbike.net/maps/nextbike-live.json
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Table 2.1: Experimental sample of cities i ∈ I

City Scooter Entry City Scooter Entry

Augsburg (DE) 5-Jul-19 Koeln (DE) 21-Jun-19
Berlin (DE) 15-Jun-19 Leipzig (DE) -
Bochum (DE) 11-Sep-19 Lippstadt (DE) -
Bonn (DE) 22-Jun-19 Ludwigshafen (DE) 01-Aug-19
Dortmund (DE) 8-Jul-19 Luzern (CH) -
Dresden (DE) 25-Jul-19 Mannheim (DE) 1-Aug-19
Duisburg (DE) - Marburg (DE) -
Erfurt (DE) 5-Jul-19 Moenchengladbach (DE) 16-Oct-19
Essen (DE) 22-Aug-19 Muelheim (DE) -
Frankfurt (DE) 22-Jun-19 Norderstedt -
Giessen (DE) - Offenburg (DE) -
Hamm (DE) - Potsdam (DE) 21-Jun-19
Heidelberg (DE) 3-Aug-19 Ruesselsheim (DE) -
Innsbruck (AT) 1-Jun-19 St.Poelten (AT) -
Kaiserslautern (DE) - Walldorf (DE) -
Karlsruhe (DE) 20-Sep-19 Worms (DE) -
Kassel (DE) - Wuerzburg -
Klagenfurt (AT) 13-Jun-19

Note: We focus our investigation on Central European (DACH region) cities, where netxbike
has a relevant presence (i.e., ≥7,500 bike trips annually) and is present for the entire observation
period. We also limit our sample to cities where our data feed is uninterrupted. Scooter Entry
describes the exact date of the first scooter platform entry. These data are retrieved from oper-
ators’ press releases as well as local media reports (see Table 2.19 in Appendix).

Nextbike’s platform. Trips that started outside the designated service area or city boundaries

are excluded from the analysis. Finally, our data feed experienced full or partial outages for five

consecutive days spanning the period March, 15 through March 19, 2019. We exclude the weeks

containing these days from our dataset9.

This leaves us with a raw sample of 7,642,223 individual bikesharing trips across all cities

and periods in scope. From this raw data we construct custom datasets by aggregating across

city-day or city-day-subgroup, depending on the level of analysis. At the city-day level, the

resulting dataset comprises 12, 005 observations. We supplement this dataset with contextual

control variables collected from a variety of official channels, primarily country- and city-specific

statistical offices (see Table 2.13 for an overview of variables and their data sources).

9We exclude the full weeks and not just the individual days to avoid issues stemming from unbalanced week
samples in later event studies



44 Localized Causal Effect Identification from IoT Data

Treatment Indicator

The process of e-scooter entry into the European cities contained in our experimental group was

rapid and comprehensive. As is commonly observed with platform business models, all entrants

followed an aggressive growth strategy by rapidly scaling fleet size in the respective entry city.

It follows that scooter sharing companies can be seen as serious and relevant contenders in

the micromobility sector from day one after entry. Therefore, we define the date of the first

e-scooter platform entry as the start of the intervention. This is consistent with the approach

taken by other authors (e.g. Babar and Burtch, 2020; Greenwood and Wattal, 2017b; Burtch

et al., 2018) who consider the entry of the first platform operator as the most important and the

only relevant treatment identifier. The entry dates per platform and city were retrieved from

local media publications and/or the providers’ social media feeds.

Dependent Variables

Our main dependent variable (DV) is Tripsi,t, the absolute trip count of shared bicycle trips in

city i and day t. To address normality concerns and ease interpretation of coefficient estimates,

we take the natural logarithm of the DV (i.e., ln(Tripsi,t)). In supplementary localized analyses

we also explore the impact of e-scooter introduction by granular bins (or groups) g, thus adding

an additional dimension to the model and the DV (i.e., ln(Tripsi,g,t)).

Figure 2.1 plots ln(Tripsi,t) for the control and treatment groups over the full observation

period in scope. An early visual inspection of this plot reveals first hints at a parallel pre-

treatment trend followed by what looks like a drop in utilization in the treatment group as more

and more cities experience scooter introduction (increasing overlap in the confidence intervals).

Subgroups for Localized Analyses

As mentioned, the geo-tagged bicycle sensor data we have available allows us to run in-depth

localized analyses on the dynamics of temporal, spatial and other trip characteristics – a level

of detail which is not typically attained in causal inference of offline phenomena. There are

several advantages to performing these localized analyses. First and foremost, we make full use

of the granularity of the data, thus illustrating our argument that large-scale IoT data streams

offer potential for causal analysis at an unprecedented detail. Second, we localize the origin

of the aggregate effect within the distribution in scope. For example, temporal and spatial

patterns of substitution can be readily explored and temporal bins (e.g., MorningRush) and

spatial areas (e.g., CityCenter) that are most (or least) responsible for the observed aggregate

effect identified. Finally there are important methodological advantages to decomposing the

aggregate treatment effect on the DV by relevant bins (Cengiz et al., 2019). In situations, where

only a small number of bins is susceptible to the treatment, aggregate analyses may fail to detect

any treatment effects at the full population level. Therefore, we construct different panels that



2.3 Methodology 45

2019-03 2019-05 2019-07 2019-09 2019-11 2020-01
Date

2

3

4

5

6

7

ln
(N

um
Tr

ip
s)

Never Treated
Eventually Treated

Si
ze

 o
f t

re
at

m
en

t g
ro

up
 (#

 c
iti

es
)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3
7 7 9 101011141414151515161717171718181818181818181818181818

Figure 2.1: Plot of ln(NumTrips) and cumulative number of treated cities over the observation
period.

Note: Treatment group is defined as cities that experience scooter platform introduction over
the course of the study period. The significant drop in fleet utilization at the end of December
coincides with the Christmas holiday. Shaded area (in March) indicates period of missing data
that was caused by an API outage. The affected days were subsequently dropped from the
dataset.
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correspond to key spatio-temporal trip characteristics with the goal in mind to extract the typical

trip type that is most/least prone to substitution. We analyze three core trip attributes, which –

taken together – provide strong indications for the purpose of a trip: (1) trip timing, (2) spatial

characteristics (of trip origin/destination) and (3) trip quality (duration, net distance covered).

Per each dimension in scope, we construct a custom set of meaningful bins (or groups). For (1)

trip timing, we construct sets of groups (G) that jointly capture weekly and daily seasonality

(GT = {WeekdayNight, MorningRush, ..., BarHours, WeekendNight}) (Cohen et al., 2016)

(see Appendix for details).

Regarding (2) spatial characteristics, we define two additional sets of groups. First, we

look at relative distance of trip origins from the city center. For this purpose we compute a

DistanceFromCenter metric per each trip in our dataset using the commonly used haversine

distance measure. We then normalize these distances at the city level and compute seven

quantiles over the normalized range corresponding to seven concentric rings of increasing relative

distance to the city center (GD = {CityCenter, ..., Outskirts}). The second spatial grouping

we conduct is by land use, specifically by most prevalent Points of Interest (POI) class at the

trip origin (GPOI = {ArtsAndCulture, BarsAndRestaurants, ..., Transport}) (see Table 2.17
in Appendix). For this purpose, we compute POI densities per each trip location using kernel

density estimation (KDE)10. We normalize POI densities per class at the city level, then assign

each trip to the POI class with highest relative density. Additional details are provided in

Appendix.

In terms of (3) trip quality, we construct bins based on trip data from the the pre-treatment

period (to avoid endogeneity concerns). We compute 11 bins of relative TripDuration, a measure

of the duration (in minutes) per each trip, and 11 relative bins of NetDistancePerHour, a ratio

of the net distance covered to duration, which represents a measure for whether the trip was a

round trip or not. Net trip distance is inferred from the origin and destination locations and

the shortest path across the (cyclable) road network that connects them11.

Control Variables

Contextual factors with a simultaneous temporal and regional dimension (as indicated by sub-

script i, t) are included as dynamic controls Ci,t where appropriate as they are not captured by

city or day fixed effects (FEs). Specifically, we control for the effect of system-, population- and

environment-specific factors.

We capture effects of system-specific contextual factors via two dynamic covariates. A key

factor is bike supply as capture by ln(NumBikesi,t) (i.e., the number of active bike in city i on

10For each city we first discretize the geographic area using equally spaced hexagonal regions of approx. 200m
diameter and count the number of POI instances per each class within each region. We then fit dedicated KDEs
per each hexagon center and POI class using a kernel density estimator (KDE) with an Epanechnikov kernel for
efficiency. For each trip, the absolute spatial density is retrieved using the fitted KDEs.

11We use a road network graph as available in Open Street Maps for shortest path inference
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days t), which can be readily expected to influence trip demand (Benjaafar and Hu, 2020b). In

addition, the density of the service system as captured by covariate ln(NumStationsi,t) (i.e, the

number of active bikesharing stations in city i on day t), is likely to co-determine absolute de-

mand. The dynamic population-specific contextual factors we include are ln(OvernightStaysi,t)

and ln(Unemploymenti,t). Anecdotal evidence suggests that tourists may be a highly active

adopters of shared mobility, which we control for by including monthly visits. In addition,

Unemploymenti,t and correspondingly lower income has previously been suggested to drive

shared consumption, which is why we control for monthly variations in employment levels.

Finally, we control for dynamic environment-specific contextual factors, particularly weather,

which we capture by means of the three dummy variables: RainyPeriodi,t (period with precip-

itation), HotPeriodi,t (period with temperature above 25 °C) and ColdPeriodi,t (period with

temperature below 0 °C)).

2.3.3 Difference-in-Differences (DiD) Identification Strategy

The potential outcomes approach postulates that average differences in outcome between a treat-

ment and a control group can be interpreted as the causal effect of the respective treatment,

given certain assumptions such as stable unit treatment value (SUTVA) and unconfoundedness

are met (Imbens and Rubin, 2015). The most relevant of these assumptions in a group-level

observational study like ours, in which treatment is naturally assigned (and unlikely to be fully

random12), is unconfoundedness. DiD designs manage the threat of confounding by leveraging

the longitudinal dimension of the underlying panel data which allows for causal treatment effect

estimation via a comparison in trend between treated and untreated units (Athey, 2017a). In our

setting, the staggered and regionally selective nature of scooter entry across the sample in scope

allows us to use untreated city-period pairs as counterfactuals for treated units under certain as-

sumptions. The target parameter to be estimated by the DiD estimator is the Average Treatment

Effect on the Treated (ATT), which is formalized as ATT = E[Yi,t=post(1)−Yi,t=post(0)|Di = 1],

where Yi,t=post(1) is the outcome of unit i if it is treated in period post, Yi,t=post(0) is the outcome

had unit i not been treated in period t = post and Di is a binary indicator of treatment group

affiliation. Naturally, Yi,t=post(0) is never actually observed for the treated group. However,

given parallel trends of outcomes in treated and untreated units13 and no anticipation14, ATT

can be identified by taking the difference between the differences in outcomes of treated and

untreated units, i.e. ATT = E[Yi,post(1)−Yi,pre(1)|Di = 1]−E[Yi,post(0)−Ypre(0)|Di = 0]. Both

expectations in individual outcome differences can be readily observed, thus enabling identifica-

tion.

12Scooter platform operators can be reasonably expected to select/prioritize markets based on factors such as
overall market size, income, transport system characteristics or general weather conditions

13This can be formalized as E[Yi,t=post(0)− Yi,t=pre(0)|Di = 1] = E[Yi,t=post(0)− Yi,t=pre(0)|Di = 0], i.e., the
trend in outcome in absence of treatment is the same in the eventually treated (Di=1) and the never treated
(Di=0) cohort

14This can be formalized as Yi,t=pre(0) = Yi,t=pre(1) ∀ i with Di = 1



48 Localized Causal Effect Identification from IoT Data

Recent methodological innovations in the difference-in-differences (DiD) literature make re-

calibration of previously tried and tested identification strategies (i.e., two-way-fixed-effects

(TWFE) regression) necessary. We briefly discuss the core implications for our setting, i.e.,

a setting with staggered, binary and absorbing15 treatment.

It has been shown that a traditional TWFE estimator is unsuitable in situations where treat-

ment adoption is staggered16 and treatment effects are heterogeneous across groups and time

(e.g., Borusyak et al., 2021; Callaway and Sant’Anna, 2020; de Chaisemartin and D’Haultfœuille,

2020; Goodman-Bacon, 2021). Treatment effect heterogeneity, i.e., differences in treatment effect

depending on when and where a treatment is administered, are realistic concerns in most em-

pirical settings. The root cause of TWFE bias in these situations lies in the so-called “forbidden

comparison” inherent to TWFE DiD estimators. It has previously been assumed that TWFEs

would recover a weighted mean of treatment effects across all treatment periods. Instead, re-

search has shown that a TWFE ATT can be decomposed to weighted averages of all possible 2x2

DiD comparisons of already treated, not-yet-treated and never-treated units (Goodman-Bacon,

2021). The forbidden comparisons are those between two already treated units and can result

in negative weights being assigned to some individual ATT estimates (non-convex combination

of regression weights). de Chaisemartin and D’Haultfœuille (2020) show that, in extreme cases,

TWFE ATT estimates and the true treatment effect may be of opposite signs. Robust alterna-

tive estimators have since been developed. These can broadly be categorized into (1) weighted

group-time ATT estimators (e.g., Callaway and Sant’Anna, 2020; Sun and Abraham, 2021), (2)

stacking individual-level ATTs by normalizing calendar time into relative event time (e.g., Baker

et al., 2022; Cengiz et al., 2019) and (3) imputation methods (e.g., Borusyak et al., 2021).

For the purpose of this work, we select the robust stacking estimator described in Baker

et al. (2022) (and applied in Cengiz et al. (2019)) as our main DiD estimator, although, for

benchmarking purposes, we also present estimation results obtained via weighted group-time

estimation (Callaway et al., 2021), imputation DiD strategies (Borusyak et al., 2021) and non-

robust traditional TWFE. Stacked DiD estimation avoids the ”forbidden comparison” by running

individual TWFE models per each treatment event using only the respective treated and all

untreated units as comparison group. This results in a then non-staggered design per sub-

sample (i.e., the stack). A key step in the estimation procedure is the preparation of a new,

larger dataset that appends all individual stacks with the treatment centered around a common

datum. Note that as a result of this process, untreated units will appear multiple times in the

combined dataset, a fact which is controlled for by including stack-city specific FEs (Baker et al.,

2022). Note also that, much like traditional TWFE, this approach can be applied for both a

static 2x2 DiD regression and a dynamic event study specification. Our choice for the stacked

DiD estimator is motivated by its close relation to the traditional TWFE DiD model that most

readers will be accustomed with and the relative ease with which aggregate ATT estimates can

15i.e., units can switch in but not out of treatment
16Units enter treated status at different points in time during the observation window T
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be computed from the individual stacked estimates. An additional advantage is the ability to

readily incorporate control variables in each of the TWFE-based stacks17. The core model is a

static stacked DiD model of the following form:

ln(NumTripsi,t) = αi,s + λt,s + δCi,t + βDi,t + εi,t (2.1)

Treatment is identified by means of binary indicator Di,t, which takes a value of 1 if e-scooters

are present in city i and time period t, and 0 otherwise. Ci,t subsumes several time-varying

controls. Note, that for benchmark purposes, we also estimate models without time-varying

controls, thus hedging against recently identified possible issues with such control strategies in

DiD frameworks (Sant’Anna and Zhao, 2020). εi,t is the error term. Note that the city FEs

(αi,s) and time FEs (λt,s) are interacted with each stack s, i.e. they identify which data stack

the observation originates from.

We supplement this analysis with an event-study to trace out temporal heterogeneity over

time. We limit our investigation to the interval W = [-12,24] weeks, meaning we investigate 3

months of pre-trends and 6 months of post-trends. For each stack, all data prior or after this

period is dropped. This avoids bias from grouping multiple periods into a single relative time

bin18. The event-time model extends equation 2.1 as follows:

ln(NumTripsi,t) = αi,s + λt,s + δCi,t +
∑
τ∈W

βτD
τ
i,t + εi,t (2.2)

Here Dτ
i,t is a binary treatment indicator that is set to one if city i experienced e-scooter intro-

duction τ weeks from day t19.

For localized effect estimations that trace out the distribution of the treatment’s effect across

a set of pre-defined temporal or spatial groups g ∈ G, we specify a third group-level model of

the following form:

ln(NumTripsi,g,t) = αi,g,s + λg,t,s + δCi,t +
∑
γ∈G

βγD
γ
i,g,t + εi,g,t (2.3)

Note that this model utilizes an extended dataset which consists of dedicated panel data per

group g ∈ G (hence the added dimension g as identified in the subscript). αi,g,s and λg,t,s are

the group-by-city and group-by-period fixed effects (both interacted with the stack s).

17Note that it has recently been shown that the inclusion of additional time variant controls only produces
credible estimates under several additional assumptions, such as parallel trends in covariates (Sant’Anna and Zhao,
2020). To hedge against this risk, it is recommended that a model without time-varying controls be estimated as
a benchmark (Baker et al., 2022). We adopt this recommendation in this work.

18Note, that although common practice, such a grouping assumes effect homogeneity in all periods contained
in a grouped time bin, which is why we abstain from grouping.

19Note that our data comes at daily resolution, yet we measure relative time in weeks, a choice made to achieve
a manageable number of pre- and post-treatment periods.
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2.4 Results

2.4.1 Main Effects on Bike Demand

We first focus on the main effects of e-scooter introduction on traditional micromobility fleet

utilization by reporting the results of static (Eq. 2.1) and event-study (Eq. 2.2) estimates of

total population ATTs. The core unit of analysis is the city-day and the DV is ln(NumTripsi,t).

All reported standard errors (SEs) are clustered by city, the level at which treatment is applied.

Static Model

In Table 2.2 we present the static ATT estimates. Due to the log-transformation of the dependent

variables, coefficient estimates of log-transformed covariates can be approximately interpreted

as elasticities, while coefficients of untransformed covariates can be interpreted as percentage-

changes on the outcome. Since the Baker et al. (2022) estimator readily accommodates additional

dynamic controls Ci,t, we estimate the models in various extended setups with different sets of

controls.

Our results indicate that the introduction of e-scooters into a micromobility market results in

a statistically highly significant reduction in trip demand on the incumbent bikesharing platform.

We estimate, that following e-scooter introduction, demand on incumbent bikesharing platforms

decreased by -20% to -22% on average over the post-treatment observation period. We find that

these results are robust to the inclusion of dynamic controls Ci,t with both absolute coefficient

estimates and significance levels remaining largely consistent and in the range of -20% to -22%.

We also find that most of the dynamic controls we include in our model exhibit significant effects

on the DV, thus confirming previous insights from the transportation literature that motivated

their inclusion. In terms of fleet-specific covariates (ln(NumBikes) and ln(NumStations)), we

find that, on average, more bikes and more stations result in more demand. Specifically, for

a 1% increase in the number of bikes or the number of stations, one can expect a 0.8% and

0.7% increase in demand, respectively. This is in line with our expectations (Benjaafar and Hu,

2020b). In terms of dynamic population-specific factors, we find that higher unemployment rates

tend to drive demand (elasticity of 1.5). Tourist volumes (as capture by ln(OvernightStays)),

seem not to play a major role. Demand is lower on average during cold and inclement weather

(-5% and -6%, respectively) and higher on hot days (+6%). Taken together, these estimates

confirm that scooter introduction causes undesired substitution shifts within the incumbent user

base of bikesharing platforms. Our results support the notion that some users who previously

would have opted for a shared bike switch to the self-propelled and less effortful e-scooter option

once it becomes available.
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Table 2.2: Average treatment effect of Scooter on overall bikesharing platform trips
(ln(NumTrips))

(1) (2) (3) (4) (5)
DV = ln(NumTrips)

Scooter -0.198∗∗ -0.216∗∗∗ -0.216∗∗ -0.197∗∗ -0.224∗∗∗

(0.0936) (0.0724) (0.0999) (0.0933) (0.0782)

ln(NumBikes) 0.835∗∗∗ 0.840∗∗∗

(0.0585) (0.0568)

ln(NumStations) 0.714∗∗∗ 0.644∗∗∗

(0.0637) (0.0580)

ln(OvernightStays) 0.0706 -0.0281
(0.0558) (0.0530)

ln(Unemployment) 1.518∗∗∗ 1.102∗∗∗

(0.184) (0.119)

ColdPeriod -0.0355∗∗∗ -0.0522∗∗∗

(0.00883) (0.00943)

HotPeriod 0.0712∗∗∗ 0.0589∗∗∗

(0.0185) (0.0147)

RainyPeriod -0.0573∗∗∗ -0.0564∗∗∗

(0.00737) (0.00666)

Model Baker et al. Baker et al. Baker et al. Baker et al. Baker et al.
N 93639 93639 93639 93639 93639
adj. R2 0.887 0.897 0.889 0.887 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors clustered at city-level reported in paren-
theses. Estimates based on daily data using specification from Equation 2.1. Higher N for stacked DiD
estimator (Baker et al., 2022) results from appending several treatment-centered subsets of the data
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Event Study Model

These results are further underpinned by the event-study DiD estimates that trace out temporal

variation in treatment effects. Table 2.3 tabulates the coefficient estimates of relative lead/lag

variables from 3 months (12 weeks) prior to 6 months (24 weeks) after the intervention for a

model without dynamic covariates (Column (1)) and a fully saturated model (Column (2)). A

visual representation of coefficient trajectories along with a benchmark against other estimators

is provided in Appendix (Figure 2.9). We first highlight that the pre-treatment time dummies

oscillate around the zero mark and that none of them are statistically significant. This pro-

vides strong support for the parallel trend and no anticipation assumptions underlying our DiD

identification strategy (Angrist and Pischker, 2008; Bertrand et al., 2004). Moreover treatment

response is swift and sustained. Coefficient estimates turn negative as early as one week after

treatment (i.e., relative week 1), depending on the model. Coefficient estimates remain negative

over the entire post-treatment period and reach sustained significance levels around week 14

(Model (2)) or 19 (Model (1)).

These results suggest that e-scooter roll-out and adoption is swift and that the aggregate

results (as seen in Table 2.6) are not purely attributable to novelty. In fact, the long-term

effects of e-scooter introduction may be even higher than estimated in the static models, as the

substitution effect seems to grow over time. For example, looking at the period from 3-6months

after treatment, an average treatment effect of -0.303 can be observed20.

20This is computed as an average over the twelve individual estimates 1
12

∑
τ∈[13,24] βτ
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Table 2.3: Event study of effect of Scooter on overall bikesharing platform trips
(ln(NumTrips))

(1) (2)
Relative Week Est. SE Est. SE

-12 0.064 0.093 0.083 0.079
-11 0.113 0.085 0.11 0.077
-10 0.116 0.102 0.12 0.087
-9 0.079 0.088 0.071 0.074
-8 0.044 0.100 0.051 0.081
-7 0.027 0.082 0.022 0.062
-6 0.014 0.087 0.002 0.070
-5 -0.018 0.067 -0.038 0.061
-4 -0.015 0.041 -0.043 0.042
-3 0.056 0.048 0.049 0.047
-2 -0.02 0.051 -0.033 0.051
-1 reference reference
0 -0.068 0.046 -0.054 0.047
1 -0.165** 0.070 -0.11 0.069
2 -0.123 0.103 -0.103 0.098
3 -0.064 0.120 -0.044 0.098
4 -0.083 0.130 -0.053 0.091
5 -0.15 0.112 -0.13* 0.077
6 -0.133 0.130 -0.1 0.082
7 -0.195 0.140 -0.144 0.093
8 -0.209 0.146 -0.158 0.102
9 -0.172 0.136 -0.172* 0.092
10 -0.131 0.154 -0.133 0.114
11 -0.114 0.151 -0.146 0.115
12 -0.173 0.154 -0.186 0.114
13 -0.254 0.173 -0.245* 0.129
14 -0.273 0.175 -0.28** 0.131
15 -0.228 0.169 -0.24* 0.125
16 -0.212 0.182 -0.226* 0.131
17 -0.278 0.174 -0.291** 0.125
18 -0.27* 0.161 -0.275** 0.121
19 -0.336** 0.159 -0.317*** 0.115
20 -0.367** 0.151 -0.369*** 0.097
21 -0.428*** 0.150 -0.405*** 0.109
22 -0.366*** 0.141 -0.346*** 0.105
23 -0.326** 0.145 -0.351*** 0.109
24 -0.298* 0.161 -0.287** 0.115

Day FE Yes Yes
City FE Yes Yes
Controls Ci,t No Yes

Model Baker et al. Baker et al.
N 93639 93639
adj R2 0.887 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors
clustered at city-level reported in parentheses. Estimates are
based on daily data. Higher N for stacked TWFE estimator
results from stacking several subsets of the data each of which
are centered around the treatment datum
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2.4.2 Localized Analyses

We underpin our previous findings with several sets of deep-dive analyses at sub-group level.

These analyses distinguish our work from previous empirical studies of offline behavior and

demonstrate how granular IoT sensor data can be used beyond identification of aggregate policy

effects. Such analyses are useful as they allow managers and policy makers to zoom into the

effect dynamics and nuances, thus enabling significantly more targeted measures to extenuate

or reinforce an effect, depending on business/policy objectives. We analyze three core trip

attributes, which – taken together – provide indications as to the purpose of a trip: (1) trip

timing, (2) trip origin and (3) trip quality.

Localized Temporal Effects

Trip timing is highly indicative of trip purpose – in fact it is often used as the sole identifier

for inferring user intention (e.g., Cohen et al., 2016). In order to trace out both weekly (i.e., by

day of week) and daily (i.e., by hour of day) effect seasonality, we construct custom temporal

bins that capture interactions between both weekly and daily effects (see Table 2.16). The

results are shown in Figure 2.2. The analysis suggests that the observed aggregate substitution
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Figure 2.2: Localized Temporal Effects of Scooter on ln(NumTrips).

Note: DV = ln(NumTripsi,g,t). Estimates based on Baker et al.’s stacking method and Equation
2.3 (including dynamic controls Ci,t). Error bars represent the 95% confidence interval based
on standard errors clustered at the city level.

effect is a weekday phenomenon only with highest substitution occurring during rush hours

(MorningRush and EveningRush) followed by WeekdayDaytime. All three localized effects

are significant at the p<0.01 threshold. Other periods are not significantly affected. This

suggests that a sizeable portion of users who may have previously opted for a shared bike for

commuting purposes (to work, to school or for other purposes) now select e-scooters instead,

creating a significant substitution effect away from the incumbent and socially more desirable
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bike-based platform. The analysis suggests that observed e-scooter trips outside these time

periods are entirely new trips, in the sense that they do not replace bikesharing trips. Instead,

they seem to be originate from user segment that have previously been untapped by incumbent

bikesharing platforms.

Localized Spatial Effects

In addition, we look at spatial patterns in bike trip substitution. An important aspect to

consider is where substitution primarily occurs. A first analysis therefore focuses on whether

there is a difference in effect between central versus peripheral locations21. The results are shown

in Figure 2.3. We find that substitution is limited to central locations only (InnerRing and
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Figure 2.3: Localized Treatment Effects per relative Distance from Center.

Note: DV = ln(NumTripsi,g,t). Estimates based on Baker et al.’s stacking method and Equation
2.3 (including dynamic controls Ci,t). Error bars represent the 95% confidence interval based
on standard errors clustered at the city level.

ExtendedCenter) and becomes insignificant further out from the city center. This reinforces the

narrative of commuter-based substitution, which would be expected to occur mostly in central

locations (where offices and commercial centers are located). Note also that bike platforms often

operate significantly larger service areas compared to e-scooter platforms – especially so in the

early phases of platform introduction. Thus, our analysis may also point to the fact that limited

competition with e-scooter platforms exists further out from a city’s respective center.

We supplement this analysis with a more detailed view on trip location. Specifically, we

group trips by most prevalent POI class at the trip origin. The results are shown in Figure

2.4. In line with previous results, we find that trips originating close to transportation-related

POIs are most prone to substitution, suggesting that last mile commuter trips are affected most

seriously by e-scooter competition.

21We consider trip origin locations here.
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Figure 2.4: Localized Treatment Effects per POI Density Subgroup.

Note: DV = ln(NumTripsi,g,t). Estimates based on Baker et al.’s stacking method and Equation
2.3 (including dynamic controls Ci,t). Error bars represent the 95% confidence interval based
on standard errors clustered at the city level.

Localized Effects on Trip Quality

Apart from analyzing trip timing and origin characteristics, we also explore how core trip quality

characteristics may be impacted by e-scooter introduction. We especially look at trip duration

and net trip distance covered per hour (an indicator of whether the trip is a roundtrip or a

point-to-point trip). Figure 2.5 plots group-specific effect estimates by duration bin. We find

that substitution occurs exclusively for very short trips, i.e. those with total durations of 0-15

and 16-30 minutes. Groups of trips with longer durations are not significantly affected. Again,

we argue that this underpins previous findings of substitution occuring due to convenience-

driven switching to e-scooters for short, largely utilitarian commuting purposes. We see these

conclusions supported by the analysis of trip trajectories (see Figure 2.6). Affected trips are

primarily point-to-point trips, with round trips being less affected. This is consistent with

utilitarian commuter patterns.

In sum, all localized analyses point toward commuter trips being the main source of substi-

tution. This is supported by all localized analyses we run. Specifically, substitution occurs pri-

marily during weekday rush hours and in central locations. Areas with high density of transport

infrastructure are disproportionately more affected, again suggesting that convenience-focused

former bikesharing users switch to e-scooters for their last-mile commuting needs. The affected

trips are mainly short point-to-point trips, again suggesting commuting as the primary source

of substitution.



2.4 Results 57

0-15 16-30 31-45 46-60 61-75 76-90 91-105 106-120 121-135 136-150 >150
Trip Duration [min]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Tr
ea

tm
en

t E
ff

ec
t E

st
im

at
e 

Shorter Trips Longer Trips

Figure 2.5: Localized Treatment Effects per Trip Duration Subgroup.

Note: DV = ln(NumTripsi,g,t). Estimates based on Baker et al.’s stacking method and Equation
2.3 (including dynamic controls Ci,t). Error bars represent the 95% confidence interval based
on standard errors clustered at the city level.
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Figure 2.6: Localized Treatment Effects per Net Trip Distance per Hour Subgroup.

Note: DV = ln(NumTripsi,g,t). Estimates based on Baker et al.’s stacking method and Equation
2.3 (including dynamic controls Ci,t). Error bars represent the 95% confidence interval based
on standard errors clustered at the city level.
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2.5 Robustness Tests and Validation Analyses

We validate our results by means of a comprehensive set of robustness tests. The specific

robustness concerns we address along with their respective validation strategies are summarized

in Table 2.4.

2.5.1 Placebo Test for Parallel-Trend and No-Anticipation Assumption

We first validate the parallel trend and no anticipation assumptions, two core prerequisite for

the validity of our DiD identification strategy. Note that visual inspection of the dependent

variable (see Figure 2.1) and the results from the event study model(s) already lend support to

both assumptions being valid. We provide additional evidence here. To do so, we implement

two separate falsification tests. First, we run a pseudo-treatment test similar to the one used in

Babar and Burtch (2020) by which we artificially move the treatment back 100 days, drop the

last 100 days of the dataset and re-estimate Equation 2.1. The results of this analysis are shown

in Table 2.5 (Column (1)). We find no evidence for a significant pseudo treatment effect. The

second falsification test we run relies exclusively on a non-treated sub-sample (i.e., the period

of January 21, 2019 to March 31, 2019 prior to first treatment on June 01, 2019 (see Table

2.1)). We then create placebo treatment vectors by scaling the actual treatment vectors to the

(shorter) pre-treatment sub-sample22. Again, if the parallel-trend assumption holds, we should

expect a non-significant pseudo treatment effect close to zero. Referring to Table 2.5 (Column

(2)) this is indeed what we find.

2.5.2 Group-Time Effect Heterogeneity

As mentioned, recent methodological research has revealed certain shortcomings of two-way

fixed effects (TWFE) difference-in-differences estimators like the one used throughout this re-

search (de Chaisemartin and D’Haultfœuille, 2020; Callaway and Sant’Anna, 2020). The main

concern pertains to the possibility of negative weights when computing the ATT as a weighted

sum of group- and period-level ATTs, as is the case with TWFE estimators (de Chaisemartin

and D’Haultfœuille, 2020). To test the robustness of our estimations to this concern we esti-

mate group- and period-level average treatment effects following the methodology proposed by

Callaway and Sant’Anna (2020).

For reference, we first report results obtained with traditional TWFE estimators (i.e., a

log-OLS model and a Poisson quasi-maximum-likelihood (PQML) estimator (Greenwood and

Wattal, 2017b)). We then report estimates obtained with the doubly-robust Callaway et al.

(2021) weighted group-time estimator, an imputation-based estimator (Borusyak et al., 2021)

22For example, if city i was originally treated on day t ∈ T , where T is the full set of days, the placebo
treatment will set in on day tsub = t

|T | |T
sub|, where |T | and |T sub| are the number of days in the full and the

pre-treatment sub-sample, respectively
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Table 2.4: Overview of robustness concerns, associated validation strategies and results

Robustness concern Validation strategy Result Reference

Core DiD assumptions
(pre-treatment parallel
trend, not anticipation)
do not hold

Event-study model

Scaled pseudo treatment
on Jan-Jun sub-sample
Shifted pseudo treatment

Non-sig./small pre-
treatment eff.
Non-sig./small placebo
eff.

Non-sig./small placebo
eff.

Fig.2.9,
Tab.2.18

Tab.2.5

Tab.2.5

Treatment effect is hetero-
geneous across time and
groups

Review TWFE regressions
weights (de Chaisemartin
and D’Haultfoeuille, 2021)

All regression weights
are non-negative indi-
cating correct effect sign

unreported
analyses

Use of robust DiD estima-
tors

Comparable estimates
(size, direction, sig.
level) to TWFE

Tab.2.6,2.18

Specific TWFEs per treat-
ment (Cengiz et al., 2019)

Most treatment coeffs.
are significant and
negativea

Fig.2.10

Serial Correlation in DV
leads to underestimation
of SEs (Bertrand et al.,
2004)

Random assignment test
Permutation/shuffle test
Clustering of SEs

No sig. effect on DV
No sig. effect on DV
Results remain sig.

Tab.2.7
Tab.2.7
all results

Incorrect functional form
of estimator

Benchmark of variety of
DiD estimators of different
functional form with and
without controls Ci,t

Results consistent in
size, direction and sig-
nificance

Tab.2.3,2.6,2.18

Effect is driven by novelty
of e-scooters and is not
sustained over time

Event study model for
up to 6 months following
treatment

Effect is sus-
tained/grows over
time

Fig.2.9,
Tab.2.18

Fleet operators strategi-
cally adjust network (fleet
size, station count) in re-
sponse to treatment

Regress fleet size and
number of stations onto
scooter

Eff. is close to 0 and
not sig. indicating no
network changes after
treatment

Tab.2.8

Some cities experience
multiple platform entries,
others just one

Re-estimate Eq.2.1 on re-
duced sample excluding
cities with multiple entries

Eff. remains sig. and
consistent in direction
(larger for less entries)

Tab.2.9

Marketing activities of fo-
cal bikesharing platform
extenuate observed effect

Re-estimate Eq.2.1 on re-
duced sample excluding
affected periods/cities (see
Tab.2.20 for details)

Eff. remains sig. and
consistent in size

Tab.2.10

Dynamics with competing
bikesharing platforms in-
troduce bias

Re-estimate Eq.2.1 on re-
duced sample only indlud-
ing cities, where nextbike
is the sole bikesharing op-
erator (see Tab.2.21 for
details)

Eff. remains sig.
and consistent in size
(slightly smaller)

Tab.2.11
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Table 2.5: Average pseudo treatment effect on demand for bikesharing (ln(NumTrips))

(1) (2)
DV = ln(NumTrips)

PseudoScooterShifted -0.0583
(0.0738)

PseudoScooterScaled 0.0601
(0.0526)

Day Fixed Effects Yes Yes
City Fixed Effects Yes Yes
Dynamic Controls Ci,t Yes Yes

Model Baker et al. Baker et al.
N 66,339 31,941
adj. R2 0.912 0.907

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard er-
rors (SE) clustered at city-level reported in parentheses. Es-
timates are based on daily data. Higher N for stacked DiD
estimator (Baker et al., 2022) results from appending sev-
eral treatment-centered subsets of the data
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and finally the stacked TWFE regression model based on Baker et al. (2022) (our main es-

timator). In this benchmark we refrain from including any dynamic controls Ci,t to ensure

comparability between estimators (some do not allow for the inclusion of controls). The results

are reported in Table 2.6. The direction and size of the estimated treatment effect are com-

parable across all estimators in scope, lending strong support to the robustness of the results.

Amongst the robust DiD estimators, there is some minor variability in terms of absolute estima-

tion size ranging from -0.198 to -0.238. Note that the estimate obtained with our fully saturated

main model of -0.224 (see Table 2.2) falls within that range. All robust estimates (except for the

Callaway et al. (2021) coefficient) are significant, at least at the p=0.05 significance threshold

or lower. Event model benchmarks are provided in Table 2.18 and Figure 2.9 and paint a very

Table 2.6: Average treatment effect of Scooter on demand for bikesharing (ln(NumTrips)) as
estimated by traditional TWFE models ((1)-(2)) and robust DiD estimators ((3)-(5))

(1) (2) (3) (4) (5)
DV = ln(NumTrips)

Scooter -0.181 -0.208∗∗∗ -0.229 -0.238∗∗∗ -0.198∗∗

(0.124) (0.072) (0.143) (0.089) (0.094)

Day Fixed Effects Yes Yes Yes Yes Yes
City Fixed Effects Yes Yes Yes Yes Yes
Dynamic Controls Ci,t No No No No No

Model log-OLS Poisson Callaway et al. Borusyak et al. Baker et al.
N 12,005 12,005 12,005 12,005 93,639
adj. R2 0.991 - - - 0.887

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors clustered at city-level reported in parentheses.
Estimates based on daily data. Higher N for stacked DiD estimator (Baker et al., 2022) results from ap-
pending several treatment-centered subsets of the data

similar picture.

2.5.3 Random Assignment and Permutation/Shuffle Tests

The second main validity threat for DiD estimators is serial correlation in the DV (Angrist

and Pischker, 2008; Bertrand et al., 2004). Note that potential serial correlation should be

reflected in the clustered SEs we report throughout this study. Nonetheless we run additional

falsification (shuffle) tests, a commonly used strategy to gauge whether model results are robust

to serial correlation (e.g., Burtch et al., 2018). We implement two variants. First, we run a

pseudo treatment test by which we randomly reassign treatment indicators across the full set

of cities as well as the cities that eventually receive treatment (treatment group), respectively.

We repeat this procedure for a total of 1000 replications and store the coefficient estimates.

The results are shown in Table 2.7 (Columns 1 and 2). As can be seen, the mean placebo

effect is approximately equal to zero for both samples with the true effect being in the very
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far tail of both distributions of placebo estimates. This lends strong support to the robustness

of our results to serial correlation. Second, we randomly reassign (shuffle) the 35 city-specific

treatment vectors Scooteri,t across cities (e.g., Berlin receiving treatment vector of Bonn, Bonn

receiving treatment vector of Frankfurt, etc.) and re-estimate our basic model. We repeat this

process for a total of 1000 replications for both the full sample and the sub-sample of control

cities. Our results are reported in Columns 3 and 4 of Table 2.7 and reinforce our previous

findings that serial correlation does not pose a problem to our identification strategy. We find

that the mean placebo treatment effect is approximately zero. Furthermore, we show that the

true treatment effect is in the far tail of the distribution of placebo treatment estimates (see

p-value and z-score), which provides strong support for the robustness of our results to serial

correlation.

Table 2.7: Permutation/shuffle test swapping entire treatment vectors across cities

Random Assignment Test Permutation/Shuffle Test

µ of Placebo Effect 0.010 0.020 0.014 0.030
σ of Placebo Effect 0.122 0.171 0.110 0.162
Actual Effect Estimate -0.224 -0.224 -0.224 -0.224
z-Score -1.922 -1.425 -2.157 -1.561
t-Statistic 60.791 45.048 68.215 49.354
p-Value <0.001 <0.001 <0.001 <0.001
Replications 1000 1000 1000 1000
Sample All cities Never Treated All cities Never Treated

Note: Random assignment test involves assigning treatment status fully at random across
the sample. Permutation/shuffle test is implemented by shuffling treatment vectors across
cities (e.g., Berlin receiving treatment vector of Bonn, Bonn receiving treatment vector of
Frankfurt, etc.)

2.5.4 Strategic Adjustment of Networks (Fleet Size and Station Density)

Demand for shared transportation is strongly dependent on service level provided by the in-

cumbent network operator (Benjaafar and Hu, 2020b). In the case of bikesharing, service level

can be well approximated by the number of bicycles (NumBikesi,t) available in a market as

well as the number of docking stations (NumStationsi,t) installed in the service area. Thus,

dynamics in either of the two covariates may raise endogeneity concerns. Therefore, we set

out to ensure that the observed reduction in demand for bike trips is not an artefact of the

bikesharing operator’s decision to strategically adapt fleet size or network structure (i.e., num-

ber of stations) in response to new competition from e-scooter platforms. For this purpose, we

re-estimate Equation 2.1 for yi,t = ln(NumBikesi,t) and yi,t = ln(NumStationsi,t) (without

any dynamic controls). Table 2.8 summarizes the results. We find that the effect Scooteri,t on

both ln(NumBikesi,t) and ln(NumStationsi,t) is close to zero and not statistically significant.
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This confirms that bikesharing operators did not change vehicle supply or network density in

response to the introduction of e-scooter sharing schemes. Any reduction in bike trips can thus

be attributed to the introduction of e-scooters.

Table 2.8: Robustness to network changes (ln(NumBikes) and ln(NumStations)) in response
to treatment (Scooter)

(1) (2)
ln(NumBikes) ln(NumStations)

Scooter 0.0151 0.00663
(0.0456) (0.0245)

Day Fixed Effects Yes Yes
City Fixed Effects Yes Yes
Dynamic Controls Ci,t No No

Model Baker et al. Baker et al.
N 93,639 93,639
adj. R2 0.975 0.973

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors (SE)
clustered at city-level reported in parentheses. Estimates based on
daily data using specification from Equation 2.1. HigherN for stacked
TWFE estimator results from stacking several subsets of the data
each of which is centered around the treatment datum

2.5.5 Multiple e-Scooter Platform Entries

Some cities experience multiple e-scooter platform entries, others just one or two (see Table

2.19). It may be possible that these dynamics bias our effect estimates. To check for this

possibility we drop cities that experience more than one or two significant platform entries over

the period of observation from our dataset. We re-estimate Equation 2.1 and report the results

in Table 2.9. The ATT remains consistent in direction and significance, indicating that multiple

platform entry does not affect our results in a qualitative manner. We attribute the significantly

larger coefficient estimates achieved on the sub-samples (Columns (2) and (3) in Table 2.9) to

group-specific effect heterogeneity.

2.5.6 Price Promotions and Other Marketing Activities of Incumbent Bike-

sharing Platform

Price promotions and other marketing activities implemented by the incumbent bikesharing plat-

form during the observational period represent possible confounders that may bias the estimated

treatment effects. Reductions in the base price would result in a more attractive competitive

positioning of bicycles versus e-scooters, thus extenuating previously observed cannibalization

effects. In Table 2.20 we have compiled a list of all marketing activity as advertised on Nextbike’s

social media channels. In the majority of cases, promotions either affect the full sample, the
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Table 2.9: Average treatment effect of Scooter on overall bikesharing platform trips
(ln(NumTrips)) for different sub-samples with one or two e-scooter entries

(1) (2) (3)
DV = ln(NumTrips)

Scooter -0.224∗∗∗ -0.378∗∗∗ -0.317∗∗∗

(0.0782) (0.125) (0.0985)

Day Fixed Effects Yes Yes Yes
City Fixed Effects Yes Yes Yes
Dynamic Controls Ci,t Yes Yes Yes

Model Baker et al. Baker et al. Baker et al.
Sample Full Up to one entry Up to two entries
N 93,639 43,561 62,083
adj. R2 0.898 0.896 0.897

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors (SE) clustered at city-
level reported in parentheses. Estimates based on daily data using specification from
Equation 2.1. Higher N for stacked TWFE estimator results from stacking several
subsets of the data each of which is centered around the treatment datum
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entire observational period, or both and are therefore controlled for by means of city and period

fixed effects. On some occasions, however, only certain cities and periods are affected. We

control for these effects by removing single affected days from the sample (for all cities) (see

Table 2.20 for an overview of control strategies). We obtain essentially the same coefficient

estimates (with only minor deviations in the estimated SE) when re-estimating Equation 2.1 on

this reduced sample (see Table 2.10).

Table 2.10: Average treatment effect of Scooter on overall bikesharing platform trips
(ln(NumTrips)) excluding marketing activities

(1) (2)
DV = ln(NumTrips)

Scooter -0.224∗∗∗ -0.224∗∗∗

(0.0782) (0.0789)

Day Fixed Effects Yes Yes
City Fixed Effects Yes Yes
Dynamic Controls Ci,t Yes Yes

Model Baker et al. Baker et al.
Sample Full No marketing activities
N 93,639 90,909
adj. R2 0.898 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors (SE) clus-
tered at city-level reported in parentheses. Estimates based on daily
data using specification from Equation 2.1. Higher N for stacked TWFE
estimator results from stacking several subsets of the data each of which
is centered around the treatment datum

2.5.7 Dynamics with Incumbent Bikesharing Platforms

Previous estimation results may be subject to contamination related to competitive dynamics

with other incumbent bikesharing systems. To hedge against this risk, we review the number

of active incumbent bikesharing competitors (and new entrants) over the observation period

(see Table 2.21). We then re-estimate Equation 2.1 on two different subsets of data. First we

remove all cities from our experimental sample where Nextbike faces any competition from other

bikesharing operators at all, thus removing the possibility of any competitive dynamics present

in the sample. We repeat the same analysis for a second sample including only cities where a

maximum of one competing bikesharing platform is present. The results are shown in Table

2.11. We find that ATT estimates remain robust in size, direction and significance across the

three samples.



66 Localized Causal Effect Identification from IoT Data

Table 2.11: Average treatment effect of Scooter on overall bikesharing platform trips
(ln(NumTrips)) for different sub-samples of cities with and without competitors

(1) (2) (3)
DV = ln(NumTrips)

Scooter -0.224∗∗∗ -0.162∗∗ -0.204∗∗

(0.0782) (0.0723) (0.0879)

Day Fixed Effects Yes Yes Yes
City Fixed Effects Yes Yes Yes
Dynamic Controls Ci,t Yes Yes Yes

Model Baker et al. Baker et al. Baker et al.
Sample Full No competitors Up to one competitor
N 93,639 48,020 86,779
adj. R2 0.898 0.889 0.896

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors (SE) clustered at city-level
reported in parentheses. Estimates based on daily data using specification from Equation
2.1. Higher N for stacked TWFE estimator results from stacking several subsets of the
data each of which is centered around the treatment datum
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2.6 Discussion

Drawing on the much-discussed case of e-scooter introduction into global micromobility markets,

we explore how high-fidelity IoT data can be exploited for causal policy and operational insights.

Underlying our analyses is a unique dataset gathered from real-time sensor data streams of

shared bicycles. Through regular API queries, we collect a full year (January, 2019 to January,

2020) of granular geo-tagged position data of Nextbike-operated shared bicycles across 35 cities.

This data is broadcast continuously via the GPS beacons attached to each shared bike and,

when collected and stored at frequent intervals, allows inference on trip origin, destination,

departure time, duration and trajectory. 18 of the bikesharing markets in our sample eventually

experience e-scooter platform entries, thus creating a natural experiment that we exploit for

causal inference. We employ state-of-the-art DiD techniques (Cengiz et al., 2019; Baker et al.,

2022) at an aggregate and localized level to explore the impact e-scooters have had on overall

demand for shared bike trips and on specific user behavior shifts in the incumbent micromobility

user population.

We find that e-scooter introduction has resulted in cannibalization of incumbent bikesharing

platforms. In the markets we study we find a statistically significant drop in demand for bike

rentals of 22.4%. Our findings suggest that the observed displacement effect stems mostly from

convenience-driven substitution of commuter trips. We are able to show that the affected trips

are those during morning and evening rush hours, originating in central locations, primarily

around transportation infrastructure. We also show that it is mostly short point-to-point trips

that are affected by e-scooter competition.

2.6.1 Contributions

Our study offers several contributions. First, we provide new findings related to the societal

impact of digital platform business models. We show that e-scooters significantly cannibalize

the healthier and environmentally more friendly transport alternative of shared bicycles. This

finding adds crucial nuance to the public discussion on the evaluation and regulation of e-

scooter platforms, which has largely ignored issues related to undesired mode substitutions and

cannibalization. Indeed, our empirical results allow us to quantify the attributable business,

health, and environmental impact resulting from bike trip replacement. We estimate that across

the 18 treated cities in our sample approximately 1.44M bike trips are replaced annually by

e-scooters. Taking into account that mostly shorter trips are affected this breaks down to a

replacement of approximately 43.27M active bike minutes annually23. We further estimate the

resulting business impact for Nextbike to be around EUR 1.44M annually24. From a health

23Assuming an average trip duration per replaced trip of 15 minutes, i.e., the mid-point of the two most affected
duration baskets (0-15min and 16-30min)

24Nextbike charges EUR 1 per commenced 30-minute slot in their basic tariff. We therefore account EUR 1
per replaced trip.
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perspective, negative impacts are incurred as a result of people moving less (Xu, 2019). We

estimate that e-scooter introduction has resulted in the replacement of approximately 307M

kcal annually across the treated cities in our sample among Nextbike users alone25. Finally,

recent studies have shown that e-scooters have a significantly worse full life-cycle carbon footprint

performance (126 g CO2-eq./km) compared to station-based bikesharing (65 g CO2-eq./km) and

free-floating bikesharing (118 g CO2-eq./km) (Luo et al., 2019). On aggregate, the introduction

of e-scooters therefore results in a negative climate impact of 50t-385t CO2-equivalent purely as a

result of replacing bikesharing trips26. However, our results also provide cautionary evidence for

potential positive societal effects of e-scooters. We show that in many periods e-scooters do not

directly cannibalize bikes, and instead cater to users that may previously have been untapped

by incumbent micromobility offers. This suggests that e-scooters may be a worthwhile and

relevant addition to the transportation mix, especially if it replaces less favorable options, such

as cars. These findings also contribute to the literature on transportation mode choice in shared

micromobility, a still relatively poorly understood, yet fast growing domain (McKenzie, 2019;

Shaheen, 2019).

At a more general level, we show how IoT data can be used to achieve causal inference at

a localized level with direct operational and strategic implications for managers. Specifically,

we are able to credibly pinpoint and quantify the source of substitution (commuter segment in

central locations and in proximity to transport infrastructure), thus enabling targeted strategic

and operational response by platform managers. For example, e-scooter platform operators may

wish to prioritize the commuter segment in their marketing campaigns given that it is this seg-

ment where competition with incumbent bikesharing platforms primarily plays out. Marketing

campaigns could explicitly address commuters in the time slots and areas we have identified

(e.g., by means of contextual mobile targeting (Ghose et al., 2019a)). Or they may wish to focus

on segments where cannibalization has, thus far, not set in. For incumbent bikesharing oper-

ators our results provide clear and detailed guidance for possible strategic responses that can

help attenuate the business impact of e-scooters. For example, operators may wish to increase

coverage and/or try to improve utilization via targeted marketing campaigns in specific time

periods and areas that experience higher substitution rates on average. They might also think

about incorporating e-bikes into their fleets that offer similar convenience levels as e-scooters and

deploying them in the regions and time slots we have identified as most prone to cannibalization.

2.6.2 Future Work

Our study is not without limitations, which provide scope for future research. First, we are

limited by the availability of post-treatment data which confines us to the investigation of short-

to-medium-term treatment effects. We are confident, however, that our investigation of this

25Data suggests that a person of average weight burns roughly 260 kcal for each 30 minutes of moderate cycling
whereas standing requires only 47 kcal for the same period (Havard Medical School, 2018).

26Assuming moderate cycling speeds of 17.5 km/h



2.6 Discussion 69

five- to six-month window clearly points toward a prolonged, if not intensifying effect. Also,

our observational study is based on European data. Europe has one of the most developed

micromobility markets globally, which makes this case particularly relevant. While we expect

to see similar effects in other regions, their exact magnitude remains to be verified. Our study

is also limited by the fact that we do not have access to user-level data. This limitation is

shared with many seminal empirical studies in the area (e.g., Babar and Burtch, 2020; Zervas

et al., 2017; Chan and Ghose, 2014). However, contrary to these exemplary studies, the high

level of granularity in our data enables us to conduct analyses – especially those related to user

behavior shifts – which allow well-grounded assumptions on the underlying user types and travel

use cases. Future research exploring the individual user dimension would likely prove useful and

could help triangulate the results presented in this study. Finally, our data only allows the

analysis of substitution effects of e-scooters on (shared) bicycles. We do not have visibility

on cannibalization of other modes. This work also does not attempt to quantify any of the

other potential positive (e.g., reduced traffic) or negative (e.g., accident rates, curb crowding,

precarious employment) impacts of e-scooter platform introduction. For a full appraisal of the

societal benefits and drawbacks of e-scooter platforms, such analyses would be of interest. We

leave them for future research.
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2.7 Appendix

A. Data Collection

Dependent Variable Data Retrieval and Processing

Table 2.12 shows an excerpt of the raw API data feed for an exemplary bicycle in the city

of Berlin. Data feeds like this were collected over the entire observation period across the full

experimental sample. Locations per each vehicle (as identified by attribute bike ID) are retrieved

and stored every minute by means of a query of Nextbike’s application programming interface

(API). If the vehicle is rented out, it disappears from the API output. Thus, by tracking

individual vehicles disappearing and then reappearing in our records, trip times, trip duration

and trip trajectory can be readily inferred. In the example in Table 2.12, bike 22473 was rented

out on March 8, 2019 at 18:32 at station 6302589 (Hermannstraße/Briesestraße). The rental was

completed approximately ten minutes later (at 18:42) as a free-floating rental (i.e., not returned

to a docking station) at location (52.4696115,13.4245992). Note that we do not use station IDs

or names for trip trajectory inference. Instead, we utilize observed GPS coordinates (attributes

lat and lng) as broadcast by the bike’s GPS sensor. This ensures that trip inference works for

both station-based, free-floating and hybrid systems and trips. The API data also allows us to

infer the number of vehicles and the number of stations currently in operation. By counting

the unique daily values of bike ID and station ID returned by our API queries, we can reliably

assess current fleet size and number of stations per each city in our sample.

Table 2.12: Excerpt of raw API output for selected bicycle in the city of Berlin

datetime city bike ID bike type lat lng station ID station name

... ... ... ... ... ... ... ...
2019-05-08
18:29:00

Berlin 22473 12 52.476789 13.426652 6302589 Hermannstraße/
Briesestraße

2019-05-08
18:30:00

Berlin 22473 12 52.476789 13.426652 6302589 Hermannstraße/
Briesestraße

2019-05-08
18:31:00

Berlin 22473 12 52.476789 13.426652 6302589 Hermannstraße/
Briesestraße

2019-05-08
18:32:00

Berlin 22473 12 52.476789 13.426652 6302589 Hermannstraße/
Briesestraße

2019-05-08
18:42:00

Berlin 22473 12 52.4696115 13.4245992 - -

2019-05-08
18:43:00

Berlin 22473 12 52.4696115 13.4245992 - -

2019-05-08
18:44:00

Berlin 22473 12 52.4696115 13.4245992 - -

... ... ... ... ... ... ... ...

Note: Column names have been changed from the original API output for easier reading.
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Overview and Definition of Variables

In Table 2.13 we provide concise definitions per each variable used in this work and reference

their corresponding data sources.

Table 2.13: Summary of Variables and Data Sources

Variable Description Source

ln(NumTripsi,(g),t) Number of trips originating in group g
(optional) of city i during period t (log-
transformed)

Nextbike API

ln(TripDurationi,(g),t) Mean duration (in minutes) per trip origi-
nating in group g (optional) of city i during
period t (log-transformed)

Nextbike API

ln(NetDistancei,(g),t) Mean net distance (in km) per trip origi-
nating in group g (optional) of city i during
period t (log-transformed)

Nextbike
API,OpenStreeMaps
(queried using OSMnx
(Boeing, 2017))

ln(NetSpeedi,(g),t) Mean net distance per hour (in km/h) per
trip originating in group g (optional) of city
i during period t (log-transformed)

Nextbike
API,OpenStreeMaps
(queried using OSMnx
(Boeing, 2017))

Scooteri,t Binary indicator of whether an e-scooter
platform was present in city i during pe-
riod t

press search (see Table
2.19)

ln(NumBikes)i,t Count of weekly active vehicles in service
area (log-transformed)

Nextbike API

ln(NumStations)i,t Count of weekly dedicated stations in ser-
vice area

Nextbike API

ln(Unemployment)i,t Unemployment rate in city i and period t
(log-transformed, monthly values)

Bundesagentur für
Arbeit (2020); AMS
(2020); Bundesamt für
Statistik (2020)

ln(OvernightStays)i,t Number of overnight stays in city i and pe-
riod t (log-transformed, monthly data)

state-level statistical of-
fices

RainyPeriodi,t Binary indicator of whether precipitation
occurred in city i and period t

The Weather Company
(IBM) (2019)

HotPeriodi,t Binary indicator of whether max. temper-
ature in city i and period t exceeded 30°C

The Weather Company
(IBM) (2019)

ColdPeriodi,t Binary indicator of whether min. tempera-
ture in city i and period t fell below 0°C

The Weather Company
(IBM) (2019)

Note: Variables defined for group g in city i and period t
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Descriptive Analyses

In Table 2.14, we provide descriptive statistics. In Table 2.15, a correlation matrix is provided.

Note that pairwise correlation between covariates (and in particular between the treatment and

other covariates) is largely limited, indicating that multicollinearity does not pose a large risk

to the robustness of our results. This is, of course, also confirmed by the robustness of ATT

estimates to the inclusion of additional dynamic covariates in the model (see Table 2.2).

Table 2.14: Descriptive statistics

N Min Max Mean (µ) St. Dev. (σ)

ln(NumTrips) 12,005 0.0 8.99 4.97 1.78
Scooter 12,005 0.00 1.0 0.26 0.44
ln(NumBikes) 12,005 3.04 7.71 5.26 0.95
ln(NumStations) 12,005 0.69 5.69 3.37 0.96
ln(OvernightStays) 12,005 7.61 15.04 11.07 1.38
ln(Unemployment) 12,005 0.53 2.48 1.76 0.39
ColdPeriod 12,005 0.00 1.00 0.12 0.33
HotPeriod 12,005 0.00 1.00 0.15 0.36
RainyPeriod 12,005 0.00 1.00 0.48 0.50

Note: N reflects size of dataset at daily resolution which is used in most models

Table 2.15: Correlation table of covariates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) NumTrips 1.00 0.19 0.63 0.24 0.50 0.12 -0.09 0.08 -0.00
(2) Scooter 0.19 1.00 0.32 0.32 0.40 0.13 -0.02 0.00 0.07
(3) ln(NumBikes) 0.63 0.32 1.00 0.78 0.76 0.19 -0.03 0.01 0.00
(4) ln(NumStations) 0.24 0.32 0.78 1.00 0.70 0.14 -0.01 0.01 -0.03
(5) ln(OvernightStays) 0.50 0.40 0.76 0.70 1.00 0.01 -0.08 0.05 0.00
(6) ln(Unemployment) 0.12 0.13 0.19 0.14 0.01 1.00 -0.02 -0.02 0.10
(7) ColdPeriod -0.09 -0.02 -0.03 -0.01 -0.08 -0.02 1.00 -0.16 -0.14
(8) HotPeriod 0.08 0.00 0.01 0.01 0.05 -0.02 -0.16 1.00 -0.21
(9) RainyPeriod -0.00 0.07 0.00 -0.03 0.00 0.10 -0.14 -0.21 1.00
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B. Supplement to Methodology

Temporal Group Identification and Construction

Figure 2.7 visualizes temporal patterns in shared bicycle demand in a quarter-hourly resolution.

The analysis reveals clear intra-weekly and intra-daily seasonality. There is a distinction between

weekday and weekend patterns with weekdays exhibiting typical commuter patterns (clear rush

hours in the morning and afternoon) and weekends usually seeing demand peaks during the

daytime.
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Figure 2.7: Weekly and daily seasonality in bike rental demand.

Shown are number of trip starts per quarter hourly basket and weekday over full observation
period. Dark colors indicate low relative trip density, bright colors indicate high relative density
of trips. Data is shown for Berlin. Other cities in sample exhibit similar patterns.

We use these insights to define nine distinct temporal sub-groups by adapting commonly

used terminology (e.g., Cohen et al., 2016) to the case of bikesharing (see Table 2.16).

Table 2.16: Definition of temporal sub-groups

Time baskets Tt Day of Week Time of Day

Morning rush Mon - Fri 6:00am - 8:39am
Weekday daytime Mon - Fri 8:30am - 2:59pm
Evening rush Mon - Fri 3:00pm - 5:59pm
Weekday evening Mon - Fri 6:00pm - 9:59pm (except bar hours)
Weekday nighttime Mon - Fri 10:00pm - 05:59am (except bar hours)
Weekend daytime Sat & Sun 7:00am - 5:59pm
Weekend evening Sat & Sun 6:00pm - 10:59pm (except bar hours)
Weekend nighttime Sat & Sun 11:00pm - 05:59pm (except bar hours)
Bar hours Fri & Sat 8:00pm - 1:59am (of next day)
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Spatial Group Identification and Construction

We report here several details on the construction of the two sets of spatial groups (concentric

distance from city center and most prevalent land use as measured by relative POI density). In

Figure 2.8 we provide a graphical illustration of both concepts for the example of Berlin. Table

2.17 provides details on the individual POI types contained in the eight POI classes analyzed in

this paper.

(a) Distance from center at trip origin (b) POI densities at trip origin (ex.: Transport)

Figure 2.8: Illustration of spatial trip characteristics (example Berlin)

Table 2.17: Open Street Maps (OSM) POI categories, examplary POIs and categorization
adopted in this work

OSM POI Class Example POI Sub-Class

Arts, Culture & Tourism arts centre, gallery, museum, place of worship, attrac-
tion, fountain, viewpoint, fort, memorial, monument, ru-
ins, tomb, etc.

Bars & Restaurants bar, beer garden, cafe, fast food, ice cream, pub, restau-
rant, etc.

Education school, university, college, kindergarten, library
Health clinic, dentist, doctors, hospital, nursing home, pharmacy
Leisure & Entertainment park, garden, playground, stadium, sports center, fitness

center, water, beach, peak
Services atm, bank, beauty, dry cleaning, hairdresser, laundry, tai-

lor, police, post office, town hall, etc.
Shops clothes, supermarket, bakery, butcher, jewelry, florist,

convenience, shoes, etc.
Transport parking, train station, bus/tram stop, taxi, car sharing,

fuel, charging station, etc.
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C. Supplement to Empirical Results

Table 2.18 summarizes coefficient estimates obtained by estimating event study models using

the the robust DiD estimators most commonly applied in the recent literature (Callaway et al.,

2021; Borusyak et al., 2021). To allow for more concise tabulation we report results for 3 months

prior (-12 weeks) to 6 months after (+24 weeks) the onset of treatment. A visual representation

(with longer pre-treatment period) of the event estimates is provided in Figure 2.9. We see

both the parallel trends and the no anticipation assumptions largely confirmed. Estimates turn

negative on the week of treatment (week 0) and remain negative from there on.
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Figure 2.9: Event study coefficient estimates for pre- and post-treatment period.

Note:Reference category is Week -1 (except for Callaway et al. model). Raw regression results
shown in Table 2.18
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Table 2.18: Event study of Scooter on overall bikesharing platform trips (ln(NumTrips))

(1) (2) (3)
Relative Week Est. SE Est. SE Est. SE

-12 -0.054 0.053 0.041 0.101 0.064 0.093
-11 0.05 0.040 0.085 0.092 0.113 0.085
-10 0.002 0.058 0.082 0.101 0.116 0.102
-9 -0.036 0.056 0.052 0.091 0.079 0.088
-8 -0.034 0.047 0.014 0.095 0.044 0.100
-7 -0.019 0.051 -0.002 0.077 0.027 0.082
-6 -0.012 0.044 -0.008 0.086 0.014 0.087
-5 -0.031 0.045 -0.015 0.060 -0.018 0.067
-4 0.005 0.053 -0.013 0.040 -0.015 0.041
-3 0.07* 0.038 0.052 0.049 0.056 0.048
-2 -0.076 0.049 -0.007 0.051 -0.02 0.052
-1 0.021 0.054 ref ref ref ref
0 -0.068 0.046 -0.085* 0.047 -0.068 0.046
1 -0.166** 0.072 -0.167*** 0.060 -0.165** 0.070
2 -0.124 0.107 -0.139** 0.069 -0.123 0.103
3 -0.066 0.125 -0.095 0.078 -0.064 0.120
4 -0.085 0.137 -0.104 0.080 -0.083 0.130
5 -0.152 0.120 -0.178** 0.083 -0.15 0.112
6 -0.137 0.143 -0.159* 0.086 -0.133 0.130
7 -0.199 0.158 -0.213** 0.104 -0.195 0.140
8 -0.213 0.166 -0.219** 0.101 -0.209 0.146
9 -0.177 0.159 -0.18* 0.099 -0.172 0.136
10 -0.14 0.181 -0.141 0.111 -0.131 0.154
11 -0.121 0.176 -0.121 0.108 -0.114 0.151
12 -0.181 0.182 -0.186 0.115 -0.173 0.154
13 -0.282 0.208 -0.278** 0.126 -0.254 0.173
14 -0.302 0.215 -0.294** 0.130 -0.273 0.175
15 -0.256 0.204 -0.25** 0.120 -0.228 0.169
16 -0.239 0.221 -0.232* 0.135 -0.212 0.182
17 -0.306 0.222 -0.311** 0.134 -0.278 0.174
18 -0.346 0.214 -0.331** 0.136 -0.27* 0.161
19 -0.412** 0.208 -0.397*** 0.130 -0.336** 0.159
20 -0.443** 0.206 -0.428*** 0.136 -0.367** 0.151
21 -0.536** 0.213 -0.501*** 0.144 -0.428*** 0.150
22 -0.475** 0.191 -0.44*** 0.130 -0.366*** 0.141
23 -0.434** 0.207 -0.399*** 0.142 -0.326** 0.145
24 -0.279 0.216 -0.349** 0.160 -0.298* 0.161

Day FE Yes Yes Yes
City FE Yes Yes Yes
Controls Ci,t No No No

Model Callaway et al. Borusyak et al. Baker et al.
N 12,005 12,005 93,639
adj R2 - - 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors clustered at city-level
reported in parentheses. Estimates based on daily data. Higher N for stacked DiD
estimator (Baker et al., 2022) results from appending several treatment-centered
subsets of the data
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D. Supplement to Robustness Test

Individual-level TWFE Models

In line with Cengiz et al. (2019), we conduct event-by-event analyses by constructing dedicated

samples per each treated unit that includes only the treated and all never-treated units (similar

to a stack in the stacked DiD estimator). Figure 2.10 shows the resulting individual-level TWFE

estimates. While there is considerable heterogeneity in the impact of e-scooter introduction per

treated city, the estimations are either highly significant and negative or show no significance.

This supports our aggregate estimates.
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Figure 2.10: Specific TWFE-based coefficient estimates per individual treatment event.

Note: The plot shows individual event-specific point estimates and confidence intervals. Each
estimate corresponds to one of the individual the stacks in the Baker et al. (2022) stacked
DiD model as described mathematically in Equation 2.1). Standard errors used for the CI
computation are clustered at the city-level
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Robustness to Multiple e-Scooter Platform Entry

Table 2.19 summarizes the total number of e-scooter platform entries and dates of the first five

entries in the cities in scope. To address robustness concerns related to the number of platform

entries we perform two robustness checks on limited samples. We first restrict the sample to

the subset of cities that experience none or just a single e-scooter platform entry. Second, we

construct a less restrictive sample that also includes cities that experience two entries. We

re-estimate the static model for both datasets. The results are reported in Table 2.9.

Table 2.19: Electric Scooter Entry Dates (Scooter) per City and Data Sources

City # Entries 1st entry 2nd entry 3rd entry 4th entry 5th entry

Augsburg 1 2019-07-05
Berlin 5 2019-06-15 2019-06-18 2019-06-21 2019-06-22 2019-08-26
Bochum 3 2019-09-11 2019-08-27 2019-08-30
Bonn 2 2019-06-22 2019-08-15
Dortmund 3 2019-07-08 2019-09-05 2019-10-10
Dresden 1 2019-07-25
Duisburg 0
Erfurt 1 2019-07-05
Essen 3 2019-08-22 2019-10-11 2019-11-18
Frankfurt 4 2019-06-22 2019-06-27 2019-07-22 2019-08-26
Giessen 0
Hamm 0
Heidelberg 1 2019-08-03
Innsbruck 3 2019-06-01 2019-07-01 2019-09-02
Kaiserslautern 1 2020-01-15
Karlsruhe 1 2019-09-20
Kassel 0
Klagenfurt 2 2019-06-13 2019-06-13
Koeln 4 2019-06-21 2019-06-22 2019-06-22 2019-08-26
Leipzig 0
Lippstadt 0
Ludwigshafen 1 2019-08-01
Luzern 0
Mannheim 1 2019-08-01
Marburg 0
Moenchengladbach 1 2019-10-16
Muelheim 0
Norderstedt 0
Offenburg 0
Potsdam 2 2019-06-21 2019-10-01
Ruesselsheim 0
St.Poelten 0
Walldorf 0
Worms 0
Wuerzburg 0 2020-10-16

Note: Presented results were obtained via a press search
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Robustness to Nextbike Price Promotions and Marketing Initiatives

In Table 2.20 we have collected marketing and promotional activities of Nextbike over the

observation period which were obtained from social media postings. In general, Nextbike’s

promotional activity is relatively limited. In the majority of cases promotions either affect the

full sample, the entire observational period or both, and therefore are controlled for by means

of city and period fixed effects. There are, however, some occasions where only certain cities

and periods are affected. The control strategies vary from case to case and are elaborated on

in column four (control strategy) of Table 2.20. Generally, they involve either removing single

affected days from the sample (for all cities) or running a robustness test on a reduced city

sample (i.e., excluding the affected city).
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Table 2.20: Nextbike marketing activities across the sample and observational period and
empirical control strategy

Description Regional
Scope

Temporal
Scope

Control Strategy

VRS Collaboration: first 30 min
free for VRS-Chipcard owners

Cologne full period captured by city FE

Company flatrates for employees all cities full period captured by city FE
Student Special: first 30/60 min
free

all university
cities

full period captured by city FE

Customer Survey Bonus: free day
pass

all cities start of period
- Jan 11th,
2019

captured by time FE

Strike Special: 2 x 30 min free
of charge during strike of public
transport workers

Berlin Feb 15th, 2019 exclude day from
sample (for all cities)

Introduction of monthly rate:
first 30 min of each rental are free
for 10e/month

all cities May, 7th, 2019
- end of period

captured by time FE

Instagram Promotion: Send a
picture of you with a bike and first
50 get monthly pass for free

all cities Jun 2nd, 2019 captured by time FE

DEK Special: visitors of
Deutsche Evangelische Kirchen-
tag get first 120 min of each rent
for free

Dortmund Jun 19th -
23rd, 2019

exclude days from
sample (for all cities)

Durstexpress Collaboration: 3 x
30 min for free with every order
from Durstexpress

Leipzig Aug 15th-18th,
2019

exclude days from
sample (for all cities)

Crowdfunding Special: support
crowdfunding campaign and get 5
x 30 min for free

all cities Oct 15th, 2019 captured by time FE

Climate Action Promotion: 2 x
30 min free

all cities Sep 20th, 2019
- Sep, 22nd,
2019

captured by time FE

Fridays 4 Future Special: 2 x 30
min for free

all cities Nov 29th,
2019

captured by time FE

Customer Survey Bonus: free day
pass

all cities Dec 12th, 2019
- Jan 8th, 2020

captured by time FE

Note: Presented results were obtained via a search of Nextbike’s social media channels
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Robustness to Dynamics between Incumbent Bikesharing Platforms

Table 2.21 summarizes the competitive environment in the bikesharing market per each city in

scope. Nextbike operates in competitive markets in many of the cities in scope. To exclude the

risk of confounding from dynamics with incumbent bikesharing operators, we run an additional

robustness test on the subsample of cities without competition from other bike-based platforms.

Table 2.21: Overview of active and new entrant bikesharing platforms during the observation
period

City Count Call-a Bike Mobike Donkey Republic Byke Jump LimeBike

Augsburg 0
Berlin 6 ✓ ✓ ✓ ✓ ✓ ✓
Bochum 0
Bonn 1 ✓
Dortmund 0
Dresden 0
Duisburg 1 (✓)
Erfurt 0
Essen 1 (✓)
Frankfurt 4 ✓ ✓ (✓) ✓
Gießen 0
Hamm 0
Heidelberg 1 ✓
Innsbruck 0
Kaiserslautern 1 ✓
Karlsruhe 1 ✓
Kassel 0
Klagenfurt 0
Köln 2 ✓ ✓
Leipzig 0
Lippstadt 0
Ludwigshafen 0
Luzern 0
Mannheim 1 ✓
Marburg 0
Mönchengladbach 0
Mülheim 1 (✓)
Norderstedt 0
Offenburg 0
Potsdam 0
Rüsselsheim 0
St. Pölten 0
Walldorf 0
Worms 0
Würzburg 1 ✓

✓= active throughout entire observation period; ✓ = entry during observation period; (✓) = not fully
verifiable due to service having been discontinued since; Presented results were obtained via a web search





Chapter 3

Data-Driven Competitor-Aware

Positioning in On-Demand Vehicle

Rental Networks1

3.1 Introduction

A key trend in urban mobility is the consumption of mobility as a service (MaaS) and on-

demand (MoD) (Laporte et al., 2018) heralding the age of shared, fleet-based, transportation

platforms and rental networks (Benjaafar and Hu, 2020a; Qi and Shen, 2018). On-demand

rental networks have emerged for cars (e.g., Car2Go, DriveNow), bikes (e.g., Nextbike) and more

recently, scooters (e.g., Lime, Bird). Shared mobility is characterized by the fact that demand

is not only influenced by price but also by local supply as defined in terms of availability (e.g.,

wait time or distance to the nearest vehicle) (Benjaafar and Hu, 2020a). Therefore, regular fleet

balancing via physical repositioning actions is required and has been the subject of extensive

1This Chapter has been published in its entirety in the following peer-reviewed academic journal:
Schroer, K., Ketter, W., Lee, T. Y., Gupta, A., & Kahlen, M. (2022). Data-Driven Competitor-
Aware Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 56(1), 182–200.
https://doi.org/10.1287/trsc.2021.1097. (rated A in the VHB-JOURQUAL 3 ranking).
Earlier versions of this Chapter have also appeared in several (non-copyrighted) peer-reviewed academic confer-
ences:
Schroer, K., Ketter, W., Lee, T. Y., Gupta, A., Kahlen, M. (2019). Optimal management of free-floating vehicle
sharing systems under competition. In Workshop on Information Systems and Technology (WITS) 2019 (Mu-
nich).
Schroer, K., Ketter, W., Lee, T. Y., Gupta, A., Kahlen, M. (2019). An Online Learning and Optimization
Approach for Competitor-Aware Management of Shared Mobility Systems. In Proceedings of the SIG GREEN
Workshop 2019 (Munich).
Schroer, K., Ketter, W., Lee, T. Y., Gupta, A., Kahlen, M. (2019). Utilizing Real-Time Competitor Information
to Boost Profits for One-Way Transportation Companies. In Workshop on Policy, Awareness, Sustainability, and
Systems (PASS) 2019 (Cologne)
Schroer, K., Kahlen, M., Ketter, W., Lee, T. Y., Gupta, A. (2019). Fleet Wars: Leveraging Big Urban Data for
Competitor- Aware Predictive Analytics in Free-Floating Shared Mobility Systems. In INFORMS Conference on
Information Systems and Technology (CIST) 2019 (Seattle)



84 Data-Driven Competitor-Aware Vehicle Positioning

research (e.g. Lu et al., 2018; He et al., 2019b). A commonly neglected fact in the literature on

shared mobility operations is the competitive environment in which shared mobility platforms

and rental networks tend to operate in. Participants compete for a finite number of customers

who may switch freely between competing networks (multihoming). Given this situation, own

vehicle supply should be considered in the wider context of the competitive market in which

users select vehicles based on access and availability. It follows that value may be gained from

factoring in the competition’s supply decisions into a fleet repositioning decision framework.

Existing research, however, treats the fleet repositioning problem as a cost-minimizing task

aimed at serving an exogenous observed demand. While overall market demand may indeed be

exogenous, this is unlikely to be the case for own observed demand. For example, relocating away

from a region or reducing the fleet size to serve the same demand can be reasonably expected to

result in a relatively worse competitive positioning of the focal fleet to the benefit of competing

networks.

In the new digitalized mobility system the necessary data to incorporate competitive dynam-

ics into the operational decision process of a fleet operator has become abundant. We observe a

more and more liberal and standardized provision of real-time data across the mobility industry.

Open standards such as the General Bikeshare Feed Specification (GBFS) (NABSA, 2021) or the

Mobility Data Specification (MDS) (Open Mobility Foundation, 2021) are increasingly adopted

by mobility operators who, in many cases, provide open application programming interfaces

(APIs) to their digital platforms that allow for automated and real-time data retrieval. Alterna-

tively, real-time data streams of most mobility platforms are now available commercially from

third party data analytics providers (e.g., fluctuo). Furthermore, innovations in city-specific reg-

ulations increasingly mandate mobility providers to participate in open data initiatives (e.g., Los

Angeles). Such developments are only expected to improve real-time mobility data availability

in the future.

The question then remains whether there is sufficient value to be gained from this real-time

data to warrant investments into the development of a real-time data analytics and decision

framework that incorporates competitor supply information into the operational decision mak-

ing process? In this research we explore this question by focusing on the vehicle positioning

problem, a core challenge in the operation of on-demand vehicle rental networks. We explore

how fleet operators can leverage real-time competitor information along with other large-scale

urban data sources to make optimal competitor-aware vehicle supply decisions to boost over-

all market share, utilization and profits. What emerges is a novel decision problem which we

term the Competitor-Aware Shared Vehicle Positioning Problem (CSVP). The key contribution

of our work is to compute the value of real-time competitor information in operational deci-

sion making of on-demand rental networks by developing a temporally and spatially flexible

online learning and optimization framework to solve the CSVP. Specifically, we formulate a

novel dynamic mixed-integer non-linear programming (MINLP) model that produces optimal



3.1 Introduction 85

competitor-aware positioning decisions for a given spatio-temporal resolution. We address the

uncertainty associated with the input parameters of this optimization via a high-accuracy learn-

ing model and the online nature of our model which incorporates updated contextual information

as it becomes available. A core benefit of this approach is that it reduces the complexity of the

downstream optimization allowing for close to real-time solution for large problems. Finally,

we evaluate our combined model via extensive simulation and counterfactual testing based on a

unique combined dataset of Car2Go and DriveNow rental transactions in the city of Berlin.

The remainder of this paper is structured as follows: in the next Section (Section 3.2) we

present a short review of related work. We then describe the predictive and prescriptive modeling

approaches of our solution approach (Section 3.3). In Section 3.4 we introduce the discrete event

simulation (DES), that we use for evaluation, and present results. We end with a discussion

(Section 3.5).
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3.2 Related Work

3.2.1 Introduction to On-Demand Vehicle Rental Networks

Shared mobility is widely regarded as a core building block of the future mobility system (Savels-

bergh and Van Woensel, 2016; Laporte et al., 2018). It entails the consumption of mobility as an

on-demand service. Asset ownership is relegated to third parties (Paundra et al., 2017). Benjaa-

far and Hu (2020a) distinguish three canonical sharing economy applications: (1) peer-to-peer

resource sharing (e.g., BlaBlaCar), (2) on-demand service platforms (e.g., Uber, Lyft) and (3)

on-demand rental networks (e.g., Car2Go, Lime). This work focuses on on-demand rental net-

works. On-demand rental networks in mobility have historically been operated as station-based

systems in that vehicles are collected and dropped off at a certain number of fixed stations

Nair and Miller-Hooks (2011). Recently, free floating vehicle sharing (FFVS) is emerging as an

alternative system. In such flexible, one-way systems, customers are free to pick up and drop

off a vehicle at any point within a predefined operating area, providing the benefit of direct

point-to-point travel. From an operations management perspective, on-demand rental networks

exhibit a range of unique characteristics. These are: (1) the inability to book in advance, (2) the

spatial distribution of resources and (3) the one-way characteristic of rentals that do not have

to be returned to their point of origin (Benjaafar and Hu, 2020a). These characteristics bring

with them novel operations management challenges, ranging from strategic issues such as fleet

sizing and service area definition to operational challenges such as spatial and temporal fleet

positioning (He et al., 2019b). Here we consider FFVS operations when competition is present,

with a particular focus on the repositioning challenge.

3.2.2 Predictive Analytics for On-Demand Vehicle Rental Networks

The emergence of big urban data has resulted in new research opportunities in predictive ana-

lytics for operations management (Cohen, 2018). Most existing approaches of FFVS positioning

rely on known distributions of (1) demand and (2) trip origin-destination pairs across the spatio-

temporal network. Machine learning (ML)-based regression techniques allow for a reduction in

the uncertainty of future realizations through accurate point estimates. In situations with as

many free parameters as the one we study (market level and focal fleet), using point estimates

rather than uncertainty sets can significantly enhance performance and scalability while reducing

over-conservativeness of some robust optimization approaches (Hao et al., 2019).

In the domain of vehicle sharing, predictive analytics work has focused on demand prediction.

For repositioning applications knowledge on vehicle inflows is equally required. Recent work has

shown that the same model architectures can be used to predict both supply and demand

(e.g., Xu et al., 2018). FFVS predictive analytics research can be differentiated in terms of (1)

the type of model used, (2) the spatial discretization, (3) prediction horizon and (4) whether

contextual data is used. In terms of (1) models used, we identify traditional statistical time series
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approaches using, for example, SARIMA models (Müller and Bogenberger, 2015), traditional

machine learning (ML) approaches (Willing et al., 2017; Kahlen et al., 2017) and more recently

deep learning frameworks (Xu et al., 2018; Ai et al., 2019; Zhou et al., 2018; Caggiani et al., 2018).

ML models and in particular deep learning models have consistently demonstrated superior

performance compared to naive and statistical benchmarks. Spatial discretization (2) is relevant

for FFVS applications due to the absence of discrete spatial reference points such as rental

stations. A common discretization method is the use of ZIP codes (e.g., Lu et al., 2018).

However, this technique suffers from various limitations such as arbitrary and non-uniform

shapes and sizes of regions. An alternative approach is the use of grids to discretize the service

area into regions of uniform size. In most cases static quadratic (e.g., Zhou et al., 2018) or

hexagonal (e.g., Schroer et al., 2019) grids are used. Research in the area of discrete spatial

simulations suggests the use of hexagonal geodesic discrete global grid system (GDGGS), due

to uniform adjacency of hexagons and limited distortion of a geodesic grid. Regarding (3)

prediction horizons, myopic single-step predictions are the standard scenario being studied;

although Zhou et al. (2018) perform a multi-period prediction using a deep neural network.

The use of contextual data varies by type of model. While statistical and certain deep learning

models use historic time series data exclusively (Müller and Bogenberger, 2015; Ai et al., 2019),

the additional use of contextual data is commonplace. Typical contextual features employed are:

temporal metadata (time of day, day of week), meteorological data (e.g., Xu et al., 2018), points

of interest (e.g., Willing et al., 2017; Schroer et al., 2019) and events (e.g., Kahlen et al., 2017).

Existing predictive approaches are commonly evaluated in static environments with arbitrarily

defined period length and region size. Consequently, there is limited clarity regarding their

performance in varying temporal and spatial resolutions and different prediction horizons, in

which data might become more sparse. As these are important parameters for the performance

of the CSVP solution framework, we investigate them in detail in our work.

3.2.3 Prescriptive Analytics and Empty Positioning Problems for On-Demand

Vehicle Rental Networks

The problem of vehicle (asset) allocation and positioning is an emerging area of research in

operations management (Benjaafar et al., 2017; Benjaafar and Hu, 2020a; He et al., 2019b) and

is related to the problem class of empty repositioning, a special case of the assignment problem

(Erera et al., 2009). Vehicle allocation and positioning is especially significant in FFVS systems

where, due to the unknown target destination of one-way trips, demand and supply imbalances

may occur locally (Benjaafar et al., 2017). FFVS are the subject of this work and we therefore

focus our review on this thread of literature. The reader is referred to Pal and Zhang (2017) for

a comprehensive review of the literature on repositioning in the context of station-based vehicle

sharing systems.
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The operations management of FFVS has received increasing attention in recent years. Gen-

erally, two distinct approaches to facilitate vehicle repositioning in FFVS exist: (1) operator-

based repositioning (e.g. Angelopoulos et al., 2018); and (2) user-based repositioning (e.g. Ströhle

et al., 2019; Schiffer et al., 2021). Li and Liao (2020) consider self-relocation of autonomous vehi-

cles, which can be understood as a form of operator-based repositioning at lower cost. Either of

the two approaches rely on periodic instructions regarding the number of vehicles to be relocated

to and from each region in the service network but vary in terms of relocation cost factor and the

degree to which positioning actions can be assumed to be deterministic (Laporte et al., 2018).

The objective of the underlying positioning framework usually revolves around minimizing a

fleet operator’s cost of service (He et al., 2019a), or maximizing profitability and/or quality of

service (Lu et al., 2018).

Positioning problems are typically modelled using temporal-spatial networks (Erera et al.,

2009). Deterministic (Boyaci et al., 2015; Pal and Zhang, 2017; Schiffer et al., 2021; Caggiani

et al., 2018), stochastic (Lu et al., 2018) and robust (He et al., 2019b; Hao et al., 2019; Laporte

et al., 2018) mathematical programming approaches as well as greedy simulation-based frame-

works (Kahlen et al., 2017) have been proposed to solve the positioning challenge for FFVS.

Boyaci et al. (2015) propose a deterministic multi-objective model for fleet sizing under reposi-

tioning. Caggiani et al. (2018) propose an integrated prediction and optimization model which

uses point-estimates of future demand as input into deterministic optimization-based decision

support system.Weikl and Bogenberger (2015) propose a two-stage approach with relocations

between macroscopic zones and between microscopic zones inside macro zones. Pal and Zhang

(2017) develop an optimization model for bike-based FFVS that accounts for the possibility

of multi-vehicle repositionings on trucks. Other studies consider the uncertainty inherent in

demand and supply prediction and respond with stochastic frameworks for optimization un-

der uncertainty. Lu et al. (2018) develop two-stage stochastic integer programming models for

optimizing strategic parking planning and vehicle allocation for station-based and free-floating

carshare systems with the objective of maximizing profit and quality of service (i.e., minimizing

unserved rentals). A recent example of robust optimization is provided by He et al. (2019a)

who produce a myopic and multi-period robust optimization model assuming random realiza-

tions of demand based on learned uncertainty sets. They evaluate their model empirically on a

temporal-spatial network with up to five regions and three periods. Hao et al. (2019) attempt to

address the commonly observed over-conservativeness of robust approaches. The authors include

additional contextual covariates in their estimation of uncertainty sets and derive differentiated

demand distributions conditional on weather factors.

We identify various gaps in the existing FFVS literature that this study sets out to address.

First, previous studies typically assume that demand and origin-destination probabilities follow

learnable unconditional spatio-temporal distributions from which random draws materialize at

any given instance. Hao et al. (2019) show how this assumption can lead to overly conservative
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re-positioning decisions as contextual factors such as weather, points of interest or events are

ignored, all of which have impact on demand (Kahlen et al., 2017). We also find that past

research assumes that shared vehicle fleets operate in isolation and that their positioning de-

cision will have no impact on user choice. This is a bold assumption, especially for real-time

location-based rental networks, where location (or access) can be regarded as a major source of

competitive advantage. Indeed, Braverman et al. (2019) postulate that in ride hailing systems,

the availability of vehicles directly corresponds to the probability of a ride being served. How-

ever, in competitive situations, availability should be viewed in relative terms, i.e., relative to

the availability of competitor vehicles (Balac et al., 2019). Spatio-temporal supply decisions can

thus be a source of competitive advantage. Finally, existing approaches tend to focus on small

networks with correspondingly large regions. In a FFVS network, availability is usually defined

in terms of walking distance, making granular networks more beneficial. We develop a scalable

solution approach, which can be applied in practice for network sizes of up to 50 regions, greatly

exceeding network sizes used in previous research (e.g., He et al., 2019a) and allowing for highly

targeted positioning operations.
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3.3 Model

We formulate a data-driven, three-stage online learning and optimization model. In Stage ➊,

the system retrieves, processes and combines real-time data from a range of different sources,

and updates the underlying multivariate dataset. In Stage ➋, this data serves as the basis for

machine-learning models that are retrained in each period to estimate key input parameters for

the downstream prescriptive model. In Stage ➌, the estimated parameters are used in a dynamic

MINLP optimization framework that computes optimal positioning decisions for all periods in

the optimization horizon. Positioning actions for the upcoming period are isolated and executed

after which Stage ➊ is repeated. In Sections 3.3.1 to 3.3.3 we discuss these three stages in detail.

The CSVP relies on the following assumption. First, we assume non-strategic user behaviour,

i.e., we assume that users are indifferent between vehicles of all fleets in the market. This

assumption is valid, as vehicle types and price levels between competing networks are comparable

in most markets. Customers therefore select vehicles based on access and convenience. Both

criteria in turn depend on the relative availability of fleet vehicles per competitor in a given

region. We, thus, postulate that the probability of capturing a rental within a given region i

and period [t, t + 1] is directly proportional to the share of vehicles on the ground within that

region and period. We test this assumption empirically for the case of Car2Go and DriveNow

and find strong support for it (see Appendix B). Second, we assume that competitors are non-

strategic, which is currently the case in most markets in which operators do not engage in

competitor-aware operations management. From this assumption it follows that early adopters

of CSVP positioning can fully exploit the benefits of our solution approach. We also assume

that demand is exogenous and observable, i.e., that there is a fixed demand for shared mobility

of a certain mode, which can be monitored and predicted (a common assumption in data-driven

demand prediction). Finally, we assume that positioning actions are completed within a single

planning period and vehicles become available for rental within that same period. We adopt a

structured discretization approach in the construction of the underlying spatio-temporal network

across which positioning actions are performed. We distinguish between planning times t where

new information is retrieved and new assignment schedules are computed and planning periods

[t, t + 1] for which these assignment schedules are developed. Overall, we define two temporal

parameters. First, we define the length of a period ∆t (in unit time). Second, we set the length

of the optimization horizon by defining the set of optimization periods as T O. The length of the

optimization horizon is then given by ∆O = ∆t|T O| (in unit time). The spatial framework we

adopt is as follows. We construct a hexagonal geodesic discrete global grid system (GDGGS) as

defined in Sahr et al. (2004). A GDGGS is more flexible and allows for relatively easy adjustment

of spatial resolution due to the hierarchical nature of tile sizes, a property which is helpful if the

set of regions H is to be flexibly defined. We opt for hexagonal tiles, due to their advantage of

uniform adjacency.
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3.3.1 Stage ➊: Real-time Contextual Data Inputs for Predictive & Prescrip-

tive Analytics

On-demand rental networks operate modern app-based digital interfaces via which users can

start, terminate and pay for rentals. A user has access to accurate information at any given

point in time about the amount and location of available vehicles in her vicinity. This data is

also accessible at a larger and more automated scale via APIs. This allows mobility companies to

retrieve and periodically archive real-time geo-tagged competitor supply information from which

trip information (start point, end point, duration) can be extrapolated with relative ease (see

Appendix A for more details). Our approach also works if individual vehicle trajectories cannot

be tracked which is sometimes made difficult by the non-static vehicle ID used for privacy reasons

in some data standards such as the General Bikeshare Feed Specification (GBFS) (NABSA,

2021). It is in fact sufficient to track total supply, inflows and outflows per area and time

period (irrespective of individual vehicle trajectories) by regularly counting individual vehicles

(as identified by their location) per area and tracking changes. Note that this work relies solely

on data streams that are generated in the public space, and which are available freely to any user

accessing the digital platform interface. We do not use any price data, which may be critical

from a competition regulation standpoint.

One challenge with this approach is that it allows the observation of censored demand only,

i.e., demand which is limited by the supply of vehicles. We circumvent this challenge in our

demand prediction by removing entries where there is either no supply in a region or where

supply has been fully exhausted. In addition, we refrain from employing local supply levels

as a predictor of demand and subsequent inflows in our predictive model. Our online learning

framework relies on the availability of a rich set of independent variables (features) that capture

observed and unobserved patterns in mobility behavior. We create spatial and temporal joins

between the datasets and obtain rich feature vectors of 238 features for each spatio-temporal

instance. These features can be grouped into five sets, which we describe below. A detailed

overview is provided in Online Appendix D.

• Temporal feature vector Z = (z1, ..., zz): z = 35 temporal features, e.g., the hour of

the day, the day of the week, and whether the day is a weekend or holiday. They capture

temporal patterns in shared mobility usage.

• Meteorological feature vector W = (w1, ..., ww): w = 6 meteorological features on

temperature, precipitation, cloud cover and wind speed are included. Current weather

conditions can have a significant impact on mobility choices (Willing et al., 2017).

• Geographical feature vector G = (g1, ..., gg): g = 105 features related to POIs are

retrieved via Google Maps. We include counts and also capture the relative popularity

of a location by counting the number of POIs that have a popularity rating and a price

rating.
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• Competitor fleet feature vector C = (c1, ..., cc): We include c = 46 lagged outflows

(in number of vehicles). We use lags of one, two and three periods prior as well as one to

seven days prior to the period in scope, which were selected based on auto-correlation with

the target. We also include lagged inflows per region, as these will have an influence on

rental starts in the next period (e.g., via round trips). We also include lagged inflows and

outflows aggregated across the entire network which determine the total pool of vehicles

that become available for rental or are candidates for inflows in the next periods. We apply

lags of one, two and three periods. For both inflows and outflows of competitor vehicles we

also include the mean and variance over the past seven days as well as weekly differencing

variables that capture any trends in inflows and outflows over the past seven weeks. Note

that the required position data is easily obtained in real-time by querying a competitor’s

mobile app interface.

• Focal fleet feature vector F = (f1, ..., ff ): We use exactly the same features as for the

competitor fleet (i.e., f = c).

3.3.2 Stage ➋: Online Predictive Model

We use machine learning (ML) models to predict input parameters for the online optimization.

We predict total market demand D̂M
i,t in region i during period [t, t+1] as well as total and focal

fleet inflows per region and period (ÎMi,t and ÎOi,t). Since the proposed feature set captures many

observed and latent variables, we use the same comprehensive feature vectors to learn models

for each of the above target variables. We propose an online learning approach, retrieving and

incorporating new information as it becomes available. This allows dynamic trends and evolution

of the system such as changes in consumer behavior or changes in competitor relocation schedules

to be incorporated by the model as soon as possible. We use a combined data matrix S[T L] of

form

S[T L] = (z1[T L], ..., z
z
[T L],w

1
[T L], ...,w

w
[T L],g

1
[T L], ...,g

g
[T L]

, c1[T L], ..., c
c
[T L], f

1
[T L], ..., f

f
[T L]

)

to train our models, where T L is the set of training periods and the individual element matrices

en
[T L]

= (en1, ...e
n
tL
) consist of vectors of form ent = (eni,t), i.e., the realizations of independent

variable e across all regions i ∈ H in period [t, t+ 1]. We normalize the data by subtracting the

mean and scaling to unit variance to enhance statistical stability. To increase performance while

reducing the risk of overfitting, we employ regularization techniques inherent to the respective

algorithm (such as regularization in linear models or dropout for deep neural networks).

We learn new models per period and location based on a fixed-length moving training window

of length |T L|. |T L| is problem specific. Similar to the process of hyperparameter tuning, it

can be tailored to the individual application case via a heuristic search over a range of possible
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lengths. By comparing predictive performance on a validation set, the best lengths can be

identified.

We train models in two types of configurations: (1) a single-period prediction and (2) a

multi-period prediction. In the single-period prediction we predict market demand D̂M
i,t as

well as total and focal fleet inflows (ÎMi,t , Î
O
i,t) as a function of the respective spatio-temporal

realization of features as ϕi,t : Si,t → ŷi,t, which is obtained by solving an optimization of

form min
ϕy
i,t

∑
t∈T L ℓ(ϕ

y
i,t(Si,t), yi,t), where ℓ is the selected loss function of the machine learning

algorithm. Hence, ŷt = (ŷi,t) for all i ∈ H is computed as follows:

ŷt = ϕϕϕt(St)

In the multi-period case, we predict market demand (D̂M
i,t+n), total inflows (Î

M
i,t+n) and focal

fleet inflows (ÎOi,t+n) for region i in any period [t + n, t + n + 1]. The prediction is repeated for

all (t + n) ∈ T O, where T O is the set of periods in the optimization horizon. We adapt our

feature set because our single-period prediction model uses lagged features from the past period

that cannot be observed more than one period ahead. One option is to supplement it with

predicted values as we move along the prediction horizon. Alternatively, to avoid prediction

error propagation, we may iteratively drop lagged features that have become unobservable for

the period in scope. We opt for the latter approach and use the reduced feature vector S ′
to

derive ŷi,t+n. Note that S ′
will periodically reduce in size the further ahead in time one wishes

to predict. Note also that we do not drop any temporal, meteorological or geographical features

(i.e., we do not modify Z,W and G) as these are either time-independent or we assume that

perfect foresight will be available. Thus, for all realizations further than one period ahead we

learn models of form ŷt+n = ϕ
′
ϕ

′
ϕ

′
t+n.

Hyperparameter tuning via brute-force grid-searches is performed on a fixed training dataset

using time series cross validation. Hyperparameters are parameters of a machine learning model

that are not learned during training but chosen by the user directly (e.g., tree depth in a random

forest model or the number of nodes per layer in a deep neural network). Since model results

can be highly sensitive to these hyperparameters, careful tuning on a training and validation

dataset is required. Test metrics of the final tuned model are reported on a completely unseen

test dataset. To obtain accurate test metrics, a moving window validation that most accurately

reflects the intended real-world application is adopted. We train the model on a fixed amount

of periods |T L| and evaluate it on the next period. The length of the training window is

selected based on predictive performance. We use the mean absolute error (MAE) as main

error. The MAE is a measure for the average absolute error in terms of number of vehicles.

Mathematically, it is expressed as MAE = 1
|H||T E |

∑
i∈H

∑
t∈T E |ŷi,t − yi,t|, where H is the

set of regions in the dataset and T E is the set of evaluation periods. One downside of using

the MAE is that model performance comparisons between different resolutions and application
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fields is not possible because the error is not scaled in accordance with the baseline value.

The mean absolute percentage error is a popular relative metric, which is scale-independent.

But the MAPE suffers from several problems; the most serious of which (in relationship to

this work) is its inability to handle cases in which the true value is zero (Chen et al., 2017).

Therefore, the symmetric mean absolute percentage error (SMAPE) is used, which we define

here as 1
|H||T E |

∑
i∈H

∑
t∈T E

|ŷi,t−yi,t|
|ŷi,t|+|yi,t| .

3.3.3 Stage ➌: Online Prescriptive Model

To take advantage of our ability to periodically compute more precise forecasts of parameters

based on real-time information, we focus on online optimization approaches. We develop a

dynamic model formulated as a mixed integer non-linear program (MINLP). In a vehicle FFVS

context, knock-on effects of positionings on future rental performance may be substantial; a

dynamic model is able to exploit these to the fleet manager’s advantage. Table 4.2 defines

the nomenclature adopted in the following formulations. Our optimization objective can be

expressed as follows: “For the |T O| upcoming periods, position vehicles across the network in a

competitor-aware fashion such that fleet contribution margin is maximized over the optimization

horizon“. We choose the contribution margin as our objective, as we assume fleet size to be

exogenously determined. In such a scenario, the fleet operator has an incentive to maximize

contribution margin, i.e., to maximize the proportion of sales revenue not consumed by variable

costs and thus able to cover the fixed cost base. What results is a special profit-maximizing

form of the assignment problem where i ∈ H origin regions are matched by the same number

of destination regions j ∈ H, with H being the set of regions. Let us define the decision

variable xij,t as the number of vehicles that flow from region i to j during period [t, t+ 1]. The

decision variables have both revenue and cost implications. The objective function of our general

mathematical model can thus be formulated as follows:

maximize
xij,t

Π =
∑
t∈T O

∑
i∈H

(DM
i,tψ

O
i,tδ̂

M
i,t (r

rent − crent))−
∑
t∈T O

∑
i∈H

∑
j∈H

(xij,tc
reloc
ij,t ) (3.1)

The first term in Equation 3.1 describes the contribution margin of each captured trip

across the network, where the number of captured trips is controlled by the focal fleet’s relative

availability ψO
i,t:

ψO
i,t =

AO
i,t + IOi,t +

∑
j∈H(xji,t − xij,t)

AM
i,t + IMi,t +

∑
j∈H(xji,t − xij,t)

(3.2)

This is equivalent to the assumption that the probability of capturing a rental is proportional

to a fleet’s relative availability within a region (converged to expectation) and lies at the core of

the competitor-awareness of our model. Repositioning decision are made based on total market

demand DM
i,t and supply AM

i,t + IMi,t per region, thus factoring in where competitor vehicles are

positioned and how many additional inflows can be expected over the period in scope. The second
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Table 3.1: Optimization model nomenclature

Symbol Description Unit

Sets

H Set of regions in network with H = {h0, h1, ...hi} and index i,j set
T O Set of planning times/periods in opt. horizon T O = {t1, t2, ...ttO} with index t set

Parameters

AM,base
i,t Base market availability without positioning in region i at start of period [t, t+ 1] vehicles

AO,base
i,t Base focal fleet availability without positioning in region i at start of period [t, t+ 1] vehicles

crelocij Cost of relocating one vehicle from region i to region j USD

cvar Specific variable cost of vehicle movement (fuel, wear, etc.) USD/h
dij Shortest path between centroids of region i and j across the road network km

D̂M
i,t Total predicted market demand for trips in region i during period [t, t+ 1] vehicles

∆DO
i,t Gained trips in region i during period [t, t+ 1] due to relocations vehicles

δ̂Mi,t Avg. expected length per rental in region i during period [t, t+ 1] h

Hmax
i,t Maximum available parking capacity of region i during period [t, t+ 1] vehicles

ÎMi,t Total predicted inflows of all vehicles in region i during period [t, t+ 1] vehicles

ÎOi,t Total predicted inflows of focal fleet vehicles in region i during period [t, t+ 1] vehicles

Mmax
t Maximum number of relocations during period [t, t+ 1] relocs

∆O Length of optimization horizon unit time

ψO,base
i,t Relative base vehicle availability of focal fleet in region i during period [t, t+ 1] ratio

rrent Specific revenue per rental USD/h
sOi,t Density share of focal fleet vehicles in region i during period [t, t+ 1] %

∆t Length of an individual period [t, t+ 1] h
∆W Length of the planning window h
∆xi,t Net number of relocations to region i during period [t, t+ 1] vehicles

State variables

AM
i,t Total availability of all fleet vehicles in region i at time t vehicles

AO
i,t Total availability of focal fleet vehicles in region i at time t vehicles

DM
i,t Total market demand in region i during period [t, t+ 1] vehicles

IMi,t Total market inflows fleet vehicles in region i during period [t, t+ 1] vehicles

IOi,t Total inflows of focal fleet vehicles in region i during period [t, t+ 1] vehicles

ψO
i,t Relative vehicle availability of focal fleet in region i during period [t, t+ 1] ratio

Decision & target variables

Π Focal fleet operator’s contribution margin over optimization horizon T O USD
xij,t Number of focal fleet vehicles to be relocated from tile i to j in period [t, t+ 1] relocs

term of the objective function sums the cost of positionings across the network, which depends

on crelocij,t and the decision variables xij,t. c
reloc
ij,t denotes the cost of relocating a single vehicle from

region i to region j during time-period t. Note, that we are dealing with a concave objective

function, which is maximized, as can be readily seen by taking the second derivative (which is

negative for all values of xji,t−xij,t that lie within the constraints of this problem). Consequently

a global optimum exists for the CSVP. The resulting mixed integer non-linear program (MINLP)

can be solved with state-of-the-art modeling frameworks (Kröger et al., 2018). Similar to He

et al. (2019b) we allow for the fact that the value of an individual rental may vary across time

and space, which is captured by the factor δ̂Mi,t .
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The optimization is subject to a number of constraints. We first ensure that the decision

variables only take on positive integer values.

xij,t ≥ 0, ∀i, j ∈ H, ∀t ∈ T O (3.3)

xij,t ∈ Z, ∀i, j ∈ H, ∀t ∈ T O (3.4)

Also, to conserve the number of vehicles, we ensure that the net number of vehicles being

relocated from a tile does not exceed the vehicle availability within that tile at the start of a

period. This ensures that the relocation schedule can always be executed and that the operator

does not have to wait for any natural inflows to arrive in the region i for subsequent repositioning.∑
j∈H

(xij,t − xji,t) ≤ AO
i,t, ∀i ∈ H, ∀t ∈ T O (3.5)

Equally, as market demand will be limited by the available vehicles within a region, we implement

the following constraints, which guarantee that DM
i,t will be either equal to the lower of predicted

demand D̂M
i,t or total available vehicles. Note that as per the definition of ψO

i,t this also guarantees

that own captured demand DM
i,tψ

O
i,t cannot exceed own vehicle availability.

DM
i,t ≤ D̂M

i,t ∀i ∈ H ∀t ∈ T O (3.6)

DM
i,t ≤ AM

i,t + IMi,t +
∑
j∈H

(xji,t − xij,t), ∀i ∈ H, ∀t ∈ T O (3.7)

Consequently, if market demand is not fulfilled, inflows will reduce. We implement this by adjust-

ing state variable IMi,t by the lost demand in the previous period ∆DM
t−1 =

∑
i∈H(D

M
i,t−1−D̂M

i,t−1)

allocated proportionately across the network. In our simulation we consider the stochasticity in

this process by allocating inflows in a probabilistic manner.

IMi,t0 = ÎMi,t0 , ∀i ∈ H (3.8)

IMi,t ≤ ÎMi,t +∆DM
t−1 ∗

ÎMi,t∑
i∈H Î

M
i,t

, ∀i ∈ H, ∀t ∈ {t1, t2, ...ttO} (3.9)

We also impose IMi,t ≥ 0 as per definition. A further practical constraint is added to the

model, reflecting relocation capacity in terms of the maximum number of relocations Mmax
t :∑

i∈H

∑
j∈H

(xij,t) ≤Mmax
t , ∀t ∈ T O (3.10)
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Finally, we consider the fact that parking capacity Hmax
i,t may be limited in a specific region,

for which we add the following constraint:

AM
i,t + IMi,t +

∑
j∈H

(xji,t − xij,t)−DM
i,t ≤ Hmax

i,t , ∀i ∈ H, ∀t ∈ T O (3.11)

We also add constraints to initialize and update the AO
i,t and A

M
i,t state variables in line with

the relocation decisions, as well as inflows and outflows.

AO
i,t0 = AO,base

i , ∀i ∈ H (3.12)

AO
i,t = AO

i,t−1+I
O
i,t−1+

∑
j∈H

(xji,t−1−xij,t−1)−DM
i,t−1ψ

O
i,t−1, ∀i ∈ H, ∀t ∈ {t1, t2, ...ttO} (3.13)

AM
i,t0 = AM,base

i , ∀i ∈ H (3.14)

AM
i,t = AM

i,t−1 + IMi,t−1 +
∑
j∈H

(xji,t−1 − xij,t−1)−DM
i,t−1, ∀i ∈ H, ∀t ∈ {t1, t2, ...ttO} (3.15)

As positioning actions typically result in a delta in rentals captured by the focal firm, focal fleet

inflows will change by the same amount. Because these effects will not yet be reflected in the

forecast of focal fleet inflows (ÎOi,t), we use a state variable IOi,t to track additional inflows that

result from additional or lost rentals. IOi,t is initialized and updated as follows:

IOi,t0 = ÎOi,t0 , ∀i ∈ H (3.16)

IOi,t ≤ ÎOi,t +∆DO
t−1 ∗

ÎMi,t∑
i∈H Î

M
i,t

, ∀i ∈ H, ∀t ∈ {t1, t2, ...ttO} (3.17)

We also impose IOi,t ≤ IMi,t as per the definition. ∆DO
t is evaluated against an expected total

base demand across all regions D̂O,base
t that would have materialized if no positionings had taken

place. It is defined as:

∆D̂O
t =

∑
i∈H

D̂M
i,tψ

O
i,t −

∑
i∈H

D̂M
i,tψ

O,base
i,t (3.18)

Where ψO,base
i,t is computed analogously to ψO

i,t in Equation 3.2 but substituting AO,base
i,t , AM,base

i,t

and ÎOi,t, where A
O,base
i,t and AM,base

i,t are initialized and updated analogously to AM
i,t and AO

i,t in

Equations (3.12) through (3.15) but letting xij,t = 0 for all i, j ∈ H and t ∈ T O.
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3.4 Experimentation

We employ a simulation experiment to test our model. We simulate positioning actions over a

full week. This allows us to capture daily and weekly patterns and to investigate the impact of

any cascading effects of positioning actions in later periods. We draw on the case of Car2Go

(focal fleet) and DriveNow (competitor fleet), two major free-floating car sharing operators to

test our model. Given that fleet size and market shares are comparable for both fleets, the

choice of focal fleet is random in our case. We select Berlin, a large competitive car sharing

market as geographical focus. While Car2Go and DriveNow have since merged, the case of

competitor-awareness in Berlin remains relevant due to the recent entry of WeShare and Miles,

two new free-floating car rental networks. In this section we describe the setup of our simulation

framework, we introduce the empirical real-time data (Stage ➊), we report results of the learning

model (Stage ➋) and discuss the results of the online optimization (Stage ➌).

3.4.1 Discrete Event Simulation Framework

For a realistic evaluation of our model, we construct a discrete event simulation (DES) frame-

work. Exogenous parameters such as market-level demand DM
i,t are retrieved and used as ob-

served in the real world. Factors that are endogenous to the positioning decisions made by our

model, i.e., vehicle availability and focal fleet inflows, are updated periodically. We thus capture

any future downstream effects that arise from relocation decisions made in a given period. The

simplified simulation algorithm is detailed in Appendix C.

We simulate over a randomly selected 1-week window to ensure that weekly and daily season-

ality are reflected and that all cascading effects from previous positioning actions are captured.

To validate our DES, we run baseline simulations without any positioning actions. These base-

line simulations result in minor discrepancies in the number of rentals captured by the focal fleet

of just 1.3% versus observed values. Our simulation model thus reflects reality very closely.

3.4.2 Descriptive Statistics on Real-Time Contextual Data (Stage ➊)

We utilize a roughly 5-month window of car sharing demand data covering the period from

December 1st, 2016 to April 26th, 2017. The data contains information on availability of vehicles

(identifiable via a vehicle ID) and their position at a granularity of five minutes. To construct

the hexagonal GDGGS and to create spatio-temporal merges between the datasets, we draw on

open source GIS libraries in Python (particularly H3, Geopandas (Jordahl et al., 2020)). We

retrieve a network graph representation of Berlin’s road network via OpenStreetMap. Distance

dij between regions are determined via shortest path computation across this road network.

We define three spatial sets. First, we define a fine set Hf with |Hf | = 50 (approx. 1.0km

edge length). Using the properties of the underlying GDGGS we aggregate up to a medium-

coarse set Hm with |Hm| = 15 (approx. 3.0km edge length) and a coarse set Hc with |Hc|
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= 4 (approx. 8.5km edge length). For each spatial resolution, we compile two different sets

of varying period length with ∆t = 1h and ∆t = 6h. We choose these to explore trade-offs

between temporal resolution and predictive performance. From a practical perspective, different

applications may require different resolutions. Table 3.2 shows the information content per

spatio-temporal resolution. We report the average number of inflows/outflows per record and

their standard deviation (in parentheses). Information on the sparsity of data is crucial in the

interpretation of predictive performance.

Table 3.2: Information content (mean and standard deviation (in parentheses) of out-
flows/inflows per record) per spatio-temporal resolution

Hc Hm Hf

1h 6h 1h 6h 1h 6h
Density of DM

i,t 152.7 (155.3) 916.2 (878.4) 40.6 (61.3) 243.8 (351.1) 12.1 (14.5) 72.4 (79.9)

Density of IMi,t 152.7 (155.2) 916.2 (872.9) 40.6 (61.7) 243.8 (351.5) 12.1 (14.9) 72.4 (81.4)

Density of IOi,t 70.5 (74.5) 422.9 (422.2) 18.8 (28.1) 112.7 (159.6) 5.6 (6.9) 33.6 (36.6)

We also explore the spatio-temporal patterns in rental demand (inflows exhibit very similar

patterns and are not shown here). Figure 3.1 illustrates the considerable similarities in spatial

rental patterns clustered along the several sub-centers of Berlin. Figure 3.2 provides an overview

a) Car2Go service area and rental demand b) DriveNow service area and rental demand

Figure 3.1: Spatial patterns of rental demand in Berlin (Car2Go (left) and DriveNow (right))

of the temporal demand patterns. A weekly trend can be observed in the distributions of

daily demand with peaks on Fridays and Saturdays followed by lows on Sundays. Intra-daily

seasonality also follows clear patterns with peaks at 5pm and valleys during the night.

3.4.3 Performance of Online Predictive Model (Stage ➋)

We benchmark six different ML models, which we briefly explain in the following.
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Figure 3.2: Temporal patterns of rental demand in Berlin

• Linear model (ML-LIN): Previous studies have successfully employed linear models for

mobility demand prediction in a car sharing context (e.g., Willing et al., 2017). To control

model complexity and avoid overfitting, we employ ℓ1-regularization. The regularization

factor λ is determined via a grid search.

• Support Vector Machine (ML-SVM): Support vector machines have shown to be

promising in regression settings. We use a radial-basis-function (RBF) kernel, which is

able to capture non-linear relationships. We set ϵ (the margin within which no error is

attributed in the training loss function) to 0.4. This will result in no error once rounding

has been applied. The regularization C (corresponding to ℓ2-regularization) is determined

via a grid search.

• Gradient tree boosting (ML-TREE): Gradient-boosted tree-based regression is a non-

parametric ML method, using tree-based decision rules to make predictions. Again, inher-

ently non-linear relationships can be represented. Gradient boosting is an ML technique

using ensembles of weak models (in our case decision trees) in a step-wise fashion, with each

subsequent model minimizing the residuals of the preceding ensemble. We choose MAE as

the loss function and determine hyperparameters, including the number of decision trees,

the learning rate and the maximum tree depth via a grid search.

• NN (ML-NN1/2/3): We also test three different (deep) neural network (NN) topologies

with one, two and three hidden layers respectively. We implement the NNs using Keras

(Chollet et al., 2015) and use grid searches to tune the typical hyperparameters in a NN,

i.e., batch size, number of epochs, dropout rate (regularization) and the number of neurons

per layer. Batch size and epochs define the learning process of the NN. NNs are (re-)trained

iteratively on subsets of the training data (batches). One epoch is a full training cycle over
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the entire dataset. Regularization (controlled via dropout rate) is a method for controlling

overfitting of a ML model. In the case of NNs, this can be achieved by dropping selected

nodes to reduce overall model complexity, thus improving predictive performance. We

select ADAM (Kingma and Ba, 2015), a common optimization algorithm for deep neural

networks as optimizer and use rectifier linear units (ReLU) as activation functions. Each

node (neuron) in a NN transmits a signal to the next node only if it is activated by

its preceding inputs. The threshold at which this activation happens is determined by

the activation function. In NNs, non-linear functions with non-constant derivatives are

typically used, of which ReLU is one of the most common and efficient choices. Our loss

function is again the MAE, as this is the core metric we want to optimize for (i.e., we want

to minimize the absolute number of vehicles the model is off on average).

As additional benchmarks we use the following three models:

• Persistence (PER) model: The PER naively predicts that the demand of the next

period is equal to the realized demand of the previous period.

• Historical average (HA) model: The HA uses a moving average of the three most

correlated historical periods to predict the next period. The respective periods are chosen

based on auto-correlation with the target over the 80 days training period (see Appendix

D).

• Seasonal Autoregressive Integrated Moving Average (SARIMA) model: A

SARIMA model is used as a third benchmark.

All grid searches are performed using timeseries cross-validation on the 80-day training period

(starting from the beginning of the data collection window). The results are documented in

Appendix D. To obtain realistic test metrics, we use a moving window validation as described

in Section 3.3.2. We keep our training window fixed at 80 days of data (see Appendix D for

details on choice of training period). All prediction results are post-processed by rounding to

the nearest integer. In Table 3.3 we report MAE and SMAPE per model as evaluated on the

full dataset minus the 80 day training window. All ML approaches are superior to both naive

prediction methods (PER, HA) as well as statistical time series techniques (SARIMA) across all

spatio-temporal resolutions for which we test. This highlights the value of using contextual and

competitor data to enhance prediction quality and reduce any uncertainty related to the future

realizations of decision parameters. Among the models we test for, deep NN topologies along

with the linear model seem to perform best. The advantage of NNs is particularly pronounced

where information density is high (coarse spatial and low temporal resolution), a factor which

is commonly observed with relatively data-hungry frameworks such as deep learning. The best-

in-class models for each resolution are highlighted in Table 3.3. We use these in all further

simulations. All best-in-class models can be trained in under 3.0 minutes for their respective

spatio-temporal resolution (on a machine with 128 GB RAM and 24 cores) and are therefore

suitable for online-learning.
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Table 3.3: Benchmark model performance in terms of MAE and SMAPE (in parentheses) for
different spatio-temporal resolutions (shown here for DM

i,t )

Hc Hm Hf

1h 6h 1h 6h 1h 6h

PER 29.0 (17.4%) 553.6 (37.7%) 9.4 (24.7%) 149.1 (35.6%) 4.1 (29.9%) 45.8 (36.9%)
HA 29.3 (18.1%) 394.4 (26.8%) 9.1 (24.5%) 106.3(25.4%) 3.8 (28.1%) 32.6 (26.1%)
SARIMA 18.3 (13.2%) 125.8 (11.4%) 7.0 (21.7%) 38.8 (14.7%) 3.5 (26.3%) 14.9 (15.8%)
ML-LIN 12.7 (10.2%) 54.7 (6.3%) 5.0 (18.1%) 18.7 (9.0%) 2.7 (22.7%) 9.5 (11.1%)
ML-SVM 13.7 (11.1%) 60.4 (6.8%) 5.8 (20.3%) 21.2 (9.7%) 3.1 (24.5%) 10.1 (11.3%)
ML-TREE 13.6 (11.7%) 62.2 (5.7%) 5.3 (18.9%) 19.7 (8.7%) 2.8 (22.9%) 9.2 (10.4%)
ML-NN1 13.9 (10.8%) 75.1 (6.1%) 5.1 (19.4%) 22.1(9.5%) 2.7 (22.2%) 10.4 (10.6%)
ML-NN2 12.7 (10.4%) 49.3 (5.5%) 5.0 (17.9%) 18.4 (9.0%) 3.0 (24.7%) 9.5 (10.3%)
ML-NN3 11.6 (10.5%) 49.8 (5.7%) 5.4 (19.9%) 18.0 (9.0%) 3.0 (23.9%) 9.3 (10.6%)

Note: Best-in-class models highlighted in bold font

In Figure 3.3 we review the impact of resolution on ML performance. We obtain high pre-

dictive accuracy achieving a SMAPE of considerably below 10% using the coarsest set of regions

Hc and lowest temporal resolution. This is in line with our expectations, as high aggregation

levels tend to smooth out the variance in the data, leading to better predictability. Overall, we

achieve nearly identical predictive performance for outflows and inflows, which seems intuitive

given their strong time-shifted correlation per location. We also observe performance trade-offs

for temporal resolution, with 6h period lengths being considerably more predictable. We find

that the performance penalty attributable to temporal resolution is largely constant for the

different spatial resolutions (trade-off curve shifted upward in Figure 3.3). Predictive results

obtained for IOi,t, while exhibiting similar trade-off characteristics, are typically slightly worse

than those obtained for the market-level targets. We explain this with the lower amounts of

information content in our data and higher variance compared to the combined market-level

data (see Table 3.2). Figure 3.4 shows the relative performance penalty of forecasting further

into the future as compared with the MAE of predicting just one period ahead. In general,

predicting further ahead into the future comes at a penalty (Ketter et al., 2012). This is to be

expected as highly predictive features such as previous realizations become unobservable as we

move further into the future. In our case, this penalty can be up to 18% higher MAE versus

a single-period forecast for certain spatio-temporal resolutions. We review the impact of these

performance penalties on relocation decisions in later simulations.

3.4.4 Performance of Online Optimization Model (Stage ➌)

We implement the online optimization as defined mathematically in Section 3.3.3 in Julia us-

ing the Julia Mathematical Programming (JuMP) (Lubin and Dunning, 2015) framework and

the Juniper branch and bound MINLP solver (Kröger et al., 2018) with IPOPT (Wächter and

Biegler, 2006) as the non-linear programming solver and CPLEX as the mixed-integer program-



3.4 Experimentation 103

f m c

Spatial resolution

5

10

15

20

25

30

SM
AP

E 
(%

)

a) Target = DM
i, t

f m c

Spatial resolution

b) Target = IM
i, t

f m c

Spatial resolution

c) Target = IO
i, t

t
1h
6h

Figure 3.3: SMAPE of best-in-class model for different spatio-temporal resolutions and targets
(total demand (a), total inflows (b), focal fleet inflows (c)) (error bars indicate range across
prediction horizons)
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ming solver used in the feasibility pump (Kröger et al., 2018). For practical reasons and given

the online nature of our approach we impose a time limit of 900s on the optimization. The

optimization runs all solve within that time limit. For a thorough evaluation we vary param-

eters related to spatial resolution (H = [Hc, Hm, Hf ]), temporal resolution (∆t = [1h, 6h]),

foresight (|T O| = [1,2]) and information availability I (perfect parameter information (PI) and

forecast parameters (FI)). This parameterization results in a problem size that is significantly

larger than those considered in previous research. He et al. (2019a), for example, test prediction

horizons of up to three periods in a network with up to five regions. We argue, however, that in
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a micro-mobility setting where location is defined in terms of walking distance, smaller regions

are more realistic and accurate.

We parameterize two types of relocation cost crelocij : one cost parameter for human operator-

based relocation (creloc,humij = dij (cvar + chum)) and one cost for free relocation (e.g., free rides

offered to users or autonomous vehicles) case (creloc,autij = dij (cvar + 0)). We let the specific

variable cost per km cvar equal to USD 0.175 per km (includes fuel and degradation cost) and

the operator-based relocation cost chum equal to USD 0.7 per km (i.e., roughly 50% of a NYC

taxi fee). We define rrent = USD 0.4 per minute, which corresponds to typical fee levels in car

sharing. We let Hmax
i,t equal to the maximum observed market availability plus inflows per region

i in the dataset. We do not set a limit for Mmax
t . For the purpose of the optimization, we let

δ̂Mi,t = δ̄Mi,t , where δ̄
M
i,t is the average rental length across the three most correlated historic periods

per region. In the simulation we use the true observed realizations of δMi,t . For performance

evaluation we use three KPIs (all evaluated against the base case of current policies as observed

in the data): (1) average number of positioning actions N per period over the simulation horizon,

(2) percentage gain in unit revenue ρ over the simulation horizon and (3) percentage gain in unit

profit π over the simulation horizon, where profit is defined as the contribution margin Π minus

depreciation and fixed costs directly attributable to the vehicle. Tables 3.4 and 3.5 summarize

the results. We observe that the finer the spatio-temporal granularity, the higher the theoretical

benefits that can be obtained via CSVP positioning. With finer granularity, the potential

for identifying local imbalances and opportunities for local availability optimizations rise. As

distances between regions become smaller and relocation costs decrease, more positioning actions

are initiated to benefit from these opportunities in a profitable manner. This is especially true

for high temporal granularity, in which the larger amount of positioning windows over a day

drives CSVP performance. Theoretical unit profit gains at the finest granularity (∆t = 1h,

Hf ) are up to 7.5% for free positioning and 3.0% for operator-based positioning. Dynamic

models are more effective than myopic models in all cases. We also find that prediction quality

has a strong impact on performance. While results using predicted values are on par with

the perfect information case for the Hc spatial resolution, the performance penalties at Hf

are considerable - particularly for the dynamic models where prediction errors seem to amplify

across the optimization horizon. Another effectiveness driver is positioning costs. While FREE

positioning allows for more frequent positioning actions, it is also more susceptible to prediction

error compared to OPR positioning, which compensates prediction errors as a result of more

conservative positioning strategies due to higher cost.

At ∆t = 6h the best performing model using forecast parameters is the dynamic model at

high spatio-temporal resolution in which a good trade-off is reached and profit gains of 2.8%

and 1.5% respectively are achieved. We observe similar patterns for a temporal resolution of

∆t = 1h. While theoretical improvements are higher owing to the larger amount of positioning

windows over a day, absolute losses due to prediction errors are also higher. We achieve the
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best performance under FREE positioning for predicted values of 3.1% for a dynamic model and

Hf . Under OPR positioning, improvements of 1.8% are feasible using a dynamic model and the

best performing model at ∆t = 6h is not reached. Given the relatively small improvement for

hourly positioning which comes at the cost of considerably more positioning actions and much

longer computation times (especially for FREE positioning), we opt for a temporal resolution

of ∆t = 6h in all following simulations. This corresponds to four positioning windows per day

with optimization times below 1 minute, which is considered feasible in practice.

Table 3.4: Optimization results for different spatial resolutions (H), different optimization
horizon lengths (|T O|) and different information cases (I) at ∆t = 6h

Avg. positioning actions Unit revenue gain Unit profit gain
(#/period) (%) (%)

H |T O| I FREE OPR FREE OPR FREE OPR
Hf MYO PI 170.9 56.9 3.4 2.4 3.2 2.1

FI 130.3 61.8 1.7 1.3 1.4 0.7
DYN PI 239.5 62.2 4.5 2.7 4.5 2.5

FI 252.5 70.5 0.4 1.1 0.2 0.5
Hm MYO PI 58.1 4.0 3.0 1.1 3.1 1.2

FI 61.1 4.0 2.6 1.0 2.6 1.1
DYN PI 43.0 5.1 3.4 1.5 3.6 1.6

FI 46.0 6.0 2.7 1.4 2.8 1.5
Hc MYO PI 3.9 0.0 0.7 0.0 0.7 0.0

FI 2.9 0.0 0.7 0.0 0.7 0.0
DYN PI 6.2 0.0 0.9 0.0 1.0 0.0

FI 4.3 0.0 0.9 0.0 1.0 0.0

Table 3.5: Optimization results for different spatial resolutions (H), different optimization
horizon lengths (|T O|) and different information cases (I) at ∆t = 1h

Avg. positioning actions Unit revenue gain Unit profit gain
(#/period) (%) (%)

H |T O| I FREE OPR FREE OPR FREE OPR
Hf MYO PI 118.6 22.7 5.5 2.7 4.4 1.4

FI 101.3 18.6 4.1 1.7 3.1 0.7
DYN PI 120.2 23.4 8.2 4.1 7.5 3.0

FI 111.8 19.7 4.3 2.0 3.1 0.8
Hm MYO PI 18.9 0.4 4.8 1.3 4.8 1.4

FI 15.7 0.5 2.5 1.2 2.3 1.3
DYN PI 20.5 0.9 4.9 2.6 4.9 2.8

FI 18.0 0.9 2.0 1.7 1.6 1.8
Hc MYO PI 1.0 0.0 1.4 0.0 1.5 0.0

FI 0.9 0.0 1.3 0.0 1.4 0.0
DYN PI 1.8 0.0 1.2 0.0 1.2 0.0

FI 1.7 0.0 1.3 0.0 1.3 0.0
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3.4.5 Benchmarks and What-if Analyses

We benchmark our results against relevant alternative approaches and test a range of what-if

analyses to explore sensitivities. For all instances we choose the previously identified best trade-

off model setting under predicted parameters as test case (dynamic, H = Hm, ∆t = 6h). First,

we compare our model against the alternative of purchasing and deploying more vehicles. We

increase the focal fleet’s vehicle supply by fOS S
M proportionately across the network, where fOS

is the focal fleet vehicle supply growth factor. Our simulations show (see Figure 3.5), that in the

absence of smart competitor-aware positioning, the focal fleet would have to increase fleet size

by an fOS of 7% (FREE positioning) and 4% (OPR positioning) to achieve a comparable increase

of 2.7% or 1.5% in absolute revenue respectively. This corresponds to an absolute growth of the

fleet of 16.2% and 9.2%. Increasing fleet size, however, has adverse effects on unit economics

as shown in Figure 3.5b). Under fleet expansion, unit profit would decline by -13.5% or -7.8 %

depending on the positioning case. At the same revenue growth the CSVP model would incur

unit profit gain of +2.8% or +1.5%, thus highlighting the value of our approach.
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Figure 3.5: Benchmark of fleet expansion vs. CSVP model without fleet expansion (dynamic,
forecast parameters, H = Hm and ∆t = 6h) in terms of revenue gain (a)) and unit profit gain
(b))

Second, we benchmark against a conventional positioning framework, which considers the fo-

cal fleet in isolation. We term this an ”introvert” model. In the introvert case we let DM
i,t = DO

i,t,

IMi,t = IOi,t and AM
i,t = AO

i,t in Equations 3.1 through 3.18, while the CSVP model formulation

remains unchanged. For illustrative purposes and to abstract from the prediction performance,

we choose a perfect information case. We also artificially inflate demand by 20% to provide

sufficient opportunity for positioning actions in an introvert case. Figure 3.6 shows the results.

In an introvert case, positioning benefits stem exclusively from capturing some of the additional

demand that otherwise would have been lost or from repositioning to more valuable areas where

expected rental length is higher. However, given that competitor vehicles will be present, actual
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captured demand will diverge from what is expected a priori. By taking a market-perspective,

these relative availabilities are considered in the positioning decisions. It also enables the identi-

fication of additional demand pockets which would remain unobserved otherwise. As a result, a

fleet operator operating on a CSVP positioning model can achieve more than double (FREE po-

sitioning) or just under double (OPR positioning) the unit revenue and profit increases versus a

non-competitor-aware model for the scenario we test. Third, we explore our model’s performance
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Figure 3.6: Benchmark positioning actions (a), unit revenue (b) and unit profit (c) obtained
by non-competitor-aware (introvert) vs. CSVP model (dynamic, perfect information, H = Hm

and ∆t = 6h) at 20% increase of DM
[T] and DO

[T]

in various realistic scenarios by varying (1) the level of market demand DM
[T] and (2) the vehicle

supply SM . We vary demand by increasing DM
[T] by factor (1+ fMD ) proportionally across the

network, where fMD is the demand growth factor. IM[T] and IO[T] are adjusted depending on

how much induced demand is actually served. We increase competitor vehicle supply by adding

fCS S
M to the initialized availability, where fCS is the competitor vehicle supply growth factor.

As before, we increase focal fleet vehicle supply by fOS S
M . Figure 3.7a) provides insights into

the effects of growing competitor fleet vehicle supply under different demand growth scenarios.

Competing fleet operators may choose to expand their fleets to capture market share (shown for

the conservative, high-cost case of operator-based (OPR) positioning). Alternatively, new en-

trants may raise the supply of competitor vehicles. Market demand may or may not rise in such

future scenarios. Comparing the unit profit π against the base case of not engaging in CSVP

positioning, we find improvements at all levels of fCS and fMD we test for. The isolated effect

of a demand increase follows a bell-shaped curve (see bottom rows of Figure 3.7) with highest

effects versus base case at moderate increases. For large demand increases, the market becomes

relatively undersupplied and there is less scope for further improvement. Looking at growth in

competitor supply alone (first column), we see stable- to moderately-decreasing effectiveness of
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CSVP positioning. This small reduction in effectiveness is noteworthy as a factor fCS = 0.25

corresponds to a significant loss in relative availability of approx. 10%-points. Our framework

remains effective at largely constant rates even as relative availability is considerably reduced.

The highest uplifts versus the base case are achieved in scenarios with moderate demand in-

crease and large competitor fleet expansions. The high loss in relative availability, coupled with

additional rentals to be captured at a constant own fleet size, provides ample improvement op-

portunities via CSVP positioning and can result in profit increases versus a base case of 5.0%.

The CSVP framework thus provides an effective defensive mechanism against competitor fleet

expansion by reducing the impact of the loss in relative availability and by amplifying the decline

in unit profitability experienced by the competitor fleet. The CSVP is therefore well suited for

accommodating an anticipated growth in market demand even if competitors decide to increase

fleet size proportionately. Figure 3.7b) depicts the unit profit gains under operator-based CSVP
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Figure 3.7: Heat map of focal fleets’ change in unit profit π under operator-based (OPR)
CSVP positioning vs. base case for a) different fMD and fCS and b) different fMD and fOS

positioning in the opposite case of focal fleet expansion and different demand growth scenarios.

We explore whether the framework can enhance the effectiveness of the focal fleet operator‘s

physical fleet expansions in the market we study by dampening adverse unit economics effects

associated with fleet expansion. We find similar effectiveness patterns for changes in fOS . How-

ever, focal fleet supply effects in isolation (column one in Figure 3.7b)) result in relatively higher

effectiveness gains. This can be attributed to the larger vehicle pool the fleet operator can use

for CSVP positioning. Effectiveness rises to up to 7.2% unit profit increase in an OPR position-

ing scenario. Improvements for FREE positioning are even higher and are shown in Appendix

E. From these what-if analyses we learn that (1) the level of relative oversupply in the market
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plays an important role. As demand growth picks up, CSVP effectiveness rises up to a point

when the market becomes undersupplied and the scope for additional gain diminishes. We also

find that (2) the relative availability share seems not to have a significant impact on effective-

ness. As competitor supply rises, the CSVP remains effective at similar levels. Finally, we find

evidence that (3) the vehicle pool size plays a role. As the fleet operator increases her fleet size

she not only improves relative availability but also the absolute size of the vehicle pool that

can be used for positioning, which drives effectiveness. The CSVP model can thus be expected

to perform well in scenarios of growing market demand, growing competitor supply and own

fleet expansion. All simulations above assume uninterrupted data flow from competitor APIs.

In practice, these may experience occasional outages and malfunctions. In Appendix E we run

extensive simulations to test the sensitivity of our results to such outages. We find that our

results are highly robust even to reasonably high outage probabilities of 50%. These findings

further highlight the real-world readiness of our approach.
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3.5 Discussion and Future Work

This research explores how operators of on-demand rental networks can leverage real-time and

geo-tagged competitor information in the operations management of their network. Market-

level and high-resolution mobility data is widely and publicly available in many geographies.

The trend of open-sourcing mobility operator data is continuing (e.g., Mobility Data Specifi-

cation (MDS) project, or city-level open data initiatives). In an environment evolving towards

increased sharing, the question emerges whether operators can profit from incorporating de-

tailed competitor supply and demand information into their operational decision processes. To

address this question we focus on the repositioning challenge, a core operational concern in on-

demand rental networks. We develop a novel, data-driven, and scalable three-stage framework

that enables operators of on-demand rental networks to improve market share and profitability

through competitor-aware positioning actions - independent of market structure. We build our

model on the assumption that local relative product availability determines the market share

that is captured by a fleet in a competitive environment. We test that assumption and develop

a machine learning framework to predict market-level demand and supply parameters. Those

predictions are input to a multi-period MINLP online optimization framework that periodically

determines optimal positioning schedules. Our work offers a new perspective on the shared ve-

hicle positioning problem by incorporating competitor-awareness into the decision process. We

demonstrate the effectiveness of our model via benchmarks and counterfactuals tested on real-

world data from the case of Car2Go and DriveNow in Berlin. CSVP positioning outperforms

the base case observed in our data both in terms of revenue gain and profitability at all spatial

and temporal discretizations under consideration. The upper bound is 7.5% unit profit growth.

However, given that predictive accuracy diminishes at larger network sizes, the best real-world

results are obtained with a dynamic model at medium spatial and low temporal resolution. The

optimal unit profit increase ranges from 2.8% to 1.5% depending on positioning cost. We bench-

mark this setup against the alternative of fleet expansion and against an introverted player that

neglects competitor information. Both benchmarks are significantly outperformed. We also find

that model effectiveness typically rises under realistic combinations of defensive (competing fleet

growth, new entrants), offensive (focal fleet expansion) and demand growth scenarios. We also

show that our model readily handles data outages (see Appendix E)

Our work is subject to several limitations, which provide scope for interesting follow-up

work. First, our approach relies on the availability of real-time system-level shared mobility

data. Throughout this paper we have argued that such data is increasingly and widely ac-

cessible. In many cases real-time mobility data streams are provided by the mobility operators

themselves via open APIs – either voluntarily or in response to regulatory pressures from govern-

mental authorities. We have also referenced alternative, real-time data sources such as market

research companies. Yet, the fact remains that our approach is data hungry. This opens up

research opportunities to extend our model to situations where the market environment is only
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partially observable in real-time, i.e., where competitor data streams remain untapped. Future

work may therefore consider a scenario, where competitor demand and supply information is

opaque or unavailable in real-time. Only static, historical data is available. Here, we briefly elab-

orate on two possible approaches for dealing with such a challenge. A promising methodological

extension to handle partial observability, is the use of reinforcement learning (RL), which has

received increasing attention in the OR/OM community as a scalable approach in stochastic

and sequential environments (Powell, 2011; Gosavi, 2009). One can cast the CSVP as a single-

agent, partially observable markov decision process (POMDP). An RL algorithm can then find

repositioning policies that maximize a certain reward function (i.e., fleet operator profit) and

implicitly incorporate (unobservable) competitor supply and demand information. By learning

over many many episodes of historical system states, optimal repositioning policies could likely

be found. While such an approach is computationally expensive, once trained, the RL model

executes in real-time and would therefore offer real-world utility. The latent modeling technique

of Economic Regimes (ER) proposed by Ketter et al. (2009, 2012) also offers a promising av-

enue. ER models are based on Hierarchical Hidden Markov Models and predict distributions

of key market conditions (such as demand and supply volumes) based on limited observable

market information (such as a single competitor’s supply and demand conditions). Probabilistic

modeling is then used to detect and predict changes in economic regimes and derive operational

decisions tailored to the specific market/competitive condition.

Second, our model assumes that only the focal fleet conducts competitor-aware positioning

actions. This work enables us to quantify the value of real-time market-level data and show that

the value is sufficient to warrant investment in the development of a real-time data analytics

and decision framework that incorporates competitor supply information. Indeed, as an early

adopter, the fleet operator can exploit the full value of the data. Previous research also shows

that the overall market efficiency frontier can increase even if only one actor uses the derived

competitive strategy (Ketter et al., 2012). The question remains, however, how the situation

changes as other competitors with symmetric information may themselves begin to engage in

CSVP positioning. One approach to exploring these dynamics is a game-theoretic framework

that formalizes interactions between several rational and competitive agents. Due to mathe-

matical tractability, a game-theoretic approach would be limited to evaluating a small number

of players and limited set of strategies. A more flexible and scalable alternative is competitive

multi-agent simulation (MAS). MAS can find and evaluate different agent strategies and stable

combinations thereof (equilibrium) in an evolutionary manner. The MAS approach could also

leverage the RL or ER methods mentioned above to derive competitive agent strategies. Several

outcomes are conceivable. In a zero sum game, as more and more competitors apply CSVP,

the value will increasingly be shared between platforms to the disadvantage of those fleets that

either do not use CSVP or those that utilize comparatively worse prediction models. Where

competition is not a zero sum game, perhaps because the system is not operating at the efficient
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frontier, if all operators use all available information to make more efficient allocations, over-

all efficiency of the system could increase and a win-win situation might be created. In either

situation, while first movers can fully and exclusively benefit from CSVP today, there is also a

clear long-term competitive disadvantage from not using competitor-aware vehicle positioning

approaches, which highlights the value of the presented approach.

Finally, there is an opportunity to test the CSVP framework on other on-demand rental

networks such as bikes or e-scooters. On-demand bike-rental networks typically experience more

rental activity and have cheaper positioning cost factors (due to pooling), which could allow for

the use of lower network resolutions and more positioning actions, thus increasing effectiveness.

On-demand service networks (Uber, Lyft) could also benefit from the proposed framework.
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3.6 Appendix

A. Structure of Input Data and Inference of Model Inputs

Table 3.6 contains an excerpt of the raw data (for an exemplary vehicle) that underlies this

research. Locations per each vehicle (identifiable via a vehicle ID) are retrieved every five

minutes. If the vehicle is rented out it disappears from the API output. Thus, if a vehicle

ID is absent from the next API call, it can be assumed that this vehicle was rented over the

past five minutes in the region where it last appeared. Conversely, if a vehicle re-appears in

the records that particular period and location can be inferred as its rental destination. In

sum, this data enables operators to infer (1) the current vehicle availability across the net-

work at the time of data retrieval, (2) the number of rentals starts and ends per each re-

gion and time period, and (3) the exact duration and trajectory of a rental (start and end

location). Note that this exceeds the data requirements for our model, which only requires

availabilities and rental outflows and inflows per period and location. Thus, even if individ-

ual vehicle trajectories cannot be tracked, our model works. Note also that APIs that provide

Table 3.6: Excerpt of raw data for selected vehicle

CarID DateTime Latitude Longitude Fuel Interior Exterior

... ... ... ... ... ... ...
B-GO6699 2017-08-01 08:10:00 52.4339 13.5394 71% good good
B-GO6699 2017-08-01 08:15:00 52.4339 13.5394 71% good good
B-GO6699 2017-08-01 08:20:00 52.4339 13.5394 71% good good
B-GO6699 2017-08-01 08:45:00 52.4991 13.4325, 65% good good
B-GO6699 2017-08-01 08:50:00 52.4991 13.4325, 65% good good
B-GO6699 2017-08-01 08:55:00 52.4991 13.4325, 65% good good
B-GO6699 2017-08-01 09:00:00 52.4991 13.4325, 65% good good

... ... ... ... ... ... ...

Note: Interior and Exterior refers to the general condition and cleanliness of the vehicle’s in-
terior and exterior respectively

data as shown in Table 3.6 are standard in the shared mobility domain. For a non-exhaustive

overview of open vehicle sharing APIs see https://github.com/ubahnverleih/WoBike. There

are also third-party market research companies such as fluctuo (https://fluctuo.com) or remix

(https://www.remix.com/solutions/shared-mobility) who offer real-time data streams of

most major shared mobility platforms including those for which open APIs cannot be readily

found.

https://github.com/ubahnverleih/WoBike
https://fluctuo.com
https://www.remix.com/solutions/shared-mobility
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B. Assumptions and Discretization Approach

Figure 3.8: Regression of captured demand share sOi,t against relative availability ψ
O
i,t at coarse

(left), medium (middle) and fine (right) spatial resolution - There is direct proportionality with
k ≈ 1 at all resolutions.

Resolution r Resolution r+1 Resolution r+2

Figure 3.9: Spatial framework - A hexagonal GDGGS (shown for different resolutions at an
aperture size of 7)

t = 0

p = [0, 1]

∆t

t = 1

p = [1, 2]

t = 2

∆O

p = [2, 3]

t = 3

...

...

...

t = n

p = [n, n+ 1]

...

...

Figure 3.10: Temporal framework - Discrete period length of ∆t and user-defined optimization
horizon ∆O
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C. Discrete Event Simulation

Algorithm 1: CSVPSim()

input : target period: t, set of periods in optimization horizon: T O = {t, ..., t+ n}; set
of training periods T L = {1, ..., t− 1}; set of regions: H, input vector: St;
historic realizations of inputs (training data): S[T L]; realizations of target

parameters: DM
t, I

M
t, I

O
t, historic realizations of targets:

DM
[T L], I

M
[T L], I

O
[T L]; vehicle supply: AM

t,A
O
t; hypertuned ML hypothesis

function ϕ and loss function ℓ; CSVP mathematical model Ω (Eq. 1 to 18);
rental price: rrent; rental cost: crent; relocation cost: creloc = (crelocij ), actual

and hist. avg. rental length: δδδMt , δ̂̂δ̂δMt
output: positioning actions: x[T O] = (xij,t) for all t ∈ T O and i, j ∈ H; revenue: Rt;

utilization: Ut; adjusted profit: Πt, rental gain/loss in target period t: ∆DO
t ,

∆DM
t

/* fit ϕ for all P, i, t and predict future realizations of all yi,t */

1 for P ∈ [DM , IM , IO] do
2 for t ∈ T O, i ∈ H do
3 min

ϕP
i,t

∑
t∈T L ℓ(ϕPi,t(Si,t), Pi,t) /* learn ML model on S[T L], P[T L] */

4 P̂i,t = ϕPi,t(Si,t) /* predict future realizations */

5 end
6 end
/* get positioning actions in T O (x[T O]); isolate positionings in t (xt)

*/
7 x[T O] = Ω(t, D̂M

[T O]
, ÎM

[T O]
, ÎO

[T O]
,AM

t ,A
O
t , δ̂̂δ̂δ

M
t , r

rent, crent, creloc)

8 xt ← x[T O][t]
/* for target period t: execute xij,t and allocate demand and inflows */

9 for i ∈ H do

10 Allocate ∆DM
t−1 stochastically with p =

IMi,t∑
i∈H IMi,t

until exhausted; store as ∆IMt

11 Allocate ∆DO
t−1 stochastically with p =

IOi,t∑
i∈H IOi,t

until exhausted; store as ∆IOt

12 Update AM
i,t ← AM

i,t +
∑

j∈H xji,t − xij,t and AO
i,t ← AO

i,t +
∑

j∈H xji,t − xij,t
13 Update IOi,t ← IOi,t + round(∆DO

t−1

IMi,t∑
i∈H IMi,t

) and IMi,t ← IMi,t + round(∆DM
t−1

IMi,t∑
i∈H IMi,t

)

14 Compute DO
i,t = round(ψO

i,tD
M
i,t ) (with ψ

O
i,t as per Eq. 2)

15 end
/* Compute KPIs and update state variables after demand allocation */

16 Compute Rt =
∑

i∈H(D̂
O
i,tδ

M
i,t (r

rent)), Ut =
Rt

rrent

V O∆t
, Πt (as per Eq. 1), ∆D

O
t , ∆D

M
t

17 Update AM
t+1 ← AM

t + IMt −DM
t ; AO

t+1 ← AO
t + IOt −DO

t
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D. Prediction Model

Benchmark 1: Historical average model

Figure 3.11 and 3.12 show the autocorrelation plots of DM
i,t (similar for the other targets), which

were used in the historical average model (HA).
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Figure 3.11: 1-week ACF and PACF of DM
i,t for a selected region at medium spatial resolution

and 1h period length
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Figure 3.12: 1-week ACF and PACF of DM
i,t for a selected region at medium spatial resolution

and 6h period length

Benchmark 2: SARIMA model

The SARIMA model uses the following parameters: [(p,d,q)(P,D,Q,m),t]

The first thee hyperparameters are autoregression (p), differencing (d) and moving average

(q) like in a normal ARIMA model. We define them as follows:

• Autoregression: p≥1 due to significant autocorrelation at lag 1 in the PACF. We employ

a grid search over p = [1,2,3].

• Degree of Differencing: d=0 as there is no visible trend in series

• Moving Average: q≥1 due to significant autocorrelation at lag 1 in the ACF. We employ

a grid search over q = [1,2,3].
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The remaining hyperparameters are for the seasonal part of the model:

• Autoregression: Autoregression: P≥1 ACF is positive at lag m (24 (1h resolution) or 4

(6h resolution)). We employ a grid search over P = [1,2].

• Differencing: D=1 series has a stable seasonal pattern over time

• Number of Periods: m=24 (1h) or m=4 (6h) due to clear 24- or 4-period seasonality

• Trend t: There is no trend so this parameter is irrelevant

We grid-search models for medium spatial resolution Hm. Results are shown in Table 3.7.

For ∆t = 1h we choose configuration [(1, 0, 2), (2, 1, 0, 24)], which has strong performance at

reasonable training times. For ∆t = 6h we choose the best performing configuration [(1, 0, 2),

(1, 1, 0, 4)].

Table 3.7: SARIMA grid search results

SARIMA config. ∆t = 1h (m=24) ∆t = 6h (m=4)
[(p,d,q)(P,D,Q,m)] CPU time (s) MAE (# vehicles) CPU time (s) MAE (# vehicles)

[(3, 0, 2), (2, 1, 0, m)] 18855.1 30.8075 36.8 407.6451
[(1, 0, 3), (2, 1, 0, m)] 3074.3 31.1154 24.3 356.0574
[(1, 0, 2), (2, 1, 0, m)] 2413.3 31.1213 18.6 346.3204
[(2, 0, 2), (2, 1, 0, m)] 4219.9 31.1937 24.7 356.2888
[(2, 0, 3), (2, 1, 0, m)] 7904.6 31.2449 22.9 405.3981
[(3, 0, 3), (2, 1, 0, m)] 7893.6 31.3673 50.2 404.7475
[(3, 0, 1), (2, 1, 0, m)] 3616.3 31.3844 24.3 413.7035
[(2, 0, 2), (1, 1, 0, m)] 1235.0 31.4795 15.9 329.4374
[(1, 0, 3), (1, 1, 0, m)] 859.2 31.4825 14.8 313.8593
[(1, 0, 2), (1, 1, 0, m)] 842.0 31.5256 12.0 311.2128
[(2, 0, 1), (2, 1, 0, m)] 4114.3 31.5429 7.4 364.2654
[(3, 0, 3), (1, 1, 0, m)] 2173.0 31.619 33.7 380.0744
[(3, 0, 1), (1, 1, 0, m)] 1051.4 31.7426 15.5 404.7965
[(1, 0, 1), (2, 1, 0, m)] 1877.1 31.7549 6.7 377.9798
[(2, 0, 3), (1, 1, 0, m)] 2666.3 31.764 18.0 333.969
[(3, 0, 2), (1, 1, 0, m)] 8185.6 31.8291 17.7 394.75
[(2, 0, 1), (1, 1, 0, m)] 1090.4 31.9805 3.0 334.3803
[(1, 0, 1), (1, 1, 0, m)] 495.6 32.0902 4.0 334.0049
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Feature overview

Table 3.8 illustrates the full feature set prior to applying feature reduction.

Table 3.8: Feature overview

No. Type Name Description

0 Z weekday yn Binary indicator if period falls on a weekday
1 Z weekend yn Binary indicator if period falls on a weekend
2 Z day 0 Binary indicator if period falls on a Mon
3-7 Z .. ...
8 Z day 6 Binary indicator of whether period falls on a Sun
9 Z hour 0 Binary indicator if period contains 00.00h window

10-31 Z ... ...
32 Z hour 23 Binary indicator if period contains 23.00h window
33 Z bank holiday Binary indicator if period falls on a bank holiday
34 Z school holiday Binary indicator if period falls on a school holiday
35 W temperature degC Expected mean temperature during period t in °C
36 W percipitation mm Expected mean precipitation during period t in mm
37 W wind mps Expected mean wind speed in m/s
38 W humidity perc Expected mean relative humidity in %
39 W clouds eigth Expected mean cloud cover in eighth
40 W percipitation yn Binary indicator of whether precipitation is expected
41 G accounting Count of POI type ’accounting’ in region
42 G airport Count of POI type ’airport’ in region

43-138 G ... ...
139 G zoo Count of POI type ’zoo’ in region
140 G has rating Count of POI types with a popularity rating in region
141 G no rating Count of POI types without a popularity rating in region
142 G has price Count of POI types with a price rating in region
143 G no price Count of POI types without a price rating in region
144 G share has rating Share of POIs with a popularity rating in region
145 G share has price Share of POIs with a price rating in region
146 C comp inflows p-1 Count of comp. inflows in region 1 period prior
147 C comp inflows p-2 Count of comp. inflows in region 2 periods prior
148 C comp inflows p-3 Count of comp. inflows in region 3 periods prior
149 C comp inflows p-1d Count of comp. inflows in region 1 day prior

150-154 C ... ...
155 C comp inflows p-7d Count of comp. inflows in region 7 days prior
156 C comp inflows mean Mean of inflows in region 1 to 7 days prior
157 C comp inflows var Var. of inflows in region 1 to 7 days prior
158 C comp inflows std Std. of inflows in region 1 to 7 days prior
159 C comp inflows diff 6-7d Diff. in inflows 7 and 6 days prior

160-164 C ... ...
165 C comp inflows diff 0-1d Diff. in inflows 1 day and 1 period prior
166 C comp inflows all reg p-1 Count of comp. inflows (all regions) 1 period prior
167 C comp inflows all reg p-2 Count of comp. inflows (all regions) 2 periods prior
168 C comp inflows all reg p-3 Count of comp. inflows (all regions) 3 periods prior
169 C comp outflows p-1 Count of comp. outflows in region i 1 period prior

170-190 C ... analogous to 147-167 for outflows
191 C comp outflows all reg p-3 Count of comp. outflows (all regions) 3 periods prior

192-236 Fi,t ... analogous to 147-191 for focal fleet
237 Fi,t own outflows all reg p-3 Count of focal fleet outflows (all regions) 3 periods prior
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An overview of top selected features is shown in Figures 3.13 and 3.14.
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Figure 3.13: Top features for Hm (∆t=1h)
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Figure 3.14: Top features for Hm (∆t=6h)
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Selection of training period

We identify the required training length by observing the development of the MAE with increas-

ing training length (see Figure 3.15). MAE plateaus at 80 days of training data, which is the

length we adopt.
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Figure 3.15: Evaluation of MAE with different length in training window (shown here for
∆t=6h)
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Parameterization of ML models

Table 3.9: Grid-search results of various ML models

Best performing paramters
Hc Hm Hf

Model Parameter Search space 1h 6h 1h 6h 1h 6h

ML-LASSO regularization [10−3,10−2,10−1,1,10] 10−3 10−3 10−3 10−2 10−1 1

ML-SVM cost factor C [500,103,104,105,106] 500 105 500 104 500 104

ML-SVM epsilon tube ϵ [0.4] 0.4 0.4 0.001 0.4 0.4 0.4
ML-SVM kernel [rbf] rbf rbf rbf rbf rbf rbf

ML-TREE # of estimators [250,500,750,1000,1500] 750 750 1000 750 1000 1000
ML-TREE max. depth [2,4,6] 2 2 4 2 4 4
ML-TREE learning rate [10−3,10−2,10−1] 10−2 10−1 10−1 10−2 10−1 10−1

ML-TREE loss [mae] mae mae mae mae mae mae

NN1 drop rate [0,10−3,10−2,10−1] 10−3 10−3 0 10−2 10−3 10−3

NN1 epochs [100,200] 100 200 100 200 100 200
NN1 batch size [100,200,300] 300 100 200 100 300 300
NN1 learning rate [10−3] 10−3 10−3 10−3 10−3 10−3 10−3

NN1 optimizer [adam] adam adam adam adam adam adam
NN1 activation [relu] relu relu relu relu relu relu
NN1 loss [mae] mae mae mae mae mae mae
NN1 hidden layers [1] 1 1 1 1 1 1
NN1 neurons (f=# features) [0.75f,1f,1.25f,1.5f] 1.25f 1.5f 1.5f 1f 0.75f 0.75f

NN2 drop rate [0,10−3,10−2,10−1] 10−3 10−2 0 0 0 10−3

NN2 epochs [100,200] 100 200 100 200 100 100
NN2 batch size [100,200,300] 300 100 300 300 200 300
NN2 learning rate [10−3] 10−3 10−3 10−3 10−3 10−3 10−3

NN2 optimizer [adam] adam adam adam adam adam adam
NN2 activation [relu] relu relu relu relu relu relu
NN2 loss [mae] mae mae mae mae mae mae
NN2 hidden layers [2] 2 2 2 2 2 2
NN2 neurons (f=# features) [0.75f,1f,1.25f,1.5f] 0.75f 1.5f 0.75f 1.5f 1.5f 0.75f

NN3 drop rate [0,10−3,10−2,10−1] 10−1 0 0 0 10−2 0
NN3 epochs [100,200] 100 200 100 100 200 200
NN3 batch size [100,200,300] 200 200 300 300 300 300
NN3 learning rate [10−3] 10−3 10−3 10−3 10−3 10−3 10−3

NN3 optimizer [adam] adam adam adam adam adam adam
NN3 activation [relu] relu relu relu relu relu relu
NN3 loss [mae] mae mae mae mae mae mae
NN3 hidden layers [3] 3 3 3 3 3 3
NN3 neurons (f=# features) [0.75f,1f,1.25f,1.5f] 1.5f 1.25f 1.5f 1.5f 1.5f 1.5f
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E. Optimization Model

CSVP Performance under growth in market demand DM
[T] and the vehicle supply

SM

We also plot the heat map of focal fleets’ change in unit profit π under free (FREE) CSVP

positioning vs. base case for different fMD and fCS and different fMD and fOS (see Figure 3.16).

The same patterns as for OPR positioning can be observed. Note that at high fMD , fCS or fOS OPR

positioning may outperform FREE positioning. We attribute this to the larger susceptibility of

FREE positioning to prediction errors, which is amplified by relatively larger negative cascading

effects at large demand and supply growth factors. To test this assumption we run the same

experiments using perfect information, where FREE positioning outperforms OPR positioning

for all cases.
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Figure 3.16: Heat map of focal fleets’ change in unit profit π under free (FREE) CSVP
positioning vs. base case for a) different fMD and fCS and b) different fMD and fOS

Sensitivity to API outages leading to missing information

Our model relies on regular and uninterrupted data feeds from third-party APIs. This makes

it susceptible to API outages and malfunctions. We review here the impact of such outages

and data errors on the robustness of our results. In our simulations we assume the risk of data

outages to be limited to the feed of competitor data. This is a reasonable assumption since

this data is the only one that an operator engaging in CSVP positioning would need to actively

collect via an external API, an arguably error-prone approach which may be subject to technical

issues. The focal fleet operator is assumed to have full and error-free visibility regarding the

status of his/her own fleet at all times, which is warranted since accessing the focal fleet’s data
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does not involve external API scraping. API outages can have different repercussions depending

on when and how long they persist. In a worst case, an API outage would occur at the beginning

of a planning period and persist long enough such that actual demand and inflows cannot be

tracked. This would mean that the operator would have no information on the state of the

network at the beginning of the period (AM
t ) and would be unable to reliably account for actual

realizations of demand and inflows during that period (DM
i,t , I

M
i,t ), which are important inputs

to the ML model that predicts future realizations of inflows and outflows. To sum up, in a

worst case API outage scenario the following issues would be faced: In the current planning

period no information on initial market-level fleet vehicle distribution (AM
i,t) would be available.

In future planning periods missing/unreliable inputs the to prediction model with potential to

skew predictions of future inflows and outflows. We account for both effects in our simulations.

To simulate API malfunctions we randomly introduce full outages (i.e. missing information) with

probability p0 equal to 10%, 25% and 50%. We focus on the worst case of missing information

on both the initial state of the network at the start of the period and missing information on

demand and inflows during the period. We initially tested two different response strategies that

the focal fleet operator might adopt in cases of API outages. These are: (1) Suspend relocations

in affected period, and (2) Extrapolate/predict missing input parameter AM
i,t for the affected

period. We find that naive extrapolation of AM
i,t based on past realizations yields worse and

sometimes even negative results on average compared to the “suspend relocations” approach.

We therefore do not further pursue this approach and instead focus on evaluating the response

strategy of suspending relocations in the affected period. We tackle any downstream prediction

issue arising from missing inputs for the ML models by dropping missing information on IMi,t−1

and IOi,t−1 (where t − 1 is the period affected by the API outage). This is analogous to the

approach taken for multi-period predictions for which we iteratively drop lagged features that

have become unobservable for the period in scope to avoid prediction error propagation.

Per each outage scenario and response strategy we have run 100 simulations. Table 3.10

summarizes mean and standard deviation of the results. We have also visualized them in Figure

3.17.

Table 3.10: Sensitivity of %-change in profitability vs. based case to data outages with varying
probability p0 (H = Hm, |T O| = DYNAMIC, I = FI, ∆t = 6h)

Strategy p0 = 0% p0 = 10% p0 = 25% p0 = 50% p0 = 75% p0 = 100%
OPR Suspend Relocations 1.47 (–) 1.43 (0.072) 1.39 (0.110) 1.22 (0.142) 0.92 (0.319) 0.00 (–)

Note: Results show mean %-change in profitability over 100 simulation runs with standard de-
viation reported in parentheses

Our results demonstrate that our model is very robust to data outages, even with outage

probability of up to p0=50%. Model performance falls considerably for higher outage rates

(p0=75%), but remains positive. In practice, such high outage probabilities can be consid-
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ered extremely rare. The performed API outage scenario simulations can therefore lead strong

support to the robustness and real-world applicability of the proposed approach.
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Figure 3.17: Mean and std. of %-change in adjusted profitability π over 100 simulation runs
for the following model setting: H = Hm, |T O| = DYNAMIC, I = FI, ∆t = 6h

Sensitivity to time-variable relocation worker supply

Our simulation considers relocation capacity via a fixed cost parameters. As explained, we

parameterize two types of relocation cost crelocij : one cost parameter for human operator-based

relocation (creloc,humij = dij (c
var + chum)) and one cost for free relocation (e.g., free rides offered

to users or autonomous vehicles) case (creloc,autij = dij (cvar + 0)), where dij is the distance from

region i to j. In our base simulation we have set cvar equal to USD 0.175 per km (includes fuel

and degradation cost) and the operator-based relocation cost chum equal to USD 0.7 per km.

In practice, relocation capacity (e.g., the number of available workers) may, however, vary

across time. Specifically, it is conceivable that relocation capacity during the night may be lim-

ited. This is true in both an operator-based and a user-based scenario. User-based repositioning

capacity can be reasonably assumed to be significantly more abundant in periods of high travel

demand during the day and vice versa. The same holds true for operator-based positioning. To

account for this fact we have incorporated the notion of variable relocation capacity in the relo-

cation cost parameter. Specifically, we have implemented a time-variable relocation cost surge

factor fSurget which is applied to the base relocation cost crelocij , thus yielding a time-variable relo-

cation cost for operator-based repositioning of creloc,humij,t = dij (c
var+ chumfSurget ). Since reposi-

tioning cost in a FREE scenario would not be affected by fSurget (creloc,autoij,t = dij (c
var+0fSurget )),

we parameterize a third case (HYBRID) with base relocation cost of chybrid = chum

2 =USD 0.35

per km resulting in creloc,hybridij,t = dij (c
var+chybridfSurget ). In determining the functional form of
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fSurget , we rely on the average temporal distribution of market demand DM
t. We re-scale and

reverse this distribution to the interval of [fMin
t , fMax

t ] letting fSurget in the period of highest

demand equal to fMin
t and in the period of lowest demand equal to fMax

t . Thus repositioning

becomes more expensive in periods of low demand and is cheaper in periods of high demand.

Figure 3.18 shows the temporal distribution of fSurget . We re-run our simulation for the selected
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Figure 3.18: Temporal distribution of relocation cost surge factor fSurget over the interval
[fMin

t = .075, fMax
t = 1.5]

best-performing model under predicted parameters as test case (dynamic, H = Hm, ∆t = 6h).

The results are shown in Table 3.11. By increasing the relocation cost in certain time periods

the model conducts fewer relocations on average. Profitability is negatively impacted. However,

our model still achieves a sizeable profit improvement over the base case.

Table 3.11: Sensitivity to time-variable relocation costs to account for varying supply of labour
(H = Hm, |T O| = DYNAMIC and different information cases (I) at ∆t = 6h)

I Static relocation cost Time-variable relocation cost Time-variable relocation cost
(fMin

t = fMax
t = 1) (fMin

t = 0.75, fMax
t = 1.5) (fMin

t = 1, fMax
t = 1.75)

Avg.
∑

i,j xij,t %-change in π Avg.
∑

i,j xij,t %-change in π Avg.
∑

i,j xij,t %-change in π

OPR PI 5.1 1.6 3.7 1.3 3.0 1.2
FI 6.0 1.5 4.2 1.2 3.8 1.1

HYB PI 12.8 2.6 10.2 2.4 7.8 2.1
FI 10.8 2.2 10.6 2.1 9.6 1.9

Note: Avg.
∑

i,j xij,t = Avg. number of repositionings per period; %-change in π = % in-
crease in adjusted profit over baseline (no repositioning)
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F. Data and Code Supplement

A repository containing a simplified and stream-lined version of the code base along with se-

lected real-world datasets is available via the following link: https://github.com/KaSchr/

CSVP_Code_Supplement

The provided data and code samples focus on the optimization and simulation aspect of

the paper and are intended to facilitate replication and benchmark analyses of the presented

research. In particular, the repository contains (1) sample real-world carsharing data, (2) Julia

code of the optimization model, (3) Julia code of the simulation framework (4) a basic data

processing and evaluation routine to assist the analysis of simulation runs. For ease of use, all

code has been compiled into a single jupyter notebook (.ipynb) with extensive annotations and

descriptions. Further instructions and requirements are outlined in the online repository.

https://github.com/KaSchr/CSVP_Code_Supplement
https://github.com/KaSchr/CSVP_Code_Supplement


Chapter 4

Solving Large-Scale Service System

Design Problems with Digital Twins:

An Application to Electric Vehicle

Charging Hubs1

4.1 Introduction

In an age of pervasive sensor technology that connect wirelessly in what is often referred to as

the internet of things (IoT), fine grained operational and preference data has become abundant.

Operations Management (OM) researchers are increasingly interested in incorporating such data

into OM frameworks (Qi and Shen, 2018; Cohen, 2018; Choi et al., 2022). A concept that has

received increasing attention is the Digital Twin (DT), a close-to exact digital representation

of a physical product or operational system that is configured based on primary sensor data,

realistic asset models and real-world operational procedures/policies (Choi et al., 2022; Grieves

and Vickers, 2017). Digital Twins have traditionally been used for operational questions in the

use phase of already-existing operational assets (van der Valk et al., 2020; Grieves and Vickers,

2017). However, several commentators have stressed that DTs could be of use even earlier in an

asset’s lifecycle – particularly in the design phase (e.g., Boschert and Rosen, 2016). Operations

managers traditionally approach strategic planning of service networks via methods such as,

mathematical programming (e.g., He et al., 2017, for on-demand vehicle sharing service region

1This Chapter is currently under review at a leading peer-reviewed academic journal. Parts of this Chapter
have appeared in the following (non-copyrighted) peer-reviewed academic conferences and workshops:
Schroer, K., Ahadi, R., Lee, T. Y., & Ketter, W. (2021). Preference-aware Planning and Operations of Electric
Vehicle Charging Clusters : A Data-Driven Prescriptive Framework. In Proceedings of the SIG GREEN Workshop
(pp. 1–10). https://aisel.aisnet.org/sprouts proceedings siggreen 2021/1
Schroer, K., Ahadi, R., Lee, Y.T., & Ketter, W. (2021). Preference-Aware Planning and Operations of Electric
Vehicle Charging Clusters: A Prescriptive Framework. In Workshop on Information Systems and Technology
(WITS) 2021 (Austin, TX).
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design) or queuing models (e.g., Wang and Odoni, 2016, for last-mile delivery networks). Com-

putational tractability in these frameworks is achieved at the expense of detail and scope of the

planning problem (e.g., short planning horizons, coarse temporal discretization, deterministic

parameter assumptions, etc.). DTs have the potential to circumvent the need for simplification

and problem size reduction, among other theoretical benefits. These benefits include (1) more

realistic, data-driven modeling of stochasticity and operational detail, (2) computational scal-

ability, (3) flexible model setup that allows for easy evaluation of many different operational

policies and (4) ability to seamlessly carry over the DT into subsequent system life cycle phases

(Boschert and Rosen, 2016). Therefore, we set out to answer the following core research ques-

tion: How can Digital Twins be leveraged for ex-ante decision support and investment de-risking

during the design and configuration phase of service systems?.

To demonstrate the efficacy of our solution approach, we apply it in the domain of Electric

Vehicle (EV) Charging Hubs (EVCHs). Policy makers have traditionally assumed that users

would primarily charge their EVs overnight and at home. Indeed, home charging is currently

the preeminent charging use case in most markets. As more and more non-homeowners adopt

EVs and as commercial fleets are electrified, charging opportunities at the workplace, at popular

destinations such as supermarkets, and at fleet depots will be needed (Jun and Meintz, 2018; Lee

et al., 2019; Hoover et al., 2021). EVCHs constitute a novel (thus under-researched) operational

system class with cross-system interfaces (e.g., with attached buildings or the electricity grid)

and a large number of both strategic and operational decision variables (size and configuration

of charging stations, on-site storage, charging decisions, etc.) that result in a highly complex

planning challenge (Ferguson et al., 2018). Such problem classes (i.e., multi-stage, stochastic)

are notoriously challenging for optimization-based methods (Powell, 2014; Hannah, 2015) and

therefore provide an ideal test bed.

Our work offers a number of contributions. Methodologically, we propose a framework for

the effective use of DTs for ex-ante de-risking and decision support in the design phase of service

systems. Our three-phase framework generalizes to any service system and (in combination with

high-performance search or learning algorithms) is scalable to almost arbitrarily large system

instances. In extensive, real-world-inspired simulation experiments, we show that our framework

outperforms extant optimization-based approaches under realistic operating conditions due to a

better ability to generalize beyond the training data (i.e., the data based on which the configu-

ration was derived). As such, it provides a novel, high-performing, and actionable method for

operations managers to effectively exploit the benefits of big data and high-fidelity DTs from the

beginning of a system’s life cycle. We also offer numerous domain-specific insights that result

from the application of our DT-based framework to the case of EVCH system configuration.

The remainder of this work is structured as follows. In Section 4.2, we review the literature

relevant to this work. We then derive a general model for DT-based service system planning and

configuration (Section 4.3) and apply it to the case of EVCH planning (Section 4.4). We then
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run extensive benchmark simulations (Section 4.5) followed by comprehensive scenario analyses

(Section 4.6) to demonstrate performance and flexibility benefits of our DT-based method. We

end with a discussion of implications and contributions to theory and practice (Section 4.7).
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4.2 Background

Our work draws from two main bodies of literature, which we briefly review here. First, we

discuss extant work on DTs and their use for OM decision support. Second, we review traditional

OM system design approaches using the example of EVCHs.

4.2.1 Digital Twins (DTs) and their Use in Operations Management

DTs have been hailed as a disruptive trend in OM of the IoT and Industry 4.0 era (Choi et al.,

2022). At its most basic level, a DT is a fully digital representation of a specific physical

asset or system. DTs can be used as a decision support tool along the entire life cycle of that

asset: from design, operations, and maintenance to disposal (Schleich et al., 2017). Various

authors, commentators, and software vendors have brought forward diverging notions of the

characteristics that make up a DT (van der Valk et al., 2020). For the purpose of this research,

we highlight several characteristics that we consider key and which distinguish DTs from, e.g.,

traditional simulation frameworks (Boschert and Rosen, 2016). The reader is referred to Jones

et al. (2020) or Cimino et al. (2019) for comprehensive reviews.

First and foremost, DTs represent a close to real-world representation of the physical system

at a granular level using high-fidelity interconnected physical models of system components

(Glaessgen and Stargel, 2012). Note that this does not necessarily require identical accuracy

but can also mean partial accuracy if this is sufficient for the DT to fulfill its intended use (van der

Valk et al., 2020). Second, a DT is data-driven, meaning that it primarily relies on real-world

operational data input acquired directly from sensors of the device and the intended application

environment (van der Valk et al., 2020). It is often not the case that raw data on all required

parameters is available. In such cases, synthetic data from statistical models or simulation

frameworks can be used to supplement the data requirements (Sierla et al., 2018). Third, there

is eventual synchronization of the DT and the physical asset. This can be achieved via one-

directional (physical world to DT) or bi-directional data flows (Tao et al., 2018). DTs have

been successfully applied in the use phase of operational systems (Jones et al., 2020). Examples

include asset status and health monitoring (Glaessgen and Stargel, 2012), asset optimization,

maintenance planning (Cimino et al., 2019), and staff training (Choi et al., 2022).

As argued previously, a core feature of DTs is their reliance on real-world sensor data for asset

and process representation in the virtual world. That does not, however, disqualify DTs from

the use in design/configuration applications of assets and operational systems that are yet to be

built. Indeed, high-granularity data on many aspects of the intended application environment

as well as on typical machine/process behavior is likely to already be available. This means that

pre-use-phase DTs can be fed with live as well as realistic historic data (Boschert and Rosen,

2016). Indeed, authors have argued that DTs can and should play a core role much earlier in

a system’s life cycle – particularly the configuration/design phase. Here DTs can act as a test
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bed for different design configurations, a concept which Grieves and Vickers (2017) refer to as a

“Digital Twin Prototype”. Boschert and Rosen (2016), in their influential work, frame DTs as

the ”next wave” (p.61) in simulation-based system design with a direct linkage to operational

data. However, despite these calls, the time of creation of a DT occurs most commonly after

the production/installation of the physical system (van der Valk et al., 2020).

Our work addresses this gap by developing a novel DT-based solution approach for oper-

ational system design. We show that DTs, in combination with scalable search or learning

algorithms, can circumvent many of the model simplifications and problem reduction measures

unavoidable in traditional mathematical programming, thus providing more realistic asset con-

figurations that can perform better than optimization-derived solutions under real-world condi-

tions. Synchronization of the DT with the physical asset via machine-to-machine communication

and data exchange is easily possible following the installation of the derived configuration in the

physical world.

4.2.2 Electric Vehicle (EV) Charging Hub Design and Operations

Our work draws heavily on the case of EVCH configuration. EVCHs constitute an example of a

complex system of high societal relevance for which DT-based approaches can provide valuable

decision support. In this Section, we provide a short overview of the state-of-the-art in EV

Charging Hub design and operations.

EVCHs exhibit several unique features that distinguish them from other charging use cases,

such as distributed on-street charging, highway charging, and private home charging. First,

EVCHs typically represent large locally concentrated loads that may require significant local

electricity grid extension making load shaping necessary (Lee et al., 2019). Second, integration

with behind-the-meter loads (buildings) and generation units (PV, storage) may be desirable

(Nunes et al., 2016) to reduce induced peak loads, drive sustainability and reduce costs (Ferguson

et al., 2018). Third, EVCHs typically experience different user behavior compared to other

charging use cases such as home charging and this user behavior can vary substantially depending

on the use case of the attached facility (workplace, mall, etc.). Fourth, siting of individual

charging stations is of no concern in an EVCH context as all chargers will be located in the

same space with users being largely indifferent between them. Finally, EVCHs allow for end-

to-end control of the full vehicle-level parking and charging journey through what is sometimes

referred to as smart EV-capable parking lots (Babic et al., 2022). This enables the assignment of

vehicles to chargers and central control over the charging process. It, thus, offers new scope for

optimization, e.g., by leveraging parallel or sequential use of charging equipment in an optimal

manner (Ferguson et al., 2018). Given that modern parking facilities are typically equipped

with connected sensors, high availability of operational data can be assumed. As such, EVCHs

represent a timely and challenging environment to develop, implement and test novel data-driven

OM methods.
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We briefly review state-of-the-art OM approaches in the realms of (1) operating and (2)

configuring EVCHs. In terms of EVCH operations, we acknowledge the extensive work on electric

vehicle charge scheduling and smart charging (see e.g., Mukherjee and Gupta (2015) for a recent

review) that most operations-focused EVCH research is based on. A notable differentiator from

the traditional smart charging literature is the inclusion of building/cluster-level constraints

and optimization opportunities. Early examples include Huang and Zhou (2015) who develop

a mixed-integer optimization framework for workplace charging strategies taking into account

different eligibility levels and Wu et al. (2017) who propose a two-stage energy management

framework for office buildings with workplace EV charging. Nunes et al. (2016) investigate how

charging processes can best be coordinated to use parking lots for EV solar-charging. Ferguson

et al. (2018) propose an integrated load management approach to optimize EV charging processes

for minimum cost taking into account the building base load and PV generation. A similar site-

level load management approach was implemented in practice by Jun and Meintz (2018). Finally,

Lee et al. (2019) explore several optimization-driven approaches to operational issues in charging

hubs.

Designing EVCH systems has received somewhat less attention. This is likely a result of

the complexity of the ensuing design challenge. EVCH configuration is a multi-stage stochastic

decision problem that requires large decisions (e.g., the number of charging docks to be installed

at each stage in the planning horizon) and small decisions (e.g., charging individual vehicles) to

be taken simultaneously. Such problems are notoriously difficult and cannot be solved efficiently

with standard stochastic programming or even approximate dynamic programming (Powell,

2014; Hannah, 2015). Some research resolves the ensuing complexity by using simulation-based

approaches. For example, in Kazemi et al. (2016) the authors use a genetic search algorithm on

top of a simplified simulation model to derive the optimal size of an EV parking lot. Babic et al.

(2022) also use a greedy search over a simulation of a parking lot to derive optimal infrastructure

decisions. Li et al. (2020) propose a deterministic mathematical programming framework for

joint optimization of size and operations of a small-scale, 100-vehicle EV-capable parking lot.

Neither of these simulation- or optimization-based studies use high-granularity demand and/or

operational data. In addition, extant EVCH design work exhibits low scope and significant

simplifications. For example, the studies cited here focus on a single planning stage only, which

reduces the problem to a single-stage planning challenge. In addition, the EVCH system scope

tends to be considerably simplified (e.g., no consideration of attached building loads, single-use

charging docks only, etc.). Using DTs, combined with high-performance search/learning, these

simplifications can be avoided.
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4.3 A Framework for DT-Based Design of Complex Service Sys-

tems

The proposed DT-based service system configuration framework is presented in Figure 4.1.

Our three-step approach leverages the unique advantages of DTs (inclusion of stochasticity,

high modeling detail, flexibility and scalability) and provides a framework for applying them to

service system design problems.

Define Objective,

Context and

Constraints

Build Digital

Twin (DT) of

Service System

Learn/Search

Winning System

Configuration Γ

Start

Formally Defined

System Scope

DT of Service

System

Final System Γ∗

Step
➊

Step
➋

Step
➌

Figure 4.1: Model for the Use of Digital Twins in the Design Phase of Complex Service Systems

4.3.1 Step ➊: Define Objective, Context and Constraints

Step ➊ (see Figure 4.2) comprises the scoping and objective definition of the planning challenge

at hand. Operations managers are often interested in achieving some sort of desired system

performance at the lowest possible cost (i.e., cost minimization with service level constraint), or,

alternatively, maximum profits. More complicated multi-objective settings are also conceivable

that might, for example, target a balance between economic and environmental objectives (e.g.,

Sharifi et al., 2020). The system configuration Γ is optimized against these goals. Thus, defining

the corresponding objective function, decision variables (e.g., choice of assets setup), parameters

(e.g., costs) and planning horizon (e.g., single year vs. multi-year investment horizon) is a

core first step in the service system design process. In addition, local constraints (e.g., space
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Figure 4.2: Detailed View Step ➊: Define Objective, Context and Constraints

constraints, operational constraints, etc.) are to be identified and incorporated into the problem

formulation. At the end of Step ➊ the planning challenge is scoped and formalized to a degree

that all information is available for a traditional optimization model to be implemented. Thus,

traditional OM methods would typically stop here.

4.3.2 Step ➋: Build and Parameterize Digital Twin of Service System

In Step ➋, a digital representation (i.e., the DT) of the service system components is developed.

Three core components make up an operational system (Γ): (1) physical assets (Π), (2) opera-

tional policies (Ω) that define how the physical assets are operated, and (3) preference/demand

characteristics (Ψ), i.e., the external requests and usage patterns that the service system needs

to fulfill. The DT will have to accurately capture all three dimensions while adhering to the

system scope and constraints defined in Step ➊.

Figure 4.3 provides details on the process of setting up the DT framework. The DT is

populated with realistic asset models Π that simulate physical processes in close-to real-world

detail. This avoids oversimplification commonly seen in optimization stemming from attempts

to achieve smaller problem sizes. For example, battery degradation is typically heavily simplified

to achieve tractability in the optimization of energy systems (Kazhamiaka et al., 2019). The

creation of digital asset models per each relevant physical system component should rely on

secondary real-world sensor data (e.g., to obtain real-world charging and discharging efficiencies

for the case of batteries) along with technical specification sheets, where data from comparable

assets is not available.

In addition, realistic operational policy options Ω are implemented that model how the phys-

ical assets will be used and managed (if there is active operational management) in practice.
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Figure 4.3: Detailed View Step ➋: Build and Parameterize Digital Twin of Service System

Optimization models generally assume optimal operations at low temporal detail. In practice,

relatively naive rules-based approaches often replace optimal policies. For example, many of

the extant smart charging solutions available on the market charge vehicles on a first-come-

first-served basis. Such imperfect operational processes are difficult to model in mathematical

programming models and may lead to unrealistic sizing decisions. In a DT environment, mul-

tiple realistic operational policy choices can be implemented and evaluated under real-world

conditions with ease.

The DT is then supplemented with real-world data from pre-existing sensors to model de-

mand and preference patterns along with other contextual data. Examples include, current

electricity demand, user behavioral patters, weather data, or other relevant contextual informa-

tion. Wherever real-world data is not available, synthetic data may be generated, or data from

similar use cases may be transferred to the DT. Note that while traditional mathematical pro-

gramming frameworks may also draw on real-world data, they will typically require significant

simplification/aggregation to achieve tractability.

4.3.3 Step ➌: Learn/Search Winning Service System Configuration

In Step ➌, a search or learning algorithm is initialized, adapted to the problem at hand, and then

used to derive a winning system configuration (Γ∗) by iteratively updating and evaluating the

candidate solution against the objective defined in Step ➊. This is achieved by following a system

configuration policy π to incrementally update and evaluate candidate system configurations Γ′
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until a convergence criteria is met. A detailed process description is provided in Figure 4.4.

The DT plays an integral part in this process as it provides the environment for evaluating

any intermediate system configurations obtained during the search/learning process against the

objective function in a close-to real-world stochastic setting.
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Figure 4.4: Detailed View Step ➌: Learn/Search Winning Service System Configuration

Note that both search (e.g., brute force search, meta-heuristic algorithms) and learning tech-

niques (e.g., reinforcement learning) represent valid solution approaches. Both techniques are

general purpose and highly scalable with computing power (Sutton, 2019). They can, thus,

be flexibly applied to any real-sized planning environment. Note also that while search first

maps the entire solution space and then explores it, learning updates incrementally and refines

the solution through interaction with and learning from the environment. Learning, therefore,

circumvents the computationally expensive process of full solution space mapping and instead

uses iterative updating of the configuration policy π to parameterize the next candidate solu-

tion that is to be evaluated in the DT environment. This clearly distinguishes learning from

meta-heuristic search solutions that operate on a constant policy for defining the next candidate

solution. Both approaches have been explored for this work, although only learning (reinforce-

ment learning using deep Q-learning algorithms) is reported for the case of EVCHs due to its

superior computational performance and an ideal fit to the multi-stage nature of the design

challenge that results in a sequential decision problem (Hannah, 2015).
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4.4 Application to EV Charging Hubs (EVCHs)

We now apply our framework to the case of EVCHs. A table summarizing the nomenclature

used throughout this article is provided in the Appendix. EVCHs represent an ideal application

domain both from a practical perspective and a methodological viewpoint. In terms of practical

relevance, EVCHs are poised to become a key component in the future sustainable mobility

nexus (Hoover et al., 2021). Any domain-specific insights generated in this study can therefore be

expected to offer relevant practical contributions. Methodologically, EVCH planning represents

a large complex multi-stage stochastic decision problem, which is not readily solvable with

extant stochastic programming methods (Powell, 2014). Consequently, an opportunity arises

for scalable DT-based approaches to step in.

4.4.1 Step ➊: Defining EVCH Planning Objective, Context and Constraints

We define an EVCH as an EV charging-capable parking lot, depot, or garage that will typically

be attached to an existing building with a given baseload. Both the building and the EVCH

receive power from the same grid connection point, which is constrained to the capacity of

the on-site substation. The integrated facility may have additional on-site behind-the-meter

generation (photo-voltaic (PV)) and storage (Lithium-Ion battery). A simplified representation

of the EVCH system boundary and its components is depicted in Figure 4.5.
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Figure 4.5: EVCH Service System Layout and Asset Components in Planning Stage h

We formulate the EVCH configuration challenge as a feasibility problem that aims to satisfy

all or a specified amount of total charging demand in the most resource-efficient manner while

considering any exogenous rate, space, and total capacity constraints. The problem then be-
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comes a cost minimization planning with the objective to jointly minimize investment costs (CΦ)

and operations cost (CΩ) over all stages h ∈ H contained in the planning horizon while ensuring

a pre-defined service level ηh (typically 100% in the following simulations and benchmarks).

Formally, the objective function f(Γ) (where Γ is the system configuration) can be expressed as

follows:

MinΓ[C
Φ(xi,nk,h, δ

Trafo
h , κPV

h , ϵBat
h ) + CΩ(ωk,j,h, ψk,j,h,t, β

Charge
h,t , βDischarge

h,t , eGh,t)] (4.1)

The EVCH infrastructure decision space determining CΦ extends over a large set of deci-

sion variables, which we briefly lay out here. First, decisions on the charging infrastructure

configuration and scale-up over the investment horizon H are required. We allow full flexibility

regarding the type of EV charging docks (22kW AC or 50kW DC docks) and the number of

connectors per dock (ranging from single-connector setups to up to four connectors per dock).

Crucially, for charging docks with multiple connectors, we allow for simultaneous charging of

EVs, meaning the rated power per dock can be shared dynamically and flexibly by all connected

vehicles. This is different from the more prevalent single-server docks, which either possess just

a single connector or multiple connectors that may only be operated sequentially. A multi-server

setup has the advantage of higher utilization (vehicles that have completed their charging cycle

do not block charging docks) (Ferguson et al., 2018). We capture EV charging infrastructure

decisions via a set of binary indicator variables of form xi,nk,h, indicating whether a dock of type

i ∈ {22kW, 50kW} with number of connectors n ∈ {1, 2, 4} is to be installed at candidate point

k ∈ K during planning stage h ∈ H. The total number of docks and connectors is naturally

bounded by the size of the facility (i.e., number of parking spaces) L. Second, the initial size

and expansion pathway of possible on-site generation (PV) and/or storage assets (Li-Ion bat-

tery) must be defined. We assume that PV generation κPV
s can be scaled close-to continuously

across all stages h in the planning horizon and that it is limited only by local facility space

constraints R (e.g., roof space). In terms of on-site storage, we consider Li-Ion battery tech-

nology whose energy capacity κBat
s (in kWh) can be scaled continuously over H. Finally, a

decision is required on whether, by how much and by when the existing substation capacity

should be extended to accommodate the desired level of charging service. Note that substations

can be purchased in standard sizes (κTrafo) only. Consequently, the grid connection can only

be scaled step-wise in multiples δTrafo
h of κTrafo, where δTrafo

h is an integer value denoting the

number of transformer modules to be added to the facility’s substation in state h2. Given the

physical size of substations and the fact that local grid conditions may not allow for an uncon-

strained scale-up of the existing grid connection, we impose a maximum G on the final size of

the substation. In sum, total investment cost over the planning horizon is determined as follows:

2We consider any interaction effects with the upstream electrical distribution grid to be out of scope for
this problem. Specifically, we assume that the distribution grid is unconstrained and able to accommodate any
additional load from the EVCH, provided sufficient substation capacity (i.e., transformers) is installed for voltage
regulation.
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CΦ =
∑

h∈H(c
Trafo
h δTrafo

h +
∑

k∈K
∑

i∈I
∑

n∈N ci,nh xi,nk,h+c
PV
h κPV

h +cBat
h ϵBat

h )(1+(|H|−h)ρMaint)).

Note that this includes the maintenance costs incurred over the planning horizon, which is cap-

tured by the factor (|H| − h)ρMaint). The parameters cTrafo
h , ci,nh , cPV

h and cBat
h are stage-

dependent cost parameters that take into account expected technology cost trajectories over the

planning horizon.

Underlying these higher-level infrastructure choices are smaller operational decisions, which

determine the operational cost CΩ. Naturally, the operational scope is constrained by the in-

stalled infrastructure highlighting the two-way interdependencies between both sets of decisions.

Operations decisions focus on the assignment of a vehicle j to a connector k upon arrival (cap-

tured by ωk,j,h) and the periodical charging decisions over the duration of stay (ψk,j,h,t). Finally,

the on-site battery state is controlled via βCharge
h,t and βDischarge

h,t , two booleans that control

the rate of charge/discharge. We consider PV generation and building baseload to be exoge-

nous parameters that cannot be actively controlled by the EVCH operator. Given the different

sources of power (battery, PV, grid), the operator also needs to decide on the power mix per

each period t. This involves setting the desired energy drawn from the grid per period in each

state eGrid
h,t . Note that eGrid

h,t is typically accounted for based on a two-part tariff including a

time-of-use-dependent energy charge T e
h,t and a monthly demand charge T p

h that is a function

of the maximum induced power p∗h in that month. Operational costs are formally defined as

follows: CΩ =
∑

h∈H(
∑

t∈T T
e
h,te

Grid
h,t + T p

hp
∗
h).

4.4.2 Step ➋: Creating Digital Twin of EVCH Service System

The DT environment operates on a discrete-time basis. To reduce any issues/inconsistencies

related to discretization, we use very small periods of just one minute. In what follows, we lay

out asset models, operational strategies, and preference data sources that constitute the DT.

Creating Digital EVCH Asset Models Π

Figure 4.5 provides an overview of the physical EVCH asset classes that are to be represented

digitally in the DT environment. In line with the general approach laid out in Figure 4.3, we

draw on asset spec sheets along with real-world machine data to represent the physical EVCH

components and the context they operate in as accurately as possible.

Local Substation We model the local substation as an integrated system consisting of trans-

formers, circuit breakers, and other peripheral equipment that connect the site to the higher

voltage levels of the distribution grid. The substation capacity is determined by the sum of

rated transformer capacities. Although typically very low, we account for transformation losses

using an efficiency factor of 1-ηTrafo=2%.
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On-site Electricity Generation Assets (PV Panels) The only type of electricity generator

we consider are photovoltaic (PV) modules – in many senses, a natural supplement to EV

charging hubs due to their production patterns, that is highly correlated with occupancy profiles

(and thus charging demand) of most parking lots. Naturally, PV power output is dependent

on local weather conditions (particularly solar irradiation), which we model via the use of real-

world load factors. PV generation is non-dispatchable, i.e., it cannot be actively controlled. PV

power is therefore either consumed on-site (by EVs, battery storage, building, etc.) or fed back

into the grid. Note that PV installations require DC-AC conversion via inverters. The efficiency

losses of AC-DC conversion are accounted for and are typically in the region of 1-ηInv=4%. We

use real-world PV load factors (fPV
h,t ) to model PV production from the regions corresponding

to the intended EVCH facility locations. Load factors are a measure of real PV panel power

output as a ratio of installed capacity (κPV
h ) and depend on local solar irradiation conditions3.

PV production at time t (excluding DC-AC conversion losses) is then given by fPV
h,t κ

PV
h .

Electricity Storage Assets We model electricity storage as a lithium-ion battery with in-

stantaneous ramp time. To avoid excessive battery degradation, we allow the state of charge to

vary over the interval of [5%, 95%], thus avoiding deep discharging and over-charging that are

particularly strenuous for battery hardware. Setting upper and lower energy content bound-

aries is a common approach in storage management (Ghiassi-Farrokhfal et al., 2016). We also

assume symmetric charge and discharge efficiency of ηcharge = ηdischarge = 95%. Battery oper-

ations are simulated using what is sometimes referred to as a C/C/C model4. In addition, we

implement typical battery constraints related to the maximum charge and discharge rate κBat

(symmetric). κBat is dependent on the size of the battery and is set such that the battery can

be charged/discharged to/from full charge within one hour.

Peripheral Building We use real-world building consumption data to model site baseload

(ls,t) that are served by the same grid connection, thus influencing total available grid capacity

at any given period t (see Figure 4.5). Contrary to EV loads, we assume ls,t to be exogenous,

i.e., it cannot be dynamically managed or even curtailed. Given the absence of smart energy

management hardware in most existing building stock, this is a reasonable assumption. Note

that granular consumption data is widely available for commercial buildings above a certain

consumption threshold since these consumer classes are typically exposed to time-of-use tariffs

as well as demand charges for induced peak load. Our 1-year dataset records peak building loads

and consumption at a 15-minute resolution.

3This data is available via local transmission system operators (TSOs) and generally comes in 15-minute
intervals.

4C/C/C models assume constant battery charge/discharge efficiencies, constant energy content upper and
lower bounds, and constant voltage (Kazhamiaka et al., 2019)
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EV Charging Docks and Connectors We model two different types of charging docks that

mainly differ in terms of maximum charging rates κ. Specifically, we allow for AC fast chargers

with maximum charging capacity κi=AC=22kW and DC super-fast chargers with maximum

charging capacity κi=DC=50kW. For each charger type i ∈ [AC,DC] we allow for different

connector configurations with n ∈ [1, 2, 4] connectors per dock. We assume that κ can be shared

dynamically and flexibly between all connectors per dock. This means that connected EVs can

be served both sequentially and simultaneously via the same dock. Losses related to AC-DC

conversion are modeled using an efficiency factor of 1-ηInv=4%5.

Defining EVCH Operational Algorithms Ω

We also implement a range of realistic operational policies that simulate real-world operations in

the DT environment. These policies are inspired by standard operational practices currently used

in EV charging operations as well as recent algorithms proposed in the EV charging literature

(e.g., Lee et al., 2019; Ferguson et al., 2018). Given that we allow for multi-connector charg-

ing docks with simultaneous charging capability, the initial assignment of vehicles to charging

stations becomes important due to heterogeneous energy demand and flexibility characteristics.

Clearly, since EVs cannot be readily relocated while parked, the initial assignment to a connec-

tor influences future available charging capacities for the EV in scope as well as for current and

future arrivals that are to be served by the same charge dock.

Vehicle Routing Algorithms Vehicles j ∈ J are routed/assigned to a connector k upon

entry into the EVCH (captured by ωk,j,h). We implement two heuristic routing algorithms of

varying levels of sophistication and varying information requirements.

– Lowest-utilization-first (LUF): This strategy operates on a sorting basis. At each

new arrival, the algorithm sorts all available docks based on free capacity. New arrivals

are routed to docks with low utilization first. In the case of a tie, the algorithm selects

randomly between the charging docks it is indifferent between. An advantage of the lowest-

utilization-first approach over other sorting methods (such as lowest-occupancy-first) is

that it considers the different charging capacities of AC vs. DC docks in the assignment

process.

– Lowest-laxity-to-highest-capacity matching (LLHC): This strategy not only con-

siders the state of individual charging docks but also that of the vehicle that is to be

assigned. Specifically, it sorts arriving vehicles into baskets of low, medium, and high lax-

ity (using bins obtained from historical data). Low-laxity vehicles are then matched with

charging docks that have a high free capacity and vice versa, thus implicitly provisioning

for future arrivals.

5For AC charging, the AC-DC inverter is integrated with the vehicle charger unit, whereas for DC charging
the inverter sits inside the charging dock
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Vehicle Charging Algorithms Vehicle-level charging schedules are re-computed in an online

manner every five minutes allowing for updating of pre-computed schedules as new information

becomes available. We implement a selection of sorting-based algorithms and optimization-

based approaches to periodically determine the charge rate per connector k, vehicle j and time

t ψk,j,h,t:

– First-come-first-served (FCFS): Charging requests are served on a first-come-first-

served basis at full charging dock capacity until the available power capacity (on-site

generation, storage, and grid) is exhausted. This algorithm is largely consistent with

standard off-the-shelve load management tools available in the market today.

– Least-laxity-first (LLF): Equivalent to the first-come-first-served algorithm but using

a least-laxity-first priority rule meaning that least flexible vehicles are charged first. The

algorithm therefore explicitly considers the current state of a vehicle in the charging deci-

sion.

– Optimal: Optimal operations uses mathematical optimization to periodically (re-)compute

cost-optimal charging schedules that satisfy charging demand for the planning period δt in

scope. We implement a standard cost-optimal charging framework (e.g., Ferguson et al.,

2018). In our simulations, we plan δt = 12 periods ahead. We also implement a smoothing

constraint by limiting the maximum charging ramp rate and considering the parallel use

of docks. Since future arrivals and their preference vectors are unknown at the time of

planning, we use a carefully tuned safety margin to be able to accommodate these in future

periods. Further details are provided in Appendix A.

Electricity Storage Operational Algorithms The third and final system component re-

quiring active operational management is the on-site energy storage system. We implement

a heuristic approach that has been demonstrated to perform well under real-world conditions

(Gust et al., 2021). We update battery-specific decision variables βCharge
s,t and βDischarge

s,t every

five minutes6:

– Temporal arbitrage (TA): The algorithm exploits the structure of the underlying time-

of-use electricity tariff. During off-peak hours, the battery is charged at a constant rate

until the upper bound of the allowable energy content is reached. During on-peak periods,

the battery is discharged at a constant rate to reduce the amount of electricity purchased

at the higher on-peak price.

Creating EVCH Preference Models Ψ

We populate the DT base architecture consisting of the above-described asset models and op-

erational policies with an EVCH-specific high-resolution model of parking and charging prefer-

6Note that battery decisions are made after the previously described charging decisions are made and that
the available battery capacity at the start of each planning period is available for EV charging.
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ences. The charging behavior of EV users is mostly activity-based and depends on identified

socio-demographics (gender and age), vehicle characteristics, commute behavior, and workplace

charging availability (Lee et al., 2019). Thus, any charging infrastructure should be aligned with

these existing preferences such that minimal behavioral adjustment on the user side is needed.

EVCH user preferences (of an individual j) are described by the three-dimensional vector

vj = (Aj , δj , e
d
j ) where Aj is the time of arrival, δj the duration of stay and edj the requested

energy. δj and edj define what is referred to as laxity (laxj = δj −
edj
κi ) (Nakahira et al., 2017;

Lee et al., 2019). laxj = 0 means that a vehicle j needs to charge at the maximum available

rate κi for the entirety of its stay, while higher laxity values indicate more room for active

charging management. Time of entry Aj determines the earliest planning period by which a

certain charging event needs to be initiated. We start by building a model of current archetypical

parking patterns. We do this in order to understand what typical parker types exist and how the

user base composition can vary across facilities. A taxonomy of parker types can also be useful

for building synthetic user population datasets based on assumed parker type shares wherever

real-world data is not available. We leverage a unique transaction-level parking dataset that

was provided by a major European real-estate investor and includes transactions from seven

large-scale parking garages (capacities range from 275 to 2200 parking spots)7. We use a full

year of data to capture daily, weekly and yearly seasonality. 2019 is chosen as the reference

year to filter out pandemic-related effects. In total, our data comprises 3.84M parking events.

We cluster parking events j based on Aj and δj , the two core parameters of interest at this

modeling stage. All details related to data pre-processing, selection of clustering algorithms,

and robustness tests are provided in Appendix B. In Table 4.1 we summarize our results. The

largest proportion of parking events in our dataset is made up of three short-term parker types

(Morning Short, Afternoon Short and Evening Short). These users enter a parking lot in the

morning, afternoon, or evening respectively and typically stay for periods of 1-2 hours. We also

observe a Business cluster, which comprises parking events that commence in the early morning

(7:26am on average) and last for an average of 8 hours. Two additional segments comprise

longer-term parking events. These are Overnight parkers, which enter the parking lot in the

late afternoon and stay until the next morning (typically 15.8 hours on average), and Long-term

parkers that stay for periods longer than 24h on average.

We then look at the distribution of parker types across the different facilities in our dataset.

Three archetypical facilities can be identified: The first facility type is a typical workplace

facility that caters mostly to Business parkers. The second facility type is a destination facility.

Apart from a small proportion of Business users, such facilities mostly host Short-term parkers.

Finally, we also observe facilities with less conclusive usage patterns experiencing strong demand

7Each row in this dataset represents a single parking event j with corresponding arrival and departure pref-
erence information. For privacy reasons, individual users cannot be identified



144 Digital Twin-based Service System Design

from all segments. We term these mixed-use facility8. Typical occupancy profiles for each of

the three facility types are shown in Figure 4.6.
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Figure 4.6: Occupancy profiles per parker type (three archetypical parking facilities)

Finally, we focus on the third required preference input variable: the requested energy per

vehicle edj . We employ a recently published real-world dataset by Lee et al. (2019) containing

>25,000 charging transactions for the year 2019. Per each charging transaction the full preference

vector vj = (Aj , δj , e
d
j ) is available. We blend the charging data (which only contains served

sessions that are constrained by the available infrastructure) with our parking dataset (which

contains all parking requests per facility) using techniques from collaborative filtering. We

train a prediction model on the labeled Lee et al. (2019) dataset and use the resulting model

to predict charging demand in the parking dataset. We obtain an exponentially distributed

charging demand across the entire population of EVs with an average demand of 26.46 kWh (σ

= 17.20 kWh) per parking session9. The distributional shape of charging demand is consistent

with the one seen in other empirical EV charging settings (e.g., Ferguson et al., 2018). Crucially,

however, Table 4.1 highlights important implications for charge management resulting from the

different compositions of parker types in a facility. As can be seen, the average laxity varies

significantly across parker types. Thus, parking facilities with high a proportion of high-laxity

parkers (e.g., Business, Long-term) benefit from considerably higher flexibility characteristics

with higher scope for optimization through intelligent charge management and parallel charging

at lower rates.

8The example shown in Figure 4.6 (right panel) is a large-scale inner-city parking facility that caters to
workers, visitors and residents.

9We also apply some limited post-processing by limiting edj to a realistic maximum bounded by the typical size
of batteries (100 kWh) and feasible energy transfer over the duration of stay assuming 50kW maximum charge
rate.

10assuming 22kW max. charge rate
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Table 4.1: Preference characteristics per parker type

Cluster Size Characteristics
(avg & std. in parentheses)

k Name N share Aj δj laxj
10

1 Business 671,384 17.47% 7:26am (1.43h) 7.92h (2.73h) 6.29h (2.84h)
2 Morning Short 1,279,646 33.30% 11:10am (1.33h) 2.12h (1.90h) 1.31h (1.75h)
3 Afternoon Short 985,710 25.65% 3:03pm (1.00h) 1.73h (1.35h) 1.08h (1.30h)
4 Evening Short 744,753 19.38% 6:17pm (1.84h) 1.47h (1.30h) 1.11h (1.35h)
5 Overnight 129,273 3.36% 5:22 pm (4.01h) 15.84h (4.02h) 12.65h (4.40h)
6 Long-term 32,241 0.84% 2:28pm (4.94h) 37.04h (6.70h) 35.80h (6.98h)

Combining Asset Models, Operational Algorithms and Preferences into an EVCH

Digital Twin

Combining asset models, operational algorithms, and charging demand preferences yields a

high-resolution DT of the envisioned EVCH system. Figure 4.7 and 4.8 highlight the internal

mechanics of the DT environment11. Figure 4.7 represents the demand side and visualizes load

curves for the various load sinks in the EVCH (EV charging, building baseload, battery storage

charging) over the simulation horizon. Building load curves follow a recurring daily pattern

ramping up during the day and down again during the night. Loads are slightly lower on the

weekend (especially on Sunday). Note also the battery storage load which reflects the temporal

arbitrage strategy.
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Figure 4.7: Power supply by load sink over one-week simulation horizon (Monday through
Sunday, Mixed-use facility)

The power requested by the above-described load sinks is supplied by the grid, the on-site

generation unit (PV), or the on-site electricity storage. The behavior of the supply side is shown

in Figure 4.8. Note how the exact supply mix heavily depends on the time of day (e.g., no PV

11Shown here for a random week in a mixed-use facility using Lowest-laxity-to-highest-capacity routing, optimal
charging and temporal arbitrage storage operations
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generation after sunset, battery disc) and even weather conditions (note the considerably higher

PV output in the middle of the week).
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Figure 4.8: Power supply by load source over one-week simulation horizon (Monday through
Sunday, Mixed-use facility)

4.4.3 Step ➌: Learning Winning EVCH System Design

Having defined the design objective and the DT environment allows us to use high-performing

iterative methods to obtain a (near-optimal12) solution to the system design challenge at hand.

A core complication here is the discrete nature of most decision variables (e.g., number

of connectors, number of transformers, etc.). This significantly limits the choice of applicable

search or learning techniques. Suitable search approaches for discrete solution spaces like ours

are meta-heuristic frameworks like, for example, genetic algorithms (GA). GAs have successfully

been applied to similar (but mostly lower-dimensional) operations management problems (e.g.,

Fu, 2002). These random search approaches can perform relatively well provided the search

environment is not complex (e.g., a queuing network) and the possible number of decision

variables is manageable. In addition, if the environment is highly stochastic, more and more

iterations are needed to ensure an accurate objective function estimation. This can quickly lead

to intractable solution spaces.

An alternative to meta-heuristic search is learning (Fu, 2015). For the case at hand and

given that planning decisions are made over multiple planning stages h in planning horizon H,
the problem can be framed as a stochastic sequential decision-making problem. This problem

class can be cast as a Markov Decision Process (MDP). An episodic task emerges, which starts

at the beginning of the planning horizon (h = 0) and runs through the last investment stage

h = |H|, with the epochs being the individual decision stages (e.g., beginning of each year). The

state s = (h, schargers, sgrid, sPV , sstorage) is defined as a vector of the time (i.e., the planning

12Note that global optimality cannot be guaranteed for most learning or search methods.
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stage h) and the already installed equipment which is determined by previous decisions (e.g.,

the cumulative number of installed chargers, etc.). Actions are described by the vector a =

(achargers, agrid, aPV , astorage) and comprise planning decisions, such as the number of fast/slow

docks with a specified number of plugs, the number of transformers, the PV capacity and

storage to be installed. In line with the planning objective defined in Step ➊, we define the

reward for moving from state sh to sh+1 as r = r(s, a) = CΦ + CΩ + CΨ, where CΨ represents

the penalty related to unserved charging demand in the corresponding planning stage13. Despite

a deterministic state transfer function, exact reward functions are stochastic and unknown. In

other words, given a decision, the next state is known, while the expected reward is unknown

unless the state is evaluated in the EVCH DT environment. Therefore, we employ model-free

reinforcement learning to find an optimal EVCH configuration policy π∗. Specifically, we use

Q-learning to estimate the action-state value functions Q(s, a). Q(s, a) is updated according to

the below Bellman equation, where α is the learning rate with 0 < α ≤ 1 and γ is a discount

factor applied to future state-action values.

Q(sh, ah)←− Q(sh, ah) + α[r(sh, ah, sh+1) + γmaxah+1
Q(sh+1, ah+1)−Q(sh, ah)] (4.2)

Due to the large state and action space of the EVCH environment and to improve generalizability

of our learning agent, we employ deep Q-networks (DQNs) to approximate Q(s, a). We refer the

readers to Mnih et al. (2015) for more details. DQN uses a neural network with weights θ as a

proxy for action-state values. To train the network, we store transitions (state, action, reward,

duration) in an experience replay memory and then update the weights using a random batch

of transitions by minimizing the below (squared) loss function:

L(θ) = Esh,ah,sh+1
[(r(sh, ah, sh+1) + γmaxah+1

Qθ̄(sh+1, ah+1)−Qθ(sh, ah))
2] (4.3)

where Qθ̄ is the action-value estimation using a separate network (target network) that is up-

dated less frequent than the main network.

13CΨ can be understood as a constraint that ensures full service level target
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4.5 Performance Evaluation and Benchmark

We run several benchmark experiments to demonstrate performance advantages of our DT-

based service system design approach versus traditional optimization methods. The benchmark

optimization model we use is inspired by the recent EVCH literature (e.g., Li et al., 2020) and is

detailed in 4.8. Note that we chose a deterministic mixed-integer programming (MILP) model

over stochastic or robust specifications as benchmark. This choice is primarily motivated by

concerns related to scalability. As previously discussed, the EVCH configuration problem re-

quires the modeling of both the strategic level (large decisions related to asset investments) and

operational level (small decision related to e.g., vehicle routing and charging). This multi-stage

nature of the problem makes it susceptible to the curse of dimensionality: the model size grows

exponentially with the investment stages H, the decision periods per planning stage T , and the

size of the decision space at each planning stage h and time period t, as well as the number

of possible outcomes per each stochastic parameter. This poses computational difficulties and

significantly limits the degree to which stochasticity in the many input parameters can be con-

sidered. Indeed, methods for stochastic multi-stage problems like stochastic programming or

approximate dynamic programming (ADP) are limited to short time horizons and coarse time

scales (Powell, 2014; Fu, 2015) and are generally considered out of scope for large problems

like ours (Powell, 2014).These scalability concerns are further evidenced by the computational

performance of the benchmark deterministic MILP. Even with integer relaxation, the model

is only tractable for a single day per planning stage at hourly-resolution (approximately 1M

decision variables). This means, that any stochastic model would require significant simplifica-

tion in its formulation (e.g., reducing operational detail to reduce the decision space, increasing

period length to reduce the number of periods t or limiting the planning horizon, etc.) simply

to achieve tractability. We consider such simplifications to be undesirable and argue that de-

terministic MILP formulations are the only practical benchmark short of the full-scale DT-RL

model we propose that is available to researchers today. We consider the fact that all extant

EVCH planning models that we are aware of either use deterministic MILP formulations (e.g.,

Li et al., 2020), or simplified simulation-optimization based on brute-force search methods (e.g.,

Ferguson et al., 2018) as further evidence in support of this argument.

4.5.1 Parameterization and Experimental Setup

For benchmarking purposes, we choose a real-world mixed-use facility with attached parking

space for which we have access to both building baseload data and transaction-level parking

and charging demand. Owing to the size of the problem space, we modify the original dataset

by scaling down both parking and building capacities such that tractability of the benchmark

mathematical model can be achieved. Specifically, we limit the size of the parking facility to

200 spaces and, correspondingly, scale down peak and minimum baseload. To retain occupancy
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seasonality and population characteristics of the full-sized facility we implement a proportional

sampling approach to iteratively build the population according to daily parker type proportions

until the target occupancy for a respective day is reached. Investment decisions are computed

over an investment horizon of 20 years, allowing for an initial investment decision at time 0 and

recourse decisions every two years (total of ten states h ∈ H). Costs and other parameters (such

as EV adoption assumptions) and their trajectory over the investment horizon are detailed in

Appendix D. What is important to note here is the following: EV adoption rises for 5% in stage

0 to 65% in the final stage; both PV and storage exhibit downward cost curves that reflect

technological progress and increasing economies of scale; and grid expansion has an upward cost

trajectory that is reflective of an uptake in demand for grid capacity as electrification of mobility,

households and other sectors progresses.

4.5.2 CAPEX Decision Comparison

In Figure 4.9 we compare the system configuration plan obtained using DT-based reinforcement

learning (DT-RL) and traditional optimization (OPT).
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Figure 4.9: Benchmark of Infrastructure Decisions obtained using DT-based Reinforcement
Learning (RL) vs. traditional optimization (OPT)

Both EVCH configurations vary significantly in terms of size and composition. The OPT-

derived layout requires considerably less charging infrastructure. This is primarily due to its
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high reliance on multi-connector docks (3.4 connectors per dock on average vs. 1.2 connectors

per dock in the DT-RL case) and is likely an artifact of better optimization opportunities

linked to perfect foresight. What’s more, the OPT algorithm almost fully avoids the use of

the much more expensive fast chargers, while DT-RL relies on some fast charger docks in later

system stages to achieve service level objectives but also largely avoids their use for cost reasons.

Interestingly, both algorithms draw on multi-connector docks, highlighting the efficiency benefits

of this asset class. In terms of power supply and storage decisions, the OPT-derived layouts

primarily draw on storage in combination with PV while only investing in limited grid expansion.

Under perfect foresight, storage can be optimally used to shave supplemental grid capacity and

benefit from energy cost arbitrage opportunities. In a more stochastic setting and under real-

world heuristic operational conditions, such theoretically optimal operations perform poorly.

The DT-RL algorithm considers these imperfections. As a result, the DT-RL-derived layout

draws primarily on predictable grid-supplied energy only gradually expanding PV and storage

capacity over time (when these asset classes become comparatively cheaper).

4.5.3 Out-of-sample Operational Performance Benchmark

To benchmark real-world performance of the infrastructure layouts, we run detailed evaluation

experiments. Specifically, we test the derived layouts on 12 weeks of out-of-sample operational

sensor data (parking transactions, PV generation, building demand, etc.), thus simulating the

life-cycle phase of the target EVCH service system (Boschert and Rosen, 2016). The 12-week

sample is equally distributed over the entire year and captures daily, weekly and yearly season-

ality.

We evaluate two core performance dimensions: service level and cost performance. Figure

4.10 illustrates the results. First, we look at service level (left panel in Figure 4.10). Note that

both methods (OPT and DT-RL) optimize for 100% service level fulfillment. We find that the

DT-RL-based charging network generalizes better to real world conditions achieving superior

service level performance. The DT-RL infrastructure setup achieves a service level of above 99%

at each stage of planning horizon, while the service level achieved by the OPT-derived layout

eventually drops to below 80% in State 9. Interestingly, the discrepancy in service level grows

over time and with the penetration of EVs in the population14. Due to the early investments into

grid expansion and PV in the OPT model to benefit from lower costs early on in the planning

horizon, excess capacity is provisioned which enables high service levels even under real-world

conditions. As EV penetration progresses, this excess capacity margin is quickly used up and,

given that no major additional investments in grid capacity are made under the OPT investment

plan, the target service level cannot be maintained under real-world conditions. This is reflected

in the cost performance of both configurations over the investment horizon (see right panel of

14As per the parameterization of our experiments, the EV penetration grows from 5% in stage 0 to 65% in
stage 9
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Figure 4.10). Specific system costs (comprising investment (CΦ), operations (CΩ) and service

level penalty (CΨ) costs) are largely similar in the early stages of the planning horizon, but

diverge around stage five in favor of the DT-RL-derived configuration. This is a result of the

major opportunity costs incurred by not being able to serve all demand using the OPT-derived

system. Taken together, the DT-RL approach outperforms OPT by 36% in terms of cumulative

objective over the full optimization horizon. Looking at the final state only, the specific total

cost of the DT-RL-derived configuration is 65% lower than that of the OPT-derived system.
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Figure 4.10: Benchmark of service quality and cost of DT-RL-derived and OPT-derived con-
figurations evaluated under real-world conditions on 12 weeks of operational data.

4.5.4 Solution Speed and Scalability Benchmark

While solution speed is usually of limited concern for strategic decisions like investment planning,

scalability can play a role. For example, our dataset includes parking facilities with up to 2200

parking spots. It is well established that MILP formulations are NP-hard. This is problematic

for large problem instances which can quickly become intractable with standard commercial

solvers. Indeed, we find that the solution speed of our benchmark optimization model exhibits

an exponential relationship with EVCH size and scope. As a result, the model is only tractable

for facility sizes of up to 200 parking spots (given a reasonable cutoff time of 12 hours15). Perhaps

more importantly, tractability is only achieved at the expense of model granularity, meaning a

relatively coarse discretization of time is required along with simplifications of the underlying

operational processes to reduce the number of decision variables16. Additionally, we can only

optimize over a single candidate day; not multiple days or weeks as in the DT-RL case. Finally,

the above mentioned performance is only achieved in deterministic settings. As discussed, the

use of stochastic or robust approaches would further impact scalability rendering the resulting

15Using a machine with 256GB of RAM and an AMD Ryzen Threadripper 3970X 32-Core processor (4.5 GHz)
16The model assumes optimal operations throughout and operates at a temporal resolution of 1h per period.
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optimization models impractical for real-world use cases. Taken together, scalability constraints

of standard optimization models make simplifications necessary (idealized operational processes,

deterministic setting, large temporal granularity, small data samples, etc.), which in turn are

the core reason behind the comparatively poor performance of derived system design decisions

under (near) real-world stochastic conditions (see Figure 4.10). The DT-RL approach is able to

achieve almost arbitrary scalability without the need for simplification or removal of uncertainty

in input parameters. To be more precise, using Q-learning approaches, we do not only solve

for large-scale facilities, but also deal with the stochastic charging demands by incorporating

significantly larger and more granular demand datasets. Even with much longer operating

periods (e.g., 12 weeks for each time state at one-minute resolution), the learning agent is able

to find a high-performing configuration for the benchmark 200-spot facility within just six hours.
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4.6 DT-Assisted Scenario Analyses

Another advantage of DT-based approaches to service system optimization is the method’s highly

flexible nature. This allows for extensive sensitivity testing under real-world conditions, which

we perform in this Section. Aspects of particular interest here are: user preference scenarios

and operational policy choices. For illustrative purposes, we focus on the final planning state

(h=9) (i.e., we neglect the scale-up pathway until that state is reached).

4.6.1 Impact of Variations in User Preferences

In Figure 4.11 we compare DT-RL-derived infrastructure investment decisions for three archetyp-

ical EVCH facilities (Destination, Mixed-use, Workplace). The results reveal significant sensi-

tivity of optimal physical layout decisions to user preferences. Recall that Destination facilities

are primarily used for short-term parking (large proportion of Morning Short, Afternoon Short

and Evening Short parkers), Mixed-use facilities exhibit a heterogeneous user pool, while Work-

place facilities are primarily used by commuters with long stays (see Table 4.1 and Figure 4.6).

Consequently, average laxity characteristics vary considerably across facility types. We see these

differences reflected in the derived EVCH configurations across the three facilities. Specifically,

for the facility with the lowest average laxity (Destination facility), the DT-RL algorithm decides

to provision primarily single-connector AC docks along with a small number of single-connector

fast chargers. A single-connector setup ensures that the full charging power is available at all

times but comes at the risk of vehicles blocking an entire dock even after completing a charging

cycle. The latter issue seems to be less problematic in a destination parking setting, where users

do not stay long on average. At the other end, the infrastructure setup for a Workplace facil-

ity tends to favor multi-connector docks, particularly AC double-connector docks, thus taking

advantage of the higher laxity of the underlying user population that affords longer charging

cycles at lower rates. The third facility type (Mixed-use) falls somewhat in the middle between

the previous two extremes. This is consistent with its laxity profile that lies between that of the

Destination and Workplace facilities. It is noteworthy that DC charging plays a minor role in

any scenario. EVCH charging use cases can mostly be satisfied at lower charging rates.

In terms of power supply infrastructure, the Destination facility requires an additional 200kW

transformer to achieve the target service level and satisfy low-laxity charging requests at higher

charging rates. Some PV and battery storage is installed in all scenarios.

4.6.2 Impact of Operational Policy Choices

Next, we leverage the flexibility characteristics of the DT approach by investigating the impact

of different operational policies on the sizing decisions and the system’s cost performance. As

mentioned, such analyses would mean major model reformulation for optimization frameworks

but are easily implemented in a DT-based model. In Figure 4.12, we explore the impact of
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Figure 4.11: DT-RL-derived system configuration decisions for three archetypical EVCH fa-
cilities

routing decisions for a Mixed-use facility, assuming FCFS charging operations. We find that the
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Figure 4.12: DT-RL-derived system configuration and performance against objective for dif-
ferent routing policies and a mixed-use facility

planning outcome is sensitive to the choice of routing strategy, as is the cost performance of the

derived system. The more sophisticated routing strategy (LLHC) relies on more multi-connector

docks and requires less alternative power sources (PV and storage) in an optimal setup compared

to the same facility operated with LUF routing. Total system cost savings amount to 8.4%.

We perform a similar sensitivity analysis for the choice of charging strategy. Figure 4.13 dis-

plays DT-RL-derived infrastructure decisions and system cost performance for the same Mixed-

use facility, assuming LLHC routing. We observe a largely similar picture here. Planning deci-

sions are sensitive to the choice of charging strategies (e.g., more multi-dock chargers, more PV,

and more battery with optimal strategy), as is cost performance (i.e., the best performance of

the system with optimal charging with savings of 1.7 to 3.2% against the alternative strategies).

In sum, we show that the physical EVCH configuration (Π) is highly sensitive to Ω, the

operational policies that the EVCH operates on. In general, the more sophisticated the oper-

ational policies, the lower the total infrastructure requirements and the better the overall cost
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Figure 4.13: DT-RL-derived system configuration and performance against objective for dif-
ferent charging policies and a mixed-use facility

performance of the system. Thus, in order to obtain optimal planning decisions, operations man-

agers need alignment on how they intend to operate the service system. Different operational

strategies require different infrastructure layouts to achieve optimal performance and result in

different total system costs.
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4.7 Discussion

With the advent of large-scale sensor-generated operational data, data-driven OM methods for

service system design have come into focus (Choi et al., 2022). DTs, intricate digital repre-

sentations of the target system and its operational environment, can play an important role

here. Indeed, multiple commentators have argued for the increasing use of DTs in the design

phase of operational systems (Boschert and Rosen, 2016; Grieves and Vickers, 2017; Jones et al.,

2020; Choi et al., 2022). DTs are different from traditional simulation optimization in several

ways: First (1), a DT is based on real-world sensor data (historical or real-time) whenever avail-

able, coupled with high-resolution virtual asset models. It, thus, represents a detailed technical

description of the asset that far exceeds the scope of standard simulation. Second (2), a DT

consolidates and integrates into a single model most information on the operational systems

that are available and required at any given stage of the life-cycle. Finally (3), a DT seamlessly

covers the system’s entire life-cycle, not just the design phase. This means that once the physical

system has been built, the DT model is simply carried over into the next life-cycle phase (e.g.,

operations) by feeding it with updated sensor data and updating/re-calibrating the virtual asset

models based on this data, thus bridging the gap between design and operations (Grieves and

Vickers, 2017). Traditional simulation models do not have these capabilities.

In this work, we have proposed a three-step framework that can guide researchers and OM

professionals in using DTs, in combination with state-of-the-art learning methods, for large-

scale multi-stage system design problems. We have demonstrated the efficacy of the proposed

approach in an application to EV Charging Hub design and benchmarked it extensively against

traditional mathematical optimization techniques. As part of our concluding remarks, we now

discuss the methodological and managerial contributions of this work.

4.7.1 Methodological Contributions

Our DT-based method holds several important benefits over traditional optimization-driven OM

methods. We have shown and quantified these benefits for the case of EVCH planning in this

work and summarize them here.

First, the need for simplifying assumptions to achieve mathematical and computational

tractability of the configuration task is greatly reduced in DT-based approaches. This can result

in better performance of the target system under real-world conditions. Due to their data-driven

nature, DT-based approaches can easily accommodate stochasticity and full operational detail.

While traditional stochastic or robust optimization approaches can be specified to account for

uncertainty in future realizations of parameters, this comes at a significant performance penalty.

Incorporating stochasticity in traditional frameworks, therefore, typically involves problem size

reduction by, e.g., limiting foresight or selecting coarser planning period durations, again im-

pacting generalizability to real-world conditions. In addition, the full detail of the available
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operational data remains untapped. Our experiments show that optimization-derived system

configurations can be too optimistic. They do not provide sufficiently for stochasticity in de-

mand and operational imperfections that the DT readily captures. As a result, service level

targets are missed by up to 20%, and total systems costs are significantly higher.

Second, DTs are flexible, i.e., they significantly ease the exploration of a broader and less

constrained solution space, specifically in terms of operational policies. For example, we have

shown how infrastructure requirements change/reduce as asset operations become more sophis-

ticated and make better/more efficient use of the asset base (see Section 4.6). The analysis

of this two-way relationship is afforded by the highly flexible DT setup. They are extremely

difficult to replicate in more rigid linear programming frameworks. As an example, it is non-

trivial to incorporate commonly used naive operational policies such as a first-come-first-served

prioritization rule in an optimization model. Likewise, switching between different operational

policies requires (potentially extensive) model reformulation.

Third, DT-based planning frameworks, when combined with efficient search or learning

methods, can scale to almost arbitrary size. Optimization methods suffer from NP-hardness

that limits scalability. This is especially true if stochastic or robust approaches are used, which

require further size reduction and simplification. Indeed, in our experiments, using deep rein-

forcement learning in a DT-based system environment is scalable to any real-world system size,

while optimization methods only scale to EVCH facility sizes of approx. 200 parking spots and

require significantly coarser discretization to achieve tractability.

In sum, DT-based planning removes many of the drawbacks related to simplification, inflex-

ibility, and scalability of traditional optimization-based planning frameworks. Note that DT-

based planning, compared to traditional approaches, comes at the cost of higher data require-

ments and an increased implementation burden17. While we argue that the superior real-world

performance of the DT-configured system in itself warrants these costs, there is an additional

argument to start DT implementation early: as opposed to traditional OM planning models,

a DT-based model is not single-use. Indeed, the DT can be readily bridged-over into the use

phase of the service system by simply replacing historical sensor data streams with real-time

data flows (Boschert and Rosen, 2016). In the system use phase, the DT then affords real-time

system monitoring and optimization (Choi et al., 2022). We aim to exploit this multi-use char-

acteristic in future work by leveraging the developed DT simulation in the development of novel

high-performing learning algorithms for real-world EVCH operations.

4.7.2 Managerial Implications

Our framework offers a practical and highly reproducible method for OM practitioners to in-

corporate data-driven, high-fidelity simulation (i.e., DTs) combined with state-of-the-art rein-

forcement learning methods (or alternatively traditional meta-heuristic search approaches) in

17For example, it involves the creation of an intricate data-driven simulation environment.
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the design phase of operational systems. The method generalizes to any envisioned system for

which sensor datasets are available that can be reasonably expected to be good proxies for cur-

rent and future operational conditions and user behavior. With the emergence of inexpensive

sensor technology, ubiquitous computing and mobile connectivity, this is already the case for

many applications and can be expected to only gain in relevance/volume in the future.

In addition, we offer a range of novel domain-specific insights related to EVCH design that

hold important implications for OM managers planning to invest in high-density EV charging

infrastructure, such as retrofitting parking garages with charging docks or upgrading fleet depots

with charging infrastructure. For instance, we develop a novel data-driven taxonomy of parker

types along with an estimation of their future charging demand. We then show how optimal

EVCH system configurations vary with the compositions of the user population or with the

choice of operational policies. Finally, we demonstrate the value of parallel-server charging

docks, particularly when paired with EV routing strategies, among other sensitivity tests. These

insights may prove valuable to investors seeking to develop and scale EVCHs as a new and highly

relevant charging use case (Hoover et al., 2021).

Note that despite the highly detailed nature of the DT, it is still an abstraction of reality

that is subject to several limitations and simplifications. For example, we consider routing

and charging decisions separately instead of jointly. We also do not allow for vehicle-to-grid

operations and consider loads of the attached building loads to be exogenous, among other

simplifications. Such limitations represent exciting avenues for follow-up work, and we leave

them for future research.
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4.8 Appendix

Table 4.2: Nomenclature

Symbol Description Unit
Sets
H Set of planning stages in planning horizon with index h set
I Set of charging dock types with index i (I = {AC,DC}) set
Jh Set of unique EVs entering the EVCH during the planning period h with index j set
K Set of charging dock candidate points (i.e., parking spots) with index k set
N Set of charging dock connector options N = {1, 2, 4} with index n set
T Set of time periods per each stage in planning horizon with index t set
Ξ Set of decision variables set
Γ Full configuration of EVCH system set
Parameters
Aj,s Arrival time of vehicle j in stage h period
βmax, βmin Maximum charge and maximum discharge rate of energy storage kW

ci,nh Cost per EV charging dock of type i with n connectors in stage h USD

cTrafo
h Cost per kW of grid connection (i.e., transformer) in stage h USD/kW
cPV
h Cost per kWp of PV in stage h USD/kW
cBat
h Cost per kWh of energy storage (battery) in stage h USD/kWh
δj Duration of stay of vehicle j hours
∆t Duration of a single planning period t hours
Dj,h Departure time of vehicle j in stage h period
edj Total energy requested by vehicle j over duration of stay kWh

η(dis)charge Charge/discharge efficiency of energy storage ratio
ηInv AC-DC inversion efficiency ratio
ηServ
h Target service level expressed as ratio of fulfilled vs. actual demand ratio
fPV
h,t Avg. PV load factor in period t of stage h ratio

κi Maximum power per charging dock of type i kW
κGrid
0 Existing facility substation capacity kW
κTrafo Standard size of transformer that can be installed kW
laxj Laxity of vehicle j hours
lh,t Base load of attached facility during period t in stage h kW
l∗h Maximum expected base load of attached facility in stage h kW
M big-M cotraint (for linearization) kW
ρMaint Cost ratio for maintenance (as share in total capital stock) ratio
R Maximum installable PV capacity (space constraint) kWp
SoCmax Maximum energy storage level %
SoCmin Minimum energy storage level %
L Space limitation in number of parking spots count
T p
h Cost of induced peak per accounting period (i.e., demand charge) in stage h USD/kW
T e
h,t Cost of energy in period t of stage h as per TOU tariff USD/kWh

Uj,h,t Indicator of whether vehicle j is present during period t in stage h boolean
Variables

βCharge
h,t Charge rate of EVCH battery storage kW

βDischarge
h,t Discharge rate of EVCH battery storage kW

βDirection
h,t Indicator of whether the battery is charging (=1) or discharging (=0) boolean

δTrafo
h Number of installed transformers in stage h integer
CΦ

h Total normalized investment cost for the EVCH per planning horizon USD
CΩ Total cost of operating the EVCH over the planning horizon USD
CΨ Penalty for not serving charging demand USD
eSj,h,t Net energy supplied to vehicle j during period t of stage h kWh

eGrid
h,t Net energy supplied from grid during period t of stage h kWh

ϵBat
h Installed energy storage capacity in stage h kWh
κPV
h Installed PV capacity in stage h kW
p∗h Induced max peak attributable to EVCH operations during stage h kW
ψk,j,h,t Charge rate of vehicle j connected to charging dock k during period t of stage h kW
SoCh,t State variable that tracks state of charge of energy storage kWh
wk,j,h Indicator for whether a vehicle j is connected to charging dock k in stage h boolean

xi,nk,h Indicator whether dock (type i, n connectors) is installed at k in stage h boolean
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A. Operational Modeling and Algorithms

Optimal Charging Approach

Our charging model reconsiders the charging rate for connected vehicles at the beginning of each

planning interval, thus following an online optimization paradigm.

The objective is to minimize the energy costs while meeting the charging demand of all

connected vehicles (up to a predefined service level) over the look ahead planning window T Ω.

As we consider an uncertain case where the perfect information of upcoming vehicles is not

available to the decision model, we make this conservative assumptions to ensure that the service

level is fulfilled.

First, the planning horizon must be chosen carefully due to its significant effect on model

performance. In our simulations, we limit it to 6 hours, which, given a planning interval ∆Ω

of 15 minutes, breaks down to 24 decision steps (i.e., charging rates are re-computed every 15

minutes of simulation time). We term the set of decision steps T Ω

Second, we consider a flexibility margin µt to accommodate future, yet unknown demand.

Although this model outputs a vector of charging rates for each vehicle, we only use the first

charging rate and reconsider decisions in the next charging time step based on the updated

systems state including the new arrived vehicles.

MinΞ
∑
t∈T Ω

T e
t e

Grid
t + T pp∗ (4.4)

The grid energy consumption eGrid
t accounts for the charging of vehicles (variables) as well as

the storage (dis)charging, PV generation and building loads (storage rate is given as parameter

before charging management). Constraint EC (3) guarantees that the grid energy consumption

does not exceed the grid capacity minus the safety threshold we consider for the following time

steps. Accordingly, we compute the induced peak, which is the exceeding grid consumption than

the highest post energy peak l∗ (Equation EC (4)).

eGrid
t =

∑
j∈J

∑
k∈K

∆t(ψk,j,t + βCharge
t − βDischarge

t − fPV
t

∑
τ=0

κPV
τ + lt) ∀t ∈ T Ω (4.5)

eGrid
t

∆t
≤ pGrid

t − µt ∀t ∈ T Ω (4.6)

p∗ ≥ eGrid
t

∆t
− l∗ ∀t ∈ T Ω (4.7)

We also ensure that all vehicles receive at least η percentage of their charging demands.

Constraint EC (6) ensures that vehicle can only charge when they are physically present in the

EVCH. Finally, Constraint EC (7) restricts the parallel charging of vehicles that are connected

to charging dock k to its charging capacity.
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∑
k∈K

∑
t∈T Ω

ψk,j,t ≥ ηeDj ∀j ∈ J (4.8)

0 ≤ ψk,j,t ≤ Uj,tM ∀k ∈ K, j ∈ J , t ∈ T Ω (4.9)∑
j∈Jk

ψk,j,t ≤ κk ∀k ∈ K, t ∈ T Ω (4.10)
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B. Preference Modeling

In this Section we provide details on the clustering routine and robustness test emploied to

identify archetypical parking preference types.

We cluster parking events j based on Aj and δj , the two core parameters of interest at this

modeling stage. To account for the circular nature of arrival time Aj , which is not captured

accurately by any distance-based clustering algorithm (for example, entries at 23:59h and 0:00h

would be considered furthest apart despite their obvious proximity), we create two circular

features Asin
j = sin(2π(Aj/24)) and A

cos
j = cos(2π(Aj/24)). This yields the following vector of

clustering variables vclustj = (Asin
j , Acos

j , δj), which we normalize.

Given the size of our dataset (3.84M observations) we limit our algorithm search to clustering

algorithms that are sufficiently scalable. We run initial tests with three clustering algorithms: k-

means++, a centroid-based algorithm, Gaussian Mixture Models (GMM) and BIRCH, a scalable

density-based clustering algorithm. Overall, we find k-means++ to perform best in terms of

runtime and stability. While GMM yields relatively similar results, BIRCH performs very poorly,

yielding unstable and non-cohesive clusters suggesting that relative density may not be a good

identifier of clusters for the given dataset. We thus focus on fine tuning k-means++. A major

challenge in the application of k-means++ is to select the number of centroids (clusters) k that

are to be initialized and optimized for. To identify good candidate choices for k, We initially

test integer values over an interval of reasonable values [0, 20] and compute Calinski-Harabasz

scores per each clustering outcome (Calinski and Harabasz, 1974). These analyses suggest k = 5

or k = 6 to be good choices. To validate and further narrow down our choice for k, we perform

silhouette analyses for both candidate choices (Rousseeuw, 1987). We obtain the highest average

silhouette coefficient H̄ for k = 6 (H̄ = 0.420). Finally, taking k = 6 as the best performing choice

across the above described internal validity measures, we conduct extensive cross-validation to

assess cluster outcome robustness. We iteratively perform 2-1 splits of the data and re-run k-

means++ on the larger dataset, then use the fitted algorithm to predict the labels of the smaller

(test) dataset. We find our clustering results to be stable with observations in the test set having

the same label 99.14% (σ = 0.51 %, 100 replications) of the time. We run an additional set

of robustness analyses, this time focusing on the amount of preference data that is required to

identify parker types reliably. This analysis draws on Griffin and Hauser (1993) who looked at

the question of how many customer interviews were required for reliable insights. Clearly, there

is a benefit to prospective EVCH planners if the need for data was smaller than the full one

year period we have considered thus far. We run tests for 2 weeks, 4 weeks and 12 weeks of data

per each facility and check the robustness of the clustering results as compared to the clusters

obtained on the full one-year facility dataset. Again we adopt the cross-validation approach

as outlined in Lu et al. (2016a). We find that high quality clustering results can be obtained

with just three weeks of data (95.28%, σ = 3.49 %) accuracy vs. full one-year facility dataset).

Beyond this threshold the value of additional data appears to diminish. At six weeks of data, for
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example, we obtain very similar accuracy (95.85% (σ = 1.95 %)), albeit slightly lower variance.

In addition to internal validity and robustness of our clustering results we look at interpretability

(or external validity). For this purpose, we presented our final clustering results (for k = 6) to

a range of practitioners and discussed their implications. The clusters were deemed consistent

with the domain experts’ experience. In sum, we obtain six parker types that are supported

both by internal criteria and real-world observation and can be readily identified with just three

weeks of data. Figure 4.14 shows the distributions of the two clustering variables per each final

cluster.
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C. Benchmark Optimization Model (OPT)

We formulate the decision challenge as a feasibility problem which aims to satisfy all or a specified

amount of total charging demand most resource efficiently while considering rate, space, and

total capacity constraints. In doing so we expand on and adapt extant EVCH planning models

(e.g., Li et al., 2020).

In line with the planning objective formalized in Section 4.4, we frame the problem as a

cost minimization planning with the goal to jointly minimize the investment cost (CΦ) and the

operations cost (CΩ) of the EVCH while ensuring a certain service level ηServh . Formally, the

objective can be expressed as follows:

MinΞ[(C
Φ(xi,nk,h, δ

Trafo
h , κPV

h , ϵBat
h ) + CΩ(ωk,j,h, ψk,j,h,t, β

Charge
h,t , βDischarge

h,t )] (4.11)

Both cost items are defined as follows. The investment cost (CΦ) is the sum of the grid expan-

sion cost (if any), the cost of EVSEs plus any installed PV and battery capacity over the full

investment horizon H. The operations cost (CΩ) is defined as the total sum of electricity costs

over the investment horizon, where costs are only incurred on the electricity retrieved from the

grid with eGrid
h,t . Formally:

CΦ =
∑
h∈H

[(cTh δ
Trafo
h +

∑
k∈K

ci,nh xik,j,h + cPV
h pPV

h + cBat
h ϵBat

h )(1 + (|H| − h)ρMaint)] (4.12)

CΩ =
∑
h∈H

∑
t∈T

T e
h,te

Grid
h,t + T p

hp
∗
h (4.13)

Note that eGrid
h,t is accounted for on the basis of a two-part tariff charging for both the use of

electricity from the grid (excl. PV generation and possible battery discharge βDischarge
h,t ) and

demand charges arising from the induced peak load attributable to EVCH operations. Demand

charges T p
h are designed to incentivize efficient utilization of the grid (Gust et al., 2021) and are

typically based on the monthly peak load induced by the facility. We therefore define p∗ as the

excess of the expected base facility peak load l∗ (excl. EVCH operations) for state h (EC (12)).

eGrid
h,t =

∑
j∈Jh

∑
k∈K

∆t(ψk,j,h,t + βCharge
h,t − βDischarge

h,t − fPV
h,t

h∑
τ=0

κPV
τ + lh,t) (4.14)

p∗h ≥
eGrid
h,t

∆t
− l∗h ∀h ∈ H, t ∈ T(4.15)

The optimization is subject to additional operational and physical constraints.
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∑
k∈K

∑
t∈T

ψk,j,h,t ≥ ηServh eDj ∀h ∈ H, j ∈ Jh (4.16)

xi,nk,h, ωk,j,h ∈ {0, 1} ∀k ∈ K, h ∈ H, j ∈ Jh, i ∈ I, i ∈ N(4.17)∑
k∈K

∑
i∈I

∑
n∈N

∑
h∈H

xi,nk,hn ≤ L (4.18)∑
h∈H

∑
i∈I

∑
n∈N

xi,nk,h ≤ 1 ∀k ∈ K (4.19)

∑
j∈Jh

ωk,j,hUj,h,t ≤
h∑

τ=0

∑
i∈I

xi,nk,τn ∀k ∈ K, h ∈ H, t ∈ T (4.20)

∑
k∈K

ωk,j,h ≤ 1 ∀h ∈ H, j ∈ Jh (4.21)

0 ≤ ψk,j,h,t ≤ ωk,j,hUj,h,tM ∀k ∈ K, h ∈ H, j ∈ Jh, t ∈ T (4.22)∑
j∈Jh

ψk,j,h,t ≤
h∑

τ=0

∑
i∈I

∑
n∈N

xi,nk,τκ
i ∀k ∈ K, h ∈ H, t ∈ T (4.23)

∑
h∈H

κPV
h ≤ R (4.24)

SoCh,t = SoCh,t−1 + (βCharge
h,t−1 − βDischarge

h,t−1 )∆t ∀h ∈ H, t ∈ {1, 2, ..., T } (4.25)

SoCh,0 =

h∑
τ=0

SoCminϵBat
τ ∀h ∈ H (4.26)

βCharge
h,t ≤ βDirection

h,t βmax ∀h ∈ H, t ∈ T (4.27)

βDischarge
h,t ≤ (1− βDirection

h,t )βmax ∀h ∈ H, t ∈ T (4.28)

βCharge
h,t ∆t ≤

h∑
τ=0

SoCmaxϵBat
τ − SoCh,t−1 ∀h ∈ H, t ∈ {1, 2, ..T } (4.29)

βDischarge
h,t ∆t ≤ SoCh,t−1 ∀h ∈ H, t ∈ {1, 2, ..T } (4.30)

eGrid
h,t ≤ ∆t(κ

Grid
0 +

h∑
τ=0

δTrafo
τ κTrafo) ∀h ∈ H, t ∈ T (4.31)

First and foremost, service level is guaranteed in EC (13). Note that the summation is

bounded by set Tj , meaning that we consider the total supplied energy at the time of departure.

This important constraint ensures that adequate infrastructure is provisioned despite the cost

minimization objective.

EV charging infrastructure decisions and operations are controlled by means of decision

variables xi,nk,h, ωk,j,h (both binary indicators, see EC (14)) and ψk,j,h,t. First, the number of

charging docks and associated connectors is restricted by the space constraints S of the facility

(EC (15)). Similarly, EC (16) ensures that candidate points can only be equipped with chargers
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once and that this decision cannot be changed over the planning period, i.e., they cannot be

removed once installed.

In terms of routing and charging operations, the model assigns vehicles to chargers upon

arrival (one-off decision) and periodically adjust the charging power over the duration of their

visit. Constraint EC (17) allocates vehicle j to spot k during stage h only if k is equipped with

a charging dock and only if j is present in the EVCH (captured via Uj,h,t). EC (18) ensures

that each vehicle connects to at most one charging dock. Constraint EC (19) guarantees that

vehicle j receives non-negative energy (bounded by the maximum power of the specific dock in

EC (20)) from charging dock k only if it is connected to k.

Battery and on-site generation constraints are set as follows. We assume PV generation to

be non-controllable meaning no constraints are necessary to model their operations (in-feed is an

exogenous parameter). We simply limit the maximum installable PV capacity
∑

h∈H κ
PV to the

available on-site space (such as rooftop space) R (see EC (21)). EC (22) through (27) implement

various battery-related constraints. Constraint (22) incrementally updates the battery state of

charge SoCh,t. Constraint (23) ensures that the battery SoC remains within a certain interval.

Note that we neglect efficiency losses and assume battery depreciation to be independent of

operations(Sharifi et al., 2020). We realize that these are simplifications, yet these are necessary

to retain tractability of our model. We assume symmetric charge/discharge rate limits which are

enforces through constraint EC (24) and (25), where βmax ≥ 0. These constraints also ensure

that the batter cannot be charged and discharged at the same time.

Our model ensures that the EVCH’s base load as well as EV and battery charging loads

cannot exceed the total grid capacity (existing and extension) plus current PV generation,

which is enforced by EC (28). Note that if the battery was discharging (negative βBat
t ) this

would increase the available capacity.
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D. Experimental Setup

Table 4.3 summarizes the core parameters used in the benchmark experiments over the invest-

ment horizon (10 states s ∈ S).

Table 4.3: Parameterization of benchmark experiments

Parameter18 Unit s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 Source

Battery cost
(cBat

s )
USD/
kWh

575 507 441 391 352 321 295 273 255 239 Lazard,
Bloomberg
NEF

AC charger
cost19 (cEV SE

s,AC )
USD/
unit

4500 4322 4151 3986 3828 3677 3531 3391 3257 3128 industry
quotes

DC charger
cost20 (cEV SE

s,DC )
USD/
unit

50000 49000 47060 45196 43406 41687 40037 38451 36928 35466 California
Energy
Commis-
sion

Connector cost
AC

USD/
unit

250 250 250 250 250 250 250 250 250 250 assumption

Connector cost
DC

USD/
unit

2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 assumption

EV share21

(σEV
s )

% 5 8 12 18 27 37 42 49 56 65 Bloomberg
NEF

Grid cost22

(cGrid
s )

USD/
kW

250 276 304 335 369 407 449 495 546 602 industry
quotes

PV cost (cPV
s ) USD/

kWp
2125 2041 1960 1882 1808 1736 1668 1601 1538 1477 Lazard,

IEA

Max. PV
capacity23 (R)

kWp 100 100 100 100 100 100 100 100 100 100 -

Number of
parking spots
(S)

units 200 200 200 200 200 200 200 200 200 200 -

In addition we impose several physical constraints inherent to the various components of the

EVCH system. These are summarized in Table 4.4.

Energy costs are based on real-world electricity tariffs from the same region in which the

charging data was gathered (i.e., California). Table 4.5 gives an overview of the tariff structure

that we use throughout all experiments.

18All cost parameters include cost of installation and peripheral equipment (e.g., inverters for battery, PV and
DC chargers)

1922kW, single connector
2050kW, single connector
21Assuming sales share equals penetration for given facility
22Cost of transformer, cabling and contribution to upstream grid upgrades; assuming 5% yearly cost increase
23Assuming 500m2 roof space and PV energy density of 0.2kWp/m2



Table 4.4: Physical Constraints

Symbol Value Unit

Maximum EV charging rate ψEV 22 kW
EV charging efficiency ηEV 95 %
Energy storage charging/discharging efficiency ηBat 95 %
Minimum storage SoC SoCMin 5 %
Maximum storage SoC SoCMax 95 %
Maximum storage charging rate βMax 0.5 MW

Table 4.5: Time-of-use tariff and demand charge for large-scale EV charging customers (> 500
kW)

Summer Winter
(Jun - Sep) (all other months)

Super Off-Peak (8am-4pm) 0.08 USD/kWh 0.06 USD/kWh
On-Peak (4pm to 9pm) 0.23 USD/kWh 0.23 USD/kWh
Off-Peak (9pm-8am) 0.08 USD/kWh 0.08 USD/kWh
Demand Charge (monthly) 15.48 USD/kW
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M. Schiffer, G. Hiermann, F. Rüdel, and G. Walther. A polynomial-time algorithm for user-based

relocation in free-floating car sharing systems. Transportation Research Part B: Methodolog-

ical, 143:65–85, 2021. doi: 10.1016/j.trb.2020.11.001.

B. Schleich, N. Anwer, L. Mathieu, and S. Wartzack. Shaping the digital twin for design and

production engineering. CIRP Annals, 66(1):141–144, 2017. doi: 10.1016/j.cirp.2017.04.040.

K. Schroer, W. Ketter, T. Y. Lee, A. Gupta, and M. Kahlen. An Online Learning and Optimiza-

tion Approach for Competitor-Aware Management of Shared Mobility Systems. In Proceedings

of the SIG GREEN Workshop, pages 1–12, 2019.

K. Schroer, W. Ketter, T. Y. Lee, A. Gupta, and M. Kahlen. Data-Driven Competitor-Aware

Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 56(1):182–200,

jan 2022a. doi: 10.1287/trsc.2021.1097.

K. Schroer, W. Ketter, T. Y. Lee, A. Gupta, and M. Kahlen. Data-Driven Competitor-Aware

Positioning in On-Demand Vehicle Rental Networks. Transportation Science, 56(1):182–200,

jan 2022b. doi: 10.1287/trsc.2021.1097.

B. Schwartz. The Paradox of Choice: Why More Is Less, Revised Edition: Amazon.de: Barry

Schwartz: Amazon.De. Harper Perennial, 2016.

S. Seidel, J. Recker, and J. vom Brocke. Sensemaking and Sustainable Practicing: Functional

Affordances of Information Systems in Green Transformations. MIS Quarterly, 37(4):1275–

1299, 2013. doi: 10.25300/MISQ/2013/37.4.13.
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world data science and prediction problem and is typically based on a large-scale mobility or

energy dataset.
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Master’s

Advanced Topics in Information Systems for Sustainable Society (ATIS3) – Co-

Lecturer and Tutor [WirtInf/BWL, Winter 18/19, 19/20]

– I co-developed and taught a new course on IS for sustainability targeted at equipping IS and

management students with the necessary domain knowledge (energy markets, technological

constraints, etc.) and tools (data analytics, mathematical programming/optimization) needed

to effectively develop and deploy IS technology solutions in the energy and smart mobility

domains.

Advanced Seminar for Information Systems for Sustainable Society (ASIS3) – Sem-

inar Tutor [WirtInf/BWL, Winter 18/19, 19/20, 20/21, 21/22]

– ASIS3, is held in an interactive seminar format that draws on literature from mechanism

design, online markets, decision support systems, and empirical analysis of these artifacts.

Students are asked to present and discuss papers from the compiled reading list in class. I

co-lead the seminar sessions, assessed student presentations and moderated in-class paper

discussions.

MBA

Elective on Operations Management for Future Mobility Systems – Guest Lecturer

[Cologne-Rotterdam EMBA 2017-18, 2018-19, 2020-21, 2021-22]

– I was a Guest Lecturer in the annual Cologne-Rotterdam Executive MBA elective on Future of

Mobility where I delivered two-hour self-designed interactive lecture sessions on core technol-

ogy trends and implications/opportunities for data-driven operations management. Drawing

from case studies from my own research on e.g., virtual power plants of EVs, real-time man-

agement of shared vehicle fleets as well as the latest OM/IS research in the area, I presented

concrete examples of how technology can be used to solve some of society’s most pressing

issues.

– As part of the lecture session I also developed and moderated in-class group case studies that

the students prepared, presented and discussed in class.
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Thesis Supervision (Total Count: 30)

In addition to teaching, I held main supervision and coaching responsibility for 30 Master’s, MBA

and Bachelor’s theses. These typically aligned with my research interests in data-driven and

automated management and empirical analysis of new energy and mobility systems. As part of

my supervision responsibilities I helped students develop their research question, provided data

sets, held regular feedback/discussion meetings and graded the final thesis. A complete list of

supervised theses titles is provided below.

Master’s & MBA Theses (Count: 12)

– A simulation-driven approach to optimize EV charging clusters: A more sustainable parking

facility (2021)

– Supporting Cities in Decision-making with Shared Mobility Data (2021)

– Predicting Rental Length and Endpoints in Free-Floating Vehicle Sharing Systems - An Anal-

ysis using Geotagged Rental Data (2020)

– Platform competition for the worse? The influence of electric scooters on bike sharing usage

(2019)

– Last-Mile Delivery with Shared Autonomous Vehicles: A mixed rental-delivery strategy for

fleet operators (2019)

– An auction-based mechanism for road pricing in autonomous urban transport systems (2019)

– Emco entering the e-scooter sharing operations business in Spain [MBA Thesis] (2019)

– Reinforcement Learning Portfolio Optimization of Electric Vehicle Virtual Power Plants (2019)

– Improving spatio-temporal Demand Predictions for Free Floating Car Sharing Services - A

Machine Learning Approach with Novel Features (2019)

– Predicting Dockless Bikesharing Demand Across Time and Space using Machine Learning

(2019)

– Implementation Framework for EVs in the Commercial Sector in Urban Areas [MBA Thesis]

(2018)

– Predicting Economic Regimes in Electricity Markets (2018)

Bachelor’s Theses (Count: 18)

– Consumer Models of EV Charging - How, When, Where and How much do People Charge

their EVs (2021)

– Using Big-Behavioral Data to Estimate Future Charging Demand in Parking Lots (2021)

– Mobility in times of COVID-19 - An Empirical Analysis of Policy Compliance (2021)

– A spatio-temporal analysis of usage patterns in free-floating shared mobility (2021)

– Understanding and predicting shared mobility usage patterns (2021)

– Leveraging Parking Preference Data for EV Charging Infrastructure Planning (2021)
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– Determining the Sustainability Footprint of New Mobility (2020)

– Understanding and Quantifying EV Usage Patterns (2020)

– Examining the Effect of COVID-19 policy interventions using large-scale mobility data (2020)

– Carsharing at the Multi-Residential Building Scale with Renewable Energy - an IT-Enabled

Business Model for Building Operators (2020)

– Driving Sustainability in Transportation through IS-Enabled Eco Nudging (2020)

– Information Systems Research for Connected Autonomous, Shared and Electric Mobility: A

Literature Review (2020)

– Uncovering the relationship between public transit and shared mobility concepts: An empirical

investigation (2019)

– Free and yet predictable: Value of big urban data in predicting free-floating car sharing demand

(2019)

– Smart planning of charging infrastructure for connected, shared and electric vehicles using

real-world data (2019)

– Possible approaches to avoid traffic congestion in an autonomous mobility future (2019)

– Eine demografische Untersuchung der Elektroautobesitzer in Deutschland (2018)

– Scenario of a Sustainable Germany: A Technology-Based Approach (2018)
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EDUCATION

University of Cologne, DE 2022 (exp.)
Ph.D. in Operations & Information Management
Advisor: Prof. Wolfgang Ketter

University of California at Berkeley, US 2022
Visiting Ph.D. Scholar in Data Science & Operations Management
Advisor: Prof. Thomas Y. Lee

University of Cambridge, UK 2015
M.Phil in Industrial Systems, Manufacture & Management
Grade: Distinction (top 5% of cohort)

University of Birmingham, UK 2013
B.Eng in Mechanical Engineering with Business Management
Grade: First Class (top 5% of cohort)

International German School Brussels, BE 2010
High School Diploma (Abitur)
Grade: 1.4

EXPERIENCE

University of Cologne Apr ’18 – Jun ’22
PhD Researcher & Academic Staff Cologne, DE; Berkeley, US

· Researched data-driven decision making (econometrics/statistics, machine learning, optimization,
simulation, reinforcement learning) with focus on future energy and mobility systems (EV charging,
fleet management); 5-months research visit at UC Berkeley

· Published first-authored papers at leading international operations management and information
systems conferences and high-impact journals

· Taught ”Data Science and Machine Learning” (Bachelor), ”Analytics and Applications” (Master),
”Advanced Seminar on Information Systems” (Master/Ph.D.) and gave annual guest lecture on
”Smart Sustainable Mobility” (MBA/EMBA); Supervised theses in data science and operations
management at Bachelor’s, Master’s and MBA level

· Co-led DE- and EU-level grant proposals (total funds acquired: EUR 228k) and initiated two active
company research collaborations

Institute of Energy Economics at the University of Cologne (EWI) Oct ’19 – Oct ’21
Affiliated Researcher/Data Scientist Cologne, DE

· Co-led data-driven applied research projects in the area of smart electric vehicle charging and
charging infrastructure planning; managed teams of up to three researchers

· Developed proposal materials for project acquisitions and delivered senior management and investor
presentations (e.g., results presentations, workshop series on AI and the Smart Grid)

· Contributed to EWI’s thought-leadership in the area of electric mobility by co-authoring technical
reports



Roland Berger Feb ’16 – Mar ’18
Management Consultant, Energy & Utilities Practice Duesseldorf, DE

· Led own work streams in large international strategy development and restructuring assignments in
Europe and the Middle East for clients in the utilities, oil&gas, chemicals and healthcare industries;
extensive senior management exposure

· Managed teams of up to three interns and junior consultants; acted as mentor for summer interns
and new hires

· Contributed to project acquisitions by crafting proposal documents and participating in pitch pre-
sentations with senior management attendance; co-developed new RB offering in the area of AI-
powered maintenance and prognostics

McKinsey & Company Mar ’14 – May ’14
Visiting Associate (Intern) Berlin, DE

· Supported an operational excellence and store concept re-launch project for a global fashion retailer

Innogy Consulting (formerly RWE Consulting) Dec ’13 – Feb ’14
Junior Consultant (Intern) Essen, DE

· Supported the development of a scenario-based outlook on the future of the Polish energy ecosystem
and identified strategic implications for RWE (now Innogy)

Simon-Kucher & Partners Aug ’13 – Nov ’13
Associate Consultant (Intern) Bonn, DE

· Supported the conceptualization and implementation of a web-based decision support tool for price
promotions at a major German supermarket chain

HONOURS & AWARDS

AIS Doctoral Consortium Member 2021, Association for Information Systems (AIS)
One of only 40 PhD students globally to be invited to the prestigious ICIS Doctoral Consortium
2021 in Austin (Texas); competitive peer review-based selection process; fully funded.

DAAD PhD Research Scholarship, German Academic Exchange Service (DAAD)
Full scholarship (fees and maintenance grant) to fund research visit to UC Berkeley

The Frederick Alfred Warren Prize, University of Cambridge
Price received for the highest mark overall in project work and research dissertation

DAAD Postgradual Scholarship, German Academic Exchange Service (DAAD)
Full scholarship (fees and maintenance grant) to pursue postgraduate studies at Cambridge

Ellis, Linning and Sandifer Prize, University of Birmingham
Prize awarded annually to the academically most outstanding student in the final year of the B.Eng.
program in Mechanical Engineering.

Gilbert Walker Prize in Mech Eng and Commerce, University of Birmingham
Prize awarded annually to the academically most outstanding student of the double Honours course
in Mechanical Engineering and Business Management

First Class Scholarship 2010-2013, University of Birmingham
Scholarship awarded for excellent academic accomplishments. Awarded for three consecutive years.
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Programming Python, R, Julia, STATA, SQL, Git, LaTeX

APIs &
Technologies

machine learning (scikit-learn, TensorFlow, Keras), optimization (commer-
cial (CPLEX, Gurobi) and non-commercial (GLPK, Ipopt) solvers, higher-
level frameworks (JuMP, Pyomo)), large-scale simulation (SimPy), causal
inference/econometrics (R and Python statistics packages), GIS (geopandas,
h3, kepler.gl), big data/cloud technologies

Languages English, German (native), French, Dutch

SOCIETAL SERVICE & PERSONAL INTERESTS

Academic Service Regular ad hoc reviewing activities for leading Information Systems confer-
ences (ICIS, ECIS, WI) and journals (Journal of Information Technology)

Sports Rowing at competitive level: currently at RG Benrath Rowing Club; pre-
viously at University of Cologne Rowing Club (2018-2020), Wolfson Col-
lege Cambridge Boat Club (Boat Captain, 2014-15), Cercles des Régates de
Bruxelles Rowing Club (2007-10), Siegburger RV Rowing Club (2004-07)

Societies Berkeley Energy and Resource Collective (BERC), Haas Technology Club,
Wolfson College Cambridge Mayball Organizing Committee (2015)
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